US20170265719A1 - Endoscope - Google Patents

Endoscope Download PDF

Info

Publication number
US20170265719A1
US20170265719A1 US15/610,879 US201715610879A US2017265719A1 US 20170265719 A1 US20170265719 A1 US 20170265719A1 US 201715610879 A US201715610879 A US 201715610879A US 2017265719 A1 US2017265719 A1 US 2017265719A1
Authority
US
United States
Prior art keywords
rotary
traction
chain
plate
sprocket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/610,879
Other languages
English (en)
Inventor
Reiji KOYAMA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Assigned to OLYMPUS CORPORATION reassignment OLYMPUS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOYAMA, REIJI
Publication of US20170265719A1 publication Critical patent/US20170265719A1/en
Priority to US16/899,783 priority Critical patent/US11311179B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0057Constructional details of force transmission elements, e.g. control wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • A61B1/0051Flexible endoscopes with controlled bending of insertion part
    • A61B1/0052Constructional details of control elements, e.g. handles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports

Definitions

  • the present invention relates to an endoscope in which a traction member is pulled along with rotation of a rotatable member to bend a bending portion provided in an insertion section.
  • An endoscope is used in a medical field, an industrial field, and other fields.
  • the endoscope has a rigid elongated insertion section or a flexible elongated insertion section.
  • the endoscope having a flexible insertion section is provided with a bending portion at distal end side of the insertion section.
  • the bending portion is configured by connecting a plurality of bending pieces to one another.
  • the bending portion is typically configured to be bent in response to pulling and relaxing of a bending wire that is operated by a bending operation device provided in an operation section.
  • a distal end of the bending wire is fixed to a predetermined position of a distal end bending piece that constitutes the bending portion.
  • the endoscope including the bending portion makes it possible to direct an observation optical system provided in a distal end portion of the insertion section, toward a desired direction to allow for observation, and to smoothly insert the insertion section to a deep portion, by bending the bending portion.
  • the bending wire is pulled and relaxed through rotation of a pulley along with operation of the bending operation device.
  • the pulley is a bending operation mechanism inside the operation section.
  • a proximal end of the bending wire is fixed to, for example, a spherical body by solder, and the spherical body to which the wire has been fixed is installed in a spherical hole provided in the pulley.
  • a bending wire 12 is wound and disposed in each of a peripheral groove of one pulley 11 UD and a peripheral groove of the other pulley 11 LR.
  • the one pulley 11 UD wound with the bending wire 12 and the other pulley 11 LR wound with the bending wire 12 are disposed in a pulley housing concave section.
  • the pulley housing concave section has a substantially semi-annular wall surface that prevents the wire from being detached.
  • a sprocket serving as a bending operation mechanism in an operation section is rotated to move a chain along with operation of a bending operation device, which causes a bending wire to be pulled and relaxed.
  • proximal ends of respective operation wires 39 of an endoscope 20 are respectively attached to, through a coupling member 38 , an end part of a UD chain member 29 B and an end part of an LR chain member 29 A.
  • the UD chain member 29 B is wound around a UD sprocket 28 B
  • the LR chain member 29 A is wound around an LR sprocket 29 .
  • the UD sprocket 28 B with which the UD chain member 29 B engages and the LR sprocket 28 A with which the LR chain member 29 A engages are restricted in position on an insertion section 2 side by a pressing part 30 that is formed integrally with a partition plate 25 .
  • the chain members 29 A and 29 B respectively engaging with the UD sprocket 28 B and the LR sprocket 28 A are prevented from being detached from the sprockets 28 A and 28 B by a cover member 33 that is fixed to a ground plate 24 by screwing.
  • An endoscope includes: a bendable bending portion provided in an insertion section that is inserted into a subject; a first traction member and a second traction member that are pulled to bend the bending portion; a first rotary member including a first engaging part that engages with the first traction member, a first shaft part that fixes the first engaging part, and a first insertion hole that penetrates in an axial direction of the first shaft part, the first rotary member causing the first traction member to engage with the first engaging part to wind the first traction member, and rotating to pull the first traction member; a first plate member on which the first rotary member and the first traction member are disposed, the first plate member being formed in a plate shape; a first protrusion protruding from the first plate member to position the first rotary member and the first traction member with respect to the first plate member; a first positioning part protruding from the first plate member to position the first rotary member, and coming into contact with the first shaft part of the first
  • An endoscope includes: a bendable bending portion provided in an insertion section that is inserted into a subject; a traction member pulled to bend the bending portion; a rotary member that includes an engaging part that engages with the traction member and a shaft part that fixes the engaging part, the rotary member causing the traction member to engage with the engaging part to wind the traction member and rotating to pull the traction member; a member on which the rotary member and the traction member are disposed, the member being formed in a plate shape; a protrusion protruding from the member to position the rotary member and the traction member with respect to the member; and a cutout part provided on the protrusion of the member and having a width set to cause a tip of thumb and a tip of fingers of an assembling worker of the endoscope, the thumb and the finger holding the rotary member and the traction member, to be located inside a predetermined installation space so that the assembling worker of the endoscope can perform positioning of the rotary
  • An endoscope includes: a bendable bending portion provided in an insertion section that is inserted into a subject; a traction member pulled to bend the bending portion; a pair of rotary members each including an engaging part that engages with the traction member and a shaft part that fixes the engaging part, the pair of rotary members each causing the traction member to engage with the engaging part to wind the traction member and rotating to pull the traction member; a member on which the pair of rotary members and the traction member are disposed, the member being formed in a plate shape; a protrusion protruding from the member to position each of the pair of rotary members and the traction member with respect to the member; and a pair of positioning parts each protruding from the member to position the pair of rotary members, and coming into contact with the shaft part of each of the pair of rotary members.
  • FIG. 1 is a side view of an endoscope, illustrating a side surface on a bending operation device side;
  • FIG. 2 is another side view of the endoscope, illustrating a side surface on a side opposite to the bending operation device side;
  • FIG. 3 is a diagram to explain a configuration inside an operation section and to explain a bending operation mechanism disposed on flat surface side of a main frame;
  • FIG. 4 is an exploded perspective view to explain the bending operation mechanism and other components
  • FIG. 5A is a diagram to explain relationship between the main frame and a lateral sprocket wound with a lateral chain;
  • FIG. 5B is a diagram illustrating a state in which the lateral sprocket wound with the lateral chain is moved to a vicinity of a first positioning projection inside a first sprocket installation space of the main frame;
  • FIG. 5C is a diagram illustrating a state in which the lateral sprocket wound with the lateral chain is installed in the first sprocket installation space;
  • FIG. 5D is a diagram to explain a state in which a chain cover is disposed to face the main frame in which the lateral sprocket is installed in the first sprocket installation space;
  • FIG. 5E is a diagram to explain a state in which the oppositely-disposed chain cover is disposed on the main frame and a state in which a vertical sprocket wound with a vertical chain is installed in a second sprocket installation space of the chain cover;
  • FIG. 5F is a diagram to explain the chain cover and a lid member that are disposed on the main frame
  • FIG. 5G is a diagram to explain a state in which the lid member is disposed on the chain cover
  • FIG. 5H is a diagram to explain a state in which the main frame provided with the lateral sprocket, the lateral chain, the vertical sprocket, and the vertical chain is fixed to an operation section body to which a frame shaft is assembled;
  • FIG. 5I is a diagram illustrating a state in which a support shaft is inserted into a support shaft insertion hole
  • FIG. 5J is a cross-sectional diagram taken along line Y 5 J-Y 5 J in FIG. 3 , illustrating the bending operation mechanism of the operation section;
  • FIG. 6 is a diagram to explain the bending operation mechanism for a configuration in which a bending portion of the endoscope is bent in two directions of upward and downward;
  • FIG. 7A is a cross-sectional diagram, in a longitudinal direction, of a main frame including a pair of cutout grooves
  • FIG. 7B is a side view of the main frame including the pair of cutout grooves
  • FIG. 7C is a diagram to explain a state in which the main frame including the pair of cutout grooves and the lateral sprocket wound with the lateral chain are held by fingers;
  • FIG. 8A is a diagram to explain a state in which a main frame including one cutout groove and the lateral sprocket wound with the lateral chain are held by fingers;
  • FIG. 8B is a cross-sectional diagram, in a longitudinal direction, of the main frame including one cutout groove
  • FIG. 9 is a diagram to explain a chain cover and a lid member each including a complementary part corresponding to the cutout groove.
  • FIG. 1 and FIG. 2 An outline of an entire configuration of an endoscope according to the present invention is described with reference to FIG. 1 and FIG. 2 .
  • an endoscope 20 mainly includes an elongated insertion section 21 , an operation section 22 , a universal cord 23 , a connector 24 , and other components.
  • the insertion section 21 is inserted into a subject such as an inside of a body cavity.
  • the operation section 22 is provided continuously to proximal end side of the insertion section 21 .
  • the universal cord 23 is extended from one side surface of the operation section 22 .
  • the connector 24 is provided at an end part of the universal cord 23 .
  • the insertion section 21 includes a rigid distal end component 21 a , a bending portion 21 b bendable in four directions, and an elongated flexible tube portion 21 c that are coupled to one another in order from distal end side of the insertion section 21 .
  • the bending portion 21 b is bendable in four directions of upward, downward, rightward, and leftward, and in optional directions through combination of bending operation in the four directions.
  • a bending operation mechanism 30 is provided in the operation section 22 .
  • the detailed configuration of the bending operation mechanism 30 is described later.
  • an objective lens, an illumination lens, a cleaning nozzle, and a treatment instrument channel opening are provided on a distal end surface of the distal end component 21 a.
  • an air feeding conduit and a water feeding conduit that are coupled to the cleaning nozzle, a light guide fiber that supplies illumination light to the illumination lens, and the like are provided inside the distal end component 21 a , in addition to an image pickup device, an electric substrate mounted with electric parts, a video cable extended from the image pickup device, and the like.
  • the video cable and the light guide fiber pass through the inside of the insertion section 21 , the operation section 22 , and the universal cord 23 , and are extended to the connector 24 .
  • the air feeding conduit and the water feeding conduit pass through the insertion section 21 and are extended to the connector 24 through an air/water feeding cylinder and the universal cord 23 that are provided in the operation section 22 .
  • the operation section 22 includes an operation section body 22 A and a grasping portion case body 22 B that are integrally and water-tightly fixed to each other.
  • a proximal end portion of the insertion section 21 is provided continuously with an end part of the grasping portion case body 22 B.
  • a reference numeral 25 denotes a bend preventing portion.
  • the bend preventing portion 25 prevents buckling of the flexible tube portion 21 c of the insertion section 21 .
  • the bend preventing portion 25 includes an elastic rubber member or the like, and covers a coupling portion between the end part of the grasping portion case body 22 B and the proximal end portion of the insertion section 21 .
  • Various kinds of operation members for example, a plurality of electric switches 26 , an air/water feeding button 27 a , and a suction button 27 b are provided on the operation section body 22 A of the operation section 22 .
  • the electric switches 26 are provided for remote control of peripheral apparatuses such as a video processor.
  • a vertical bending operation knob 31 A and a lateral bending operation knob 31 B of a bending operation device 31 are rotatably installed in the operation section body 22 A.
  • the bending operation device 31 is provided for the bending operation of the bending portion 21 b of the insertion section 21 .
  • a reference numeral 22 Ac denotes an operation section body cover.
  • the operation section body cover 22 Ac is so fixed as to integrally and water-tightly block an opening (see a reference numeral 22 Am in FIG. 5J ) provided in the operation section body 22 A.
  • a reference numeral 28 denotes a treatment instrument guide opening that is provided in the grasping portion case body 22 B.
  • a main frame 40 as a ground plate is installed inside the operation section 22 .
  • the main frame 40 is a first plate member out of members formed in a plate shape, and is fixed to an inside of the operation section body 22 A of the operation section 22 and to an inside of the grasping portion case body 22 B by screwing.
  • the bending operation mechanism 30 a partition 36 , a bending adjustment unit 37 , a chain cover 41 , a lid member (see a reference numeral 42 in FIG. 4 ), a frame shaft 43 , and the like are provided on flat surface 40 a side of the main frame 40 .
  • the bending operation mechanism 30 moves bending wires 32 provided inside the insertion section 21 , thereby bending the bending portion 21 b.
  • the bending operation mechanism 30 mainly includes the bending operation device 31 illustrated in FIG. 1 , the bending wires 32 and chains 35 that are traction members illustrated in FIG. 3 , sprockets 34 serving as rotary members, and a support shaft 33 .
  • the bending operation mechanism 30 includes a vertical bending operation mechanism and a lateral bending operation mechanism.
  • the vertical bending operation mechanism may bend the bending portion 21 b in a vertical direction.
  • the lateral bending operation mechanism may bend the bending portion 21 b in a lateral direction.
  • the bending operation mechanism 30 includes a vertical sprocket 34 A and a lateral sprocket 34 B as the sprocket 34 , and a vertical chain 35 A and a lateral chain 35 B as the chain 35 .
  • a reference numeral 34 Aa denotes a vertical shaft part fixing a tooth part 34 Ac
  • a reference numeral 34 Ba denotes a lateral shaft part fixing a tooth part 34 Bc.
  • the vertical sprocket 34 A rotates around the shaft along with rotating operation of the vertical bending operation knob 31 A
  • the lateral sprocket 34 B rotates around the shaft along with the rotating operation of the lateral bending operation knob 31 B.
  • the vertical chain 35 A engages with the tooth part 34 Ac serving as an engaging part of the vertical sprocket 34 A and is wound around the vertical sprocket 34 A
  • the lateral chain 35 B engages with the tooth part 34 Bc serving as an engaging part of the lateral sprocket 34 B and is wound around the lateral sprocket 34 B.
  • the chains 35 A and 35 B are moved respectively following the rotation of the sprockets 34 A and 34 B.
  • a reference numeral 38 in FIG. 3 denotes a known coupling member that couples the bending wires 32 to the corresponding chains 35 . More specifically, a reference numeral 38 U in FIG. 4 denotes an upper coupling member, a reference numeral 38 D denotes a lower coupling member, a reference numeral 38 L denotes a left coupling member, and a reference numeral 38 R denotes a right coupling member.
  • the upper coupling member 38 U couples an upper bending wire (not illustrated) to an end part of the vertical chain 35 A.
  • the lower coupling member 38 D couples a lower bending wire (not illustrated) to the other end part of the vertical chain 35 A.
  • the left coupling member 38 L couples a left bending wire (not illustrated) to an end part of the lateral chain 35 B.
  • the right coupling member 38 R couples a right bending wire (not illustrated) to the other end part of the lateral chain 35 B.
  • the bending wires 32 that are respectively coupled to the chains 35 A and 35 B are moved along with rotating operation of the vertical bending operation knob 31 A and rotating operation of the lateral bending operation knob 31 B. Distal ends of the respective bending wires 32 are fixed to respective predetermined positions of distal end bending pieces (not illustrated) that constitute the bending portion 21 b.
  • a chain end portion configuring member 35 e is provided at an end part of the chain 35 .
  • a reference numeral 39 denotes a stopper portion, and a contact part 35 e of the chain end portion configuring member 35 e projected toward outside comes into contact with the stopper portion 39 , thereby regulating movement of the chain 35 .
  • the main frame 40 illustrated in FIG. 4 has an elongated shape, and is formed through, for example, die casting.
  • a support shaft hole 40 h , a first chain housing wall 40 w , and a first positioning projection 40 p are provided at respective predetermined positions on the flat surface 40 a of the main frame 40 .
  • a reference numeral 40 b denotes a unit fixing portion. Paired unit fixing portions 40 b are so provided respectively on side parts of the main frame 40 as to face each other. Each of the unit fixing portions 40 b includes an attachment part 40 c and fixing parts, for example, two female screws 40 f.
  • the bending adjustment unit 37 is integrally fixed to the attachment part 40 c of the main frame 40 .
  • Male screws 46 are respectively inserted into unit attachment holes 37 h and are respectively screwed with the female screws 40 f to attach the bending adjustment unit 37 .
  • the support shaft hole 40 h is a through hole into which the support shaft 33 is inserted, and a center axis (not illustrated) of the support shaft hole 40 h is orthogonal to a longitudinal axis (not illustrated) of the main frame.
  • the first chain housing wall 40 w and the first positioning projection 40 p are provided at respective predetermined positions with respect to the support shaft hole 40 h.
  • the first positioning projection 40 p is a first pressing part serving as a positioning part that projects from the flat surface 40 a by a predetermined amount.
  • the first chain housing wall 40 w is a first protrusion part serving as a protrusion that integrally protrudes from the flat surface 40 a by a predetermined amount.
  • the first chain housing wall 40 w includes a first annular wall 40 w 1 and a pair of first opposing walls 40 w 2 .
  • a reference numeral 40 S denotes a first bending operation mechanism housing chamber that includes the flat surface 40 a and a first inner wall surface 40 i of the first chain housing wall 40 w that stands on the flat surface 40 a .
  • the lateral sprocket 34 B wound with the lateral chain 35 B is disposed inside the first bending operation mechanism housing chamber 40 S.
  • the first annular wall 40 w 1 of the first chain housing wall 40 w is a semicircular protrusion part, and the first opposing walls 40 w 2 are substantially straight parallel walls that are respectively extended from end parts of the first annular wall 40 w 1 , in parallel to the longitudinal axis of the main frame.
  • the first annular wall 40 w 1 mainly constitutes a first sprocket installation space 40 ss , prevents the lateral chain 35 B wound around the lateral sprocket 34 B from dropping off to the outside of the sprocket, and improves assemblability of the bending operation mechanism.
  • the first inner wall surface 40 i of the first annular wall 40 w 1 is an inner peripheral surface of a predetermined radius, and a center of the inner peripheral surface is concentric with an axial center of the support shaft hole 40 h.
  • the pair of first opposing walls 40 w 2 prevents the lateral chain 35 B extended from the lateral sprocket 34 B, from dropping off to the outside.
  • a space between the first opposing walls 40 w 2 is a first chain installation space 40 sc that absorbs slack of the lateral chain 35 B in bending operation.
  • a reference numeral 40 d denotes a first attachment dowel.
  • the first attachment dowel 40 d is provided at a predetermined position on end part side of each of the first opposing walls 40 w 2 and projects from a top surface of the end part by a predetermined amount.
  • the first positioning projection 40 p retains the lateral sprocket 34 B wound with the lateral chain 35 B within the first annular wall 40 w 1 , in other words, prevents displacement of the lateral sprocket 34 B from the first sprocket installation space 40 ss toward the first chain installation space 40 sc.
  • a reference numeral 40 pt illustrated in FIG. 5A denotes a first contact surface that comes into contact with the lateral shaft part 34 Ba serving as a contact part of the lateral sprocket 34 B.
  • the first positioning projection 40 p has a height h 1 that is previously set lower than a protrusion height H of the lateral shaft part 34 Ba.
  • the first chain housing wall 40 w has a height h 2 that is set larger by a predetermined amount than a length of the lateral sprocket 34 B in the axial direction.
  • setting is performed such that a predetermined gap c 1 is provided between the first inner wall surface 40 i of the first annular wall 40 w 1 and the outer side of the lateral chain 35 B wound around the lateral sprocket 34 B.
  • the setting is performed such that a predetermined gap c 2 is provided between the contact surface 40 pt of the first positioning projection 40 p and an outer peripheral surface of the lateral shaft part 34 Ba.
  • a distance from the axial center of the support shaft hole 40 h to the contact surface 40 pt is substantially equivalent to a sum of the radius of the lateral shaft part 34 Ba and the gap c 2 .
  • the chain cover 41 illustrated in FIG. 4 is a second plate member out of the members formed in a plate shape, and includes a flat surface 41 a and the other flat surface 41 b that is a surface opposite to the flat surface 41 a .
  • the other flat surface 41 b is a flat surface disposed to face the flat surface 40 a of the main frame 40 , and is disposed on an end surface of the standing first chain housing wall 40 w.
  • a lateral rotary shaft insertion hole 41 h , a second chain housing wall 41 w , and a second positioning projection 41 p are provided at respective predetermined positions of the flat surface 41 a of the chain cover 41 .
  • the lateral rotary shaft insertion hole 41 h is a through hole into which a lateral sprocket rotary shaft of the lateral sprocket 34 B is inserted and disposed.
  • a center axis (not illustrated) of the lateral rotary shaft insertion hole 41 h is orthogonal to a longitudinal axis (not illustrated) of the chain cover.
  • the second chain housing wall 41 w and the second positioning projection 41 p are provided at respective predetermined positions with respect to the lateral rotary shaft insertion hole 41 h.
  • the second positioning projection 41 p is a second pressing part serving as a positioning part that projects from the flat surface 41 a by a height h 1 , as with the first positioning projection 40 p .
  • the second chain housing wall 41 w is a second protrusion part serving as a protrusion that stands on the flat surface 41 a by a height h 2 , as with the first chain housing wall 40 w .
  • the second chain housing wall 41 w includes a second annular wall 41 w 1 and a pair of second opposing walls 41 w 2 , as with the first chain housing wall 40 w.
  • the second chain housing wall 40 w has the height h 2 that is set larger by a predetermined amount than a length of the vertical sprocket 34 A in the axial direction.
  • a reference numeral 41 S denotes a second bending operation mechanism housing chamber that includes the flat surface 40 a and a second inner wall surface 41 i of the second chain housing wall 41 w that stands on the flat surface 40 a .
  • the vertical sprocket 34 A wound with the vertical chain 35 A is disposed inside the second bending operation mechanism housing chamber 41 S.
  • the second annular wall 41 w 1 mainly constitutes a second sprocket installation space 41 ss , prevents the vertical chain 35 A wound around the vertical sprocket 34 A from dropping off to the outside of the sprocket, and improves assemblability of the bending operation mechanism.
  • the pair of second opposing walls 41 w 2 prevents the vertical chain 35 A extended from the vertical sprocket 34 A, from dropping off to the outside.
  • a space between the second opposing walls 41 w 2 is a second chain installation space 41 sc that absorbs slack of the vertical chain 35 A in bending operation.
  • the second positioning projection 41 p retains the vertical sprocket 34 A wound with the vertical chain 35 A within the second annular wall 41 w 1 , in other words, prevents displacement of the vertical sprocket 34 A from the second sprocket installation space 41 ss toward the second chain installation space 41 sc.
  • the second positioning projection 41 p has a height h 1 that is set lower than a protrusion height H of the shaft part 34 Aa.
  • setting is performed such that a predetermined gap c 1 is provided between the second inner wall surface 41 i of the second annular wall 41 w 1 and the outer side of the vertical chain 35 A wound around the vertical sprocket 34 A. Further, the setting is performed such that a predetermined gap c 2 is provided between the contact surface 41 pt of the second positioning projection 41 p and an outer peripheral surface of the shaft part 34 Aa serving as a contact part.
  • a reference numeral 41 d in FIG. 4 denotes a second attachment dowel.
  • the second attachment dowel 41 d is provided at a predetermined position on end part side of each of the second opposing walls 41 w 2 and projects from a top surface of the end part by a predetermined amount.
  • the lid member 42 is a third plate member, and includes a flat surface 42 a and the other flat surface 42 b that is a surface opposite to the flat surface 42 a .
  • the other flat surface 42 b is a surface disposed to face the flat surface 41 a of the chain cover 41 , and is disposed on an end surface of the standing second chain housing wall 41 w.
  • a vertical rotary shaft insertion hole 42 h 1 is provided at a predetermined position of the lid member 42 .
  • the vertical rotary shaft insertion hole 42 h 1 is a through hole into which a vertical sprocket rotary shaft of the vertical sprocket 34 A is inserted and disposed.
  • a center axis (not illustrated) of the vertical rotary shaft insertion hole 42 h 1 is orthogonal to a longitudinal axis (not illustrated) of the lid member.
  • a reference numeral 42 h 2 denotes an attachment dowel engagement hole that is a through hole. Paired attachment dowels 41 d projected from the second opposing walls 41 w 2 respectively engage with paired attachment dowel engagement holes 42 h 2 .
  • tube pipes and metal tubes that constitute the video cable, the light guide fiber, the air feeding conduit, and the water feeding conduit are installed on the unillustrated other surface side of the main frame 40 illustrated in FIG. 3 .
  • an operator winds a middle part of the lateral chain 35 B around the lateral sprocket 34 B. Thereafter, the operator disposes the lateral sprocket 34 B wound with the lateral chain 35 B such that the lateral sprocket 34 B faces the flat surface 40 a of the main frame 40 , as illustrated in FIG. 5A .
  • the operator disposes the lateral sprocket 34 B wound with the lateral chain 35 B, inside the first sprocket installation space 40 ss .
  • the operator holds, by a thumb and a finger other than the thumb, the lateral sprocket 34 B through the lateral chain 35 B, and moves the lateral sprocket 34 B toward the flat surface 40 a as illustrated by an arrow Y 5 A while bringing the outer side of the lateral chain 35 B wound around the lateral sprocket 34 B close to the first inner wall surface 40 i of the first annular wall 40 w 1 in the holding state.
  • the operator disposes the distal end surface side of the lateral shaft part 34 Ba of the lateral sprocket 34 B near the contact surface 40 pt of the first positioning projection 40 p .
  • the operator further moves the lateral shaft part 34 Ba toward the flat surface 40 a as illustrated by an arrow Y 5 B while bringing the outer side of the lateral chain 35 B into contact with the first inner wall surface 40 i of the first annular wall 40 w 1 .
  • the lateral shaft part 34 Ba of the lateral sprocket 34 B wound with the lateral chain 35 B is installed inside the first sprocket installation space 40 ss while being placed on the flat surface 40 a.
  • the outer side of the lateral chain 35 B wound around the lateral sprocket 34 B is so disposed as to form a predetermined clearance with respect to the first inner wall surface 40 i of the first annular wall 40 w 1
  • the outer peripheral surface on the distal end side of the lateral shaft part 34 Ba is so disposed as to form a predetermined clearance with respect to the contact surface 40 pt of the first positioning projection 40 p.
  • the lateral sprocket 34 B is rotatably disposed inside the first sprocket installation space 40 ss .
  • the lateral sprocket 34 B is disposed such that the center axis of a shaft insertion hole 34 Bh of the lateral sprocket 34 B is coincident with the center axis of the support shaft hole 40 h.
  • the operator disposes the lateral rotary shaft insertion hole 41 h provided in the chain cover 41 such that the lateral rotary shaft insertion hole 41 h faces the distal end portion of the unillustrated lateral sprocket rotary shaft, as illustrated in FIG. 5D .
  • the operator moves the chain cover 41 as illustrated by an arrow Y 5 D to bring the other flat surface 41 b of the chain cover 41 close to a top surface 40 wu of the first chain housing wall 40 w.
  • the operator causes the paired attachment holes 41 c as concave parts to respectively engage with the paired attachment dowels 40 d , as illustrated in FIG. 5F .
  • the chain cover 41 is installed on the top surface 40 wu of the first chain housing wall 40 w of the main frame 40 without a fixing screw.
  • a desired clearance c 3 is provided between the other flat surface 41 b of the chain cover 41 and a top surface 34 Bu of the lateral sprocket 34 B.
  • the lateral sprocket 34 B is rotatable in the state in which the chain cover 41 is placed on the main frame 40 .
  • the operator disposes the vertical sprocket 34 A wound with the vertical chain 35 A, in the second sprocket installation space 4 l ss of the chain cover 41 , as illustrated in FIG. 5E .
  • the operator holds, by the thumb and a finger other than the thumb, the vertical sprocket 34 A through the vertical chain 35 A, and moves the vertical sprocket 34 A toward the flat surface 41 a of the chain cover 41 as illustrated by an arrow Y 5 E in FIG. 5E .
  • the distal end surface side of the vertical shaft part 34 Aa of the vertical sprocket 34 A is disposed near the contact surface 41 pt of the second positioning projection 41 p .
  • the operator moves the vertical sprocket 34 A toward the flat surface 41 a.
  • the vertical shaft part 34 Aa of the vertical sprocket 34 A wound with the vertical chain 35 A is installed in the second sprocket installation space 41 ss while being placed on the flat surface 41 a , as illustrated by a dashed line in FIG. 5E .
  • the outer side of the vertical chain 35 A is so disposed as to form a predetermined clearance with respect to the first inner wall surface 40 i of the second annular wall 41 w 1 , and the outer peripheral surface on the distal end side of the vertical shaft part 34 Aa is so disposed as to form a predetermined clearance with respect to the contact surface 41 pt of the second positioning projection 41 p.
  • the vertical sprocket 34 A is rotatable around the lateral sprocket rotary shaft inside the second sprocket installation space 41 ss.
  • the chain cover 41 is placed on the main frame 40 . Therefore, the lateral sprocket 34 B wound with the lateral chain 35 B is rotatably disposed without dropping from the first sprocket installation space 40 ss and without moving inside the first sprocket installation space 40 ss.
  • the outer side of the chains 35 A and 35 B are so disposed as to form a predetermined clearance with respect to the first inner wall surface 40 i
  • the outer peripheral surfaces on the distal end side of the shaft parts 34 Aa and 34 Ba are so disposed as to form a predetermined clearance with respect to the contact surfaces 41 pt and 40 pt of the positioning projections 41 p and 40 p , respectively.
  • the outer peripheral surfaces on the distal end side of the shaft parts 34 Aa and 34 Ba may not desirably form a clearance with respect to the contact surfaces 41 pt and 40 pt of the positioning projections 41 p and 40 p , respectively.
  • the operator brings the other flat surface 42 b of the lid member 42 close to the top surface 41 wu of the second chain housing wall 41 w , as illustrated by an arrow 5 F in FIG. 5F .
  • the operator causes the paired attachment holes 42 h 2 to engage with the paired second attachment dowels 41 d , as illustrated in FIG. 5G .
  • the lid member 42 is installed on the top surface 41 wu of the second chain housing wall 41 w of the chain cover 41 without a fixing screw.
  • the operator assembles the frame shaft 43 to the operation section body 22 A. Thereafter, as illustrated in FIG. 5H , the operator fixes the main frame 40 to the operation section body 22 A to which the frame shaft 43 has been assembled, by unillustrated screws in a predetermined state. At this time, in the work of inserting the main frame 40 into the frame shaft 43 , it is necessary for the operator to insert the main frame 40 while performing visual confirmation because the member group on the main frame 40 has a shape substantially same as the inner shape of the frame shaft 43 . To perform visual confirmation, it is necessary for the operator to look into the inside of the frame shaft 43 covered with the operation section body 22 A, from an operation section body cover 22 Ac side described later. Therefore, the operator may incline or invert the components under assembly.
  • the bending operation mechanism 30 that is configured by sequentially assembling the chain cover 41 , the lid member 42 , and the frame shaft 43 to the main frame 40 , is provided to the operation section body 22 A.
  • the operator inserts the support shaft 33 into a support shaft insertion hole 33 H as illustrated in FIG. 5I .
  • the support shaft insertion hole 33 H includes a support shaft hole 40 h , a vertical sprocket insertion hole 34 Ah, a lateral sprocket insertion hole 34 Bh, a lateral rotary shaft insertion hole 41 h , and a vertical rotary shaft insertion hole 42 h 1 .
  • the vertical sprocket 34 A and the vertical chain 35 A are positioned by the second positioning projection 41 p and the inner wall surface 41 i
  • the lateral sprocket 34 B and the lateral chain 35 B are positioned by the first positioning projection 40 p and the inner wall surface 40 i.
  • a center axis of the vertical sprocket insertion hole 34 Ah and a center axis of the lateral sprocket insertion hole 34 Bh are so disposed as to be coaxial with a center axis of the support shaft insertion hole 40 h , a center axis of the lateral rotary shaft insertion hole 41 h , and a center axis of the vertical rotary shaft insertion hole 42 h 1 .
  • the operator assembles a vertical sprocket rotary shaft 31 Aa and a lateral sprocket rotary shaft 31 Ba to the operation section 22 .
  • the vertical sprocket rotary shaft 31 Aa is configured integrally with the vertical bending operation knob 31 A
  • the lateral sprocket rotary shaft 31 Ba is configured integrally with the lateral bending operation knob 31 B.
  • the operator installs, in the operation section 22 , various kinds of tube pipes and the like that constitute a video cable, a light guide fiber, an air feeding conduit, and a water feeding conduit not illustrated.
  • the operator then assembles the operation section body cover 22 Ac to the opening 22 Am that is provided in the operation section body 22 A, as illustrated in FIG. 5J .
  • the bending operation mechanism 30 is installed inside the operation section 33 .
  • the vertical sprocket 34 A and the vertical chain 35 A are positioned by the second positioning projection 41 p and the inner wall surface 41 i
  • the lateral sprocket 34 B and the lateral chain 35 B are positioned by the first positioning projection 40 p and the inner wall surface 40 i
  • the center axis of the vertical sprocket insertion hole 34 Ah and the center axis of the lateral sprocket insertion hole 34 Bh are so disposed as to be coaxial with the center axis of the support shaft insertion hole 40 h , the center axis of the lateral rotary shaft insertion hole 41 h , and the center axis of the vertical rotary shaft insertion hole 42 h 1
  • the bending portion 21 b is bendable in four directions of upward, downward, rightward, and leftward.
  • the bending portion of the endoscope may be bendable in two directions of upward and downward, or the like.
  • a bending operation mechanism 30 A illustrated in FIG. 6 is configured.
  • the bending operation mechanism 30 A includes the main frame 40 , the vertical chain 35 A, the vertical sprocket 34 A, a chain cover 41 A, and a frame shaft 43 A.
  • a vertical rotary shaft insertion hole 41 Ah is provided in the flat surface 41 a of the chain cover 41 A, and the second chain housing wall 41 w , the second positioning projection 41 p , and the second attachment dowels 41 d are not provided.
  • the chain cover 41 A has a configuration substantially similar to the configuration of the lid member 42 .
  • main frame 40 and the chain cover 41 may be configured in the following manner, in consideration of workability.
  • two cutout grooves 40 n 1 and 40 n 2 are provided near a boundary between the first annular wall 40 w 1 and each of the first opposing walls 40 w 2 of the chain housing wall 40 w provided in a main frame 40 A.
  • the cutout grooves 40 n 1 and 40 n 2 serve as cutout parts facing each other with the center axis of the support shaft hole 40 h in between.
  • a width w of each of the cutout grooves 40 n 1 and 40 n 2 is set to cause a tip of a thumb F 1 and a tip of a finger F 2 other than the thumb that hold the lateral sprocket 34 B through the lateral chain 35 B, to be located inside the first sprocket installation space 40 ss .
  • a depth d of each of the cutout grooves 40 n 1 and 40 n 2 from the top surface 40 wu of the first chain housing wall 40 w is set to allow a shaft end surface of the lateral sprocket 34 B wound with the lateral chain 35 B to be smoothly disposed on the flat surface 40 a that is a bottom surface of the first sprocket installation space 40 ss.
  • the above-described configuration allows the operator to dispose the thumb and the middle finger holding the lateral sprocket 34 B on the top surface 40 wu of the first chain housing wall 40 w . Then, the operator moves the thumb toward the flat surface 40 a along the first cutout groove 40 n 1 and moves the middle finger toward the flat surface 40 a along the second cutout groove 40 n 2 , thereby performing the installation.
  • cutout grooves 40 n 1 and 40 n 2 are provided in the main frame 40 is illustrated with reference to FIG. 7A to FIG. 7C ; however, cutout parts 41 n 1 and 41 n 2 each having a configuration similar to the above-described configuration may be provided in the chain cover 41 .
  • Such a configuration makes it possible to smoothly perform the installation work without inhibiting movement by the top surface 41 wu of the second chain housing wall 41 w and without detachment of the vertical chain 35 A from the vertical sprocket 34 A, when the vertical sprocket 34 A wound with the vertical chain 35 A is installed inside the second sprocket installation space 41 ss.
  • the two cutout grooves 40 n 1 and 40 n 2 are so provided near the respective boundaries between the first annular wall 40 w 1 and each of the first opposing walls 40 w 2 , as to face each other with the center axis of the support shaft hole 40 h in between.
  • the cutout parts are not limited to the paired cutout parts facing each other, and only one cutout groove 40 n on which the tip of the thumb F 1 or the tip of the finger F 2 other than the thumb is disposed may be provided on an apex of an annular wall that intersects with a longitudinal axis 40 aa , as illustrated in FIG. 8A and FIG. 8B .
  • the longitudinal axis 40 aa passes through the center of the support shaft hole 40 h of the annular wall 40 w 1 .
  • the operator holds, for example, by the thumb and a forefinger, the sprocket through the chain, and disposes the thumb and the forefinger on the top surface 41 wu of the annular wall 40 w 1 in the holding state. Then, the operator moves one of the fingers, for example, the forefinger toward the flat surface 40 a along the cutout groove 40 n . As a result, it is possible for the operator to smoothly and surely install the sprocket wound with the chain in the first sprocket installation space 40 ss , as with the above description.
  • cutout groove 41 n having a configuration similar to the above-described configuration may be provided in the chain cover 41 .
  • each of the chain cover 41 and the lid member 42 is provided in the configuration in which the cutout grooves 40 n , 40 n 1 , and 40 n 2 are provided in the main frame 40 and in the configuration in which the cutout grooves 41 n , 41 n 1 , and 41 n 2 are provided in the chain cover 41 .
  • a complementary part 41 m provided in the chain cover 41 is disposed inside the cutout groove 40 n of the main frame 40 , and a complementary part 41 m 1 is disposed inside the cutout groove 40 n 1 of the main frame 40 , and a complementary part 41 m 2 is disposed inside the cutout groove 40 n 2 of the main frame 40 .
  • a complementary part 42 m provided in the lid member 42 is disposed inside the cutout groove 41 n of the chain cover 41
  • a complementary part 41 m 1 is disposed inside the cutout groove 41 n 1 of the chain cover 41
  • a complementary part 41 m 2 is disposed in the cutout groove 41 n 2 of the chain cover 41 .
  • the complementary parts 41 m , . . . , 42 m , . . . , 42 m 2 are so disposed inside the respective cutout grooves 40 n , . . . , 41 n , . . . , 41 n 2 as to bury the respective cutout grooves 40 n , . . . , 41 n , . . . , 41 n 2 .
  • the complementary parts 41 m , . . . , 42 m , . . . , 42 m 2 are respectively disposed inside the cutout grooves 40 n , . . . , 41 n , . . .
  • the lateral chain 35 B is disposed inside the first sprocket installation space 40 ss that has a shape similar to the shape of the above-described embodiment, which results in action and effects similar to the action and effects of the above-described embodiment.
  • the vertical chain 35 A is also disposed inside the second sprocket installation space 41 ss that has a shape similar to the shape of the above-described embodiment, which results in action and effects similar to the action and effects of the above-described embodiment.
  • the configuration allows for manufacturing of the chain cover with use of a material such as polyacetal, thereby improving operability of the endoscope.
  • the chain cover made of the material having excellent slipperiness such as polyacetal has improved slipperiness with the sprocket or the chain to be contacted. Improvement of the slipperiness between the components may typically cause deterioration of assembling work; however, the configuration does not influence the assembling work even when the slipperiness between the components is improved, and it is possible to reduce an amount of operation force of the endoscope operator, and to improve operability of the endoscope. Accordingly, improvement of both operability and assemblability of the endoscope is realizable.
  • the positioning projection 40 p and the chain housing wall 40 w for disposing of the lateral sprocket 34 B are provided in the main frame 40 ; however, the positioning projection and the chain housing wall for disposing of the lateral sprocket 34 B may be provided in the chain cover 41 .
  • the vertical chain 35 A, the vertical sprocket 34 A, the positioning projection 41 p and the chain housing wall 41 w are disposed on a front surface as a first surface of the chain cover 41 .
  • the lateral chain 35 B, the lateral sprocket 34 B, an unillustrated positioning projection, and an unillustrated chain housing wall are disposed on a rear surface as a second surface of the chain cover 41 .
  • the vertical chain 35 A is a chain that is pulled to bend the bending portion 21 b in the vertical direction.
  • the vertical sprocket 34 A includes the tooth part 34 Ac and the vertical shaft part 34 Aa.
  • the tooth part 34 Ac engages with the vertical chain 35 A as a traction member, and the vertical shaft part 34 Aa fixes the tooth part 34 Ac.
  • the vertical sprocket 34 A causes the vertical chain 35 A to engage with the tooth part 34 Ac to wind the vertical chain 35 A, and rotates to pull the vertical chain 35 A.
  • the chain housing wall 41 w is a protrusion to position the vertical sprocket 34 A and the vertical chain 35 A with respect to the chain cover 41 .
  • the chain housing wall 41 w protrudes from the surface of the chain cover 41 .
  • the positioning projection 41 p is a positioning part to position the vertical sprocket 34 A.
  • the positioning projection 41 p so protrudes from the surface of the chain cover 41 as to come into contact with the vertical shaft part 34 Aa of the vertical sprocket 34 A.
  • the lateral chain 35 B is a chain that is pulled to bend the bending portion 21 b in the lateral direction.
  • the lateral sprocket 34 B has the tooth part 34 Bc and the lateral shaft part 34 Ba.
  • the tooth part 34 Bc engages with the lateral chain 35 B as a traction member, and the lateral shaft part 34 Ba fixes the tooth part 34 Bc.
  • the lateral sprocket 34 B causes the lateral chain 35 B to engage with the tooth part 34 Bc to wind the lateral chain 35 B, and rotates to pull the lateral chain 35 B.
  • the unillustrated chain housing wall for disposing of the lateral chain 35 B is a protrusion to position the lateral sprocket 34 B and the lateral chain 35 B with respect to the chain cover 41 .
  • the chain housing wall protrudes from the rear surface of the chain cover 41 .
  • the unillustrated positioning projection for disposing of the lateral chain 35 B is a positioning part to position the lateral sprocket 34 .
  • the positioning projection so protrudes from the rear surface of the chain cover 41 as to come into contact with the lateral shaft part 34 Ba of the lateral sprocket 34 B.
  • the above-described modification of the embodiment makes it possible to realize the endoscope that is excellent in assemblability and prevents the traction member wound around the rotary member from being detached from the rotary member while positioning the installation position of the rotary member on the front surface and the rear surface of the chain cover 41 .
  • the present invention makes it possible to realize the endoscope that is excellent in assemblability and prevents the traction member wound around the rotary member from being detached from the rotary member while positioning the installation position of the rotary member on the flat surface of the plate member.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
US15/610,879 2014-12-03 2017-06-01 Endoscope Abandoned US20170265719A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/899,783 US11311179B2 (en) 2014-12-03 2020-06-12 Endoscope

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014245197 2014-12-03
JP2014-245197 2014-12-03
PCT/JP2015/081144 WO2016088504A1 (ja) 2014-12-03 2015-11-05 内視鏡

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081144 Continuation WO2016088504A1 (ja) 2014-12-03 2015-11-05 内視鏡

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/899,783 Division US11311179B2 (en) 2014-12-03 2020-06-12 Endoscope

Publications (1)

Publication Number Publication Date
US20170265719A1 true US20170265719A1 (en) 2017-09-21

Family

ID=56091456

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/610,879 Abandoned US20170265719A1 (en) 2014-12-03 2017-06-01 Endoscope
US16/899,783 Active US11311179B2 (en) 2014-12-03 2020-06-12 Endoscope

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/899,783 Active US11311179B2 (en) 2014-12-03 2020-06-12 Endoscope

Country Status (5)

Country Link
US (2) US20170265719A1 (ja)
EP (1) EP3222195A1 (ja)
JP (1) JP6125109B2 (ja)
CN (1) CN106998996B (ja)
WO (1) WO2016088504A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11857161B2 (en) * 2019-05-01 2024-01-02 Boston Scientific Scimed, Inc. Chambered handle for a medical device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7048628B2 (ja) 2016-11-28 2022-04-05 アダプティブエンドウ エルエルシー 分離可能使い捨てシャフト付き内視鏡
USD1018844S1 (en) 2020-01-09 2024-03-19 Adaptivendo Llc Endoscope handle
DE102020118048A1 (de) 2020-07-08 2022-01-13 Karl Storz Se & Co. Kg Ablenksteuerungsmechanismus für ein lenkbares flexibles Endoskop, lenkbares flexibles Endoskop, Endoskopmontagesatz und Verfahren zur Montage eines flexiblen Endoskops
DE102020118047A1 (de) 2020-07-08 2022-01-13 Karl Storz Se & Co. Kg Ablenksteuerungsmechanismus für ein lenkbares flexibles Endoskop, lenkbares flexibles Endoskop, Endoskopmontagesatz und Verfahren zur Montage eines flexiblen Endoskops
USD1031035S1 (en) 2021-04-29 2024-06-11 Adaptivendo Llc Endoscope handle

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557254A (en) * 1983-06-13 1985-12-10 Olympus Optical Co., Ltd. Endoscope
US20040054259A1 (en) * 2000-03-15 2004-03-18 Olympus Optical Co., Ltd. Endoscope apparatus with drum part to wind insertion part therearound
US20060069311A1 (en) * 2004-09-30 2006-03-30 Roy Sullivan Manually controlled endoscope
US20080051631A1 (en) * 2006-01-13 2008-02-28 Olympus Medical Systems Corp. Medical treatment endoscope
US20080086031A1 (en) * 2006-10-05 2008-04-10 Olympus Medical Systems Corp. Endoscope
US20080200763A1 (en) * 2005-11-22 2008-08-21 Haruhiko Ueno Endoscope
US20080249365A1 (en) * 2005-12-26 2008-10-09 Yutaka Masaki Endoscope and endoscopic system
US20080262310A1 (en) * 2006-01-13 2008-10-23 Olympus Medical Systems Corp. Electric bending endoscope
US20080262306A1 (en) * 2006-01-13 2008-10-23 Olympus Medical Systems Corp. Electric bending endoscope
US20090292169A1 (en) * 2008-05-21 2009-11-26 Olympus Medical Systems Corp. Electronic endoscope apparatus
US20120078054A1 (en) * 2010-07-29 2012-03-29 Olympus Medical Systems Corp. Bending mechanism
US20120302949A1 (en) * 2010-04-28 2012-11-29 Olympus Medical Systems Corp. Operation mechanism, endoscope apparatus, and guide catheter
US20130079711A1 (en) * 2011-08-25 2013-03-28 The Johns Hopkins University Endoscope manipulation adapter
US20130102960A1 (en) * 2011-03-29 2013-04-25 Olympus Medical Systems Corp. Endoscope
US20130190567A1 (en) * 2011-07-11 2013-07-25 Olympus Medical Systems Corp. Endoscope

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507717A (en) * 1993-05-24 1996-04-16 Olympus Optical Co., Ltd. Device for bending the insertion section of an endoscope
US6236876B1 (en) * 1996-08-30 2001-05-22 The Whitaker Corporation Navigable probe and motor control apparatus
JP4363682B2 (ja) 1998-08-10 2009-11-11 オリンパス株式会社 内視鏡の操作ワイヤの弛み除去方法とその装置
JP4384297B2 (ja) * 1999-08-05 2009-12-16 オリンパス株式会社 内視鏡
CN2552473Y (zh) * 2002-07-01 2003-05-28 上海富士能高内镜有限公司 用于内窥镜的带有锁紧机构的牵引装置
JP4169549B2 (ja) * 2002-09-06 2008-10-22 オリンパス株式会社 内視鏡
US7285088B2 (en) * 2003-05-13 2007-10-23 Olympus Corporation Endoscope apparatus
US9636481B2 (en) * 2012-09-27 2017-05-02 Boston Scientific Scimed, Inc. Steerable catheter with brake assembly
SG2013002860A (en) * 2013-01-14 2014-08-28 Sg Endoscopy Pte Ltd Endoscope operating apparatus
JP5604561B2 (ja) 2013-05-21 2014-10-08 哲丸 宮脇 内視鏡
CN203539307U (zh) * 2013-10-10 2014-04-16 上海澳华光电内窥镜有限公司 一种内窥镜链条限位机构

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557254A (en) * 1983-06-13 1985-12-10 Olympus Optical Co., Ltd. Endoscope
US20040054259A1 (en) * 2000-03-15 2004-03-18 Olympus Optical Co., Ltd. Endoscope apparatus with drum part to wind insertion part therearound
US20060069311A1 (en) * 2004-09-30 2006-03-30 Roy Sullivan Manually controlled endoscope
US20080200763A1 (en) * 2005-11-22 2008-08-21 Haruhiko Ueno Endoscope
US20080249365A1 (en) * 2005-12-26 2008-10-09 Yutaka Masaki Endoscope and endoscopic system
US20080051631A1 (en) * 2006-01-13 2008-02-28 Olympus Medical Systems Corp. Medical treatment endoscope
US20080262310A1 (en) * 2006-01-13 2008-10-23 Olympus Medical Systems Corp. Electric bending endoscope
US20080262306A1 (en) * 2006-01-13 2008-10-23 Olympus Medical Systems Corp. Electric bending endoscope
US20080086031A1 (en) * 2006-10-05 2008-04-10 Olympus Medical Systems Corp. Endoscope
US20090292169A1 (en) * 2008-05-21 2009-11-26 Olympus Medical Systems Corp. Electronic endoscope apparatus
US20120302949A1 (en) * 2010-04-28 2012-11-29 Olympus Medical Systems Corp. Operation mechanism, endoscope apparatus, and guide catheter
US20120078054A1 (en) * 2010-07-29 2012-03-29 Olympus Medical Systems Corp. Bending mechanism
US20130102960A1 (en) * 2011-03-29 2013-04-25 Olympus Medical Systems Corp. Endoscope
US20130190567A1 (en) * 2011-07-11 2013-07-25 Olympus Medical Systems Corp. Endoscope
US20130079711A1 (en) * 2011-08-25 2013-03-28 The Johns Hopkins University Endoscope manipulation adapter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11857161B2 (en) * 2019-05-01 2024-01-02 Boston Scientific Scimed, Inc. Chambered handle for a medical device

Also Published As

Publication number Publication date
CN106998996B (zh) 2018-11-06
JP6125109B2 (ja) 2017-05-10
US20200305686A1 (en) 2020-10-01
US11311179B2 (en) 2022-04-26
WO2016088504A1 (ja) 2016-06-09
EP3222195A1 (en) 2017-09-27
CN106998996A (zh) 2017-08-01
JPWO2016088504A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
US11311179B2 (en) Endoscope
KR102110353B1 (ko) 분리형 프로브를 갖는 내시경
EP2446802B1 (en) Insertion instrument, endoscope
US8591405B2 (en) Bending operation device for endoscope and the endoscope
KR102110352B1 (ko) 분리형 프로브를 갖는 내시경
US20120078054A1 (en) Bending mechanism
US8905919B2 (en) Endoscope
US9351631B2 (en) Bending angle adjustment mechanism for endoscope and endoscope having the bending angle adjustment mechanism
JP2008212239A (ja) 内視鏡
US20210219818A1 (en) Endoscope bending portion and endoscope
JP5750617B2 (ja) 内視鏡の湾曲角度調整機構及び内視鏡
EP3257431A1 (en) Endoscope device
WO2020003594A1 (ja) ワイヤ固定構造および内視鏡
US10197784B2 (en) Operation mechanism for insertion device and insertion device
US9636002B2 (en) Endoscope
JP5993536B2 (ja) 内視鏡
US10165932B2 (en) Insertion device and rotating tubular member
US11452434B2 (en) Medical device and endoscope system
JP2010068891A (ja) 内視鏡
US20170007106A1 (en) Endoscope
US20160353974A1 (en) Endoscope
EP3243423A1 (en) Tip hood for endoscope
US20230085800A1 (en) Endoscope handle with frame
WO2020031378A1 (ja) 内視鏡
JP2020043907A (ja) 内視鏡

Legal Events

Date Code Title Description
AS Assignment

Owner name: OLYMPUS CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KOYAMA, REIJI;REEL/FRAME:042565/0640

Effective date: 20170509

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION