US20170198403A1 - Catalytic coating and method of manufacturing thereof - Google Patents

Catalytic coating and method of manufacturing thereof Download PDF

Info

Publication number
US20170198403A1
US20170198403A1 US15/321,419 US201515321419A US2017198403A1 US 20170198403 A1 US20170198403 A1 US 20170198403A1 US 201515321419 A US201515321419 A US 201515321419A US 2017198403 A1 US2017198403 A1 US 2017198403A1
Authority
US
United States
Prior art keywords
catalytic layer
titanium
ruthenium
tantalum
coating according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/321,419
Other languages
English (en)
Inventor
Valentina BONOMETTI
Alice CALDERARA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrie de Nora SpA
Original Assignee
Industrie de Nora SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrie de Nora SpA filed Critical Industrie de Nora SpA
Assigned to INDUSTRIE DE NORA S.P.A. reassignment INDUSTRIE DE NORA S.P.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BONOMETTI, Valentina, CALDERARA, ALICE
Publication of US20170198403A1 publication Critical patent/US20170198403A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • C25B11/0484
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide

Definitions

  • the invention relates to a catalytic coating of valve metal articles suitable for use in highly aggressive electrolytic environments, for example in hydrochloric acid electrolysis cells.
  • Hydrochloric acid electrolysis is an electrochemical process gaining increasing interest at present, being hydrochloric acid the typical by-product of all major industrial processes making use of chlorine: the increase in the production capacity of plants of new conception entails the formation of significant amounts of acid, whose placement on the market presents significant difficulties.
  • the electrolysis of the acid typically carried out in two-compartment electrolytic cells separated by an ion-exchange membrane, leads to the formation of chlorine at the anode compartment, which can be recycled upstream resulting in a substantially closed cycle of negligible environmental impact.
  • valve metals such as titanium, niobium and zirconium are preferably employed, optionally alloyed titanium being the most common example for reasons of cost and ease of machining.
  • Titanium alloys containing nickel, chromium and small amounts of noble metals such as ruthenium and palladium, like the AKOT® alloy commercialised by Kobe Steel, are for instance of widespread use.
  • the anodes whereon the anodic evolution of chlorine is carried out consist for example of a valve metal article such as a titanium alloy substrate coated with a suitable catalyst, typically consisting of a mixture of oxides of titanium and ruthenium, capable of lowering the overvoltage of the anodic discharge of chlorine.
  • a suitable catalyst typically consisting of a mixture of oxides of titanium and ruthenium, capable of lowering the overvoltage of the anodic discharge of chlorine.
  • the same type of coating is also used to protect from corrosion some components of the anodic compartment not directly involved in the evolution of chlorine, with particular reference to interstitial areas subject to electrolyte stagnation.
  • the lack of a sufficient electrolyte renewal may in fact lead to a local discontinuity of the passivation layer directed at protecting the valve metal, triggering corrosion phenomena, which are the more dangerous the more they are localised in small areas.
  • the invention relates to a coating of valve metal surfaces including a titanium-free catalytic layer and consisting of the mixture of two phases, namely an amorphous phase of Ta 2 O 5 in admixture with a tetragonal ditetragonal dipyramidal crystalline phase containing RuO 2 , optionally in solid solution with SnO 2
  • titanium-free coatings are more resistant to chloride attack in acidic solution, presumably because titanium oxides—whose function in a combination with ruthenium dioxide is to act as film-forming component—are present as a mixture of crystalline phases including an anatase TiO 2 phase, substantially weaker than the others.
  • the inventors have also observed that mixtures of oxides of tantalum and ruthenium in an amorphous phase do not contribute to solving the problem in a decisive manner, even if completely free from titanium.
  • the coating is formed from a mixture of RuO 2 in the typical crystalline form similar to rutile (i.e. tetragonal ditetragonal dipyramidal) and Ta 2 O 5 in a basically amorphous phase, the stability of the coating to acid attack is greatly increased.
  • the overvoltage of the coating towards anodic chlorine evolution is surprisingly reduced.
  • the weight ratio between the amorphous phase of Ta 2 O 5 and the crystalline phase is between 0.25 and 4, which defines the best range of functioning of the invention.
  • the RuO 2 component in the tetragonal ditetragonal dipyramidal crystalline phase is partially replaced by SnO 2 (cassiterite).
  • SnO 2 cassiterite
  • the two dioxides of tin and of ruthenium, whose tetragonal ditetragonal dipyramidal crystalline form turns out to be the most stable, are capable of forming solid solutions in any weight ratio; in one embodiment, the Ru to Sn weight ratio in the tetragonal ditetragonal dipyramidal crystalline phase of the coating ranges between 0.5 and 2, which gives the best results in terms of protection of the substrate as well as of catalytic activity of the coating.
  • the coating comprises two distinct catalytic layers, one as hereinbefore described in direct contact with the valve metal substrate coupled to an outermost one overlaid thereto with a higher content of ruthenium oxide.
  • This can have the advantage of enhancing on one hand the protective function at the substrate surface and on the other hand the catalytic and conductive properties of the outermost layer, as required for example in the case wherein the coating is used for the catalytic activation of an anodic structure whose outer surface is in direct contact with the electrolyte.
  • the inner catalytic layer has a weight ratio of amorphous Ta 2 O 5 phase to RuO 2 -containing crystalline phase (optionally including SnO 2 ) ranging between 0.25 and 2.5 and the outer catalytic layer consists of an amorphous phase of Ta 2 O 5 mixed with a tetragonal ditetragonal dipyramidal crystalline phase of RuO 2 with a Ru to Ta weight ratio between 3 and 5.
  • a further protective pre-layer consisting of a mixture of oxides of titanium and tantalum.
  • the magnitude of such resistive penalty can be however very limited, provided the pre-layer has a suitably limited thickness.
  • a total loading of titanium and tantalum oxides of 0.6 to 4 g/m 2 is a suitable value for a pre-layer to be combined with a catalytic layer containing 20 g/m 2 of total oxides.
  • the invention in another aspect, relates to a method for the manufacturing of a coating as hereinbefore described comprising the optional application of a solution of titanium and tantalum compounds, for example TiOCl 2 , TiCl 3 and TaCl 5 , to a valve metal substrate in one or more coats, with subsequent thermal decomposition after each coat; the application of a solution of compounds of tantalum, ruthenium and optionally tin in one or more coats, with subsequent thermal decomposition after each coat, until obtaining a first catalytic layer; the optional application of a solution of compounds of tantalum and ruthenium upon the first catalytic layer with subsequent thermal decomposition after each coat, until obtaining a second catalytic layer.
  • a solution of titanium and tantalum compounds for example TiOCl 2 , TiCl 3 and TaCl 5
  • the compounds of ruthenium and tin applied in view of the subsequent thermal decomposition are hydroxyacetochloride complexes; this can have the advantage of obtaining more regular and compact layers, having a more homogeneous composition, compared to hydrochloric or other precursors.
  • the thermal decomposition step after each coat can be effected between 350 and 600° C., depending on the selected precursor compounds.
  • thermal decomposition may for example be carried out between 450 and 550° C.
  • a 1 mm thick AKOT® titanium alloy mesh was degreased with acetone in a ultrasonic bath and etched in 20% HCl at boiling temperature for 15 minutes. The mesh was cut into a plurality of pieces of 10 cm ⁇ 10 cm size for the subsequent preparation of electrode samples.
  • a solution of precursors for the preparation of the protective pre-layer was obtained by mixing 150 g/l of TiOCl 2 and 50 g/l of TaCl 5 in 10% wt. hydrochloric acid.
  • a first series of catalytic solutions was obtained by mixing 20% by weight RuCl 3 and 50 g/l TaCl 5 in 10% wt. hydrochloric acid according to various proportions.
  • Solutions of hydroxyacetochloride complexes of Ru (0.9 M) and Sn (1.65 M) were obtained by dissolving the corresponding chlorides in 10% vol. aqueous acetic acid, evaporating the solvent, taking up with 10% aqueous acetic acid with subsequent evaporation of the solvent for two more times, finally dissolving the product again in 10% aqueous acetic acid to obtain the specified concentration.
  • a second series of catalytic solutions was obtained by mixing the hydroxyacetochloride complexes of Ru and Sn according to various proportions.
  • Electrode samples were obtained at different formulations with the following procedure:
  • a 1 mm thick AKOT® titanium alloy mesh was degreased with acetone in a ultrasonic bath and etched in 20% HCl at boiling temperature for 15 minutes. The mesh was cut into a plurality of pieces of 10 cm ⁇ 10 cm size for the subsequent preparation of electrode samples.
  • a solution of precursors for the preparation of the protective pre-layer was obtained by mixing 150 g/l of TiOCl 2 and 50 g/l of TaCl 5 in 10% hydrochloric acid.
  • a series of catalytic solutions was obtained by mixing 20% by weight RuCl 3 and 150 g/l TiOCl 2 in 10% hydrochloric acid according to various proportions.
  • the electrode samples shown in the table were subjected to a test of standard potential under anodic evolution of chlorine at the current density of 3 kA/m 2 , in 15% wt. HCl at a temperature of 60° C.
  • the potential data obtained are reported in Table 3 (SEP).
  • the table shows also the related data of an accelerated lifetime test, expressed in terms of hours of operation before deactivation under anodic evolution of chlorine at the current density of 6 kA/m 2 , in 20% wt. HCl at a temperature of 60° C., using a zirconium cathode as counterelectrode.
  • the deactivation of the electrode is defined by a 1 V increase in the cell with respect to the initial value.
  • Duplicates of electrode samples 2, 6 and C2 were subjected to a corrosion test which simulates the crevice corrosion conditions that can occur on the flanges of electrolysers for the production of chlorine or other occluded zones.
  • a first series of samples was immersed in a known volume of 20% wt. HCl at 45° C. under nitrogen stream, to simulate electrolyte stagnation conditions; a second (control) series was immersed in the same volume of 20% wt. HCl at 40° C. under a stream of oxygen, in order to maintain passivation.
  • the test was repeated with another set of samples, confirming a substantial increase in the corrosion resistance for the formulations of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Chemically Coating (AREA)
US15/321,419 2014-07-28 2015-07-28 Catalytic coating and method of manufacturing thereof Abandoned US20170198403A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITMI20141363 2014-07-28
ITMI2014A001363 2014-07-28
PCT/EP2015/067273 WO2016016243A1 (en) 2014-07-28 2015-07-28 Catalytic coating and method of manufacturing thereof

Publications (1)

Publication Number Publication Date
US20170198403A1 true US20170198403A1 (en) 2017-07-13

Family

ID=51628367

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/321,419 Abandoned US20170198403A1 (en) 2014-07-28 2015-07-28 Catalytic coating and method of manufacturing thereof

Country Status (11)

Country Link
US (1) US20170198403A1 (zh)
EP (1) EP3175019B1 (zh)
JP (1) JP6714576B2 (zh)
CN (1) CN106471159B (zh)
AR (1) AR101828A1 (zh)
ES (1) ES2712403T3 (zh)
HU (1) HUE041583T2 (zh)
PT (1) PT3175019T (zh)
RU (1) RU2689985C2 (zh)
TW (1) TWI679256B (zh)
WO (1) WO2016016243A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210238757A1 (en) * 2018-06-21 2021-08-05 Industrie De Nora S.P.A. Anode for electrolytic evolution of chlorine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7168729B1 (ja) * 2021-07-12 2022-11-09 デノラ・ペルメレック株式会社 工業用電解プロセス用電極

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3776834A (en) * 1972-05-30 1973-12-04 Leary K O Partial replacement of ruthenium with tin in electrode coatings
US3853739A (en) * 1972-06-23 1974-12-10 Electronor Corp Platinum group metal oxide coated electrodes
CN102703921A (zh) * 2007-11-16 2012-10-03 阿克佐诺贝尔股份有限公司 电极
IT1391767B1 (it) * 2008-11-12 2012-01-27 Industrie De Nora Spa Elettrodo per cella elettrolitica
IT1403585B1 (it) * 2010-11-26 2013-10-31 Industrie De Nora Spa Anodo per evoluzione elettrolitica di cloro
CN102174704B (zh) * 2011-02-20 2012-12-12 中国船舶重工集团公司第七二五研究所 一种含钽中间层金属氧化物电极的制备方法
JP5008043B1 (ja) * 2011-09-13 2012-08-22 学校法人同志社 塩素発生用陽極

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210238757A1 (en) * 2018-06-21 2021-08-05 Industrie De Nora S.P.A. Anode for electrolytic evolution of chlorine

Also Published As

Publication number Publication date
PT3175019T (pt) 2019-02-26
CN106471159A (zh) 2017-03-01
RU2017106084A3 (zh) 2019-01-15
RU2017106084A (ru) 2018-08-28
WO2016016243A1 (en) 2016-02-04
JP6714576B2 (ja) 2020-06-24
EP3175019B1 (en) 2018-11-28
EP3175019A1 (en) 2017-06-07
RU2689985C2 (ru) 2019-05-30
CN106471159B (zh) 2019-04-05
HUE041583T2 (hu) 2019-05-28
TWI679256B (zh) 2019-12-11
JP2017522457A (ja) 2017-08-10
AR101828A1 (es) 2017-01-18
ES2712403T3 (es) 2019-05-13
TW201604252A (zh) 2016-02-01

Similar Documents

Publication Publication Date Title
EP2643499B1 (en) Anode for electrolytic evolution of chlorine
EP3314041B1 (en) Electrode for electrolytic processes
US11643746B2 (en) Electrode for oxygen evolution in industrial electrochemical processes
EP3175019B1 (en) Catalytic coating and method of manufacturing thereof
JP2017522457A5 (zh)
US20190338147A1 (en) Anticorrosive coating and method for obtaining same

Legal Events

Date Code Title Description
AS Assignment

Owner name: INDUSTRIE DE NORA S.P.A., ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BONOMETTI, VALENTINA;CALDERARA, ALICE;REEL/FRAME:040748/0869

Effective date: 20161222

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION