EP3175019A1 - Catalytic coating and method of manufacturing thereof - Google Patents

Catalytic coating and method of manufacturing thereof

Info

Publication number
EP3175019A1
EP3175019A1 EP15742289.0A EP15742289A EP3175019A1 EP 3175019 A1 EP3175019 A1 EP 3175019A1 EP 15742289 A EP15742289 A EP 15742289A EP 3175019 A1 EP3175019 A1 EP 3175019A1
Authority
EP
European Patent Office
Prior art keywords
catalytic layer
titanium
coating according
ruthenium
tantalum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15742289.0A
Other languages
German (de)
French (fr)
Other versions
EP3175019B1 (en
Inventor
Valentina BONOMETTI
Alice Calderara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrie de Nora SpA
Original Assignee
Industrie de Nora SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrie de Nora SpA filed Critical Industrie de Nora SpA
Publication of EP3175019A1 publication Critical patent/EP3175019A1/en
Application granted granted Critical
Publication of EP3175019B1 publication Critical patent/EP3175019B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material

Definitions

  • the invention relates to a catalytic coating of valve metal articles suitable for use in highly aggressive electrolytic environments, for example in hydrochloric acid electrolysis cells.
  • Hydrochloric acid electrolysis is an electrochemical process gaining increasing interest at present, being hydrochloric acid the typical by-product of all major industrial processes making use of chlorine: the increase in the production capacity of plants of new conception entails the formation of significant amounts of acid, whose placement on the market presents significant difficulties.
  • the electrolysis of the acid typically carried out in two-compartment electrolytic cells separated by an ion-exchange membrane, leads to the formation of chlorine at the anode compartment, which can be recycled upstream resulting in a substantially closed cycle of negligible environmental impact.
  • valve metals such as titanium, niobium and zirconium are preferably employed, optionally alloyed titanium being the most common example for reasons of cost and ease of machining.
  • Titanium alloys containing nickel, chromium and small amounts of noble metals such as ruthenium and palladium, like the AKOT ® alloy commercialised by Kobe Steel, are for instance of widespread use.
  • the anodes whereon the anodic evolution of chlorine is carried out consist for example of a valve metal article such as a titanium alloy substrate coated with a suitable catalyst, typically consisting of a mixture of oxides of titanium and ruthenium, capable of lowering the overvoltage of the anodic discharge of chlorine.
  • a suitable catalyst typically consisting of a mixture of oxides of titanium and ruthenium, capable of lowering the overvoltage of the anodic discharge of chlorine.
  • the same type of coating is also used to protect from corrosion some components of the anodic compartment not directly involved in the evolution of chlorine, with particular reference to interstitial areas subject to electrolyte stagnation.
  • the lack of a sufficient electrolyte renewal may in fact lead to a local discontinuity of the passivation layer directed at protecting the valve metal, triggering corrosion phenomena, which are the more dangerous the more they are localised in small areas.
  • the invention relates to a coating of valve metal surfaces including a titanium-free catalytic layer and consisting of the mixture of two phases, namely an amorphous phase of Ta2O 5 in admixture with a tetragonal ditetragonal dipyramidal crystalline phase containing RuO2 , optionally in solid solution with SnO2 .
  • the inventors have in fact observed that titanium -free coatings are more resistant to chloride attack in acidic solution, presumably because titanium oxides - whose function in a combination with ruthenium dioxide is to act as film-forming component - are present as a mixture of crystalline phases including an anatase T1O2 phase, substantially weaker than the others.
  • the inventors have also observed that mixtures of oxides of tantalum and ruthenium in an amorphous phase do not contribute to solving the problem in a decisive manner, even if completely free from titanium.
  • the coating is formed from a mixture of RUO2 in the typical crystalline form similar to rutile (i.e. tetragonal ditetragonal dipyramidal) and Ta2O 5 in a basically amorphous phase, the stability of the coating to acid attack is greatly increased.
  • the overvoltage of the coating towards anodic chlorine evolution is surprisingly reduced.
  • the weight ratio between the amorphous phase of Ta2O 5 and the crystalline phase is between 0.25 and 4, which defines the best range of functioning of the invention.
  • the R11O2 component in the tetragonal ditetragonal dipyramidal crystalline phase is partially replaced by SnO2 (cassiterite).
  • the two dioxides of tin and of ruthenium whose tetragonal ditetragonal dipyramidal crystalline form turns out to be the most stable, are capable of forming solid solutions in any weight ratio; in one embodiment, the Ru to Sn weight ratio in the tetragonal ditetragonal dipyramidal crystalline phase of the coating ranges between 0.5 and 2, which gives the best results in terms of protection of the substrate as well as of catalytic activity of the coating.
  • the coating comprises two distinct catalytic layers, one as hereinbefore described in direct contact with the valve metal substrate coupled to an outermost one overlaid thereto with a higher content of ruthenium oxide.
  • the inner catalytic layer has a weight ratio of amorphous Ta2O 5 phase to RuO2-containing crystalline phase (optionally including SnO2) ranging between 0.25 and 2.5 and the outer catalytic layer consists of an amorphous phase of
  • Ta2O 5 mixed with a tetragonal ditetragonal dipyramidal crystalline phase of RUO2 with a Ru to Ta weight ratio between 3 and 5.
  • a further protective pre-layer consisting of a mixture of oxides of titanium and
  • tantalum This can have the advantage of improving the anchoring of the catalytic layer to the substrate, at the expense of a resistive penalty deriving from the modest electrical conductivity of mixtures of titanium and tantalum oxides.
  • the magnitude of such resistive penalty can be however very limited, provided the pre-layer has a suitably limited thickness.
  • a total loading of titanium and tantalum oxides of 0.6 to 4 g/m 2 is a suitable value for a pre-layer to be combined with a catalytic layer containing 20 g/m 2 of total oxides.
  • the invention relates to a method for the manufacturing of a coating as hereinbefore described comprising the optional application of a solution of titanium and tantalum compounds, for example T1OCI2 , T1CI3 and TaCI 5 , to a valve metal substrate in one or more coats, with subsequent thermal decomposition after each coat; the application of a solution of compounds of tantalum, ruthenium and optionally tin in one or more coats, with subsequent thermal decomposition after each coat, until obtaining a first catalytic layer; the optional application of a solution of compounds of tantalum and ruthenium upon the first catalytic layer with subsequent thermal decomposition after each coat, until obtaining a second catalytic layer.
  • a solution of titanium and tantalum compounds for example T1OCI2 , T1CI3 and TaCI 5
  • the compounds of ruthenium and tin applied in view of the subsequent thermal decomposition are hydroxyacetochloride complexes; this can have the advantage of obtaining more regular and compact layers, having a more homogeneous composition, compared to hydrochloric or other precursors.
  • the thermal decomposition step after each coat can be effected between 350 and 600 °C, depending on the selected precursor compounds.
  • thermal decomposition may for example be carried out between 450 and 550 °C.
  • a 1 mm thick AKOT ® titanium alloy mesh was degreased with acetone in a ultrasonic bath and etched in 20% HCI at boiling temperature for 15 minutes. The mesh was cut into a plurality of pieces of 10 cm x 10 cm size for the subsequent preparation of electrode samples.
  • a solution of precursors for the preparation of the protective pre-layer was obtained by mixing 150 g/l of T1OCI2 and 50 g/l of TaCI 5 in 10% wt. hydrochloric acid.
  • a first series of catalytic solutions was obtained by mixing 20% by weight RuCb and 50 g/l TaCI 5 in 10% wt. hydrochloric acid according to various proportions.
  • Solutions of hydroxyacetochloride complexes of Ru (0.9 M) and Sn (1 .65 M) were obtained by dissolving the corresponding chlorides in 10% vol. aqueous acetic acid, evaporating the solvent, taking up with 10% aqueous acetic acid with subsequent evaporation of the solvent for two more times, finally dissolving the product again in 10% aqueous acetic acid to obtain the specified concentration.
  • a second series of catalytic solutions was obtained by mixing the hydroxyacetochloride complexes of Ru and Sn according to various proportions.
  • Electrode samples were obtained at different formulations with the following procedure:
  • a protective pre-layer was applied to the samples cut out of the titanium mesh by brushing the solution containing T1OCI2 and TaCI 5 precursors in two coats, with subsequent drying at 50 °C for 5 minutes and thermal decomposition treatment at 515 °C for 5 minutes after each coat, until obtaining a deposit of oxides of tantalum and titanium with a loading of about 1 g/m 2 ;
  • catalytic solutions of the first series were applied by brushing in 8-10 coats and subjected to subsequent drying at 50 °C for 10 minutes and thermal decomposition treatment at 500 °C for 5 minutes after each coat, until obtaining a deposit of oxides of tantalum and ruthenium with a total ruthenium loading of about 20 g/m 2 .
  • the electrodes were subjected to a subsequent thermal cycle of 2 hours at 500° C, until obtaining a crystalline tetragonal ditetragonal dipyramidal ruthenium dioxide phase mixed with the amorphous tantalum oxide phase, as verified by means of a subsequent XRD investigation.
  • Some samples of electrodes thus obtained are indicated in Table 1 as RuTa type.
  • the catalytic solutions of the second series have been applied by brushing in 8-10 coats and subjected to subsequent drying at 60 °C for 10 minutes and thermal
  • the electrodes were subjected to a subsequent thermal cycle of 2 hours at 500 °C, until obtaining a solid solution of ruthenium dioxide and tin dioxide in a crystalline tetragonal ditetragonal dipyramidal phase mixed with the amorphous phase of tantalum oxide, as verified by a subsequent XRD investigation.
  • Electrodes thus obtained are indicated in Table 1 as RuTaSn type; other electrode samples provided with a catalytic coating consisting of two layers were obtained by alternatively applying catalytic solutions of the first or of the second series.
  • the catalytic solutions of the first series were applied by brushing in 6-7 coats and subjected to subsequent drying at 50 °C for 5 minutes and thermal decomposition treatment at 500 °C for 5 minutes after each coat, until obtaining a first deposit of oxides of ruthenium and tantalum; a subsequent solution of the first type with a Ru to Ta weight ratio equal to 4 was subsequently applied by brushing in 2 coats and subjected to the same drying and thermal decomposition cycle after each coat, until obtaining a total ruthenium loading of approximately 20 g/m 2 .
  • the electrodes were subjected to a subsequent thermal cycle of 2 hours at 500 °C, until obtaining a crystalline tetragonal ditetragonal dipyramidal phase of ruthenium dioxide mixed with the amorphous phase of tantalum oxide, as verified by a subsequent XRD investigation.
  • Some samples of electrodes thus obtained are indicated in Table 1 as RuTa_TOP type.
  • the catalytic solutions of the second series were applied by brushing in 6-7 coats and subjected to subsequent drying at 60 °C for 5 minutes and thermal decomposition treatment at 500 °C for 10 minutes after each coat, until obtaining a deposit of oxides of tantalum, tin and ruthenium; a deposit of oxides of ruthenium and tantalum, obtained upon brushing in 2 coats of a solution of the first type with a Ru to Ta weight ratio equal to 4, subjected to drying at 50 °C for 5 minutes and thermal decomposition at 500 °C for 10 minutes after each coat, was overlaid thereto, until obtaining a catalytic coating in two layers with a total ruthenium loading of about 20 g/m 2 .
  • the electrodes were subjected to a subsequent thermal cycle of 2 hours at 500° C, until obtaining a solid solution of ruthenium dioxide and tin dioxide in a tetragonal ditetragonal dipyramidal crystalline phase mixed with the amorphous phase of tantalum oxide in the inner layer and of a tetragonal ditetragonal dipyramidal ruthenium dioxide crystal phase mixed with the amorphous phase of tantalum oxide in the outer layer, as verified by a subsequent investigation by XRD.
  • Some samples of electrodes thus obtained are indicated in Table 1 as RuTaSn_TOP type.
  • a 1 mm thick AKOT ® titanium alloy mesh was degreased with acetone in a ultrasonic bath and etched in 20% HCI at boiling temperature for 15 minutes. The mesh was cut into a plurality of pieces of 10 cm x 10 cm size for the subsequent preparation of electrode samples.
  • a solution of precursors for the preparation of the protective pre-layer was obtained by mixing 150 g/l of T1OCI2 and 50 g/l of TaCI 5 in 10% hydrochloric acid.
  • catalytic layers of various formulations were applied on the protective pre-layer of the above samples by brushing the above catalytic solutions in 8-10 coats and subjected to subsequent drying at 50 °C for 5 minutes and thermal
  • the electrode samples shown in the table were subjected to a test of standard potential under anodic evolution of chlorine at the current density of 3 kA/m 2 , in 15% wt. HCI at a temperature of 60 °C.
  • the potential data obtained are reported in Table 3 (SEP).
  • the table shows also the related data of an accelerated lifetime test, expressed in terms of hours of operation before deactivation under anodic evolution of chlorine at the current density of 6 kA/m 2 , in 20% wt. HCI at a temperature of 60 °C, using a zirconium cathode as counterelectrode.
  • the deactivation of the electrode is defined by a 1 V increase in the cell with respect to the initial value.
  • Duplicates of electrode samples 2, 6 and C2 were subjected to a corrosion test which simulates the crevice corrosion conditions that can occur on the flanges of electrolysers for the production of chlorine or other occluded zones.
  • a first series of samples was immersed in a known volume of 20% wt. HCI at 45 °C under nitrogen stream, to simulate electrolyte stagnation conditions; a second (control) series was immersed in the same volume of 20% wt. HCI at 40 °C under a stream of oxygen, in order to maintain passivation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Chemically Coating (AREA)

Abstract

The invention relates to a catalytic coating of surfaces of valve metals, for example titanium, suitable for operation in highly aggressive electrolytic environments such as electrolysis cells of hydrochloric acid. The coating may be used as catalytic activation of electrodes, for example for anodic evolution of chlorine, or for protection from crevice corrosion of flanges and other elements of electrolysers subject to stagnation of liquid.

Description

CATALYTIC COATING AND METHOD OF MANUFACTURING THEREOF
FIELD OF THE INVENTION The invention relates to a catalytic coating of valve metal articles suitable for use in highly aggressive electrolytic environments, for example in hydrochloric acid electrolysis cells.
BACKGROUND OF THE INVENTION
Hydrochloric acid electrolysis is an electrochemical process gaining increasing interest at present, being hydrochloric acid the typical by-product of all major industrial processes making use of chlorine: the increase in the production capacity of plants of new conception entails the formation of significant amounts of acid, whose placement on the market presents significant difficulties. The electrolysis of the acid, typically carried out in two-compartment electrolytic cells separated by an ion-exchange membrane, leads to the formation of chlorine at the anode compartment, which can be recycled upstream resulting in a substantially closed cycle of negligible environmental impact. The construction materials of the anodic compartment must be capable of withstanding an aggressive environment combining acidity, humid chlorine and anodic polarisation while retaining a suitable electrical conductivity; for such purpose, valve metals such as titanium, niobium and zirconium are preferably employed, optionally alloyed titanium being the most common example for reasons of cost and ease of machining. Titanium alloys containing nickel, chromium and small amounts of noble metals such as ruthenium and palladium, like the AKOT® alloy commercialised by Kobe Steel, are for instance of widespread use. The anodes whereon the anodic evolution of chlorine is carried out consist for example of a valve metal article such as a titanium alloy substrate coated with a suitable catalyst, typically consisting of a mixture of oxides of titanium and ruthenium, capable of lowering the overvoltage of the anodic discharge of chlorine. The same type of coating is also used to protect from corrosion some components of the anodic compartment not directly involved in the evolution of chlorine, with particular reference to interstitial areas subject to electrolyte stagnation. The lack of a sufficient electrolyte renewal may in fact lead to a local discontinuity of the passivation layer directed at protecting the valve metal, triggering corrosion phenomena, which are the more dangerous the more they are localised in small areas. An example of areas subject to delimiting interstices is given by the peripheral flanges of both the anodic and the cathodic compartment, whereupon sealing gaskets are typically assembled. In the most favourable cases experienced in the industrial practice, titanium alloys coated with catalytic formulations based on oxides of ruthenium and titanium may ensure a continuous operation in a hydrochloric acid electrolysis plant in the range of 24 to 48 months, before corrosion problems leading to deactivation of the anode structure and/or leakage of cell elements in the flange area take place. For the sake of improving the competitiveness of the industrial hydrochloric acid electrolysis process it is necessary to further increase the useful lifetime of these components.
SUMMARY OF THE INVENTION Various aspects of the present invention are set out in the accompanying claims.
Under one aspect, the invention relates to a coating of valve metal surfaces including a titanium-free catalytic layer and consisting of the mixture of two phases, namely an amorphous phase of Ta2O5 in admixture with a tetragonal ditetragonal dipyramidal crystalline phase containing RuO2, optionally in solid solution with SnO2. The inventors have in fact observed that titanium -free coatings are more resistant to chloride attack in acidic solution, presumably because titanium oxides - whose function in a combination with ruthenium dioxide is to act as film-forming component - are present as a mixture of crystalline phases including an anatase T1O2 phase, substantially weaker than the others. The inventors have also observed that mixtures of oxides of tantalum and ruthenium in an amorphous phase do not contribute to solving the problem in a decisive manner, even if completely free from titanium. When, however, the coating is formed from a mixture of RUO2 in the typical crystalline form similar to rutile (i.e. tetragonal ditetragonal dipyramidal) and Ta2O5 in a basically amorphous phase, the stability of the coating to acid attack is greatly increased. As a further advantage, the overvoltage of the coating towards anodic chlorine evolution is surprisingly reduced. In one
embodiment, the weight ratio between the amorphous phase of Ta2O5 and the crystalline phase is between 0.25 and 4, which defines the best range of functioning of the invention. In one embodiment, the R11O2 component in the tetragonal ditetragonal dipyramidal crystalline phase is partially replaced by SnO2 (cassiterite). The two dioxides of tin and of ruthenium, whose tetragonal ditetragonal dipyramidal crystalline form turns out to be the most stable, are capable of forming solid solutions in any weight ratio; in one embodiment, the Ru to Sn weight ratio in the tetragonal ditetragonal dipyramidal crystalline phase of the coating ranges between 0.5 and 2, which gives the best results in terms of protection of the substrate as well as of catalytic activity of the coating. In one embodiment, the coating comprises two distinct catalytic layers, one as hereinbefore described in direct contact with the valve metal substrate coupled to an outermost one overlaid thereto with a higher content of ruthenium oxide. This can have the advantage of enhancing on one hand the protective function at the substrate surface and on the other hand the catalytic and conductive properties of the outermost layer, as required for example in the case wherein the coating is used for the catalytic activation of an anodic structure whose outer surface is in direct contact with the electrolyte. In one embodiment, the inner catalytic layer has a weight ratio of amorphous Ta2O5 phase to RuO2-containing crystalline phase (optionally including SnO2) ranging between 0.25 and 2.5 and the outer catalytic layer consists of an amorphous phase of
Ta2O5 mixed with a tetragonal ditetragonal dipyramidal crystalline phase of RUO2 with a Ru to Ta weight ratio between 3 and 5. In one embodiment, between the coating as hereinbefore described - in one or two coats - and the substrate there is interposed a further protective pre-layer consisting of a mixture of oxides of titanium and
tantalum. This can have the advantage of improving the anchoring of the catalytic layer to the substrate, at the expense of a resistive penalty deriving from the modest electrical conductivity of mixtures of titanium and tantalum oxides. The magnitude of such resistive penalty can be however very limited, provided the pre-layer has a suitably limited thickness. A total loading of titanium and tantalum oxides of 0.6 to 4 g/m2 is a suitable value for a pre-layer to be combined with a catalytic layer containing 20 g/m2 of total oxides. In another aspect, the invention relates to a method for the manufacturing of a coating as hereinbefore described comprising the optional application of a solution of titanium and tantalum compounds, for example T1OCI2, T1CI3 and TaCI5, to a valve metal substrate in one or more coats, with subsequent thermal decomposition after each coat; the application of a solution of compounds of tantalum, ruthenium and optionally tin in one or more coats, with subsequent thermal decomposition after each coat, until obtaining a first catalytic layer; the optional application of a solution of compounds of tantalum and ruthenium upon the first catalytic layer with subsequent thermal decomposition after each coat, until obtaining a second catalytic layer. In one
embodiment, the compounds of ruthenium and tin applied in view of the subsequent thermal decomposition are hydroxyacetochloride complexes; this can have the advantage of obtaining more regular and compact layers, having a more homogeneous composition, compared to hydrochloric or other precursors. The thermal decomposition step after each coat can be effected between 350 and 600 °C, depending on the selected precursor compounds. In the case of decomposition of mixtures of precursors consisting of tantalum chloride and hydroxyacetochloride complexes of ruthenium and optionally of tin, thermal decomposition may for example be carried out between 450 and 550 °C.
The following examples are included to demonstrate particular embodiments of the invention, whose practicability has been largely verified in the claimed range of values. It should be appreciated by those of skill in the art that the compositions and techniques disclosed in the examples which follow represent compositions and techniques discovered by the inventors to function well in the practice of the invention; however, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the scope of the invention. EXAMPLE 1
A 1 mm thick AKOT® titanium alloy mesh was degreased with acetone in a ultrasonic bath and etched in 20% HCI at boiling temperature for 15 minutes. The mesh was cut into a plurality of pieces of 10 cm x 10 cm size for the subsequent preparation of electrode samples.
A solution of precursors for the preparation of the protective pre-layer was obtained by mixing 150 g/l of T1OCI2 and 50 g/l of TaCI5 in 10% wt. hydrochloric acid. A first series of catalytic solutions was obtained by mixing 20% by weight RuCb and 50 g/l TaCI5 in 10% wt. hydrochloric acid according to various proportions.
Solutions of hydroxyacetochloride complexes of Ru (0.9 M) and Sn (1 .65 M) were obtained by dissolving the corresponding chlorides in 10% vol. aqueous acetic acid, evaporating the solvent, taking up with 10% aqueous acetic acid with subsequent evaporation of the solvent for two more times, finally dissolving the product again in 10% aqueous acetic acid to obtain the specified concentration. A second series of catalytic solutions was obtained by mixing the hydroxyacetochloride complexes of Ru and Sn according to various proportions.
Electrode samples were obtained at different formulations with the following procedure:
- a protective pre-layer was applied to the samples cut out of the titanium mesh by brushing the solution containing T1OCI2 and TaCI5 precursors in two coats, with subsequent drying at 50 °C for 5 minutes and thermal decomposition treatment at 515 °C for 5 minutes after each coat, until obtaining a deposit of oxides of tantalum and titanium with a loading of about 1 g/m2;
- catalytic layers of various formulations were applied upon the protective pre-layer of the above samples by alternatively applying catalytic solutions of the first or of the second series. The catalytic solutions of the first series were applied by brushing in 8-10 coats and subjected to subsequent drying at 50 °C for 10 minutes and thermal decomposition treatment at 500 °C for 5 minutes after each coat, until obtaining a deposit of oxides of tantalum and ruthenium with a total ruthenium loading of about 20 g/m2. At the end of the thermal decomposition process, the electrodes were subjected to a subsequent thermal cycle of 2 hours at 500° C, until obtaining a crystalline tetragonal ditetragonal dipyramidal ruthenium dioxide phase mixed with the amorphous tantalum oxide phase, as verified by means of a subsequent XRD investigation. Some samples of electrodes thus obtained are indicated in Table 1 as RuTa type. The catalytic solutions of the second series have been applied by brushing in 8-10 coats and subjected to subsequent drying at 60 °C for 10 minutes and thermal
decomposition treatment at 500 °C for 5 minutes after each coat, until obtaining a deposit of oxides of tantalum, tin and ruthenium with a total ruthenium loading of about 20 g/m2. Also in this case, at the end of the thermal decomposition process, the electrodes were subjected to a subsequent thermal cycle of 2 hours at 500 °C, until obtaining a solid solution of ruthenium dioxide and tin dioxide in a crystalline tetragonal ditetragonal dipyramidal phase mixed with the amorphous phase of tantalum oxide, as verified by a subsequent XRD investigation. Some samples of electrodes thus obtained are indicated in Table 1 as RuTaSn type; other electrode samples provided with a catalytic coating consisting of two layers were obtained by alternatively applying catalytic solutions of the first or of the second series. The catalytic solutions of the first series were applied by brushing in 6-7 coats and subjected to subsequent drying at 50 °C for 5 minutes and thermal decomposition treatment at 500 °C for 5 minutes after each coat, until obtaining a first deposit of oxides of ruthenium and tantalum; a subsequent solution of the first type with a Ru to Ta weight ratio equal to 4 was subsequently applied by brushing in 2 coats and subjected to the same drying and thermal decomposition cycle after each coat, until obtaining a total ruthenium loading of approximately 20 g/m2. At the end of the thermal decomposition process, the electrodes were subjected to a subsequent thermal cycle of 2 hours at 500 °C, until obtaining a crystalline tetragonal ditetragonal dipyramidal phase of ruthenium dioxide mixed with the amorphous phase of tantalum oxide, as verified by a subsequent XRD investigation. Some samples of electrodes thus obtained are indicated in Table 1 as RuTa_TOP type. The catalytic solutions of the second series were applied by brushing in 6-7 coats and subjected to subsequent drying at 60 °C for 5 minutes and thermal decomposition treatment at 500 °C for 10 minutes after each coat, until obtaining a deposit of oxides of tantalum, tin and ruthenium; a deposit of oxides of ruthenium and tantalum, obtained upon brushing in 2 coats of a solution of the first type with a Ru to Ta weight ratio equal to 4, subjected to drying at 50 °C for 5 minutes and thermal decomposition at 500 °C for 10 minutes after each coat, was overlaid thereto, until obtaining a catalytic coating in two layers with a total ruthenium loading of about 20 g/m2. At the end of the thermal decomposition process, the electrodes were subjected to a subsequent thermal cycle of 2 hours at 500° C, until obtaining a solid solution of ruthenium dioxide and tin dioxide in a tetragonal ditetragonal dipyramidal crystalline phase mixed with the amorphous phase of tantalum oxide in the inner layer and of a tetragonal ditetragonal dipyramidal ruthenium dioxide crystal phase mixed with the amorphous phase of tantalum oxide in the outer layer, as verified by a subsequent investigation by XRD. Some samples of electrodes thus obtained are indicated in Table 1 as RuTaSn_TOP type.
Table 1
COUNTEREXAMPLE 1
A 1 mm thick AKOT® titanium alloy mesh was degreased with acetone in a ultrasonic bath and etched in 20% HCI at boiling temperature for 15 minutes. The mesh was cut into a plurality of pieces of 10 cm x 10 cm size for the subsequent preparation of electrode samples.
A solution of precursors for the preparation of the protective pre-layer was obtained by mixing 150 g/l of T1OCI2 and 50 g/l of TaCI 5 in 10% hydrochloric acid.
A series of catalytic solutions was obtained by mixing 20% by weight RuCb and 150 g/l T1OCI2 in 10% hydrochloric acid according to various proportions. a protective pre-layer was applied to the samples cut out of the titanium mesh as in the case of Example 1
catalytic layers of various formulations were applied on the protective pre-layer of the above samples by brushing the above catalytic solutions in 8-10 coats and subjected to subsequent drying at 50 °C for 5 minutes and thermal
decomposition treatment at 500 °C for 5 minutes after each coat, until obtaining a deposit of oxides of ruthenium and titanium with a total ruthenium loading of about 20 g/m2. At the end of the thermal decomposition process, the electrodes were subjected to a subsequent thermal cycle of 2 hours at 500 °C. Some samples of electrodes thus obtained are indicated in Table 2 as RuTi type.
Table 2
EXAMPLE 2
The electrode samples shown in the table were subjected to a test of standard potential under anodic evolution of chlorine at the current density of 3 kA/m2, in 15% wt. HCI at a temperature of 60 °C. The potential data obtained are reported in Table 3 (SEP). The table shows also the related data of an accelerated lifetime test, expressed in terms of hours of operation before deactivation under anodic evolution of chlorine at the current density of 6 kA/m2, in 20% wt. HCI at a temperature of 60 °C, using a zirconium cathode as counterelectrode. The deactivation of the electrode is defined by a 1 V increase in the cell with respect to the initial value. Table 3
EXAMPLE 3
Duplicates of electrode samples 2, 6 and C2 were subjected to a corrosion test which simulates the crevice corrosion conditions that can occur on the flanges of electrolysers for the production of chlorine or other occluded zones. A first series of samples was immersed in a known volume of 20% wt. HCI at 45 °C under nitrogen stream, to simulate electrolyte stagnation conditions; a second (control) series was immersed in the same volume of 20% wt. HCI at 40 °C under a stream of oxygen, in order to maintain passivation. In both cases, the concentration of chromium and nickel released from the substrate in the course of 24 hours was detected: for samples 2 and 6, the concentration of both metals in the volume of HCI was less than 2 mg/l, while sample C2 showed concentrations slightly higher than 2 mg/l of Cr and 4 mg/l of Ni under a stream of oxygen, which increased significantly under a stream of nitrogen (up to 6.5 mg/l for nickel). The test was repeated with another set of samples, confirming a substantial increase in the corrosion resistance for the formulations of the invention. The foregoing description shall not be intended as limiting the invention, which may be used according to different embodiments without departing from the scopes thereof, and whose extent is solely defined by the appended claims.
Throughout the description and claims of the present application, the term "comprise" and variations thereof such as "comprising" and "comprises" are not intended to exclude the presence of other elements, components or additional process steps.
The discussion of documents, acts, materials, devices, articles and the like is included in this specification solely for the purpose of providing a context for the present invention. It is not suggested or represented that any or all of these matters formed part of the prior art base or were common general knowledge in the field relevant to the present invention before the priority date of each claim of this application.

Claims

1 . Coating for valve metal surfaces comprising a titanium-free first catalytic layer containing an amorphous phase of Ta2O5 in admixture with a tetragonal ditetragonal dipyramidal crystalline phase consisting of either RuO2 or a solid solution of RuO2 and SnO2.
2. The coating according to claim 1 wherein the weight ratio of said amorphous phase to said crystalline phase ranges from 0.25 to 4.
3. The coating according to claim 1 or 2 wherein the Ru to Sn weight ratio in said crystalline phase ranges from 0.5 to 2.
4. The coating according to any one of the preceding claims comprising a second catalytic layer applied externally to said first catalytic layer, wherein said first catalytic layer has a weight ratio of said amorphous phase to said crystalline phase ranging from 0.25 to 2.5 and said second catalytic layer consists of an amorphous phase of Ta2O5 mixed with a tetragonal ditetragonal dipyramidal crystalline phase of RuO2 with a Ru to Ta weight ratio ranging from 3 to 5.
5. The coating according to any one of the preceding claims comprising a protective pre-layer consisting of a mixture of oxides of titanium and tantalum interposed between the valve metal surface and said first catalytic layer.
6. The coating according to any one of the preceding claims applied to a substrate of titanium or titanium alloy.
7. The coating according to claim 6 wherein said substrate is an anode substrate or a flange of a chlorine-producing electrolyser.
8. The coating according to claim 7 wherein said electrolyser is a hydrochloric acid electrolyser. Method for manufacturing a coating according to any one of claims 1 to 8 comprising the following simultaneous or sequential steps:
- optional application of a solution of compounds of titanium and tantalum to a valve metal substrate in one or more coats, with subsequent thermal
decomposition after each coat;
- application of a solution of compounds of tantalum, ruthenium and optionally tin in one or more coats, with subsequent thermal decomposition after each coat, until obtaining a first catalytic layer;
- optional application of a solution of compounds of tantalum and ruthenium to said first catalytic layer in one or more coats, with subsequent thermal decomposition after each coat, until obtaining of a second catalytic layer.
The method according to claim 9, wherein said compounds of ruthenium and tin are hydroxyacetochloride complexes.
EP15742289.0A 2014-07-28 2015-07-28 Catalytic coating and method of manufacturing thereof Active EP3175019B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI20141363 2014-07-28
PCT/EP2015/067273 WO2016016243A1 (en) 2014-07-28 2015-07-28 Catalytic coating and method of manufacturing thereof

Publications (2)

Publication Number Publication Date
EP3175019A1 true EP3175019A1 (en) 2017-06-07
EP3175019B1 EP3175019B1 (en) 2018-11-28

Family

ID=51628367

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15742289.0A Active EP3175019B1 (en) 2014-07-28 2015-07-28 Catalytic coating and method of manufacturing thereof

Country Status (11)

Country Link
US (1) US20170198403A1 (en)
EP (1) EP3175019B1 (en)
JP (1) JP6714576B2 (en)
CN (1) CN106471159B (en)
AR (1) AR101828A1 (en)
ES (1) ES2712403T3 (en)
HU (1) HUE041583T2 (en)
PT (1) PT3175019T (en)
RU (1) RU2689985C2 (en)
TW (1) TWI679256B (en)
WO (1) WO2016016243A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800006544A1 (en) * 2018-06-21 2019-12-21 ANODE FOR ELECTROLYTIC EVOLUTION OF CHLORINE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7168729B1 (en) * 2021-07-12 2022-11-09 デノラ・ペルメレック株式会社 Electrodes for industrial electrolytic processes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3776834A (en) * 1972-05-30 1973-12-04 Leary K O Partial replacement of ruthenium with tin in electrode coatings
US3853739A (en) * 1972-06-23 1974-12-10 Electronor Corp Platinum group metal oxide coated electrodes
CN102703921A (en) * 2007-11-16 2012-10-03 阿克佐诺贝尔股份有限公司 Electrode
IT1391767B1 (en) * 2008-11-12 2012-01-27 Industrie De Nora Spa ELECTRODE FOR ELECTROLYTIC CELL
IT1403585B1 (en) * 2010-11-26 2013-10-31 Industrie De Nora Spa ANODE FOR CHLORINE ELECTROLYTIC EVOLUTION
CN102174704B (en) * 2011-02-20 2012-12-12 中国船舶重工集团公司第七二五研究所 Preparation method for tantalum-contained interlayer metallic oxide electrode
JP5008043B1 (en) * 2011-09-13 2012-08-22 学校法人同志社 Anode for chlorine generation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800006544A1 (en) * 2018-06-21 2019-12-21 ANODE FOR ELECTROLYTIC EVOLUTION OF CHLORINE
WO2019243163A1 (en) * 2018-06-21 2019-12-26 Industrie De Nora S.P.A. Anode for electrolytic evolution of chlorine
CN112313368A (en) * 2018-06-21 2021-02-02 德诺拉工业有限公司 Anode for the electrolytic evolution of chlorine

Also Published As

Publication number Publication date
PT3175019T (en) 2019-02-26
CN106471159A (en) 2017-03-01
RU2017106084A3 (en) 2019-01-15
RU2017106084A (en) 2018-08-28
US20170198403A1 (en) 2017-07-13
WO2016016243A1 (en) 2016-02-04
JP6714576B2 (en) 2020-06-24
EP3175019B1 (en) 2018-11-28
RU2689985C2 (en) 2019-05-30
CN106471159B (en) 2019-04-05
HUE041583T2 (en) 2019-05-28
TWI679256B (en) 2019-12-11
JP2017522457A (en) 2017-08-10
AR101828A1 (en) 2017-01-18
ES2712403T3 (en) 2019-05-13
TW201604252A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
AU2016282820B2 (en) Electrode for electrolytic processes
US11643746B2 (en) Electrode for oxygen evolution in industrial electrochemical processes
CA2761292A1 (en) Electrode for electrolytic applications
EP3175019B1 (en) Catalytic coating and method of manufacturing thereof
US10626278B2 (en) Anticorrosive coating and method for obtaining same
JP2017522457A5 (en)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

17P Request for examination filed

Effective date: 20170104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180201

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180601

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1070327

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015020442

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3175019

Country of ref document: PT

Date of ref document: 20190226

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20190219

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1070327

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190328

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2712403

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190513

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E041583

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190301

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015020442

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

26N No opposition filed

Effective date: 20190829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190728

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190728

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200727

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20200717

Year of fee payment: 6

Ref country code: ES

Payment date: 20200922

Year of fee payment: 6

Ref country code: FR

Payment date: 20200723

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200724

Year of fee payment: 6

Ref country code: SE

Payment date: 20200727

Year of fee payment: 6

Ref country code: HU

Payment date: 20200905

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210729

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220128

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210801

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210728

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230719

Year of fee payment: 9