ES2712403T3 - Catalytic coating and manufacturing method - Google Patents
Catalytic coating and manufacturing method Download PDFInfo
- Publication number
- ES2712403T3 ES2712403T3 ES15742289T ES15742289T ES2712403T3 ES 2712403 T3 ES2712403 T3 ES 2712403T3 ES 15742289 T ES15742289 T ES 15742289T ES 15742289 T ES15742289 T ES 15742289T ES 2712403 T3 ES2712403 T3 ES 2712403T3
- Authority
- ES
- Spain
- Prior art keywords
- catalytic layer
- layer
- coating
- ruthenium
- titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 49
- 239000011248 coating agent Substances 0.000 title claims abstract description 34
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims abstract description 17
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract description 17
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 14
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910001925 ruthenium oxide Inorganic materials 0.000 claims abstract description 12
- 239000010936 titanium Substances 0.000 claims abstract description 12
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 11
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000007787 solid Substances 0.000 claims abstract description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 24
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 22
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 18
- 229910052707 ruthenium Inorganic materials 0.000 claims description 18
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 13
- 239000000460 chlorine Substances 0.000 claims description 13
- 229910052801 chlorine Inorganic materials 0.000 claims description 13
- 229910052715 tantalum Inorganic materials 0.000 claims description 12
- 238000005868 electrolysis reaction Methods 0.000 claims description 10
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 9
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 9
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 7
- 230000001681 protective effect Effects 0.000 claims description 7
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 4
- 150000003606 tin compounds Chemical class 0.000 claims description 4
- 150000003304 ruthenium compounds Chemical class 0.000 claims description 2
- 150000003609 titanium compounds Chemical class 0.000 claims 1
- 239000010410 layer Substances 0.000 description 24
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 230000001680 brushing effect Effects 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 239000002243 precursor Substances 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 6
- 229910052718 tin Inorganic materials 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000009849 deactivation Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 229910010270 TiOCl2 Inorganic materials 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- OEIMLTQPLAGXMX-UHFFFAOYSA-I tantalum(v) chloride Chemical compound Cl[Ta](Cl)(Cl)(Cl)Cl OEIMLTQPLAGXMX-UHFFFAOYSA-I 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 235000003976 Ruta Nutrition 0.000 description 1
- 240000005746 Ruta graveolens Species 0.000 description 1
- 229910004537 TaCl5 Inorganic materials 0.000 description 1
- 229910010062 TiCl3 Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- -1 for example TiOCl 2 Chemical compound 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 235000005806 ruta Nutrition 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000003482 tantalum compounds Chemical class 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/26—Chlorine; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
- C25B11/093—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
Landscapes
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Chemically Coating (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Sustrato de metal de de válvula revestida que tiene un revestimiento que comprende una primera capa catalítica que no contiene titanio y que consiste en una fase amorfa de Ta2O5 mezclada con una fase cristalina dipiramidal ditetragonal tetragonal que consiste en RuO2 o bien una solución de sólidos de RuO2 y SnO2 teniendo dicha primera capa catalítica una relación en peso de dicha fase amorfa con respecto a dicha fase cristalina que varía de 0,25 a 2,5 y la relación en peso de Ru con respecto a Sn de dicha fase cristalina que varía de 0,5 a 2, y una segunda capa catalítica aplicada externamente a dicha primera capa catalítica, consistiendo dicha segunda capa catalítica en una fase amorfa de Ta2O5 mezclada con una fase cristalina dipiramidal ditetragonal tetragonal de RuO2 con una relación en peso de Ru con respecto a Ta de 3 a 5, donde el contenido de óxido de rutenio es más elevado en dicha segunda capa que en dicha primera capa.Coated valve metal substrate having a coating that comprises a first catalytic layer that does not contain titanium and that consists of an amorphous phase of Ta2O5 mixed with a tetragonal dipyramidal crystalline phase consisting of RuO2 or a solution of solids of RuO2 and SnO2 said first catalytic layer having a weight ratio of said amorphous phase with respect to said crystalline phase varying from 0.25 to 2.5 and the weight ratio of Ru with respect to Sn of said crystalline phase varying from 0 , 5 to 2, and a second catalytic layer applied externally to said first catalytic layer, said second catalytic layer consisting of an amorphous phase of Ta2O5 mixed with a tetragonal dipyramidal dipstragonal crystalline phase of RuO2 with a weight ratio of Ru to Ta 3 to 5, where the content of ruthenium oxide is higher in said second layer than in said first layer.
Description
DESCRIPCIONDESCRIPTION
Revestimiento catalltico y metodo de fabricacion del mismoCladding catalltico and method of manufacture thereof
Campo de la invencionField of the invention
La invencion se refiere a un revestimiento catalltico de artlculos de metal de de valvula apropiados para uso en entornos electrollticos altamente agresivos, por ejemplo en celulas de electrolisis de acido clorhldrico.The invention relates to a catallic coating of valve metal articles suitable for use in highly aggressive electrolytic environments, for example in chlorhydride acid electrolysis cells.
Antecedentes de la invencionBackground of the invention
La electrolisis de acido clorhldrico es un proceso electroqulmico que cada vez tiene mayor interes en la actualidad, ya que el acido clorhldrico es el sub-producto tlpico de todos los procesos industriales principales que hace uso de cloro: el aumento de capacidad de produccion de las plantas de nueva concepcion engloba la formacion de cantidades significativas de acido, cuya colocacion en el mercado presenta dificultades significativas. La electrolisis del acido, normalmente llevada a cabo en celulas electrollticas de dos compartimentos separadas por una membrana de intercambio ionico, conduce a la formacion de cloro en el compartimiento del anodo, que se puede reciclar aguas arriba dando como resultado un ciclo sustancialmente cerrado de impacto ambiental despreciable. Los materiales de construccion del compartimiento anodico deben ser capaces de soportar un entorno agresivo que combina acidez, cloro humedo y polarizacion anodica al tiempo que conservan una conductividad electrica apropiada; para dicha finalidad, se emplean preferentemente valvulas metalicas tal como titanio, niobio y circonio, siendo el titanio opcionalmente aleado el ejemplo mas comun por motivos de coste y facilidad de maquinizado. Las aleaciones de titanio que contienen nlquel, cromo y cantidades pequenas de metales nobles tales como rutenio y paladio, como la aleacion AKOT® comercializada por Kobe Steel, son por ejemplo de amplia utilidad. Los anodos sobre los cuales se lleva a cabo el desprendimiento de cloro consisten, por ejemplo, en un objeto de metal de valvula tal como un sustrato de aleacion de titanio revestido con un catalizador apropiado, que normalmente consiste en una mezcla de oxidos de titanio y rutenio, capaces de rebajar la sobre-tension de la descarga anodica de cloro. Tambien se usa el mismo tipo de revestimiento para proteger frente a la corrosion algunos componentes del compartimento anodico no directamente implicados en el desprendimiento de cloro, con particular referencia a las areas intersticiales sujetas a estancamiento del electrolito. La ausencia de renovacion suficiente de electrolito puede de hecho conducir a una discontinuidad local de la capa de pasivacion destinada a proteger el metal de valvula, desencadenando el fenomeno de corrosion, que es mas peligros cuanto mas localizado esta en zonas pequenas. Un ejemplo de las zonas objetivo para delimitar los intersticios viene dado por los rebordes perifericos de los compartimentos tanto anodico como catodico, sobre los cuales se montan normalmente las juntas de sellado. En los casos mas favorables experimentados en la practica industrial, las aleaciones de titanio revestidas con formulaciones catallticas basadas en oxidos de rutenio y titanio pueden garantizar una operation continua en una planta de electrolisis de acido clorhldrico dentro del intervalo de 24 a 48 meses, antes de que los problemas de corrosion conduzcan a la desactivacion de la estructura del anodo y/o tenga lugar la fuga de elementos de celda en el area de reborde.Hydrochloric acid electrolysis is an electrochemical process that is of increasing interest nowadays, since chlorhydrate acid is the typical by-product of all the main industrial processes that use chlorine: the increase in production capacity of the plants of new conception includes the formation of significant quantities of acid, whose placement in the market presents significant difficulties. The electrolysis of the acid, normally carried out in electrolytic cells of two compartments separated by an ion exchange membrane, leads to the formation of chlorine in the anode compartment, which can be recycled upstream resulting in a substantially closed cycle of impact negligible environmental The building materials of the anodic compartment must be able to withstand an aggressive environment that combines acidity, wet chlorine and anodic polarization while retaining an appropriate electrical conductivity; for this purpose, metal valves such as titanium, niobium and zirconium are preferably used, titanium being optionally alloyed as the most common example for reasons of cost and ease of machining. Titanium alloys containing nickel, chromium and small amounts of noble metals such as ruthenium and palladium, such as the AKOT® alloy marketed by Kobe Steel, are for example of wide utility. The anodes on which the chlorine evolution is carried out consist, for example, of a valve metal object such as a titanium alloy substrate coated with an appropriate catalyst, which normally consists of a mixture of titanium oxides and ruthenium, able to reduce the over-tension of the chlorine anodic discharge. The same type of coating is also used to protect against corrosion some components of the anodic compartment not directly involved in the evolution of chlorine, with particular reference to the interstitial areas subject to stagnation of the electrolyte. The absence of sufficient electrolyte renewal can in fact lead to a local discontinuity of the passivation layer intended to protect the valve metal, triggering the corrosion phenomenon, which is more dangerous the more localized it is in small areas. An example of the target areas for delimiting the interstices is given by the peripheral rims of both the anodic and cathodic compartments, on which the sealing gaskets are normally mounted. In the most favorable cases experienced in industrial practice, titanium alloys coated with catalytic formulations based on ruthenium and titanium oxides can guarantee a continuous operation in a hydrochloric acid electrolysis plant within the range of 24 to 48 months, before that the corrosion problems lead to the deactivation of the anode structure and / or the leakage of cell elements in the flange area.
El documento EP 2 757179 A1 describe anodos de desprendimiento de cloro que, ademas del oxido de rutenio amorfo, pueden comprender oxido de rutenio cristalino en una capa intermedia o en una capa catalltica. El documento US 3875043 A describe un revestimiento catalltico que comprende oxido de tantalo y oxido de rutenio. El documento US 3.853.739 A describe un revestimiento formado por una solution de solidos de oxidos de metales del grupo de platino en un aglutinante de tantalo amorfo. Carl-Erik Boman et al. describen en Acta Chemica Scandinavica, Vol. 24, 1 de enero de 1970, pp. 116-122 la preparation y caracterizacion de cristales de dioxido de rutenio que tienen una estructura de rutilo. El documento US 2011/0209992 A1 describe un electrodo para una celula de electrolisis que comprende una capa catalltica que contiene oxidos de estano, rutenio, iridio, paladio y niobio que usan soluciones de precursor de complejos de hidroxiacetocloruro de estano, iridio o rutenio.EP 2 757179 A1 discloses chlorine evolution anodes which, in addition to the amorphous ruthenium oxide, can comprise crystalline ruthenium oxide in an intermediate layer or in a catalltic layer. US 3875043 A describes a catallic coating comprising tantalum oxide and ruthenium oxide. US 3,853,739 A describes a coating formed by a solids solution of metal oxides of the platinum group in an amorphous tantalum binder. Carl-Erik Boman et al. describe in Acta Chemica Scandinavica, Vol. 24, January 1, 1970, pp. 116-122 the preparation and characterization of ruthenium dioxide crystals having a rutile structure. US 2011/0209992 A1 discloses an electrode for an electrolysis cell comprising a catalltic layer containing oxides of tin, ruthenium, iridium, palladium and niobium using precursor solutions of hydroxyacetochloride complexes of tin, iridium or ruthenium.
Por motivos de mejorar la competitividad del proceso industrial de electrolisis de acido clorhldrico, puede ser necesario aumentar la vida util de estos componentes.For reasons of improving the competitiveness of the industrial hydrochloric acid electrolysis process, it may be necessary to increase the useful life of these components.
Sumario de la invencionSummary of the invention
Se explican diversos aspectos de la presente invencion en las reivindicaciones adjuntas.Various aspects of the present invention are explained in the appended claims.
En un aspecto, la invencion hace referencia a un sustrato de metal de de valvula revestido, que tiene un revestimiento como se define en la revindication 1. El revestimiento incluye una capa catalltica que no contiene titanio y que consiste en la mezcla de dos fases, concretamente una fase amorfa de Ta2O5 mezclada con una fase cristalina dipiramidal ditetragonal tetragonal que contiene RuO2, opcionalmente en solucion de solidos con SnO2. Los inventores, de hecho, han observado que los revestimientos que no contienen titanio son mas resistentes al ataque de cloro en solucion acida, presumiblemente porque los oxidos de titanio - cuya funcion en una combination con dioxido de rutenio consiste en actuar como componente de formacion de pellcula - estan presentes como mezcla de fases cristalinas que incluyen una fase de TiO2 de anatasa, sustancialmente mas debil que las otras. Los inventores tambien han observado que las mezclas de oxidos de tantalo y rutenio en una fase amorfa no contribuyen a solucionar el problema de manera decisiva, incluso si se encuentra completamente libre de titanio. Cuando, sin embargo, se forma el revestimiento a partir de una mezcla de RuO2 en la forma cristalina tipica similar a rutilo (es decir, dipiramidal ditetragonal tetragonal) y Ta2O5 en una fase basicamente amorfa, aumenta en gran medida la estabilidad del revestimiento frente al ataque de acido. Como ventaja adicional, sorprendentemente se reduce la sobre-tension frente al desprendimiento de cloro anodico. La relacion en peso entre la fase amorfa de Ta2O5 y la fase cristalina esta entre 0,25 y 2,5, lo cual define el mejor intervalo de funcionamiento de la invencion. En una realizacion, el componente de RuO2 en la fase cristalina dipiramidal ditetragonal tetragonal esta sustituido parcialmente por SnO2 (casiterita). Los dos dioxidos de estano y rutenio, cuya forma cristalina dipiramidal ditetragonal tetragonal es la mas estable, son capaces de formar soluciones de solidos con cualquier relacion en peso; en una realizacion, la relacion en peso de Ru con respecto a Sn en la fase cristalina dipiramidal ditetragonal tetragonal del revestimiento varia entre 0,5 y 2, lo cual proporciona los mejores resultados en terminos de proteccion del sustrato asi como tambien de actividad catalitica del revestimiento. En una realizacion, el revestimiento comprende dos capas cataliticas distintas, una como se ha descrito anteriormente en contacto directo con el sustrato de metal de de valvula acoplada a una mas externa superpuesta sobre la misma con un contenido elevado de oxido de rutenio. Esto puede presentar la ventaja de mejorar por un lado la funcion protectora en la superficie del sustrato y por otro, las propiedades cataliticas y conductoras de la capa mas externa, como se requiere por ejemplo en caso de que el revestimiento se use para la activacion catalitica de una estructura anodica cuya superficie externa este en contacto directo con el electrolito. En una realizacion, la capa catalitica interna tiene una relacion molar de la fase amorfa de Ta2O5 con respecto a la fase cristalina que contiene RuO2 (que incluye opcionalmente SnO2) que varia entre 0,25 y 2,5 y la capa catalitica externa consiste en una fase amorfa de Ta2O5 mezclada con una fase cristalina dipiramidal ditetragonal tetragonal de RuO2 con una relacion en peso de Ru con respecto a Ta entre 3 y 5. En una realizacion, entre el revestimiento que se ha descrito anteriormente - en uno o dos revestimientos - y el sustrato se interpone una pre-capa protectora adicional que consiste en una mezcla de oxidos de titanio y tantalo. Esto puede tener la ventaja de mejorar el anclaje de la capa catalitica al sustrato, en detrimento de una penalizacion de resistencia procedente de la conductividad electrica modesta de las mezclas de oxidos de titanio y tantalo. La magnitud de dicha penalizacion de resistencia puede, no obstante, ser muy limitada, siempre y cuando la pre-capa tenga un espesor limitado de forma apropiada. Una carga total de oxidos de titanio y tantalo de 0,6 a 4 g/m2 es un valor apropiado para la combinacion de la precapa con una capa catalitica que contiene 20 g/m2 de oxidos totales. In one aspect, the invention relates to a coated metal valve substrate, having a coating as defined in claim 1. The coating includes a catalittic layer that does not contain titanium and consists of the mixing of two phases, specifically, an amorphous phase of Ta2O5 mixed with a dipyramid tetratetragonal tetragonal crystal phase containing RuO2, optionally in solution of solids with SnO2. The inventors, in fact, have observed that coatings that do not contain titanium are more resistant to the attack of chlorine in acid solution, presumably because the titanium oxides - whose function in a combination with ruthenium dioxide is to act as a component of formation of pellula - are present as a mixture of crystalline phases that include an anatase TiO2 phase, substantially weaker than the others. The inventors have also observed that mixtures of tantalum oxide and ruthenium in an amorphous phase do not contribute to solve the problem decisively, even if it is completely free of titanium. When, however, the coating is formed from a mixture of RuO2 in the typical rutile-like crystalline form (ie, tetragonal tetragonal tetragonal) and Ta2O5 in a basically amorphous phase, the stability of the coating increases greatly compared to the acid attack. As an additional advantage, surprisingly the over-tension against the release of anodic chlorine is reduced. The weight ratio between the amorphous phase of Ta2O5 and the crystalline phase is between 0.25 and 2.5, which defines the best operating range of the invention. In one embodiment, the RuO2 component in the tetragonal diradgonal tetrahedral crystal phase is partially replaced by SnO2 (cassiterite). The two dioxides of tin and ruthenium, whose tetrahedral diratragonal dipiramidal crystalline form is the most stable, are capable of forming solids solutions with any ratio in weight; in one embodiment, the weight ratio of Ru to Sn in the tetragonal tetrahedral tetrahedral crystal phase of the coating varies between 0.5 and 2, which provides the best results in terms of substrate protection as well as catalytic activity of the coating. In one embodiment, the coating comprises two different catalytic layers, one as described above in direct contact with the valve metal substrate coupled to an outer one superimposed thereon with a high content of ruthenium oxide. This may have the advantage of improving on the one hand the protective function on the surface of the substrate and on the other, the catalytic and conductive properties of the outermost layer, as required for example in case the coating is used for catalytic activation. of an anodic structure whose external surface is in direct contact with the electrolyte. In one embodiment, the internal catalytic layer has a molar ratio of the amorphous phase of Ta2O5 with respect to the crystalline phase containing RuO2 (optionally including SnO2) varying between 0.25 and 2.5 and the external catalytic layer consists of an amorphous phase of Ta2O5 mixed with a tetrahedral tetrahedral tetrahedral tetrahedral phase of RuO2 with a weight ratio of Ru with respect to Ta between 3 and 5. In one embodiment, between the coating as described above - in one or two coatings - and the substrate is interposed by an additional protective layer consisting of a mixture of titanium oxide and tantalum. This may have the advantage of improving the anchoring of the catalytic layer to the substrate, to the detriment of a resistance penalty from the modest electrical conductivity of titanium oxide and tantalum mixtures. The magnitude of said resistance penalty may, however, be very limited, as long as the pre-layer has an appropriately limited thickness. A total charge of titanium oxides and equal weight of 0.6 to 4 g / m2 is an appropriate value for the combination of the precoat with a catalytic layer containing 20 g / m2 of total oxides.
En otro aspecto, la invencion se refiere a un metodo de fabricacion de un sustrato de metal de de valvula revestido como se ha descrito anteriormente en la presente memoria que comprende la aplicacion opcional de una solucion de compuestos de titanio y tantalo, por ejemplo TiOCl2, TiCl3 y TaCls, a un sustrato de metal de de valvula en uno o mas revestimientos, con la descomposicion termica posterior despues de cada revestimiento; la aplicacion de una solucion de compuestos de tantalo, rutenio y opcionalmente estano en uno o mas revestimientos, con la descomposicion termica posterior despues de cada revestimiento, hasta obtener una primera capa catalitica; la aplicacion opcional de una solucion de compuestos de tantalo y rutenio sobre la primera capa catalitica con descomposicion termica posterior despues de cada revestimiento, hasta obtener una segunda capa catalitica. En una realizacion, los compuestos de rutenio y estano aplicados a la vista de la descomposicion termica posterior son complejos de hidroxiacetocloruro; esto puede tener la ventaja de obtener capas mas reguladores y compactas, que tienen una composicion mas homogenea, en comparacion con precursores de clorhidrico y otros precursores. La etapa de descomposicion termica despues de cada revestimiento puede verse afectada entre 350 y 600 °C, dependiendo de los compuestos precursores seleccionados. En el caso de la descomposicion de mezclas de precursores que consisten en cloruro de tantalo y complejos de hidroxiacetocloruro de rutenio y opcionalmente de estano, la descomposicion termica por ejemplo se puede llevar a cabo entre 450 y 550 °C.In another aspect, the invention relates to a method of manufacturing a valve metal substrate coated as described hereinabove comprising the optional application of a solution of titanium and tantalum compounds, for example TiOCl 2, TiCl3 and TaCls, to a valve metal substrate in one or more coatings, with subsequent thermal decomposition after each coating; the application of a solution of tantalum, ruthenium and optionally tin compounds in one or more coatings, with the subsequent thermal decomposition after each coating, until a first catalytic layer is obtained; the optional application of a solution of tantalum and ruthenium compounds on the first catalytic layer with subsequent thermal decomposition after each coating, until a second catalytic layer is obtained. In one embodiment, the ruthenium and tin compounds applied in view of the subsequent thermal decomposition are hydroxyacetochloride complexes; this may have the advantage of obtaining more regulatory and compact layers, which have a more homogeneous composition, in comparison with hydrochloric precursors and other precursors. The thermal decomposition step after each coating can be affected between 350 and 600 ° C, depending on the selected precursor compounds. In the case of the decomposition of mixtures of precursors consisting of tantalum chloride and complexes of ruthenium hydroxyacetochloride and optionally of tin, the thermal decomposition, for example, can be carried out between 450 and 550 ° C.
Se incluyen los siguientes ejemplos para demostrar las realizaciones particulares de la invencion, cuya viabilidad se ha verificado en el intervalo de valores reivindicado. Los expertos en la tecnica deberian apreciar que las composiciones y las tecnicas divulgadas en los ejemplos siguientes representan tecnicas y composiciones descubiertas por los inventores para que funcionen bien en la practica de la invencion; sin embargo, los expertos en la tecnica deberian, a la luz de la presente divulgacion, aprecian que se pueden hacer muchos cambios en las realizaciones especificas que se divulgan y aun asi obtener un resultado similar o parecido sin apartarse del alcance de la invencion.The following examples are included to demonstrate the particular embodiments of the invention, whose viability has been verified in the claimed range of values. Those skilled in the art should appreciate that the compositions and techniques disclosed in the following examples represent techniques and compositions discovered by the inventors to function well in the practice of the invention; however, those skilled in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments that are disclosed and still obtain a similar or similar result without departing from the scope of the invention.
Ejemplo 1Example 1
Se desengraso una aleacion de titanio AKOT® de 1 mm de espesor con acetona en un bano de ultrasonidos y se sometio a ataque quimico con HCl al 20 % a temperatura de ebullicion durante 15 minutos. Se corto la malla en una pluralidad de piezas de tamano de 10 cm x 10 cm para la preparacion posterior de las muestras de electrodo.An alloy of 1 mm thick AKOT® titanium was degreased with acetone in an ultrasonic bath and subjected to chemical etching with 20% HCl at boiling temperature for 15 minutes. The mesh was cut into a plurality of pieces of size 10 cm x 10 cm for the subsequent preparation of the electrode samples.
Se obtuvo una solucion de precursores para la preparacion de la pre-capa protectora por medio de mezcla de 150 g/l de TiOCl2 y 50 g/l de TaCls en acido clorhidrico al 10 % en peso.A solution of precursors was obtained for the preparation of the protective pre-layer by means of a mixture of 150 g / l of TiOCl2 and 50 g / l of TaCls in 10% by weight hydrochloric acid.
Se obtuvo una primera serie de soluciones cataliticas por medio de mezcla de 20 % en peso de RuCh y 50 g/l TaCls en acido clorhidrico al 10 % en peso de acuerdo con diversas proporciones.A first series of catalytic solutions was obtained by mixing 20% by weight of RuCh and 50 g / l TaCls in 10% by weight hydrochloric acid according to various proportions.
Se obtuvieron soluciones de complejos de hidroxiacetocloruro de Ru (0,9 M) y Sn (1,65 M) por medio de disolucion de los correspondientes cloruros en acido acetico acuoso al 10 % en volumen, evaporando el disolvente, mezclando con acido acetico acuoso al 10 % con evaporacion posterior del disolvente durante dos veces mas, disolviendo finalmente el producto de nuevo en acido acetico acuoso al 10 % para obtener la concentracion especificada.Solutions of hydroxyacetochloride complexes of Ru (0.9 M) and Sn (1.65 M) were obtained by dissolving the corresponding chlorides in aqueous acetic acid at 10% by volume, evaporating the solvent, mixing with 10% aqueous acetic acid with subsequent evaporation of the solvent for two more times, finally dissolving the product again in 10% aqueous acetic acid to obtain the specified concentration.
Se obtuvo una segunda serie de soluciones catallticas por medio de mezcla de los complejos de hidroxiacetocloruro de Ru y Sn de acuerdo con diversas proporciones.A second series of catallic solutions was obtained by mixing the hydroxyacetochloride complexes of Ru and Sn according to various proportions.
Se obtuvieron muestras de electrodo con diferentes formulaciones con el siguiente procedimiento:Electrode samples were obtained with different formulations with the following procedure:
- se aplico una pre-capa protectora a las muestras cortadas de malla de titanio por medio de cepillado de la solucion que contenla precursores de TiOCh y TaCl5 en dos revestimientos, con posterior secado a 50 °C durante 5 minutos y tratamiento de descomposicion termica a 515 °C durante 5 minutos despues de cada revestimiento, hasta obtener un deposito de oxidos de tantalo y titanio con una carga de aproximadamente 1 g/m2;- a protective pre-coating was applied to the samples cut from titanium mesh by means of brushing the solution containing precursors of TiOCh and TaCl5 in two coatings, with subsequent drying at 50 ° C for 5 minutes and treatment of thermal decomposition to 515 ° C for 5 minutes after each coating, until obtaining a deposit of tantalum and titanium oxides with a charge of approximately 1 g / m2;
- se aplicaron capas catallticas de diversas formulaciones sobre la pre-capa protectora de las muestras anteriores por medio de aplicacion alternativa de soluciones catallticas de las series primera y segunda. Se aplicaron las soluciones catallticas de la primera serie por medio de cepillado en 8-10 revestimientos y se somete a secado posterior a 50 °C durante 10 minutos y tratamiento de descomposicion termica a 500 °C durante 5 minutos despues de cada revestimiento, hasta obtener un deposito de oxidos de tantalo y rutenio con una carga total de rutenio de aproximadamente 20 g/m2. Al final del proceso de descomposicion termica, se sometieron los electrodos a un ciclo termico posterior de 2 horas a 500 °C, hasta obtener una fase cristalina de dioxido de rutenio dipiramidal ditetragonal tetragonal mezclada con una fase amorfa de oxido de tantalo, como se verifica por medio de investigacion de XRD posterior. Algunas muestras de electrodos obtenidas de este modo vienen indicadas en la Tabla 1 como de tipo RuTa. Se aplicaron las soluciones catallticas de la segunda serie por medio de cepillado en 8-10 revestimientos y se sometio a secado posterior a 60 °C durante 10 minutos y tratamiento de descomposicion termica a 500 °C durante 5 minutos despues de cada revestimiento, hasta obtener un deposito de oxidos de tantalo, estano y rutenio con una carga total de rutenio de aproximadamente 20 g/m2. Tambien en este caso, al final del proceso de descomposicion termica, se sometieron los electrodos a un ciclo termico posterior de 2 horas a 500 °C, hasta obtener una solucion de solidos de dioxido de rutenio y dioxido de estano en una fase cristalina dipiramidal ditetragonal tetragonal mezclada con la fase amorfa de oxido de tantalo, como se verifica por medio de investigacion de XRD posterior. Algunas muestras de electrodos obtenidas de este modo vienen indicadas en la Tabla 1 como de tipo RuTaSn;- Catallic layers of various formulations were applied on the protective pre-coat of the previous samples by means of the alternative application of catallic solutions of the first and second series. The catallic solutions of the first series were applied by means of brushing in 8-10 coatings and subjected to subsequent drying at 50 ° C for 10 minutes and treatment of thermal decomposition at 500 ° C for 5 minutes after each coating, until a tantalum and ruthenium oxide deposit with a total ruthenium load of approximately 20 g / m2. At the end of the thermal decomposition process, the electrodes were subjected to a subsequent thermal cycle of 2 hours at 500 ° C, until obtaining a crystalline phase of tetragonal diradgonal tetrahedral ruthenium dioxide mixed with an amorphous phase of tantalum oxide, as verified by means of later XRD research. Some electrode samples obtained in this way are indicated in Table 1 as RuTa type. The catalltic solutions of the second series were applied by means of brushing in 8-10 coatings and subjected to subsequent drying at 60 ° C for 10 minutes and treatment of thermal decomposition at 500 ° C for 5 minutes after each coating, until a tantalum, tin and ruthenium oxide deposit with a total ruthenium load of approximately 20 g / m2. Also in this case, at the end of the thermal decomposition process, the electrodes were subjected to a subsequent thermal cycle of 2 hours at 500 ° C, until a solids solution of ruthenium dioxide and tin dioxide was obtained in a ditetragonal dipiramidal crystal phase tetragonal mixed with the amorphous phase of tantalum oxide, as verified by means of subsequent XRD investigation. Some samples of electrodes obtained in this way are indicated in Table 1 as RuTaSn type;
- se obtuvieron otras muestras de electrodo provistas de un revestimiento catalltico que consistio en dos capas, por medio de aplicacion alternativa de soluciones catallticas de las series primera y segunda. Se aplicaron las soluciones catallticas de la primera serie por medio de cepillado en 6-7 revestimientos y se somete a secado posterior a 50 °C durante 5 minutos y tratamiento de descomposicion termica a 500 °C durante 5 minutos despues de cada revestimiento, hasta obtener un primer deposito de oxidos de rutenio y tantalo; se aplico posteriormente una solucion posterior del tipo primero con una relacion en peso de Ru con respecto a Ta igual a 4, por medio de cepillado en 2 revestimientos y se sometio al mismo ciclo de secado y descomposicion termica despues de cada revestimiento, hasta obtener una carga total de rutenio de aproximadamente 20 g/m2. Al final del proceso de descomposicion termica, se sometieron los electrodos a un ciclo termico posterior de 2 horas a 500 °C, hasta obtener una fase cristalina dipiramidal ditetragonal tetragonal de dioxido de rutenio mezclada con la fase amorfa de oxido de tantalo, como se verifica por medio de investigacion de XRD posterior. Algunas muestras de electrodos obtenidas de este modo vienen indicadas en la Tabla 1 como de tipo RuTa_TOP. Se aplicaron las soluciones catallticas de la segunda serie por medio de cepillado en 6-7 revestimientos y se sometio a secado posterior a 60 °C durante 5 minutos y tratamiento de descomposicion termica a 500 °C durante 10 minutos despues de cada revestimiento, hasta obtener un deposito de oxidos de tantalo, estano y rutenio; un coloco un deposito de oxidos de rutenio y tantalo, obtenidos por medio de cepillado en 2 revestimientos de una solucion del primer tipo con una relacion en peso de Ru con respecto a Ta igual a 4, sometido a secado a 50 °C durante 5 minutos y descomposicion termica a 500 °C durante 10 minutos despues de cada revestimiento, sobre el mismo, hasta obtener un revestimiento catalltico en dos capas con una carga total de rutenio de aproximadamente 20 g/m2. Al final del proceso de descomposicion termica, se sometieron los electrodos a un ciclo termico posterior de 2 horas a 500 °C, hasta obtener una solucion de solidos de dioxido de rutenio y dioxido de estano en una fase cristalina dipiramidal ditetragonal tetragonal mezclada con la fase amorfa de oxido de tantalo en la capa interna y de una fase cristalina de dioxido de rutenio dipiramidal ditetragonal tetragonal con la fase amorfa de oxido de tantalo en la capa externa, como se verifica por medio de investigacion de XRD posterior. Algunas muestras de electrodos obtenidas de este modo vienen indicadas en la Tabla 1 como de tipo RuTaSn TOP.- Other electrode samples were obtained, provided with a catallic coating consisting of two layers, by means of the alternative application of catallic solutions of the first and second series. The catalltic solutions of the first series were applied by means of brushing in 6-7 coatings and subjected to subsequent drying at 50 ° C for 5 minutes and treatment of thermal decomposition at 500 ° C for 5 minutes after each coating, until a first deposit of ruthenium oxide and tantalum; A later solution of the first type was applied with a ratio in weight of Ru with respect to Ta equal to 4, by means of brushing in 2 coatings and subjected to the same cycle of drying and thermal decomposition after each coating, until obtaining a total ruthenium load of approximately 20 g / m2. At the end of the thermal decomposition process, the electrodes were subjected to a subsequent thermal cycle of 2 hours at 500 ° C, until obtaining a tetragonal tetrahedral tetrahedral ruthenium dioxide crystal phase mixed with the amorphous phase of tantalum oxide, as verified by means of later XRD research. Some electrode samples obtained in this way are indicated in Table 1 as RuTa_TOP type. The catalltic solutions of the second series were applied by means of brushing in 6-7 coatings and subjected to subsequent drying at 60 ° C for 5 minutes and treatment of thermal decomposition at 500 ° C for 10 minutes after each coating, until a deposit of oxides of tantalum, tin and ruthenium; one placed a deposit of ruthenium oxide and tantalum, obtained by means of brushing in 2 coatings of a solution of the first type with a weight ratio of Ru with respect to Ta equal to 4, subjected to drying at 50 ° C for 5 minutes and thermal decomposition at 500 ° C for 10 minutes after each coating, on it, until obtaining a catallic coating in two layers with a total ruthenium load of approximately 20 g / m2. At the end of the thermal decomposition process, the electrodes were subjected to a subsequent thermal cycle of 2 hours at 500 ° C, until a solution of solids of ruthenium dioxide and tin dioxide was obtained in a tetrahedral diratragonal tetrahedral crystal phase mixed with the phase amorphous oxide of tantalum in the inner layer and of a crystalline phase of tetragonal tetrahedral tetrahedral ruthenium dioxide with the amorphous phase of tantalum oxide in the outer layer, as verified by means of further XRD investigation. Some electrode samples obtained in this way are indicated in Table 1 as RuTaSn TOP type.
Tabla 1Table 1
CONTRAEJMPLO 1CONTRAEJMPLO 1
Se desengraso una aleacion de titanio AKOT® de 1 mm de espesor con acetona en un bano de ultrasonidos y se sometio a ataque quimico con HCl al 20 % a temperatura de ebullicion durante 15 minutos. Se corto la malla en una pluralidad de piezas de tamano de 10 cm x 10 cm para la preparacion posterior de las muestras de electrodo.An alloy of 1 mm thick AKOT® titanium was degreased with acetone in an ultrasonic bath and subjected to chemical etching with 20% HCl at boiling temperature for 15 minutes. The mesh was cut into a plurality of pieces of size 10 cm x 10 cm for the subsequent preparation of the electrode samples.
Se obtuvo una solucion de precursores para la preparacion de la pre-capa protectora por medio de mezcla de 150 g/l de TiOCl2 y 50 g/l de TaCls en acido clorhidrico al 10 %.A solution of precursors for the preparation of the protective pre-layer was obtained by means of a mixture of 150 g / l of TiOCl2 and 50 g / l of TaCls in 10% hydrochloric acid.
Se obtuvo serie de soluciones cataliticas por medio de mezcla de 20 % en peso de RuCh y 150 g/l de TaCl2 en acido clorhidrico al 10 % de acuerdo con diversas proporciones.A series of catalytic solutions was obtained by mixing 20% by weight of RuCh and 150 g / l of TaCl2 in 10% hydrochloric acid according to various proportions.
- se aplico una pre-capa protectora a las muestras cortadas de la malla de titanio como en el caso del Ejemplo 1 - se aplicaron capas cataliticas de diversas formulaciones sobre la pre-capa protectora de las muestras anteriores por medio de cepillado de las soluciones cataliticas anteriores en 8-10 revestimientos y se sometio a posterior secado a 50 °C durante 5 minutos y tratamiento de descomposicion termica a 500 °C durante 5 minutos despues de cada revestimiento, hasta obtener un deposito de oxidos de rutenio y titanio con una carga total de rutenio de aproximadamente 20 g/m2 Al final del proceso de descomposicion termica, se sometieron los electrodos a un ciclo termico posterior de 2 horas a 500 °C. Algunas muestras de electrodos obtenidas de este modo vienen indicadas en la Tabla 2 como tipo RuTi.- a protective pre-coat was applied to the samples cut from the titanium mesh as in the case of Example 1 - catalytic layers of various formulations were applied on the protective pre-coat of the previous samples by means of brushing the catalytic solutions previous in 8-10 coatings and was subjected to subsequent drying at 50 ° C for 5 minutes and treatment of thermal decomposition at 500 ° C for 5 minutes after each coating, until obtaining a deposit of ruthenium and titanium oxides with a total charge of ruthenium of approximately 20 g / m2 At the end of the thermal decomposition process, the electrodes were subjected to a subsequent thermal cycle of 2 hours at 500 ° C. Some electrode samples obtained in this way are indicated in Table 2 as RuTi type.
Tabla 2Table 2
Ejemplo 2Example 2
Se sometieron las muestras de electrodo de la tabla a un ensayo de potencial convencional bajo desprendimiento anodico de cloro a la densidad de corriente de 3 kA/m2, en HCl al 15 % a una temperatura de 60 °C. Los datos de potencial obtenidos se presentan en la Tabla 3 (SEP). La tabla muestra tambien los datos relacionados de ensayo acelerado de vida util, expresados en terminos de horas de operacion antes de la desactivacion bajo desprendimiento anodico de cloro a la densidad de corriente de 6 kA/m2, en HCl al 20 % en peso a una temperatura de 60 °C, usando un catodo de circonio como contraelectrodo. La desactivacion del electrodo se define por medio de un incremento de 1 V en la celula con respecto al valor inicial.The electrode samples of the table were subjected to a conventional potential test under an anodic chlorine release at the current density of 3 kA / m2, in 15% HCl at a temperature of 60 ° C. The potential data obtained are presented in Table 3 (SEP). The table also shows the related data of accelerated life test, expressed in terms of hours of operation before deactivation under anodic chlorine release at the current density of 6 kA / m2, in HCl at 20% by weight at a time. temperature of 60 ° C, using a zirconium cathode as a counter electrode. The deactivation of the electrode is defined by means of an increase of 1 V in the cell with respect to the initial value.
Tabla 3Table 3
Ejemplo 3Example 3
Se sometieron duplicados de muestras de electrodo 2, 6 y C2 a un ensayo de corrosion que Simula las condiciones de corrosion en grietas que pueden ocurrir sobre los rebordes de los dispositivos de electrolisis para la produccion de cloro u otras zonas ocluidas. Se sumergio una primera serie de muestras en un volumen conocido de un 20 % en peso de HCl a 45 °C bajo corriente de nitrogeno, para simular condiciones de estancamiento de electrolito; se sumergio una segunda serie (control) en el mismo volumen de 20 % en peso de HCl a 40 °C bajo una corriente de oxlgeno, con el fin de mantener la pasivacion. En ambos casos, se detecto la concentracion de cromo y nlquel liberados a partir del sustrato durante el transcurso de 24 horas: para las muestras 2 y 6, la concentracion de ambos metales en el volumen de HCl fue menor de 2 mg/l, al tiempo que la muestra C2 mostro concentraciones ligeramente elevadas de 2 mg/l de Cr y 4 mg/l de Ni bajo corriente de oxlgeno, que aumentaron significativamente bajo corriente de nitrogeno (hasta 6,5 mg/l para nlquel).Duplicates of electrode samples 2, 6 and C2 were subjected to a corrosion test that simulates the corrosion conditions in cracks that may occur on the flanges of the electrolysis devices for the production of chlorine or other occluded areas. A first series of samples was immersed in a known volume of 20% by weight of HCl at 45 ° C under a stream of nitrogen, to simulate electrolyte stagnation conditions; a second series (control) was immersed in the same volume of 20% by weight of HCl at 40 ° C under a stream of oxygen, in order to maintain passivation. In both cases, the concentration of chromium and nickel released from the substrate was detected during the course of 24 hours: for samples 2 and 6, the concentration of both metals in the HCl volume was less than 2 mg / l, time that sample C2 showed slightly elevated concentrations of 2 mg / l of Cr and 4 mg / l of Ni under current of oxygen, which increased significantly under nitrogen current (up to 6.5 mg / l for nickel).
Se repitio este ensayo con otro conjunto de muestras, confirmando un aumento sustancial de la resistencia a la corrosion para las formulaciones de la invencion.This test was repeated with another set of samples, confirming a substantial increase in corrosion resistance for the formulations of the invention.
La descripcion anterior no se deberla interpretar como limitante de la invencion, lo que se puede usar de acuerdo con diferentes realizaciones sin apartarse de los alcances de la misma, y cuyo alcance unicamente viene definido por las reivindicaciones adjuntas.The foregoing description should not be interpreted as limiting the invention, which can be used according to different embodiments without departing from the scope thereof, and whose scope is defined only by the appended claims.
A lo largo de la descripcion y las reivindicaciones de la presente solicitud, no se pretende que la palabra "comprenden" y sus variaciones tales como "comprender" y "comprende" excluyan la presencia de otros elementos o componentes adicionales. componentes o etapas de proceso adicionales.Throughout the description and the claims of the present application, it is not intended that the word "comprise" and its variations such as "understand" and "comprise" exclude the presence of other additional elements or components. additional components or process steps.
La discusion de los documentos, actas, materiales, dispositivos, artlculos o similares que se han incluido en la presente memoria descriptiva es unicamente con el proposito de proporcionar un contexto para la presente invencion. No se sugiere o representa que alguno o todos estos asuntos formen parte de la base de la tecnica anterior o sean conocimientos generales comunes en el campo relevante para la presente invencion tal como existla antes de la fecha de prioridad de cada reivindicacion de la presente solicitud. The discussion of the documents, records, materials, devices, articles or the like that have been included in the present specification is solely for the purpose of providing a context for the present invention. It is not suggested or represented that any or all of these matters form part of the basis of the prior art or are general knowledge common in the field relevant to the present invention as it existed prior to the priority date of each claim of the present application.
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITMI20141363 | 2014-07-28 | ||
PCT/EP2015/067273 WO2016016243A1 (en) | 2014-07-28 | 2015-07-28 | Catalytic coating and method of manufacturing thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
ES2712403T3 true ES2712403T3 (en) | 2019-05-13 |
Family
ID=51628367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES15742289T Active ES2712403T3 (en) | 2014-07-28 | 2015-07-28 | Catalytic coating and manufacturing method |
Country Status (11)
Country | Link |
---|---|
US (1) | US20170198403A1 (en) |
EP (1) | EP3175019B1 (en) |
JP (1) | JP6714576B2 (en) |
CN (1) | CN106471159B (en) |
AR (1) | AR101828A1 (en) |
ES (1) | ES2712403T3 (en) |
HU (1) | HUE041583T2 (en) |
PT (1) | PT3175019T (en) |
RU (1) | RU2689985C2 (en) |
TW (1) | TWI679256B (en) |
WO (1) | WO2016016243A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201800006544A1 (en) * | 2018-06-21 | 2019-12-21 | ANODE FOR ELECTROLYTIC EVOLUTION OF CHLORINE | |
JP7168729B1 (en) * | 2021-07-12 | 2022-11-09 | デノラ・ペルメレック株式会社 | Electrodes for industrial electrolytic processes |
WO2024184552A1 (en) * | 2023-03-09 | 2024-09-12 | Magneto Special Anodes B.V. | Mixed metal oxide coatings applied using spatial atomic layer deposition and uses thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3776834A (en) * | 1972-05-30 | 1973-12-04 | Leary K O | Partial replacement of ruthenium with tin in electrode coatings |
US3853739A (en) * | 1972-06-23 | 1974-12-10 | Electronor Corp | Platinum group metal oxide coated electrodes |
EP2217744A2 (en) * | 2007-11-16 | 2010-08-18 | Akzo Nobel N.V. | Electrode |
IT1391767B1 (en) * | 2008-11-12 | 2012-01-27 | Industrie De Nora Spa | ELECTRODE FOR ELECTROLYTIC CELL |
IT1403585B1 (en) * | 2010-11-26 | 2013-10-31 | Industrie De Nora Spa | ANODE FOR CHLORINE ELECTROLYTIC EVOLUTION |
CN102174704B (en) * | 2011-02-20 | 2012-12-12 | 中国船舶重工集团公司第七二五研究所 | Preparation method for tantalum-contained interlayer metallic oxide electrode |
JP5008043B1 (en) * | 2011-09-13 | 2012-08-22 | 学校法人同志社 | Anode for chlorine generation |
-
2015
- 2015-06-18 TW TW104119668A patent/TWI679256B/en not_active IP Right Cessation
- 2015-07-21 AR ARP150102307A patent/AR101828A1/en active IP Right Grant
- 2015-07-28 CN CN201580034498.6A patent/CN106471159B/en active Active
- 2015-07-28 US US15/321,419 patent/US20170198403A1/en not_active Abandoned
- 2015-07-28 WO PCT/EP2015/067273 patent/WO2016016243A1/en active Application Filing
- 2015-07-28 HU HUE15742289A patent/HUE041583T2/en unknown
- 2015-07-28 RU RU2017106084A patent/RU2689985C2/en active
- 2015-07-28 ES ES15742289T patent/ES2712403T3/en active Active
- 2015-07-28 PT PT15742289T patent/PT3175019T/en unknown
- 2015-07-28 JP JP2017505073A patent/JP6714576B2/en not_active Expired - Fee Related
- 2015-07-28 EP EP15742289.0A patent/EP3175019B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
AR101828A1 (en) | 2017-01-18 |
EP3175019B1 (en) | 2018-11-28 |
CN106471159B (en) | 2019-04-05 |
TWI679256B (en) | 2019-12-11 |
JP6714576B2 (en) | 2020-06-24 |
CN106471159A (en) | 2017-03-01 |
RU2017106084A3 (en) | 2019-01-15 |
HUE041583T2 (en) | 2019-05-28 |
WO2016016243A1 (en) | 2016-02-04 |
US20170198403A1 (en) | 2017-07-13 |
RU2689985C2 (en) | 2019-05-30 |
EP3175019A1 (en) | 2017-06-07 |
TW201604252A (en) | 2016-02-01 |
RU2017106084A (en) | 2018-08-28 |
JP2017522457A (en) | 2017-08-10 |
PT3175019T (en) | 2019-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2016282820B2 (en) | Electrode for electrolytic processes | |
ES2240152T3 (en) | CATODUS USED FOR THE ELECTROLYSIS OF WATER SOLUTIONS. | |
ES2850501T3 (en) | Electrode for electrolysis | |
TWI550136B (en) | Anode for oxygen evolution | |
ES2712403T3 (en) | Catalytic coating and manufacturing method | |
BR112012002037B1 (en) | ELECTROLYTE FOR ELECTROLYTIC APPLICATIONS, ELECTROLYTIC PROCESS, ELECTROMETALURGICAL PROCESS AND METHOD TO PRODUCE THE ELECTRODE | |
PT1507899E (en) | Electrode for gas evolution and method for its production | |
US20210324534A1 (en) | Electrode for oxygen evolution in industrial electrochemical processes | |
BR112013018556B1 (en) | ELECTRODE FOR EVOLUTION OF OXYGEN IN ELECTROCHEMICAL PROCESSES; METHOD FOR MANUFACTURING AN ELECTRODE; AND INDUSTRIAL ELECTROCHEMICAL PROCESS | |
US20150096900A1 (en) | Alloys of the type fe3aita(ru) and use thereof as electrode material for the synthesis of sodium chlorate or as corrosion resistant coatings | |
JP2017522457A5 (en) | ||
US10626278B2 (en) | Anticorrosive coating and method for obtaining same | |
JPH0238671B2 (en) | ||
Kato et al. | Improvement of intermediate layer by formation of tin-iridium dioxide in oxygen evolution anodes for seawater electrolysis | |
ZHANG et al. | Effects of Amorphization of RuO2-Ta2O5 Catalytic Coating (Ru= 30 mol%) on Oxygen Evolution in Sulfuric Acid Solution |