US20170045310A1 - Heat exchanger having circulation guide - Google Patents
Heat exchanger having circulation guide Download PDFInfo
- Publication number
- US20170045310A1 US20170045310A1 US15/306,326 US201515306326A US2017045310A1 US 20170045310 A1 US20170045310 A1 US 20170045310A1 US 201515306326 A US201515306326 A US 201515306326A US 2017045310 A1 US2017045310 A1 US 2017045310A1
- Authority
- US
- United States
- Prior art keywords
- heat exchanger
- water
- exchanger body
- guide
- bottom end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000002485 combustion reaction Methods 0.000 claims abstract description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 119
- 239000000567 combustion gas Substances 0.000 claims description 21
- 230000002093 peripheral effect Effects 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 description 5
- 239000008236 heating water Substances 0.000 description 5
- 238000009835 boiling Methods 0.000 description 4
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 3
- 235000011941 Tilia x europaea Nutrition 0.000 description 3
- 239000004571 lime Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/026—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
- F28F9/0265—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/22—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
- F24H1/34—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water chamber arranged adjacent to the combustion chamber or chambers, e.g. above or at side
- F24H1/36—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water chamber arranged adjacent to the combustion chamber or chambers, e.g. above or at side the water chamber including one or more fire tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/18—Water-storage heaters
- F24H1/20—Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes
- F24H1/205—Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes with furnace tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/22—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
- F24H1/24—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
- F24H1/26—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body
- F24H1/28—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes
- F24H1/287—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes with the fire tubes arranged in line with the combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/22—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
- F24H1/34—Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water chamber arranged adjacent to the combustion chamber or chambers, e.g. above or at side
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
- F24H9/0005—Details for water heaters
- F24H9/001—Guiding means
- F24H9/0015—Guiding means in water channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
- F28D7/163—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
- F28D7/1638—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one
- F28D7/1646—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one with particular pattern of flow of the heat exchange medium flowing outside the conduit assemblies, e.g. change of flow direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/22—Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
- F28F2009/222—Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
- F28F2009/226—Transversal partitions
Definitions
- the present invention relates to a heat exchanger having a circulation guide and, more particularly, to a heat exchanger having a circulation guide, which induces circulation to prevent water exchanging heat with a combustion gas at a high temperature from stagnating.
- the present invention relates to a heat exchanger having a circulation guide, which includes a spiral guide disposed on the side of a discharge port to force water to be introduced to a discharge side and a plate-shaped guide disposed on the side of an inlet port to force water to be supplied to the discharge side.
- a boiler used in a home, an office, a factory, and various types of public buildings includes a burner for supplying a heat source (flames and a combustion gas at a high temperature) and a heat exchanger that performs heat-exchanging between the heat source supplied by the burner and water.
- a boiler disclosed in Korean Patent Laid-open Publication No. 2013-0085090, as illustrated in FIGS. 1 and 2 includes a combustion device 150 having a blower fan 152 and a fuel suction port 153 in addition to a burner 151 , and a heat exchanger installed below the combustion device 150 .
- the heat exchanger includes a boiler casing 110 , a water tank 120 , a top end plate 121 , a bottom end plate 122 , and a combustion pipe 130 .
- water supplied via a direct water supply pipe 112 a passes through the water tank 120 corresponding to a water chamber and then is discharged to a discharge pipe 112 b.
- a heat source such as flames and a combustion gas at a high temperature
- the burner 151 connected to a fire chamber 111 , and the combustion gas heats water while passing through the combustion pipe 130 .
- the combustion gas of which heat is dissipated due to water, is discharged to the outside via a discharge portion 140 .
- a wide flow space (a first space portion) is formed in a lower portion of the top end plate 121 that constitutes the fire chamber 111
- a narrow flow path (a second space portion) is formed between sidewalls of the fire chamber 111 and the boiler casing 110 , so that severe stagnation occurs in a section in which water is introduced from the second space portion to the first space portion.
- the present invention is directed to providing a heat exchanger having a circulation guide, which induces circulation to prevent water exchanging heat with a combustion gas at a high temperature from stagnating.
- a heat exchanger having a circulation guide including: a heat exchanger body having a water chamber formed inside thereof; an inlet port, which is connected to a bottom end of the heat exchanger body and through which water is supplied to the water chamber; a discharge port, which is connected to a top end of the heat exchanger body and through which water is discharged from the water chamber; a top body tube installed at a top end of an inside of the heat exchanger body and having a fire chamber formed inside thereof; a bottom end plate installed at a bottom end of the inside of the heat exchanger body; and a plurality of combustion pipes, which each have a top end connected to pass through a floor surface of the top body tube and a bottom end connected to pass through the bottom end plate and through which a combustion gas at a high temperature introduced through the fire chamber is discharged, wherein sidewalls that constitute the top body tube are spaced apart from each other inwardly from an inner circumferential surface of the heat exchanger body, and a spiral guide that protrudes along
- Ends of the spiral guide in a protrusion direction thereof may be in contact with the inner circumferential surface of the heat exchanger body.
- the heat exchanger may further include a plate-shaped guide that is assembled to be passed through by the combustion pipes inside the heat exchanger body and closes a part of the water chamber of the heat exchanger body to force the flow of water to be changed.
- the plate-shaped guide may include a plurality of sub-guides, and the plurality of sub-guides may be installed in the heat exchanger body in a height direction to be spaced apart from each other.
- the plurality of sub-guides may include: a central side flow guide installed to extend from the center of the heat exchanger body outwardly by a predetermined length; and a peripheral side flow guide installed to extend from the inner circumferential surface of the heat exchanger body inwardly by a predetermined length.
- the peripheral side flow guide may be installed above the central side flow guide.
- a circulation guide is installed in a water chamber in which water flows, so that water exchanging heat with a combustion gas at a high temperature can be prevented from stagnating in a local area of a heat exchanger.
- a spiral guide that forces water to be introduced to a discharge side and a plate-shaped guide that forces water to be supplied to the discharge side are provided so that water can be effectively prevented from stagnating.
- water-boiling noise is prevented from occurring due to water in a stagnation area excessively heated, or heat-exchanging efficiency is prevented from being lowered due to foreign substances, such as lime, generated in the stagnation area, or a temperature difference is prevented from occurring in hot water or heating water.
- FIG. 1 is a cross-sectional view of a boiler according to the related art.
- FIG. 2 is a perspective view of a heat exchanger of the boiler according to the related art.
- FIG. 3 is a cross-sectional view of a heat exchanger having a circulation guide according to a first embodiment of the present invention.
- FIG. 4 is a perspective view of a spiral guide according to the first embodiment of the present invention.
- FIG. 5 is a cross-sectional view of a heat exchanger having a circulation guide according to a second embodiment of the present invention.
- FIG. 6 is a plan view of a plate-shaped guide according to the second embodiment of the present invention.
- a spiral guide 223 is illustrated as the circulation guide that prevents stagnation of water.
- the heat exchanger having the circulation guide includes a heat exchanger body 210 having a water chamber 210 a formed inside thereof, a top body tube 220 installed at a top end of the heat exchanger body 210 and having a fire chamber 220 a formed inside thereof, a bottom end plate 230 that closes a bottom end of the heat exchanger body 210 , and a combustion pipe 240 through which a combustion gas at a high temperature is discharged.
- the present invention includes the spiral guide 223 disposed at sidewalls 221 of the top body tube 220 , unlike in the related art, so that a stagnation phenomenon, such as an eddy or a counter current, is prevented from occurring locally in the water chamber 210 a inside the heat exchanger body 210 .
- the heat exchanger body 210 has the water chamber 210 a that is a space portion in which water flows, formed inside thereof.
- the heat exchanger body 210 has a cylindrical shape, for example, and the entire inside thereof is used as the water chamber 210 a.
- an inlet port IN through which the supply of water occurs, is installed to be connected to the bottom end of the heat exchanger body 210
- a discharge port OUT through which water is discharged from the water chamber 210 a, is installed to be connected to the top end of the heat exchanger body 210 .
- direct water at a low temperature or heating circulation water is introduced into the water chamber 210 a inside the heat exchanger body 210 through the inlet port IN, and the introduced direct water or heating circulation water is heated by heat-exchanging and then is discharged through the discharge port OUT.
- the water discharged through the discharge port OUT is used as hot water or heating water.
- the top body tube 220 is installed at a top end of an inside of the heat exchanger body 210 and covers the top end of the opened heat exchanger body 210 .
- the top body tube 220 includes cylindrical sidewalls 221 and a floor surface 222 disposed at a lower portion of the top body tube 220 .
- the fire chamber 220 a is provided in an inside space of the top body tube 220 surrounded by the sidewalls 221 and the floor surface 222 .
- a burner (see 151 of FIG. 1 ) is installed at an upper portion of the opened fire chamber 220 a to spout out flames and a combustion gas at a high temperature generated in the burner in a downward direction.
- the sidewalls 221 of the top body tube 220 are spaced apart from each other inwardly from an inner circumferential surface of the heat exchanger body 210 .
- water introduced into a space therebetween is discharged to the outside through the discharge port OUT.
- the floor surface 222 of the top body tube 220 serves as a top end plate that closes the upper portion of the heat exchanger body 210 .
- a plurality of assembly holes are formed through the floor surface 222 of the top body tube 220 so that a top end of the combustion pipe 240 is inserted into the top body tube 220 through the plurality of assembly holes.
- the bottom end plate 230 is installed at a bottom end of the inside of the heat exchanger body 210 and closes the bottom end of the opened heat exchanger body 210 .
- a plurality of assembly holes are also formed through the bottom end plate 230 so that a bottom end of the combustion pipe 240 is inserted into the bottom end plate 230 through the plurality of assembly holes.
- the number of the assembly holes formed in the bottom end plate 230 is the same as that of the assembly holes formed in the floor surface 222 of a top end plate, and positions thereof are the same as those of the assembly holes formed in the floor surface 222 of the top end plate.
- the combustion pipe 240 is coupled between the floor surface 222 of the top body tube 220 and the bottom end plate 230 , which are disposed in parallel in the vertical direction, so that the combustion gas generated in the fire chamber 220 a passes through the combustion pipe 240 and is discharged to the outside.
- the combustion pipe 240 is used as a path on which the combustion gas at the high temperature is discharged, and a plurality of combustion pipes 240 are provided to smoothly discharge the combustion gas spouted out to the fire chamber 220 a, and the plurality of combustion pipes 240 are spaced apart from each other and increase a heat-exchanging surface area within the water chamber 210 a.
- top ends of the plurality of combustion pipes 240 are connected to each other to pass through the floor surface 222 of the top body tube 220 , and bottom ends of the plurality of combustion pipes 240 are connected to each other to pass through the bottom end plate 230 .
- the combustion gas at the high temperature introduced via the fire chamber 220 a is discharged, and in this procedure, the combustion gas at the high temperature heat-exchanges with water filled in the water chamber 210 a.
- heat-exchanging fins are disposed on inner circumferential surfaces of the combustion pipes 240 so as to improve heat-exchanging efficiency between the combustion gas and water.
- the spiral guide 223 is installed at inner circumferential surfaces of the sidewalls 221 that constitute the top body tube 220 .
- the spiral guide 223 prevents water from stagnating in the water chamber 210 a inside the heat exchanger body 210 .
- the spiral guide 223 is formed at the inner circumferential surfaces of the sidewalls 221 to have a spiral shape that circles in a height direction.
- the spiral guide 223 protrudes from the sidewalls 221 inwardly by a predetermined length.
- a wide flow space (a first space portion) is formed in the lower portion of the top body tube 220 that constitutes the fire chamber 220 a, whereas a narrow flow path (a second space portion) is formed between the sidewalls 221 of the top body tube 220 and the heat exchanger body 210 . Stagnation of water is prevented even in a point where water flows into the first space portion from the second space portion.
- water-boiling noise is prevented from occurring due to water in a stagnation area excessively heated, or heat-exchanging efficiency is prevented from being lowered due to foreign substances, such as lime, generated in the stagnation area, or a temperature difference is prevented from occurring in hot water or heating water.
- ends of the spiral guide 223 in a protrusion direction thereof are in contact with the inner circumferential surface of the heat exchanger body 210 .
- water passes through the spiral guide 223 , and water spirals with a larger force.
- the heat exchanger having the circulation guide according to the second embodiment of the present invention is characterized by further including a plate-shaped guide in addition to the above-described spiral guide as the circulation guide for preventing stagnation of water.
- the heat exchanger having the circulation guide also includes a heat exchanger body 210 having a water chamber 210 a, a top body tube 220 having a fire chamber 220 a formed inside thereof, a bottom end plate 230 that closes a bottom end of the heat exchanger body 210 , and a combustion pipe 240 through which a combustion gas at a high temperature is discharged.
- top body tube 220 includes sidewalls 221 and a floor surface 222 , and a spiral guide 223 is installed at the sidewalls 221 of the top body tube 220 .
- a spiral guide 223 is installed at the sidewalls 221 of the top body tube 220 .
- direct water or heating circulation water supplied to the water chamber 210 a inside the heat exchanger body 210 through an inlet port IN passes through an inside of the water chamber 210 a and is discharged through a discharge port OUT.
- stagnation of water is prevented by the spiral guide 223 .
- the heat exchanger having the circulation guide according to the second embodiment of the present invention further includes a plate-shaped guide 250 , and the plate-shaped guide 250 is assembled to be passed through by the combustion pipe 240 inside the heat exchanger body 210 and closes a part of the water chamber 210 a of the heat exchanger body 210 to force the flow of water to be changed.
- the purpose of forcing the flow of water to be changed by the plate-shaped guide 250 is, firstly, to prevent stagnation of water from occurring locally in a particular area of the water chamber 210 a, and secondly, to allow water to be uniformly distributed into the water chamber 210 a to improve heat-exchanging efficiency.
- one or a plurality of plate-shaped guides 250 capable of achieving at least the two purposes may be used, and an installation position thereof is also properly selected according to the shape of the heat exchanger body 210 .
- the plate-shaped guide 250 includes a plurality of sub-guides 250 - 1 and 250 - 2 , and the plurality of sub-guides 250 - 1 and 250 - 2 are installed in the heat exchanger body 210 in a height direction to be spaced apart from each other.
- the plate-shaped guide 250 includes two sub-guides 250 - 1 and 250 - 2 .
- the two sub-guides 250 - 1 and 250 - 2 include a central side flow guide 250 - 1 and a peripheral side flow guide 250 - 2 .
- the central side flow guide 250 - 1 is installed to extend from the center of the heat exchanger body 210 outwardly by a predetermined length. Thus, water flows through an outside periphery of the water chamber 210 a having no central side flow guide 250 - 1 formed inside thereof.
- the central side flow guide 250 - 1 has a shape of a disc having a smaller diameter than that of the water chamber 210 a, and a plurality of first assembly holes 250 -la through which combustion pipes 240 are inserted into and assembled to the central side flow guide 250 - 1 , are formed in the central side flow guide 250 - 1 .
- the number and position of the plurality of first assembly holes 250 - 1 a are the same as those of the combustion pipes 240 that pass through the central side flow guide 250 - 1 among the plurality of combustion pipes 240 .
- peripheral side flow guide 250 - 2 is installed to extend from an inner circumferential surface of the heat exchanger body 210 inwardly by a predetermined length.
- water flows through a central side 250 - 2 b of the water chamber 210 a having no peripheral side flow guide 250 - 2 formed inside thereof.
- the peripheral side flow guide 250 - 2 has a shape of a disc having the same diameter as that of the water chamber 210 a, and a plurality of second assembly holes 250 - 2 a through which the combustion pipes 240 are inserted into the peripheral side flow guide 250 - 2 , are formed in the periphery of the peripheral side flow guide 250 - 2 .
- a flow hole 250 - 2 b through which water passes, is formed in the center of the peripheral side flow guide 250 - 2 .
- the above-described peripheral side flow guide 250 - 2 is installed above the central side flow guide 250 - 1 .
- the plate-shaped guide 250 causes a change in the flow of water supplied by a pump so that stagnation of water is prevented from occurring in a local area of the water chamber 210 a.
- the plate-shaped guide 250 installed at the inlet port IN guides water to the spiral guide 223 .
- stagnation of water is further prevented.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Geometry (AREA)
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
- Details Of Fluid Heaters (AREA)
- Details Of Heat-Exchange And Heat-Transfer (AREA)
Abstract
Description
- The present invention relates to a heat exchanger having a circulation guide and, more particularly, to a heat exchanger having a circulation guide, which induces circulation to prevent water exchanging heat with a combustion gas at a high temperature from stagnating.
- In particular, the present invention relates to a heat exchanger having a circulation guide, which includes a spiral guide disposed on the side of a discharge port to force water to be introduced to a discharge side and a plate-shaped guide disposed on the side of an inlet port to force water to be supplied to the discharge side.
- In general, a boiler used in a home, an office, a factory, and various types of public buildings, includes a burner for supplying a heat source (flames and a combustion gas at a high temperature) and a heat exchanger that performs heat-exchanging between the heat source supplied by the burner and water. For example, a boiler disclosed in Korean Patent Laid-open Publication No. 2013-0085090, as illustrated in
FIGS. 1 and 2 , includes acombustion device 150 having ablower fan 152 and afuel suction port 153 in addition to aburner 151, and a heat exchanger installed below thecombustion device 150. - The heat exchanger includes a
boiler casing 110, awater tank 120, atop end plate 121, abottom end plate 122, and acombustion pipe 130. In this case, water supplied via a directwater supply pipe 112 a passes through thewater tank 120 corresponding to a water chamber and then is discharged to adischarge pipe 112 b. - Thus, a heat source, such as flames and a combustion gas at a high temperature, is supplied by the
burner 151 connected to afire chamber 111, and the combustion gas heats water while passing through thecombustion pipe 130. The combustion gas of which heat is dissipated due to water, is discharged to the outside via adischarge portion 140. - However, in the above-described related art, while water supplied via the direct
water supply pipe 112 a passes through thewater tank 120, stagnation, such as an eddy or a counter current, occurs in a particular portion of thewater tank 120. - In particular, a wide flow space (a first space portion) is formed in a lower portion of the
top end plate 121 that constitutes thefire chamber 111, whereas a narrow flow path (a second space portion) is formed between sidewalls of thefire chamber 111 and theboiler casing 110, so that severe stagnation occurs in a section in which water is introduced from the second space portion to the first space portion. - Thus, when water is excessively heated in a local area where stagnation occurs, water-boiling noise (i.e., boiling noise) occurs, and foreign substances, such as lime, are generated in the stagnation area and are attached thereto, heat-exchanging efficiency with the heat source is lowered, and a wobble phenomenon (i.e., ±temperature difference) of temperature of hot water or heating water being supplied occurs.
- The present invention is directed to providing a heat exchanger having a circulation guide, which induces circulation to prevent water exchanging heat with a combustion gas at a high temperature from stagnating.
- One aspect of the present invention provides a heat exchanger having a circulation guide, including: a heat exchanger body having a water chamber formed inside thereof; an inlet port, which is connected to a bottom end of the heat exchanger body and through which water is supplied to the water chamber; a discharge port, which is connected to a top end of the heat exchanger body and through which water is discharged from the water chamber; a top body tube installed at a top end of an inside of the heat exchanger body and having a fire chamber formed inside thereof; a bottom end plate installed at a bottom end of the inside of the heat exchanger body; and a plurality of combustion pipes, which each have a top end connected to pass through a floor surface of the top body tube and a bottom end connected to pass through the bottom end plate and through which a combustion gas at a high temperature introduced through the fire chamber is discharged, wherein sidewalls that constitute the top body tube are spaced apart from each other inwardly from an inner circumferential surface of the heat exchanger body, and a spiral guide that protrudes along a spiral shape is installed at inner circumferential surfaces of the sidewalls.
- Ends of the spiral guide in a protrusion direction thereof may be in contact with the inner circumferential surface of the heat exchanger body.
- The heat exchanger may further include a plate-shaped guide that is assembled to be passed through by the combustion pipes inside the heat exchanger body and closes a part of the water chamber of the heat exchanger body to force the flow of water to be changed.
- The plate-shaped guide may include a plurality of sub-guides, and the plurality of sub-guides may be installed in the heat exchanger body in a height direction to be spaced apart from each other.
- The plurality of sub-guides may include: a central side flow guide installed to extend from the center of the heat exchanger body outwardly by a predetermined length; and a peripheral side flow guide installed to extend from the inner circumferential surface of the heat exchanger body inwardly by a predetermined length.
- The peripheral side flow guide may be installed above the central side flow guide.
- As described above, according to the present invention, a circulation guide is installed in a water chamber in which water flows, so that water exchanging heat with a combustion gas at a high temperature can be prevented from stagnating in a local area of a heat exchanger.
- In particular, a spiral guide that forces water to be introduced to a discharge side and a plate-shaped guide that forces water to be supplied to the discharge side are provided so that water can be effectively prevented from stagnating.
- Thus, water-boiling noise is prevented from occurring due to water in a stagnation area excessively heated, or heat-exchanging efficiency is prevented from being lowered due to foreign substances, such as lime, generated in the stagnation area, or a temperature difference is prevented from occurring in hot water or heating water.
-
FIG. 1 is a cross-sectional view of a boiler according to the related art. -
FIG. 2 is a perspective view of a heat exchanger of the boiler according to the related art. -
FIG. 3 is a cross-sectional view of a heat exchanger having a circulation guide according to a first embodiment of the present invention. -
FIG. 4 is a perspective view of a spiral guide according to the first embodiment of the present invention. -
FIG. 5 is a cross-sectional view of a heat exchanger having a circulation guide according to a second embodiment of the present invention. -
FIG. 6 is a plan view of a plate-shaped guide according to the second embodiment of the present invention. - Hereinafter, a heat exchanger having a circulation guide according to exemplary embodiments of the present invention will be described with the accompanying drawings in detail.
- However, hereinafter, a downward type in which a burner is installed at an upper side to spout out flames in a downward direction, will be illustrated, but the present invention may be applied to an upward type, and it is obvious that up and down directions can be freely changed depending on the downward type or the upward type.
- First, as illustrated in
FIG. 3 , in a heat exchanger having a circulation guide according to a first embodiment of the present invention, aspiral guide 223 is illustrated as the circulation guide that prevents stagnation of water. - Meanwhile, the heat exchanger having the circulation guide according to the present invention includes a
heat exchanger body 210 having awater chamber 210 a formed inside thereof, atop body tube 220 installed at a top end of theheat exchanger body 210 and having a fire chamber 220 a formed inside thereof, abottom end plate 230 that closes a bottom end of theheat exchanger body 210, and acombustion pipe 240 through which a combustion gas at a high temperature is discharged. - In particular, the present invention includes the
spiral guide 223 disposed at sidewalls 221 of thetop body tube 220, unlike in the related art, so that a stagnation phenomenon, such as an eddy or a counter current, is prevented from occurring locally in thewater chamber 210 a inside theheat exchanger body 210. - In more detail, the
heat exchanger body 210 has thewater chamber 210 a that is a space portion in which water flows, formed inside thereof. Theheat exchanger body 210 has a cylindrical shape, for example, and the entire inside thereof is used as thewater chamber 210 a. - In addition, an inlet port IN through which the supply of water occurs, is installed to be connected to the bottom end of the
heat exchanger body 210, and a discharge port OUT through which water is discharged from thewater chamber 210 a, is installed to be connected to the top end of theheat exchanger body 210. - Thus, direct water at a low temperature or heating circulation water is introduced into the
water chamber 210 a inside theheat exchanger body 210 through the inlet port IN, and the introduced direct water or heating circulation water is heated by heat-exchanging and then is discharged through the discharge port OUT. The water discharged through the discharge port OUT is used as hot water or heating water. - The
top body tube 220 is installed at a top end of an inside of theheat exchanger body 210 and covers the top end of the openedheat exchanger body 210. To this end, thetop body tube 220 includescylindrical sidewalls 221 and afloor surface 222 disposed at a lower portion of thetop body tube 220. - Thus, the fire chamber 220 a is provided in an inside space of the
top body tube 220 surrounded by thesidewalls 221 and thefloor surface 222. A burner (see 151 ofFIG. 1 ) is installed at an upper portion of the opened fire chamber 220 a to spout out flames and a combustion gas at a high temperature generated in the burner in a downward direction. - In addition, the
sidewalls 221 of thetop body tube 220 are spaced apart from each other inwardly from an inner circumferential surface of theheat exchanger body 210. Thus, water introduced into a space therebetween is discharged to the outside through the discharge port OUT. - In addition, the
floor surface 222 of thetop body tube 220 serves as a top end plate that closes the upper portion of theheat exchanger body 210. A plurality of assembly holes are formed through thefloor surface 222 of thetop body tube 220 so that a top end of thecombustion pipe 240 is inserted into thetop body tube 220 through the plurality of assembly holes. - The
bottom end plate 230 is installed at a bottom end of the inside of theheat exchanger body 210 and closes the bottom end of the openedheat exchanger body 210. - In addition, a plurality of assembly holes are also formed through the
bottom end plate 230 so that a bottom end of thecombustion pipe 240 is inserted into thebottom end plate 230 through the plurality of assembly holes. - The number of the assembly holes formed in the
bottom end plate 230 is the same as that of the assembly holes formed in thefloor surface 222 of a top end plate, and positions thereof are the same as those of the assembly holes formed in thefloor surface 222 of the top end plate. - Thus, the
combustion pipe 240 is coupled between thefloor surface 222 of thetop body tube 220 and thebottom end plate 230, which are disposed in parallel in the vertical direction, so that the combustion gas generated in the fire chamber 220 a passes through thecombustion pipe 240 and is discharged to the outside. - The
combustion pipe 240 is used as a path on which the combustion gas at the high temperature is discharged, and a plurality ofcombustion pipes 240 are provided to smoothly discharge the combustion gas spouted out to the fire chamber 220 a, and the plurality ofcombustion pipes 240 are spaced apart from each other and increase a heat-exchanging surface area within thewater chamber 210 a. - In this case, top ends of the plurality of
combustion pipes 240 are connected to each other to pass through thefloor surface 222 of thetop body tube 220, and bottom ends of the plurality ofcombustion pipes 240 are connected to each other to pass through thebottom end plate 230. Thus, the combustion gas at the high temperature introduced via the fire chamber 220 a is discharged, and in this procedure, the combustion gas at the high temperature heat-exchanges with water filled in thewater chamber 210 a. - However, heat-exchanging fins (see 130 a of
FIG. 2 ), as known fromFIG. 2 , are disposed on inner circumferential surfaces of thecombustion pipes 240 so as to improve heat-exchanging efficiency between the combustion gas and water. - Meanwhile, as known from (a) and (b) of
FIG. 4 in more detail, thespiral guide 223 is installed at inner circumferential surfaces of thesidewalls 221 that constitute thetop body tube 220. Thespiral guide 223 prevents water from stagnating in thewater chamber 210 a inside theheat exchanger body 210. - To this end, the
spiral guide 223 is formed at the inner circumferential surfaces of thesidewalls 221 to have a spiral shape that circles in a height direction. In this case, thespiral guide 223 protrudes from thesidewalls 221 inwardly by a predetermined length. - Thus, when water (i.e., direct water or heating circulation water) introduced through the inlet port IN due to an operation of a pump flows in an upward direction and inflow of the water occurs in a narrow flow path formed between the
heat exchanger body 210 and thesidewalls 221 of the top end plate, the water spirals due to thespiral guide 223. - In addition, when the water is discharged through the discharge port OUT while spiraling due to the
spiral guide 223, flowing water is sucked and drawn from the lower portion of thetop body tube 220 so that stagnation, such as an eddy or a counter current, does not occur in thewater chamber 210 a of theheat exchanger body 210. - In particular, a wide flow space (a first space portion) is formed in the lower portion of the
top body tube 220 that constitutes the fire chamber 220 a, whereas a narrow flow path (a second space portion) is formed between thesidewalls 221 of thetop body tube 220 and theheat exchanger body 210. Stagnation of water is prevented even in a point where water flows into the first space portion from the second space portion. - Thus, water-boiling noise is prevented from occurring due to water in a stagnation area excessively heated, or heat-exchanging efficiency is prevented from being lowered due to foreign substances, such as lime, generated in the stagnation area, or a temperature difference is prevented from occurring in hot water or heating water.
- However, preferably, ends of the
spiral guide 223 in a protrusion direction thereof are in contact with the inner circumferential surface of theheat exchanger body 210. Thus, water passes through thespiral guide 223, and water spirals with a larger force. - Hereinafter, a heat exchanger having a circulation guide according to a second embodiment of the present invention will be described. The heat exchanger having the circulation guide according to the second embodiment of the present invention is characterized by further including a plate-shaped guide in addition to the above-described spiral guide as the circulation guide for preventing stagnation of water.
- As illustrated in
FIG. 5 , the heat exchanger having the circulation guide according to the second embodiment of the present invention also includes aheat exchanger body 210 having awater chamber 210 a, atop body tube 220 having a fire chamber 220 a formed inside thereof, abottom end plate 230 that closes a bottom end of theheat exchanger body 210, and acombustion pipe 240 through which a combustion gas at a high temperature is discharged. - In addition, the
top body tube 220 includessidewalls 221 and afloor surface 222, and aspiral guide 223 is installed at thesidewalls 221 of thetop body tube 220. These configurations are the same as those of the first embodiment of the present invention. - Thus, direct water or heating circulation water supplied to the
water chamber 210 a inside theheat exchanger body 210 through an inlet port IN passes through an inside of thewater chamber 210 a and is discharged through a discharge port OUT. During discharge, stagnation of water is prevented by thespiral guide 223. - Furthermore, flames and the combustion gas spout out via a burner connected to the
top body tube 220, and the combustion gas is discharged to the outside through thecombustion pipe 240. Thus, direct water or heating circulation water supplied to thewater chamber 210 a heat-exchanges with the flames and the combustion gas and is heated, and heated water is supplied as hot water or heating water. - Meanwhile, the heat exchanger having the circulation guide according to the second embodiment of the present invention further includes a plate-shaped
guide 250, and the plate-shapedguide 250 is assembled to be passed through by thecombustion pipe 240 inside theheat exchanger body 210 and closes a part of thewater chamber 210 a of theheat exchanger body 210 to force the flow of water to be changed. - The purpose of forcing the flow of water to be changed by the plate-shaped
guide 250 is, firstly, to prevent stagnation of water from occurring locally in a particular area of thewater chamber 210 a, and secondly, to allow water to be uniformly distributed into thewater chamber 210 a to improve heat-exchanging efficiency. - Thus, one or a plurality of plate-shaped
guides 250 capable of achieving at least the two purposes may be used, and an installation position thereof is also properly selected according to the shape of theheat exchanger body 210. - However, it is obvious that a plurality of plate-shaped
guides 250 are used rather than one plate-shapedguide 250 so that the above two purposes will be more securely satisfied. Thus, the plate-shapedguide 250 includes a plurality of sub-guides 250-1 and 250-2, and the plurality of sub-guides 250-1 and 250-2 are installed in theheat exchanger body 210 in a height direction to be spaced apart from each other. - In
FIG. 5 , the plate-shapedguide 250 includes two sub-guides 250-1 and 250-2. The two sub-guides 250-1 and 250-2 include a central side flow guide 250-1 and a peripheral side flow guide 250-2. - The central side flow guide 250-1 is installed to extend from the center of the
heat exchanger body 210 outwardly by a predetermined length. Thus, water flows through an outside periphery of thewater chamber 210 a having no central side flow guide 250-1 formed inside thereof. - To this end, as shown (a) of
FIG. 6 , the central side flow guide 250-1 has a shape of a disc having a smaller diameter than that of thewater chamber 210 a, and a plurality of first assembly holes 250-la through whichcombustion pipes 240 are inserted into and assembled to the central side flow guide 250-1, are formed in the central side flow guide 250-1. The number and position of the plurality of first assembly holes 250-1 a are the same as those of thecombustion pipes 240 that pass through the central side flow guide 250-1 among the plurality ofcombustion pipes 240. - In addition, the peripheral side flow guide 250-2 is installed to extend from an inner circumferential surface of the
heat exchanger body 210 inwardly by a predetermined length. Thus, water flows through a central side 250-2 b of thewater chamber 210 a having no peripheral side flow guide 250-2 formed inside thereof. - To this end, as shown in (b) of
FIG. 6 , the peripheral side flow guide 250-2 has a shape of a disc having the same diameter as that of thewater chamber 210 a, and a plurality of second assembly holes 250-2 a through which thecombustion pipes 240 are inserted into the peripheral side flow guide 250-2, are formed in the periphery of the peripheral side flow guide 250-2. In addition, a flow hole 250-2 b through which water passes, is formed in the center of the peripheral side flow guide 250-2. However, preferably, the above-described peripheral side flow guide 250-2 is installed above the central side flow guide 250-1. - When water passes through the periphery of the
water chamber 210 a due to the central side flow guide 250-1 disposed below the peripheral side flow guide 250-2 and then passes through the center (i.e., the flow hole) of the peripheral side flow guide 250-2 disposed above the central side flow guide 250-1, water circulates, and a direction of water changes into the periphery of thewater chamber 210 a. This is because water is naturally guided to a portion where thespiral guide 223 is installed. - As described above, the plate-shaped
guide 250 causes a change in the flow of water supplied by a pump so that stagnation of water is prevented from occurring in a local area of thewater chamber 210 a. - Furthermore, as water spirals due to the
spiral guide 223 installed at the discharge port OUT, in a state in which a suction force is applied to water below thespiral guide 223, the plate-shapedguide 250 installed at the inlet port IN guides water to thespiral guide 223. Thus, stagnation of water is further prevented. - While the invention has been shown and described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
- Thus, because the above-described embodiments are provided to completely inform those skilled in the art of the scope of the invention, it will be understood by those skilled in that art that the embodiments are illustrative in all aspects and non-limiting, and the present invention is only defined by the claims.
Claims (7)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140047842A KR101606264B1 (en) | 2014-04-22 | 2014-04-22 | Heat exchanger having circulating guide |
KR10-2014-0047842 | 2014-04-22 | ||
PCT/KR2015/003962 WO2015163667A1 (en) | 2014-04-22 | 2015-04-21 | Heat exchanger having circulation guide |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/003962 A-371-Of-International WO2015163667A1 (en) | 2014-04-22 | 2015-04-21 | Heat exchanger having circulation guide |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/669,619 Continuation-In-Part US20220163235A1 (en) | 2014-04-22 | 2022-02-11 | Heat exchanger having circulation guide |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170045310A1 true US20170045310A1 (en) | 2017-02-16 |
Family
ID=54332763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/306,326 Abandoned US20170045310A1 (en) | 2014-04-22 | 2015-04-21 | Heat exchanger having circulation guide |
Country Status (6)
Country | Link |
---|---|
US (1) | US20170045310A1 (en) |
EP (1) | EP3136014B1 (en) |
KR (1) | KR101606264B1 (en) |
CN (1) | CN106415148A (en) |
RU (1) | RU2647264C1 (en) |
WO (1) | WO2015163667A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190041092A1 (en) * | 2017-08-04 | 2019-02-07 | A.O. Smith Corporation | Water heater |
US10502451B2 (en) * | 2017-05-02 | 2019-12-10 | Rheem Manufacturing Company | Diffuser plates and diffuser plates assemblies |
US11149983B2 (en) * | 2018-02-27 | 2021-10-19 | Young-Hwan Choi | Hot water boiler with vortex guide |
US11156404B2 (en) | 2017-09-29 | 2021-10-26 | Kyungdong Navien Co., Ltd. | Shell-and-tube heat exchanger |
US11333398B2 (en) * | 2019-12-23 | 2022-05-17 | Rheem Manufacturing Company | Baffles for thermal transfer devices |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102455968B1 (en) * | 2017-12-20 | 2022-10-19 | 주식회사 경동나비엔 | Shell and tube heat exchanger |
KR102364011B1 (en) * | 2017-12-29 | 2022-02-17 | 주식회사 경동나비엔 | Smoke tube type boiler |
KR102120117B1 (en) * | 2018-11-23 | 2020-06-09 | 주식회사 귀뚜라미 | Hot water boiler with incline type firebox |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB256043A (en) * | 1925-07-20 | 1926-08-05 | Frank James Connor | Improvements in gas or other fuel fed boilers or water heaters |
FR1096756A (en) * | 1953-02-20 | 1955-06-24 | Standard Oil Dev Co | heat exchanger |
US6142215A (en) * | 1998-08-14 | 2000-11-07 | Edg, Incorporated | Passive, thermocycling column heat-exchanger system |
US6827138B1 (en) * | 2003-08-20 | 2004-12-07 | Abb Lummus Global Inc. | Heat exchanger |
US20080190593A1 (en) * | 2007-02-09 | 2008-08-14 | Xi'an Jiaotong University | Single shell-pass or multiple shell-pass shell-and-tube heat exchanger with helical baffles |
US20120080172A1 (en) * | 2010-10-01 | 2012-04-05 | Aic S.A. | Heat Exchanger |
US20160018168A1 (en) * | 2014-07-21 | 2016-01-21 | Nicholas F. Urbanski | Angled Tube Fins to Support Shell Side Flow |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1980425A (en) * | 1934-01-19 | 1934-11-13 | Leigh F Morgan | Water heater |
AU1118395A (en) * | 1993-11-25 | 1995-06-13 | Rustsun Limited | A heat exchanger |
EP0926439A3 (en) * | 1997-12-23 | 2000-07-12 | Renato Montini | Gas-fired boiler |
KR200206338Y1 (en) * | 2000-07-19 | 2000-12-01 | 아텍 엔지니어링주식회사 | Heat exchanger |
RU2200050C1 (en) * | 2001-07-18 | 2003-03-10 | Бабин Сергей Леонидович | Method of separation of hydrocarbon-containing mixtures and their compounds and device for realization of this method |
JP4108521B2 (en) * | 2002-04-09 | 2008-06-25 | 三菱化学株式会社 | Multi-tube reactor |
RU2292999C2 (en) * | 2003-10-06 | 2007-02-10 | Государственное предприятие Научно-исследовательский институт машиностроения | Apparatus for gas-jet cutting of materials |
KR100813412B1 (en) * | 2007-06-13 | 2008-03-12 | 인하대학교 산학협력단 | The boiler for reducing pollutional material unified with a heat exchange |
KR20090063438A (en) * | 2007-12-14 | 2009-06-18 | 주식회사 경동나비엔 | Condensing type boiler |
ITMI20080408A1 (en) * | 2008-03-10 | 2009-09-11 | Ferroli Spa | HEAT EXCHANGER, PARTICULARLY FOR THERMAL GENERATORS. |
US8286594B2 (en) * | 2008-10-16 | 2012-10-16 | Lochinvar, Llc | Gas fired modulating water heating appliance with dual combustion air premix blowers |
US8813688B2 (en) * | 2010-12-01 | 2014-08-26 | Aic S.A. | Heat exchanger |
KR101504394B1 (en) * | 2012-01-19 | 2015-03-19 | 최성환 | Hot water storage type condensing boiler having multistage structure |
PL223959B1 (en) * | 2012-03-23 | 2016-11-30 | Aic Spółka Akcyjna | Dual heat exchanger |
KR20140000938A (en) * | 2012-06-26 | 2014-01-06 | 엘지전자 주식회사 | Heat exchanger |
-
2014
- 2014-04-22 KR KR1020140047842A patent/KR101606264B1/en active IP Right Grant
-
2015
- 2015-04-21 CN CN201580032064.2A patent/CN106415148A/en active Pending
- 2015-04-21 WO PCT/KR2015/003962 patent/WO2015163667A1/en active Application Filing
- 2015-04-21 EP EP15782498.8A patent/EP3136014B1/en active Active
- 2015-04-21 RU RU2016144535A patent/RU2647264C1/en active
- 2015-04-21 US US15/306,326 patent/US20170045310A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB256043A (en) * | 1925-07-20 | 1926-08-05 | Frank James Connor | Improvements in gas or other fuel fed boilers or water heaters |
FR1096756A (en) * | 1953-02-20 | 1955-06-24 | Standard Oil Dev Co | heat exchanger |
US6142215A (en) * | 1998-08-14 | 2000-11-07 | Edg, Incorporated | Passive, thermocycling column heat-exchanger system |
US6827138B1 (en) * | 2003-08-20 | 2004-12-07 | Abb Lummus Global Inc. | Heat exchanger |
US20080190593A1 (en) * | 2007-02-09 | 2008-08-14 | Xi'an Jiaotong University | Single shell-pass or multiple shell-pass shell-and-tube heat exchanger with helical baffles |
US20120080172A1 (en) * | 2010-10-01 | 2012-04-05 | Aic S.A. | Heat Exchanger |
US20160018168A1 (en) * | 2014-07-21 | 2016-01-21 | Nicholas F. Urbanski | Angled Tube Fins to Support Shell Side Flow |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10502451B2 (en) * | 2017-05-02 | 2019-12-10 | Rheem Manufacturing Company | Diffuser plates and diffuser plates assemblies |
US11199340B2 (en) * | 2017-05-02 | 2021-12-14 | Rheem Manufacturing Company | Diffuser plates and diffuser plate assemblies |
US20220099335A1 (en) * | 2017-05-02 | 2022-03-31 | Rheem Manufacturing Company | Diffuser plates and diffuser plate assemblies |
US11566816B2 (en) * | 2017-05-02 | 2023-01-31 | Rheem Manufacturing Company | Diffuser plates and diffuser plate assemblies |
US20190041092A1 (en) * | 2017-08-04 | 2019-02-07 | A.O. Smith Corporation | Water heater |
US10753644B2 (en) * | 2017-08-04 | 2020-08-25 | A. O. Smith Corporation | Water heater |
US11156404B2 (en) | 2017-09-29 | 2021-10-26 | Kyungdong Navien Co., Ltd. | Shell-and-tube heat exchanger |
US11149983B2 (en) * | 2018-02-27 | 2021-10-19 | Young-Hwan Choi | Hot water boiler with vortex guide |
US11333398B2 (en) * | 2019-12-23 | 2022-05-17 | Rheem Manufacturing Company | Baffles for thermal transfer devices |
US20220268486A1 (en) * | 2019-12-23 | 2022-08-25 | Rheem Manufacturing Company | Baffles for thermal transfer devices |
Also Published As
Publication number | Publication date |
---|---|
RU2647264C1 (en) | 2018-03-15 |
WO2015163667A1 (en) | 2015-10-29 |
EP3136014A1 (en) | 2017-03-01 |
KR101606264B1 (en) | 2016-03-24 |
KR20150121817A (en) | 2015-10-30 |
CN106415148A (en) | 2017-02-15 |
EP3136014A4 (en) | 2017-12-27 |
EP3136014B1 (en) | 2020-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170045310A1 (en) | Heat exchanger having circulation guide | |
US11382449B2 (en) | Steam generator and cooking apparatus including steam generator | |
EP2806231A1 (en) | Hot water storage tank-type condensing boiler having multi-stage structure | |
CA2611161A1 (en) | Discrete double heat exchange type hot water boiler | |
KR101266323B1 (en) | Apparatus for frying using frying oil and water | |
RU2669450C2 (en) | Heat exchanger with the integrated expansion tank and the boiler that incorporates them | |
US20220163235A1 (en) | Heat exchanger having circulation guide | |
KR101287693B1 (en) | Hybrid Boiler | |
KR20140025201A (en) | Heat exchanger | |
KR101876200B1 (en) | Gas boiler exhaust block equipment | |
KR101216807B1 (en) | Cooling structure for combustion chamber using air intake | |
US4357909A (en) | Fluid heater with spiral hot gas flow | |
KR101266325B1 (en) | Gas fryer | |
EP3097366B1 (en) | Modular fired heat exchanger | |
KR101913518B1 (en) | Friction boiller | |
WO2021010168A1 (en) | Storage tank unit | |
KR20170119356A (en) | Buffer tank for water heater | |
KR20190041881A (en) | Friction boiller | |
JP6603088B2 (en) | Cooking pot | |
KR102501785B1 (en) | Boiler with Water Discharge Function | |
US1222105A (en) | Water-heater. | |
KR20180078411A (en) | Venturi equipment for gas boilers | |
KR102219223B1 (en) | Friction boiller | |
KR102080376B1 (en) | Friction boiller | |
KR101491615B1 (en) | Hot-water supply device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCV | Information on status: appeal procedure |
Free format text: NOTICE OF APPEAL FILED |
|
STCV | Information on status: appeal procedure |
Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER |
|
STCV | Information on status: appeal procedure |
Free format text: APPEAL READY FOR REVIEW |
|
STCV | Information on status: appeal procedure |
Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS |
|
STCV | Information on status: appeal procedure |
Free format text: BOARD OF APPEALS DECISION RENDERED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |