US20170027400A1 - Vacuum cleaner - Google Patents

Vacuum cleaner Download PDF

Info

Publication number
US20170027400A1
US20170027400A1 US15/223,578 US201615223578A US2017027400A1 US 20170027400 A1 US20170027400 A1 US 20170027400A1 US 201615223578 A US201615223578 A US 201615223578A US 2017027400 A1 US2017027400 A1 US 2017027400A1
Authority
US
United States
Prior art keywords
battery
switch
cleaner
terminal
vacuum cleaner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/223,578
Other languages
English (en)
Inventor
Changhoon Lee
Gunho Ha
Seonghoon Han
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150107479A external-priority patent/KR101714181B1/ko
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Ha, Gunho, HAN, SEONGHOON, LEE, CHANGHOON
Publication of US20170027400A1 publication Critical patent/US20170027400A1/en
Priority to US16/243,463 priority Critical patent/US11160430B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L7/00Suction cleaners adapted for additional purposes; Tables with suction openings for cleaning purposes; Containers for cleaning articles by suction; Suction cleaners adapted to cleaning of brushes; Suction cleaners adapted to taking-up liquids
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2868Arrangements for power supply of vacuum cleaners or the accessories thereof
    • A47L9/2884Details of arrangements of batteries or their installation
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • A47L5/36Suction cleaners with hose between nozzle and casing; Suction cleaners for fixing on staircases; Suction cleaners for carrying on the back
    • A47L5/362Suction cleaners with hose between nozzle and casing; Suction cleaners for fixing on staircases; Suction cleaners for carrying on the back of the horizontal type, e.g. canister or sledge type
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/102Dust separators
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/14Bags or the like; Rigid filtering receptacles; Attachment of, or closures for, bags or receptacles
    • A47L9/1409Rigid filtering receptacles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/24Hoses or pipes; Hose or pipe couplings
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2842Suction motors or blowers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2857User input or output elements for control, e.g. buttons, switches or displays
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2868Arrangements for power supply of vacuum cleaners or the accessories thereof
    • A47L9/2873Docking units or charging stations
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2868Arrangements for power supply of vacuum cleaners or the accessories thereof
    • A47L9/2878Dual-powered vacuum cleaners, i.e. devices which can be operated with mains power supply or by batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a vacuum cleaner.
  • vacuum cleaners are devices that suction air containing dusts by using a suction force generated by a suction motor mounted on a main body to filter the dusts in the main body.
  • Vacuum cleaners are classified into manual cleaners and automatic cleaners.
  • the manual cleaners are cleaners that are used for directly performing cleaning by a user, and the automatic cleaners that travel by oneself to perform cleaning.
  • the manual cleaners may be classified into a canister type cleaner in which a suction nozzle is provided separately with respect to a main body and connected to the main body by using a connection tube and an upright type cleaner in which a suction nozzle is coupled to a main body.
  • a power cord outlet of a cleaner is disclosed in Korean Patent Publication No. 10-2006-0118796 (Published Date: Nov. 24, 2006).
  • the main body may receive a power.
  • the cleaner since a cleaner receives a power through the cord reel assembly, the cleaner may move by only a distance corresponding to a length of the cord wound around the cord reel assembly when the cleaner performs cleaning.
  • FIG. 1 is a perspective view of a vacuum cleaner according to a first embodiment.
  • FIG. 2 is an exploded perspective view of a vacuum cleaner according to a first embodiment.
  • FIG. 3 is a block diagram showing the configuration of a vacuum cleaner according to a first embodiment.
  • FIG. 4 is a diagram showing a state in which a battery assembly according to a first embodiment is mounted on a second body.
  • FIG. 5 is a vertical cross-sectional view of FIG. 4 .
  • FIG. 6 is a circuit diagram of a battery assembly according to a first embodiment.
  • FIG. 7 is a diagram showing a state in which a battery terminal of a battery assembly according to a first embodiment is separated from a body terminal.
  • FIG. 8 is a diagram showing a positional relationship between a motor housing and a battery assembly according to a first embodiment.
  • FIG. 9 is a perspective view showing a battery assembly according to a first embodiment.
  • FIG. 10 is a perspective view showing an assembly of a battery unit and a battery supporter.
  • FIG. 11 is a perspective view showing a battery supporter according to a first embodiment.
  • FIG. 12 is a diagram showing the assembly of the battery unit and the battery supporter of FIG. 10 when viewed in a direction A.
  • FIG. 13 is a diagram showing the assembly of the battery unit and the battery supporter of FIG. 10 when viewed in a direction B.
  • FIG. 14 is a diagram showing a state in which a battery assembly is separated from a vacuum cleaner according to another embodiment.
  • FIG. 15 is a block diagram showing the configuration of a vacuum cleaner according to a second embodiment.
  • FIG. 16 is a diagram showing a state in which a battery assembly according to a second embodiment is separated from a cleaner body and is seated on a charging stand.
  • FIG. 17 is a diagram showing the configuration of a battery assembly according to a second embodiment.
  • FIG. 18 is a diagram showing a connection part between a battery assembly and a cleaner body according to a second embodiment.
  • FIG. 19 is a diagram showing operation of a switching mechanism upon charging a battery assembly according to a second embodiment.
  • FIG. 20 is a diagram showing a state in which a battery assembly is mounted on a cleaner body.
  • FIG. 21 is a diagram showing operation of a switching mechanism upon discharging a battery assembly according to a first embodiment.
  • a vacuum cleaner 1 may include a cleaner body 10 having a suction motor 160 for generating a suction force and a suction device 20 for guiding air containing dusts to the cleaner body 10 .
  • the suction device 20 may include a suction part 210 for suctioning dusts on a surface to be cleaned, e.g., a ground surface.
  • a surface to be cleaned e.g., a ground surface.
  • the canister type cleaner is described as a cleaner, the present invention is applicable to an upright type cleaner.
  • the suction device 20 may further include connection parts 22 , 23 , and 24 for connecting the suction part 21 to the cleaner body 10 .
  • the connection parts 22 , 23 , and 24 may include an extension tube 24 connected to the suction part 21 , a handle 22 connected to the extension tube 24 , and a suction hose 23 connecting the handle 22 to the cleaner body 10 .
  • the vacuum cleaner 1 may further include a dust separation part (not shown) for separating the suctioned air and dusts from the suction device 20 from each other and a dust container 110 for storing the dusts separated by the dust separation part.
  • the dust container 110 may be separably mounted on the cleaner body 10 .
  • the dust separation part and the dust container 110 may be manufactured as separated items, or the dust separation part and the dust container 110 may be provided as one module.
  • the vacuum cleaner 1 may include a controller 150 to control an operation of the suction motor 160 , a battery assembly 120 supplying power for operating the suction motor 160 , a charger 140 for charging the battery assembly 120 , and a power cord 30 separably connected to the cleaner body 10 to supply commercial power to the cleaner body 120 .
  • the power cord 30 may include a plug 31 connected to a socket and a cord connector 32 connected to the cleaner body 10 .
  • the cleaner body 10 may include a main body connector 102 to which the cord connector 32 is connected.
  • the cleaner body 10 may include a first body 101 and a second body 103 coupled to a lower portion of the first body 101 .
  • Wheels 105 may be coupled to both sides of the second body 103 , respectively.
  • the suction motor 160 , the battery assembly 120 , and the charger 140 may be disposed on the second body 103 .
  • the suction motor 160 may be protected by a motor housing 162 . That is, the suction motor 160 may be accommodated into the motor housing 162 .
  • the battery assembly 120 may be disposed at a side of the motor housing 162 , i.e., at a side of the suction motor 160 .
  • the suction motor 160 and the battery assembly 120 may be disposed between the plurality of wheels 105 .
  • the battery assembly 120 may be disposed between one of the plurality of wheels 105 and the suction motor 160 .
  • the charger 140 may be disposed spaced apart from the battery assembly 120 .
  • the dust container 110 may be separably coupled to the first body 101 . Also, the main body connector 102 may be disposed on the first body 101 .
  • the battery assembly 120 may include one or more battery units 131 and 132 .
  • the one or more battery units 131 and 132 include a plurality of battery cell. That is, in the present disclosure, a group of the plurality of battery cells may be called a battery unit.
  • the plurality of battery cells may be a secondary battery that is chargeable or dischargeable.
  • the maximum DC voltage (the sum of voltages of the plurality of battery cells) charged in the one or more battery units 131 and 132 may exceed about 42.4 V.
  • the battery units 131 and 132 may have the maximum charging voltage of above about 84.8 V.
  • the charger 140 may perform rectification and smoothing operations to receive a commercial AC voltage, thereby converting the received AC voltage into a DC voltage. Also, the charger 140 may supply the converted DC voltage to the battery units 131 and 132 . For example, the charger 140 may convert the commercial AC voltage of about 220V into a DC voltage of above about 42.4 V to supply the converted DC voltage to the battery units 131 and 132 .
  • the charger 140 may include a transformer 141 for transforming the inputted AC voltage and an AC-DC converter 142 for converting the AC voltage outputted from the transformer 141 into a DC voltage.
  • the DC voltage outputted from the AC-DC converter 142 may exceed about 42.4 V.
  • the transformer 141 may transform the DC voltage outputted from the AC-DC converter.
  • the DC voltage outputted form the transformer 141 may exceed about 42.4 V.
  • the charger 140 does not have the transformer 141 , and the AC-DC converter 142 may include a circuit for preventing the DC voltage from being converted into the AC voltage. That is, the AC-DC converter 142 may be an insulation type converter. In the current embodiment, the AC-DC converter 142 may be a well-known converter, and thus detailed description of the AC-DC converter 142 will be omitted.
  • the suction motor 160 may be a brushless direct current (BLDC) motor.
  • the suction motor 160 may have a maximum output, e.g., 600 W or more.
  • a circuit that is required to drive the suction motor 160 has a complicated structure because current has to be at least above about 14.15 A to operate a high-power suction motor 160 .
  • the current required to operate the suction motor 160 may be less than about 7.1 A.
  • the circuit that is required to drive the suction motor 160 may be simplified in structure.
  • the suction motor 160 may output high power.
  • the vacuum cleaner 1 may increase in suction force to improve cleaning performance.
  • the power cord 30 may be connected to the vacuum cleaner 1 when the battery units 131 and 132 are charged. When cleaning is performed by using the vacuum cleaner 1 , the power cord 30 may be separated from the vacuum cleaner 1 and be used. Thus, the vacuum cleaner 1 may be improved in degree of mobility.
  • the vacuum cleaner 1 since the vacuum cleaner 1 receives the power from the battery units 131 and 132 without having a cord reel, the vacuum cleaner 1 is not limited in movement distance. Also, the vacuum cleaner does not have to jump over the cord wound around the cord reel or move while clearing up the cord while the vacuum cleaner 1 moves, and thus the vacuum cleaner 1 may smoothly move.
  • the battery units 131 and 132 are electrically connected to the main body connector 102 , and the battery units 131 and 132 have the maximum charging voltage of above about 84.8 V.
  • the transformer 141 may perform an insulation function to improve user's safety.
  • the vacuum cleaner 1 may further include a user interface 170 .
  • the user interface 170 may receive an operation command of the vacuum cleaner 1 and display operation information or state information of the vacuum cleaner 1 .
  • the user interface 170 may be disposed on at least one of the handle 22 or the cleaner body 10 .
  • the user interface 170 may be provided in a structure in which an input unit and a display unit are integrally disposed or include an input unit and a display unit that are separately provided. Power-on selection, a cleaning mode, intensities of a suction force of the vacuum cleaner 1 may be selected through the input unit.
  • the display unit may display residual amount information of at least the battery units 131 and 132 . When the battery residual amount of the battery units 131 and 132 reaches a reference value, the controller 150 may allow the display unit to display information for notifying that the battery units 131 and 132 has to be charged.
  • the display unit may continuously or gradually display the battery residual amount of the battery units 131 and 132 .
  • the display unit may display the battery residual amount of the battery units 131 and 132 by a number, a symbol, or a graph.
  • the display unit may include a plurality of light emitting parts to display the battery residual amount of the battery units 131 and 132 by turning on the plurality of light emitting parts in different numbers.
  • the display unit may change a color of light irradiated from the light emitting part to display the battery residual amount of the battery units 131 and 132 .
  • the battery assembly 120 may further include battery cases 121 and 122 for accommodating the one or more battery units 131 and 132 .
  • the battery cases 121 and 122 may include a first battery case 121 and a second battery case 122 coupled to the first battery case 121 .
  • the battery cases 121 and 122 may be seated on the second body 103 .
  • Each of the battery cases 121 and 122 may have an approximately cylindrical shape. Since each of the battery cases 121 and 122 has an approximately cylindrical shape, a space in which the battery cases 121 and 122 take up in the cleaner body 10 may be minimized.
  • At least one of the first or second battery cases 121 and 122 may include at least one coupling boss 123 to which a coupling member is coupled.
  • a plurality of cover guides 124 and 125 that are spaced apart from each other in a forward-backward direction of the cleaner body 10 may be disposed on each of the battery covers 121 and 122 . Also, a plurality of body guides 114 and 115 contacting the plurality of cover guides 124 and 125 may be disposed on the second body 103 .
  • the plurality of cover guides 124 may be protruded from the battery cases 121 and 122 . In a state where the plurality of cover guides 124 and 125 contact the plurality of body guides 114 and 115 , movement of the battery cases 121 and 122 in the forward-backward direction of the cleaner body 10 may be minimized. That is, the plurality of cover guides 124 and 124 may include a first cover guide 124 and a second cover guide 125 disposed at a rear side of the first cover guide 124 .
  • the plurality of body guides 114 and 115 may include a first body guide 114 that is in contact with a front surface of the first cover guide 124 and a second body guide 115 that is in contact with a back surface of the second guide 125 . That is, the first and second cover guides 124 and 125 may be disposed between the first body guide 114 and the second body guide 115 .
  • first cover guide 124 may be accommodated into the first body guide 114
  • second cover guide 125 may be accommodated into the second body guide 115
  • the cover guides 124 and 125 may be one or more grooves, and the body guides 114 and 115 may be inserted into the one or more cover guides 124 and 125 .
  • the battery cases 121 and 122 may include a plurality of support ribs 126 for supporting a battery supporter that will be described later.
  • the plurality of support ribs 126 may prevent the battery supporter from moving in the battery cases 121 and 122 without a separate fixing unit.
  • the battery supporter may be coupled to the battery cases 121 and 122 by the coupling member.
  • the battery assembly 120 may further include a battery management unit 139 .
  • the battery management unit 139 may manage each battery cell to be maintained at a constant voltage. That is, the battery management unit 139 enables the battery assembly 120 to output a constant voltage.
  • the battery assembly 120 may include a battery terminal 202 and the cleaner body 10 may include a body terminal 106 connected to the battery terminal 202 .
  • the battery terminal 202 may include an input/output terminal of charging/discharging current and a communication terminal for data communication.
  • the body terminal 106 may be connected to the charger 140 or the controller 160 . Although not limited thereto, the body terminal 106 may be provided in the second body 103 .
  • the battery terminal 202 When the battery assembly 120 is seated on the second body 103 , the battery terminal 202 may be connected to the body terminal 106 . Alternatively, in a state in which the battery assembly 120 is seated on the second body 103 , a user may connect the battery terminal 202 to the body terminal 106 . In this case, the body terminal 106 may be fixed to the second body 103 or may not be fixed to the second body 103 in a state of being connected to a flexible wire.
  • the battery assembly 120 may further include a switch 210 for connecting or disconnecting one end of the battery units 131 and 132 and the battery terminal 202 .
  • the switch 210 may be a micro switch which may be turned on by external force.
  • the switch 210 may be mounted on the battery cases 121 and 122 or the battery management unit 139 . Although the switch 210 is disposed between one end of the battery units 131 and 132 and a positive pole (+) in FIG. 6 , the switch 210 may be disposed between one end of the battery units 131 and 132 and a negative pole ( ⁇ ).
  • the cleaner body 10 may further include a switching operation part 108 for operating the switch 210 to turn the switch 210 on in a process of mounting the battery assembly 120 in the cleaner body 10 .
  • the switching operation part 108 may be a protrusion protruding from the second body 103 .
  • the battery cases 121 and 122 may include an accommodation part 204 for accommodating the switch operation part 108 .
  • the switching operation part 108 is inserted into the accommodation part 204 and the switching operation part 108 operates the switch 210 to turn the switch 210 on.
  • the battery units 131 and 132 and the battery terminal 202 may be electrically connected.
  • the battery units 131 and the battery terminal 202 are connected, charging or discharging becomes possible.
  • the switch for connecting the battery terminal to the battery unit since the switch for connecting the battery terminal to the battery unit is turned off in a state in which the battery assembly is separated from the cleaner body, the output current of the battery becomes 0 and thus stability is secured even when the maximum charging voltage of the battery assembly is high.
  • the switching operation part 108 is accommodated in the accommodation part to operate the switch, it is possible to prevent the switch from unintentionally operating in a state in which the battery assembly is separated from the cleaner body.
  • FIG. 8 is a view illustrating an arrangement relationship between the motor housing and the battery assembly according to a first embodiment.
  • the motor housing 162 may include a contact rib 164 that contacts an upper portion of the battery assembly 120 .
  • the motor housing 162 may be coupled to the second body 103 . Also, when the motor housing 162 is coupled to the second body 103 , the contact rib 164 contacts the upper portion of the battery assembly 120 . The contact rib 164 may press the battery assembly 120 downward in the state where the contact rib 164 is in contact with the upper portion of the battery assembly 120 .
  • the contact rib 164 contacts the upper portion of the battery assembly 120 , vertical movement of the battery assembly 120 may be prevented. According to an embodiment, since the movement of the battery assembly 120 is prevented by the contact rib 164 of the motor housing 162 and the cover guide 124 and 125 and the body guide 114 and 115 of the battery cases 121 and 122 , a separate fixing unit for fixing the battery assembly 120 to the second body 103 is unnecessary.
  • FIG. 9 is a perspective view of the battery assembly according to a first embodiment
  • FIG. 10 is a perspective view illustrating an assembly of a battery unit and a battery support.
  • the battery assembly 120 may include one or more battery units 131 and 132 and a plurality of support devices for supporting the one or more battery units 131 and 132 .
  • the one or more battery units 131 and 132 may include a first battery unit 131 and a second battery unit 132 .
  • the first battery unit 131 and the second battery unit 132 may be connected to each other in series.
  • the plurality of battery support devices may include a first support device for supporting the first battery unit 131 and a second support device for supporting the second battery unit 132 .
  • Each of the support devices may support the plurality of cells constituting each of the battery units 131 and 132 at the same time.
  • the first support device may include a first support 133 supporting one side of the plurality of cells of the first battery unit 131 and a second support 134 supporting the other side of the plurality of cells of the first battery unit 131 .
  • the first and second supports 133 and 134 may support the first battery unit 131 in a state where the first and second supports 133 and 134 are spaced apart from each other. Thus, heat generated when the first battery unit 131 is discharged may be emitted between the first and second supports 133 and 134 .
  • the second support device may include a third support 135 supporting one side of the plurality of cells of the second battery unit 132 and a fourth support 136 supporting the other side of the plurality of cells of the second battery unit 132 .
  • the third and fourth supports 135 and 136 may support the second battery unit 132 in a state where the third and fourth supports 135 and 136 are spaced apart from each other. Thus, heat generated when the second battery unit 132 is discharged may be emitted between the third and fourth supports 135 and 136 .
  • first and second supports 133 and 134 support ten cells of the first battery unit 131 at the same time
  • third and fourth supports 135 and 136 support twelve cells of the second battery unit 132 at the same time in FIG. 10
  • the present disclosure is not limited thereto.
  • the number of battery cells supported by each of the supports is not limited.
  • the plurality of battery cells of each of the battery units 131 and 132 may be disposed in a zigzag shape in the state where the cells are supported by the supports 133 , 134 , 135 , and 136 . That is, at least a portion of the other battery cell may be disposed on an area corresponding to an area between two battery cells. Since the plurality of battery cells are disposed in the zigzag shape in the current embodiment, a space that is occupied by the plurality of cells may be minimized.
  • a plurality of conductors 1389 for connecting a positive pole (+) of one battery cell to a negative pole ( ⁇ ) of the other battery cell in two battery cells adjacent to each other may be coupled to each of the supports 133 , 134 , 135 , and 136 .
  • the plurality of conductors 138 may be welded to each of the battery cells.
  • the present disclosure is not limited to the coupling method between the plurality of conductors 138 and each of the battery cells.
  • Each of the plurality of conductors 138 is connected to the battery management unit 139 by an electric wire 139 a.
  • the battery management unit 139 may be mounted on the battery cases 121 and 122 .
  • FIG. 11 illustrates, for example, the second support and the fourth support.
  • the first support has a shape corresponding to that of the second support
  • the third support has a shape corresponding to that of the fourth support.
  • a hole in which the conductor is disposed may have a different shape.
  • each of the supports 133 , 134 , 135 , and 136 may include a support body 131 a covering a side surface of each of the battery cells and a plurality of cell cover 131 b extending from the support body 131 a and provided in the same number as the battery cells.
  • the plurality of cell covers 131 b surround a portion of each of the battery cells.
  • the plurality of cells are spaced apart from each other by the plurality of cell covers 131 b in the state where the plurality of cells are supported by each of the supports 133 , 134 , 135 , and 136 .
  • the plurality of battery cells may be spaced apart from each other in a direction that is perpendicular to a longitudinal direction of the battery cell.
  • the longitudinal direction of the battery cell may be a direction in which the positive pole (+) and the negative pole ( ⁇ ) are connected to each other. That is, the plurality of battery cells may be disposed parallel to each of the supports 133 , 134 , 135 , and 136 and connected to each other in series.
  • the battery assembly 120 may be compact because the plurality of battery cells are disposed in parallel.
  • the battery assembly 120 may be disposed so that a longitudinal direction of each of the battery cells is parallel to an extension direction of a shaft of one wheel between the one wheel of the plurality of wheels and the suction motor.
  • Two battery cells, which are adjacent to each other, of the plurality of battery cells may be disposed so that a direction of a first pole of one cell is opposite to that of a first pole of the other battery cell.
  • a hole 131 c in which the conductor 128 is disposed may be defined in the support body 131 a of each of the supports 133 , 134 , 135 , and 136 .
  • Two holes 131 d and 131 e in addition to the number of hole 131 c corresponding to 1 ⁇ 2 of the number of battery cells installed on the first support 133 may be defined in the first support 133 .
  • two holes 131 f and 131 g in addition to (1 ⁇ 2*m) ⁇ 1 holes 131 c may be defined in the third support 135 .
  • seven holes 131 c, 131 d, and 131 e may be defined in the first support 133 .
  • seven holes 131 c, 131 f, and 131 g may be defined in the third support 135 .
  • the conductor 138 e disposed in one hole 131 d of the two holes 131 d and 131 e defined in the first support 133 may be connected to only one pole of the battery cell.
  • the conductor 138 b disposed in the other hole 131 e of the two holes 131 d and 131 e defined in the first support 133 may contact the conductor 138 c disposed in one hole 131 f of the two holes 131 f and 131 g of the third support 135 .
  • the conductor 138 d disposed in the other hole 131 g of the two holes 131 f and 131 g defined in the third support 135 may be connected to only one pole of the battery cell.
  • the first pole of each battery cell is expressed as a reference symbol CnA
  • the second pole is expressed as a reference symbol CnB.
  • n is natural number.
  • CnB is connected to C(n+1)A by the conductor 138 .
  • the second pole C 1 B of the first battery cell is connected to the first pole C 2 A of the second battery cell by the conductor 138 .
  • each of the first pole C 1 A of the first battery cell and the second pole C 22 B of the last battery cell of the plurality of battery cells may be connected to one of the conductors 138 a and 138 d.
  • the voltage of each of the plurality of battery cells may be managed.
  • the battery case covers the battery unit in the foregoing embodiment, the preset disclosure is not limited thereto.
  • the battery case may be omitted.
  • the contact rib of the motor housing may contact the upper portion of the battery support.
  • the cover guide that is described in FIG. 5 may be disposed on the battery support.
  • the battery support may be integrated with the battery case.
  • the conductor is coupled to the battery support, and then the plurality of battery cells are inserted into the battery support to allow the conductor to contact the poles of the battery cells.
  • a protrusion contacting the pole of the battery cell may be disposed on the conductor so that the conductor effectively contacts the battery cell.
  • the battery assembly may include a switch and the switch may be turned on in a process of mounting the battery assembly.
  • the switch is a micro switch which is turned on by mechanical operation in the above embodiment, the switch may be an electronically controlled switch.
  • the battery management unit may sense whether the body terminal and the battery terminal are connected, turn the switch off when the battery terminal is separated from the body terminal, and turn the switch on when the battery terminal is connected to the body terminal.
  • the switch operation part is removed and the housing of the body terminal serves as the switch operation part.
  • a portion of the switch may be exposed to an area in which the battery terminal is located or a portion of the body terminal may be inserted into the battery assembly to operate the switch.
  • the vacuum cleaner may include a cleaner body 300 including a mounting part 302 and a battery assembly 420 which is detachably mounted on the mounting part 302 .
  • the cleaner body 300 may include a cover member (not shown) for covering the battery assembly 420 in a state in which the battery assembly 420 is mounted on the mounting part 302 .
  • the battery assembly 420 may be mounted on the mounting part 302 from the rear side of the cleaner body 10 .
  • the battery assembly 420 may include a battery case 421 and a plurality of battery units 431 and 432 accommodated in the battery case 421 .
  • the plurality of battery units 431 and 432 may include a first battery unit 431 and a second battery unit 432 , although not limited thereto.
  • Each of the battery units 431 and 432 may include a plurality of battery cells.
  • the plurality of battery cells may be chargeable/dischargeable secondary batteries, and the battery cells configuring each of the battery units 431 and 432 may be connected in series.
  • the first battery unit 431 and the second battery unit 432 may be independently replaced. That is, the battery units 431 and 432 may be independently separated from the battery case 421 . According to this embodiment, since the battery assembly 420 is separated from the cleaner body, it is possible to easily replace the battery cell. In particular, since the battery assembly 420 includes the plurality of battery units 431 and 432 , it is possible to individually replace the plurality of battery units 431 and 432 .
  • the vacuum cleaner of this embodiment may further include a user interface 170 and a controller 150 . Since the user interface 170 and the controller 150 are equal to the user interface and the controller 150 of the first embodiment, a description thereof will be omitted.
  • the battery assembly 420 separated from the cleaner body 300 may be seated on the charging stand 50 .
  • the battery assembly 420 may be charged.
  • the first battery unit 431 and the second battery unit 432 may be connected in parallel and, when the battery assembly 420 is mounted on the cleaner body 300 , the first battery unit 431 and the second battery unit 432 may be connected in series.
  • the battery assembly will be described in detail.
  • the battery assembly 420 of this embodiment may include the plurality of battery units 431 and 432 , a switching mechanism for switching the connection state of the plurality of battery units 431 and 432 , and a battery management unit 460 for managing charging and/or discharging of the plurality of battery units 431 and 432 .
  • the switching mechanism connects the first battery unit 431 and the second battery unit 432 in parallel upon charging the plurality of battery units 431 and 432 and connecting the first battery unit 431 and the second battery unit 432 in series when the battery assembly 420 is mounted on the cleaner body 300 .
  • the switching mechanism may include charging switching mechanism 441 , 442 and 443 and discharging switching mechanism 451 and 452 .
  • the charging switching mechanism 441 , 442 and 443 may include the first charging switch 441 , the second charging switch 442 and the third charging switch 443 .
  • the first charging switch 441 may connect or disconnect the negative terminal 473 and one of the plurality of battery units, that is, the second battery unit 432 .
  • the second charging switch 442 may connect or disconnect one of the plurality of battery units, for example, the first battery unit 431 , and the positive terminal 472 for charging.
  • the third charging switch 443 may connect or disconnect the first battery unit 431 and the second battery unit 432 .
  • the charging switches 441 , 442 and 443 may be connected to the battery management unit 460 to receive a control signal from the battery management unit 460 , thereby performing switching operation.
  • the discharging switching mechanism 451 and 452 may include a first discharging switch 451 and a second discharging switch 452 .
  • the first discharging switch 451 may connect or disconnect one of the plurality of battery units, for example, the second battery 432 , and the positive terminal 471 for discharging.
  • the second discharging switch 452 may connect or disconnect the first battery unit 431 and the second battery unit 432 .
  • the discharging switches 451 and 452 may be connected to the battery management unit 460 to receive a control signal from the battery management unit 460 , thereby performing switching operation.
  • the battery assembly 420 may include a sensing unit 462 to sense whether the battery assembly 420 is mounted on the cleaner body 300 and a battery terminal 474 for connection with the cleaner body 300 .
  • the mounting part 302 of the cleaner body 300 may include a body terminal 303 connected to the battery terminal 474 and a protrusion 304 for operating the sensing unit 462 .
  • the battery case 421 may include an accommodation part 463 for accommodating the protrusion 304 .
  • the sensing unit 462 may be located adjacent to the accommodation part 463 .
  • the sensing unit 462 may be a micro switch which may be mechanically turned on or off by external force.
  • the battery management unit 460 may recognize the on or off state of the sensing unit 460 and control the switching mechanism according to the on or off state of the sensing unit 462 .
  • FIG. 19 is a diagram showing operation of a switching mechanism upon charging a battery assembly according to a second embodiment.
  • the battery assembly 420 may be separated from the cleaner body 300 and connected to the charging stand 50 and may be charged in a state of being connected to the charging stand 50 .
  • the first to third charging switches 441 , 442 and 443 are turned on and the first discharging switches 451 and 452 are turned off. Accordingly, the first battery unit 431 and the second battery unit 432 are connected in parallel.
  • the voltage output from the charging stand 50 is supplied to the first battery unit 431 and the second battery unit 432 to charge the first battery unit 431 and the second battery unit 432 .
  • the charging stand 50 outputs a voltage of 42.4 V or less and the maximum charging voltage of each of the battery units 431 and 432 may be 42.4 V or less.
  • the sensing unit 462 in a state in which the battery assembly 420 and the charging stand 50 are disconnected, the sensing unit 462 is maintained in the off state.
  • the battery management unit 460 may turn the discharging switches 451 and 452 off in a state in which the sensing unit 462 is turned off.
  • the battery management unit 460 may turn the charging switches 441 , 442 and 443 on or off in a state in which the sensing unit 462 is turned off. That is, the battery management unit 460 may turn the switching mechanism off in a state in which the sensing unit 462 is turned off.
  • the voltage of the battery terminal 474 of the battery assembly 420 may be 42.4 V or less regardless of the on or off state of the charging switches 441 , 442 and 443 , such that a safety problem does not occur.
  • the battery assembly 420 is mounted on the mounting part 302 of the cleaner body 300 , the battery terminal 474 is connected to the body terminal 303 .
  • the protrusion 304 is accommodated in the accommodation part 463 such that the protrusion 304 operates the sensing unit 462 to turn the sensing unit 462 on.
  • the battery management unit 460 turns the charging switches 441 , 442 and 443 off and turn the discharging switches 451 and 452 on, when the sensing unit 462 is in the on state. Accordingly, the first battery unit 431 and the second battery unit 432 may be connected in series.
  • a voltage obtained by adding the charging voltage of the first battery unit 431 and the charging voltage of the second battery unit 432 may be output to the suction motor 160 . That is, the maximum output voltage of the battery assembly 420 may be 84.8 V or less.
  • the suction motor 160 since a high voltage of 84.8 V or less is supplied to the suction motor 160 , the suction motor 160 may output high power. Thus, the suction force of the vacuum cleaner can increase to improve cleaning performance.
  • the two battery units 431 and 432 are connected in parallel or in series in the above embodiment, three or more battery units may be connected in parallel or in series.
  • the battery unit may be individually replaced regardless of the number of battery units. According to this embodiment, since the discharging switch is turned on to connect the battery units in series only when the battery assembly is mounted on the cleaner body, stability can be ensured in a process of replacing the battery assembly, and an additional structure for insulation is unnecessary in the battery terminal of the battery assembly.
  • the sensing unit is a switch in the above embodiment
  • a magnet may be provided in the mounting part of the cleaner body and the sensing unit may be a magnetic sensor for sensing magnetism of the magnet.
  • the state of the sensing unit is changed according to the position of the battery assembly and the sensing unit may output a switching signal at the position where the battery assembly is mounted on the cleaner body.
  • the battery management unit may control the switching mechanism such that the plurality of battery units is connected in series.
  • the firs embodiment and the second embodiment may be combined.
  • the battery assembly 120 of the first embodiment may be detachably coupled to the mounting part of the cleaner body and the battery assembly 120 may include the switching mechanism described in the second embodiment.
  • the switching mechanism may connect the first battery unit 131 and the second battery unit 132 in series.
  • the switch 210 may be turned on. Accordingly, the switch 210 of the first embodiment serves as the sensing unit for sensing whether the battery assembly is mounted on the cleaner body of the second embodiment.
  • the present disclosure provides a vacuum cleaner capable of conveniently moving and generating high suction force.
  • the present disclosure provides a vacuum cleaner capable of preventing charging and discharging in a state in which a battery assembly is separated from a cleaner body.
  • the present disclosure provides a battery assembly and vacuum cleaner capable of performing charging in a state in which battery units are connected in parallel and performing discharging in a state in which the battery units are connected in series.
  • a vacuum cleaner having a detachable battery assembly mounted therein and capable of performing discharging at a high voltage in the battery assembly in a state in which the battery assembly is mounted on a cleaner body.
  • a vacuum cleaner may comprise a cleaner body including a suction motor for generating suction force; a suction part communicating with the cleaner body and suctioning air and dust; and a battery assembly to supply a power to the suction motor, the battery assembly includes a battery unit, a battery terminal, a switch to connect or disconnect the battery unit and the battery terminal, and a battery case to accommodate the battery unit, the cleaner body includes a body supporting the battery assembly and a switching operation part for operating the switch when the battery assembly is mounted on the cleaner body, a plurality of cover guides protrudes from the battery case, the body includes a plurality of body guides, and, when the plurality of cover guides is supported by the plurality of body guides, the switching operation part operates the switch.
  • a vacuum cleaner comprises a cleaner body including a suction motor for generating suction force and a mounting part, a suction part communicating with the cleaner body and suctioning air and dust, and a battery assembly detachably mounted on the mounting part of the cleaner body, for supplying a power to the suction motor
  • the mounting part includes a body connector
  • the battery assembly includes a plurality of battery units, a sensing unit for sensing whether the battery assembly is mounted on or separated from the cleaner body, a switching mechanism for performing switching operation to connect the plurality of battery units in parallel or in series, a battery connector connected to the body connector when the battery assembly is mounted on the mounting part, and a battery management unit for controlling the switching mechanism to connect the plurality of battery units in series when the sensing unit senses that the battery assembly is mounted on the mounting part of the cleaner body.
  • any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” etc. means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention.
  • the appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Robotics (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Battery Mounting, Suspending (AREA)
US15/223,578 2015-07-29 2016-07-29 Vacuum cleaner Abandoned US20170027400A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/243,463 US11160430B2 (en) 2015-07-29 2019-01-09 Vacuum cleaner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0107479 2015-07-29
KR1020150107479A KR101714181B1 (ko) 2015-07-29 2015-07-29 진공 청소기
KR10-2015-0107480 2015-07-29
KR20150107480 2015-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/243,463 Continuation US11160430B2 (en) 2015-07-29 2019-01-09 Vacuum cleaner

Publications (1)

Publication Number Publication Date
US20170027400A1 true US20170027400A1 (en) 2017-02-02

Family

ID=56551294

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/223,578 Abandoned US20170027400A1 (en) 2015-07-29 2016-07-29 Vacuum cleaner
US16/243,463 Active 2037-08-19 US11160430B2 (en) 2015-07-29 2019-01-09 Vacuum cleaner

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/243,463 Active 2037-08-19 US11160430B2 (en) 2015-07-29 2019-01-09 Vacuum cleaner

Country Status (4)

Country Link
US (2) US20170027400A1 (ru)
EP (1) EP3125336B1 (ru)
RU (1) RU2633630C1 (ru)
TW (1) TWI618523B (ru)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170245717A1 (en) * 2016-02-29 2017-08-31 Lg Electronics Inc. Vacuum cleaner
US20180131205A1 (en) * 2016-11-07 2018-05-10 Samsung Sdi Co., Ltd. Battery pack and vacuum cleaner including the same
CN109391002A (zh) * 2017-08-11 2019-02-26 德国福维克控股公司 通过蓄电池运行的家用设备以及用于运行家用设备的方法
US10314448B2 (en) 2016-02-29 2019-06-11 Lg Electronics Inc. Vacuum cleaner
US10321796B2 (en) 2016-02-29 2019-06-18 Lg Electronics Inc. Vacuum cleaner
US10357135B2 (en) 2016-02-29 2019-07-23 Lg Electronics Inc. Vacuum cleaner
US10362915B2 (en) 2016-02-29 2019-07-30 Lg Electronics Inc. Vacuum cleaner
US10426303B2 (en) 2016-02-29 2019-10-01 Lg Electronics Inc. Vacuum cleaner
US10426310B2 (en) 2016-02-29 2019-10-01 Lg Electronics Inc. Vacuum cleaner
US10433693B2 (en) 2016-02-29 2019-10-08 Lg Electronics Inc. Vacuum cleaner
US10506905B2 (en) 2016-02-29 2019-12-17 Lg Electronics Inc. Vacuum cleaner
US10512378B2 (en) 2016-02-29 2019-12-24 Lg Electronics Inc. Vacuum cleaner
US10517451B2 (en) 2016-05-20 2019-12-31 Lg Electronics Inc. Vacuum cleaner
US10575690B2 (en) 2016-02-29 2020-03-03 Lg Electronics Inc. Vacuum cleaner
US10582822B2 (en) 2016-02-29 2020-03-10 Lg Electronics Inc. Vacuum cleaner
US20200100638A1 (en) * 2017-06-08 2020-04-02 Festool Gmbh Electrical applicance as system component for actuating a vacuum cleaner
US10682029B2 (en) 2016-02-29 2020-06-16 Lg Electronics Inc. Vacuum cleaner
US10945570B2 (en) 2016-02-29 2021-03-16 Lg Electronics Inc. Vacuum cleaner
US11297991B2 (en) * 2018-03-13 2022-04-12 Lg Electronics Inc. Cleaner
US11540682B2 (en) * 2018-05-31 2023-01-03 Lg Electronics Inc. Cleaner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2572303B (en) * 2017-06-19 2020-12-02 Tti Macao Commercial Offshore Ltd Surface cleaning apparatus
US11510541B2 (en) * 2017-11-20 2022-11-29 Tailos, Inc. Battery apparatus for a robot, methods, and applications
CN114287845A (zh) * 2022-01-28 2022-04-08 格力博(江苏)股份有限公司 一种洗地机

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253096A (ja) * 1992-03-16 1993-10-05 Matsushita Electric Ind Co Ltd 充−交両用型電気掃除機
JP2003219997A (ja) * 2002-01-31 2003-08-05 Toshiba Tec Corp 電気掃除機
KR20060118796A (ko) * 2005-05-17 2006-11-24 엘지전자 주식회사 진공청소기
US20080172821A1 (en) * 2006-11-03 2008-07-24 Daewoo Electronics Corporation Vacuum cleaner
JP2012079547A (ja) * 2010-10-01 2012-04-19 Sanyo Electric Co Ltd 電池パック
US20120293128A1 (en) * 2011-05-18 2012-11-22 Bongyoung Kim Battery pack
US20120299549A1 (en) * 2011-05-26 2012-11-29 Samsung Sdi Co., Ltd Battery pack
US8405357B2 (en) * 2008-10-03 2013-03-26 Fujitsu Limited Battery unit, battery system, electronic device, charging control method of battery, and discharging control method of battery
US20130207615A1 (en) * 2012-02-10 2013-08-15 Dyson Technology Limited Vacuum cleaner and a battery pack therefor
US8673487B2 (en) * 2009-03-21 2014-03-18 Dyson Technology Limited Rechargeable battery pack
US20140101887A1 (en) * 2008-03-14 2014-04-17 Techtronic Floor Care Technology Limited Battery powered cordless cleaning system
US20150155606A1 (en) * 2012-06-08 2015-06-04 Dyson Technology Limited Vacuum cleaner and a battery pack therefor
JP2015123303A (ja) * 2013-12-27 2015-07-06 株式会社東芝 電気掃除機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082448A (ja) 1998-09-03 2000-03-21 Matsushita Electric Ind Co Ltd パック電池
JP2003219998A (ja) 2002-01-30 2003-08-05 Toshiba Tec Corp 電気掃除機
DE102007027902A1 (de) * 2007-06-18 2008-12-24 Robert Bosch Gmbh Batteriepack mit Umschaltung für Hochstrombetrieb

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253096A (ja) * 1992-03-16 1993-10-05 Matsushita Electric Ind Co Ltd 充−交両用型電気掃除機
JP2003219997A (ja) * 2002-01-31 2003-08-05 Toshiba Tec Corp 電気掃除機
KR20060118796A (ko) * 2005-05-17 2006-11-24 엘지전자 주식회사 진공청소기
US20080172821A1 (en) * 2006-11-03 2008-07-24 Daewoo Electronics Corporation Vacuum cleaner
US20140101887A1 (en) * 2008-03-14 2014-04-17 Techtronic Floor Care Technology Limited Battery powered cordless cleaning system
US8405357B2 (en) * 2008-10-03 2013-03-26 Fujitsu Limited Battery unit, battery system, electronic device, charging control method of battery, and discharging control method of battery
US8673487B2 (en) * 2009-03-21 2014-03-18 Dyson Technology Limited Rechargeable battery pack
JP2012079547A (ja) * 2010-10-01 2012-04-19 Sanyo Electric Co Ltd 電池パック
KR20120128898A (ko) * 2011-05-18 2012-11-28 삼성에스디아이 주식회사 배터리 팩
US20120293128A1 (en) * 2011-05-18 2012-11-22 Bongyoung Kim Battery pack
US20120299549A1 (en) * 2011-05-26 2012-11-29 Samsung Sdi Co., Ltd Battery pack
US20130207615A1 (en) * 2012-02-10 2013-08-15 Dyson Technology Limited Vacuum cleaner and a battery pack therefor
US20150155606A1 (en) * 2012-06-08 2015-06-04 Dyson Technology Limited Vacuum cleaner and a battery pack therefor
JP2015123303A (ja) * 2013-12-27 2015-07-06 株式会社東芝 電気掃除機
US20170000304A1 (en) * 2013-12-27 2017-01-05 Toshiba Lifestyle Products & Serivces Corporation Electric vacuum cleaner

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10506905B2 (en) 2016-02-29 2019-12-17 Lg Electronics Inc. Vacuum cleaner
US10945570B2 (en) 2016-02-29 2021-03-16 Lg Electronics Inc. Vacuum cleaner
US20170245717A1 (en) * 2016-02-29 2017-08-31 Lg Electronics Inc. Vacuum cleaner
US10314448B2 (en) 2016-02-29 2019-06-11 Lg Electronics Inc. Vacuum cleaner
US10512378B2 (en) 2016-02-29 2019-12-24 Lg Electronics Inc. Vacuum cleaner
US10321796B2 (en) 2016-02-29 2019-06-18 Lg Electronics Inc. Vacuum cleaner
US10357135B2 (en) 2016-02-29 2019-07-23 Lg Electronics Inc. Vacuum cleaner
US11039724B2 (en) 2016-02-29 2021-06-22 Lg Electronics Inc. Vacuum cleaner
US10682029B2 (en) 2016-02-29 2020-06-16 Lg Electronics Inc. Vacuum cleaner
US10426303B2 (en) 2016-02-29 2019-10-01 Lg Electronics Inc. Vacuum cleaner
US10426310B2 (en) 2016-02-29 2019-10-01 Lg Electronics Inc. Vacuum cleaner
US10433693B2 (en) 2016-02-29 2019-10-08 Lg Electronics Inc. Vacuum cleaner
US10582822B2 (en) 2016-02-29 2020-03-10 Lg Electronics Inc. Vacuum cleaner
US10314455B2 (en) * 2016-02-29 2019-06-11 Lg Electronics Inc. Vacuum cleaner
US10362915B2 (en) 2016-02-29 2019-07-30 Lg Electronics Inc. Vacuum cleaner
US10575690B2 (en) 2016-02-29 2020-03-03 Lg Electronics Inc. Vacuum cleaner
US10517451B2 (en) 2016-05-20 2019-12-31 Lg Electronics Inc. Vacuum cleaner
US10381847B2 (en) * 2016-11-07 2019-08-13 Samsung Sdi Co., Ltd. Battery pack and vacuum cleaner including the same
US20180131205A1 (en) * 2016-11-07 2018-05-10 Samsung Sdi Co., Ltd. Battery pack and vacuum cleaner including the same
US20200100638A1 (en) * 2017-06-08 2020-04-02 Festool Gmbh Electrical applicance as system component for actuating a vacuum cleaner
EP3635704B1 (de) 2017-06-08 2021-07-28 Festool GmbH Elektrisches gerät als systemkomponente zur ansteuerung eines staubsaugers
US11751745B2 (en) * 2017-06-08 2023-09-12 Festool Gmbh Electrical appliance as system component for actuating a vacuum cleaner
CN109391002A (zh) * 2017-08-11 2019-02-26 德国福维克控股公司 通过蓄电池运行的家用设备以及用于运行家用设备的方法
US11297991B2 (en) * 2018-03-13 2022-04-12 Lg Electronics Inc. Cleaner
US11540682B2 (en) * 2018-05-31 2023-01-03 Lg Electronics Inc. Cleaner

Also Published As

Publication number Publication date
TW201703711A (zh) 2017-02-01
EP3125336A1 (en) 2017-02-01
US20190142235A1 (en) 2019-05-16
EP3125336B1 (en) 2019-10-02
RU2633630C1 (ru) 2017-10-16
TWI618523B (zh) 2018-03-21
US11160430B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
US11160430B2 (en) Vacuum cleaner
US20150320283A1 (en) Vacuum cleaner
EP2941995B1 (en) Vacuum cleaner
EP2162043B1 (en) Vacuum cleaner
AU2016212856B2 (en) Vacuum cleaner
EP3354177B1 (en) Vacuum cleaner
EP3001940B1 (en) Vacuum cleaner
KR101620263B1 (ko) 진공 청소, 배터리 어셈블리 및 충전대
KR101768316B1 (ko) 진공 청소기 및 배터리 어셈블리
EP2941993B1 (en) Vacuum cleaner
KR101714181B1 (ko) 진공 청소기
KR100408790B1 (ko) 직류교류 겸용 진공 청소기
JP2004248439A (ja) 高電圧/低電圧兼用モーター及びこれを装着した真空掃除機
KR950012170B1 (ko) 유.무선 겸용 진공청소기

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, CHANGHOON;HA, GUNHO;HAN, SEONGHOON;SIGNING DATES FROM 20160727 TO 20160728;REEL/FRAME:039514/0986

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION