US20160214177A1 - Corrosion and wear resistant cold work tool steel - Google Patents

Corrosion and wear resistant cold work tool steel Download PDF

Info

Publication number
US20160214177A1
US20160214177A1 US14/917,521 US201414917521A US2016214177A1 US 20160214177 A1 US20160214177 A1 US 20160214177A1 US 201414917521 A US201414917521 A US 201414917521A US 2016214177 A1 US2016214177 A1 US 2016214177A1
Authority
US
United States
Prior art keywords
steel
powder metallurgy
content
steel according
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/917,521
Other languages
English (en)
Inventor
Sebastian Ejnermark
Thomas Hillskog
Lars Ekman
Rikard Robertsson
Victoria Bergqvist
Jenny Karlsson
Petter Damm
Ulrika Mossfeldt
Roland Edvinsson
Annika Engstrom Svensson
Berne Hogman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uddeholms AB
Original Assignee
Uddeholms AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uddeholms AB filed Critical Uddeholms AB
Assigned to UDDEHOLMS AB reassignment UDDEHOLMS AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Edvinsson, Roland, Ejnermark, Sebastian, EKMAN, LARS, HILLSKOG, THOMAS, Bergqvist, Victoria, Damm, Petter, Robertsson, Rikard, ENGSTROM SVENSSON, ANNIKA, HOGMAN, BERNE, Karlsson, Jenny, Mossfeldt, Ulrika
Publication of US20160214177A1 publication Critical patent/US20160214177A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron

Definitions

  • the invention relates to corrosion and wear resistant cold work tool steel and a method of making the cold work steel and use of the cold work tool steel.
  • Nitrogen alloyed martensitic tool steels have recently been introduced on the market and attained a considerable interest, because they combine a high wear resistance with an excellent corrosion resistance. These steels have a wide rang of applications such as for moulding of aggressive plastics, for knives and other components in food processing and for reducing corrosion induced contamination in the medical industry.
  • the steels are generally produced by powder metallurgy.
  • the basic steel composition is firstly atomized and subsequently subjected to a nitrogenation treatment in order to introduce the desired amount of nitrogen into the powder. Thereafter the powder is filled into a capsule and subjected to hot isostatic pressing (HIP) in order to produce an isotropic steel.
  • HIP hot isostatic pressing
  • the amount of carbon is generally reduced to a very low level as compared to conventional tool steels.
  • the relative soft and anisotropic phase of M 7 C 3 -carbide ( ⁇ 1700HV) is replaced by the very hard and stable phase of small and evenly distributed hard phase of the type MN ( ⁇ 2800HV).
  • the wear resistance is improved at the same volume fraction of hard phase.
  • the amount of Cr, Mo and N in solid solution at the hardening temperature is very much increased, because less chromium is bound in the hard phase and because the carbides of the type M 23 C 6 and M 7 C 3 do not have any solubility for nitrogen. Thereby, more chromium is left in solid solution and the thin passive chromium rich surface film is strengthened, which leads to an increased resistance to general corrosion and pitting corrosion.
  • the carbon content has been limited to less than 0.3% C, preferably less than 0.1% C in DE 42 31 695 A1 and to ⁇ 0.12% C in WO 2005/054531 A1.
  • the general object of the present invention is to provide a powder metallurgy (PM) produced nitrogen alloyed cold work tools steel alloy having improved properties, in particular a good corrosion resistance in combination with a high hardness,
  • a particular object is to provide a nitrogen alloyed martensitic cold work tools steel alloy having improved corrosion resistance at a fixed chromium content.
  • a further object is to provide a method of producing said material.
  • the amount of carbon should be controlled such that the amount of carbides of the type M 23 C 6 and M 7 C 3 in the steel is limited to 10 vol. %, preferably the steel is free from said carbides.
  • the nitrogen content should therefore be much higher than the carbon content in order to avoid the precipitation of M 7 C 3 -carbides.
  • the nitrogen content is balanced against the contents of the strong carbide formers, in particular vanadium.
  • the nitrogen content is limited to 1.0-2.2%, preferably 1.1-1.8% or 1.3-1.7%.
  • the total amount of carbon and nitrogen is an essential feature of the present invention.
  • the combined amount of (C+N) should be in the range of 1.3-2.2%, preferably 1.7-2.1% or 1.8-2.0%.
  • a proper balance of carbon and nitrogen is an essential feature of the present invention.
  • the type and amounts of the hard phases can be controlled.
  • the amount of the hexagonal phase M 2 X will be reduced after hardening.
  • the C/N ratio should therefore be 0.17-0.50.
  • the lower ratio may be 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24 or 0.25.
  • the upper ratio may be 0.5, 0.48, 0.46, 0.45, 0.44, 0.42, 0.40, 0.38, 0.36 or 0.34.
  • the upper limit may be freely combined with the lower limit. Preferred ranges are 0.20-0.46 and 0.22-0.45.
  • Chromium When it is present in a dissolved amount of at least 11%, chromium results in the formation of a passive film on the steel surface.
  • Chromium shall be present in the steel in an amount between 13 and 30% in order to give the steel a good hardenability and oxidation and corrosion resistance.
  • Cr is present in an amount of more than 16% in order to safeguard a good pitting corrosion resistance.
  • the lower limit is set in accordance to the intended application and may be 17%, 18%, 19%, 20%, 21% or 22%.
  • Cr is a strong ferrite former and in order to avoid ferrite after hardening the amount need to be controlled.
  • the upper limit may be reduced to 26%, 24% or even 22%.
  • Preferred ranges include 16-26%, 18-24%, 19-21%, 20-22% and 21-23%.
  • Mo is known to have a very favourable effect on the hardenability. It is also known to improve the pitting corrosion resistance. The minimum content is 0.5%, and may be set to 0.6%, 0.7%, 0.8% or 1.0%. Molybdenum is a strong carbide forming element and also a strong ferrite former. The maximum content of molybdenum is therefore 3.0%. Preferably Mo is limited to 2.0%, 1.7% or even 1.5%.
  • molybdenum may be replaced by twice as much tungsten.
  • tungsten is expensive and it also complicates the handling of scrap metal. The maximum amount is therefore limited to 1%, preferably 0.2% and most preferably no additions are made.
  • Vanadium forms evenly distributed primary precipitated nitrocarbides of the type M(N,C) in the matrix of the steel.
  • M is mainly vanadium but significant amounts of Cr and Mo may be present. Vanadium shall therefore be present in an amount of 2-5
  • the upper limit may be set to 4.8%, 4.6%, 4.4%, 4.2% or 4.0%.
  • the lower limit may be 2.2%, 2.4%, 2.5%, 2.6%, 2.7%, 2.8%, 2.8% and 2.9%.
  • the upper and lower limits may be freely combined within the limits set out in claim 1 . Preferred ranges includes 2-4%.
  • Niobium is similar to vanadium in that it forms nitrocabides of the type M(N,C) and may in principle be used to replace vanadium but that requires the double amount of niobium as compared to vanadium.
  • the maxi mum addition of Nb is 2.0%.
  • the combined amount of (V+Nb/2) should be 2.0-5.0%.
  • Nb results in a more angular shape of the M(N,C).
  • the preferred maximum amount is therefore 0.5%.
  • no niobium is added.
  • Si is used for deoxidation. Si is present in the steel in a dissolved form. Si is a strong ferrite former and should therefore be limited to ⁇ 1.0%.
  • Manganese contributes to improving the hardenability of the steel and together with sulphur manganese contributes to improving the machinability by forming manganese sulphides.
  • Manganese shall therefore be present in a minimum content of 0.2%, preferably at least 0.3%. At higher sulphur contents, manganese prevents red brittleness in the steel.
  • the steel shall contain max. 2.0%, preferably max. 1.0% Mn. Preferred ranges are 0.2-0.5%, 0.2-0.4%, 0.3-0.5% and 0.3-0.4%.
  • Nickel is optional and may be present in an amount of up to 5%. It gives the steel a good hardenability and toughness. Because of the expense, the nickel content of the steel should be limited as far as possible. Accordingly, the Ni content is limited to 1%, preferably 0.25%.
  • Cu is an optional element, which may contribute to increasing the hardness and the corrosion resistance of the steel. If used, a preferred range is 0.02-2% and a most preferred range is 0.04-1.6%. However, it is not possible to extract copper from the steel once it has been added. This drastically makes the scrap handling more difficult. For this reason, copper is normally not deliberately added.
  • Co is an optional element it contributes to increase the hardness of the martensite.
  • the maximum amount is 10% and, if added, an effective amount is about 4 to 6%. However, for practical reasons such as scrap handling there is no deliberate addition of Co.
  • a preferred maximum content is 0.2%.
  • the steel contributes to improving the machinability of the steel. At higher sulphur contents there is a risk for red brittleness. Moreover, a high sulphur content may have a negative effect on the fatigue properties of the steel.
  • the steel shall therefore contain ⁇ 0.5%, preferably ⁇ 0.035%.
  • B may be used in order to further increase the hardness of the steel.
  • the amount is limited to 0.01%, preferably ⁇ 0.004%.
  • These elements are carbide formers and may be present in the alloy in the claimed ranges for altering the composition of the hard phases. However, normally none of these elements are added.
  • the total content of the hard phases MX, M 2 X, M 23 C 6 and M 7 C 3 shall not exceed 50 vol. %, wherein M is one or more of the above specified metals, in particular V, Mo and/or Cr and X is C, N and/or B and wherein the contents of said hard phases fulfil the following requirements (in vol. %):
  • MX 3-25 preferably 5-20 M 2 X ⁇ 10 preferably ⁇ 5 M 23 C 6 + M 7 C 3 ⁇ 10 preferably ⁇ 5 More preferably the content of MX is 5-15 vol. %, the content of M 2 X is ⁇ vol. 3% and the content of M 23 C 6 +M 7 C 3 is ⁇ 3 vol. %. Most preferably the steel is free from the component M 7 C 3 .
  • the pitting resistance equivalent (PRE) is often used to quantify pitting corrosion resistance of stainless steels. A higher value indicates a higher resistance to pitting corrosion.
  • PRE pitting resistance equivalent
  • % Cr , % Mo and % N are the calculated equilibrium contents dissolved in the matrix at the austenitising temperature (T A ) wherein the chromium content dissolved in the austenite is at least 13%.
  • the dissolved contents can be calculated with Thermo-Calc for the actual austenitising temperature (T A ) and/or measured in the steel after quenching.
  • the austenitising temperature (T A ) is in the range of 950-1200° C., typically 1080-1150° C.
  • the lower limit for the calculated PRE-value may be 25, 26, 27, 28, 29, 30, 31, 32 or 33.
  • High nitrogen stainless steels are based on a replacement of carbon with nitrogen. By substituting most of the carbon with nitrogen it is possible to substitute the chromium rich carbides of the type M 7 C 3 and M 23 C 6 with very stable hard particles of the type MN-nitrides.
  • the amount of Cr, Mo and N in solid solution at the hardening temperature is therefore very much increased, because less chromium is bound in the hard phase and because the carbides of the type M 23 C 6 and M 7 C 3 do not have any solubility for nitrogen. Thereby, more chromium is left in solid solution and the thin passive chromium rich surface film is strengthened, which leads to an increased resistance to general corrosion and pitting corrosion. Accordingly, it is to be expected that the pitting corrosion resistance would decrease if carbon replaces part of the nitrogen.
  • High nitrogen stainless steels known in the art therefore have a low carbon content.
  • the tool steel having the claimed chemical composition can be produced by conventional gas atomizing followed by nitrogenation of the powder before HIP-ing.
  • the nitrogen content in the steel after gas atomizing is normally less than 0.2%. The remaining nitrogen is thus added during the nitrogenation treatment of the powder.
  • After consolidation the steel may be used in the as HIP-ed form or formed into a desired shape. Normally the steel is subjected to hardening and tempering before being used. Austenitising may be performed by annealing at an austenitising temperature (T A ) in the range of 950-1200° C., typically 1080-1150° C. A typical treatment is annealing at 1080° C. for 30 minutes.
  • T A austenitising temperature
  • the steel may be hardened by quenching in a vacuum furnace by deep cooling in liquid nitrogen, and then tempered at 200° C. for 2 times at 2 hours (2 ⁇ 2 h).
  • a steel according to the invention is compared to a steel having lower carbon content and a different balance between carbon and nitrogen. Both steels were produced by powder metallurgy.
  • the basic steel compositions were melted and subjected to gas atomization. Subsequently the obtained powders were subjected to a nitrogenation treatment in order to introduce the desired amount of nitrogen into the powders.
  • the nitrogen content was increased from about 0.1% to the respective content.
  • the steels thus obtained had the following compositions (in wt. %):
  • the steels were austenitised at 1080° C. for 30 minutes and hardened by quench ing by deep cooling in liquid nitrogen in a vacuum furnace followed by tempering at 200° C. for 2 times at 2 hours (2 ⁇ 2 h).
  • the inventive steel had a hardness of 60 HRC and the comparative steel a hardness of 58 HRC.
  • the alloy microstructure consisted of tempered martensite and hard phases. Two distinct hard phases were identified in the microstructure of both steels: MX and M 2 X.
  • the hexagonal M 2 X was the majority phase and the face centred cubic MX-phase was the minority phase.
  • MX was the majority phase and M 2 X was the minority phase.
  • the materials susceptibility for pitting corrosion was experimentally examined by anodic polarisation sweep.
  • the 500 mesh grounded sample was first open circuit potential (OCP) recorded with a 0.1 M NaCl solution to ensure a stable potential was reached.
  • OCP open circuit potential
  • the cyclic polarization measurements were performed with a scan rate of 10 mV/min. Start potential was ⁇ 0.2 V vs. OCP, and the final potential was set to the OCP.
  • OCP open circuit potential
  • FIG. 1 discloses a schematic anodic polarization curve and the information that can be obtained from the curve.
  • the forward scan gives information about the initiation of pitting and the reverse scan provides information about the alloys repassivation behavior.
  • Eb is the value of the potential for pitting breakdown above which new pits will initiate and existing pits will propagate. As the potential is decreased on the reverse scan, there is a decrease in current density.
  • the alloy is repassivated where the reverse scan crosses the forward scan.
  • Ep is the repassivation potential, or protection potential i.e. the potential below which no pitting occur.
  • the difference between Eb and Ep is related to the susceptibility to pitting and crevice corrosion. The greater the difference the greater the susceptibility.
  • Table 1 discloses that the inventive steel with the increased carbon content has the less tendency to suffer localised corrosion and also that the inventive steel also repassivate more easily than the comparative steel. Accordingly, the inventive steel is much less sensitive to pitting and crevice corrosion.
  • Thermo-Calc The influence of the relative amounts of carbon and nitrogen on the formation of the different hard phases in the steel was calculated in Thermo-Calc for a steel having variable C and N contents and the following basic composition in weight %: Cr: 19.8, Mo: 2.5, V: 2.75; Si: 0.3, Mn: 03, Fe balance.
  • FIG. 2 discloses the amount of hard phases as a function of the ratio C/N and it can be seen that amount of M 2 X decreases rapidly with increasing ratio C/N. However, M 23 C 6 starts to form already at a C/N ratio of about 0.25.
  • FIG. 3 discloses calculated PRE-values as a function of the ratio C/N and it can be seen that the highest values are obtained for the steels according to the invention.
  • Thermo-Calc The influence of the relative amounts of carbon and nitrogen on the formation of the different hard phases in the steel was calculated in Thermo-Calc for a steel having variable C and N contents and the following basic composition in weight %: Cr: 18.2, Mo: 1.04. V: 3.47; Si: 0.3, Mn: 0.3, Fe balance.
  • FIG. 4 discloses the amount of hard phases as a function of the ratio C/N and it can be seen that amount of M 2 X decreases very rapidly with increasing ratio C/N. It can also be seen that M 23 C 6 starts to form at a C/N ratio of about 0.3.
  • FIG. 5 discloses calculated PRE-values as a function of the ratio C/N and again it can be seen that the highest values are obtained for the steels according to the invention.
  • Another mechanism which may contribute to the improved corrosion resistance disclosed in Table 1 and FIG. 1 , may be that the boundary regions surrounding the hard phase M 2 X may be depleted in Cr and Mo due to the formation of Cr and Mo rich M 2 X.
  • the present invention provides a to provide a powder metallurgy (PM) produced nitrogen alloyed cold work tools steel having an improved corrosion resistance in combination with a high hardness.
  • the cold work tool steel of the present invention is particular useful in applications requiring good wear resistance in combination with a high resistance to pitting corrosion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Heat Treatment Of Steel (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Heat Treatment Of Articles (AREA)
US14/917,521 2013-10-02 2014-10-02 Corrosion and wear resistant cold work tool steel Abandoned US20160214177A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE1351164-7 2013-10-02
SE1351164 2013-10-02
PCT/SE2014/051143 WO2015050496A1 (en) 2013-10-02 2014-10-02 Corrosion and wear resistant cold work tool steel

Publications (1)

Publication Number Publication Date
US20160214177A1 true US20160214177A1 (en) 2016-07-28

Family

ID=51690837

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/917,521 Abandoned US20160214177A1 (en) 2013-10-02 2014-10-02 Corrosion and wear resistant cold work tool steel

Country Status (17)

Country Link
US (1) US20160214177A1 (pl)
EP (1) EP2857126B1 (pl)
JP (1) JP6488287B2 (pl)
KR (1) KR102256012B1 (pl)
CN (1) CN105705667B (pl)
AU (1) AU2014330080B2 (pl)
BR (1) BR112016007332B1 (pl)
CA (1) CA2924877C (pl)
DK (1) DK2857126T3 (pl)
ES (1) ES2588539T3 (pl)
HU (1) HUE030403T2 (pl)
MX (1) MX2016004080A (pl)
PL (1) PL2857126T3 (pl)
PT (1) PT2857126T (pl)
RU (1) RU2675308C2 (pl)
TW (1) TWI638054B (pl)
WO (1) WO2015050496A1 (pl)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160318103A1 (en) * 2013-12-20 2016-11-03 Höganä Ab (Publ) A method for producing a sintered component and a sintered component
CN114150130A (zh) * 2021-12-01 2022-03-08 宁波江丰热等静压技术有限公司 一种热等静压吊具用板材的热处理方法及应用
CN114774643A (zh) * 2022-05-10 2022-07-22 无锡亿宝机械设备有限公司 一种m42材质的全硬化工作辊的改进型热处理方法
WO2023141206A1 (en) * 2022-01-19 2023-07-27 Maclean-Fogg Company 3d printed metallic tool die

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105177437A (zh) * 2015-09-24 2015-12-23 安庆市灵宝机械有限责任公司 一种耐磨损耐腐蚀合金钢
JP7167428B2 (ja) * 2017-11-10 2022-11-09 昭和電工マテリアルズ株式会社 鉄基焼結合金材及びその製造方法
RU2651071C1 (ru) * 2017-11-27 2018-04-18 Юлия Алексеевна Щепочкина Сплав на основе железа
CN108893673A (zh) * 2018-06-04 2018-11-27 江苏新华合金电器有限公司 蒸发器拉杆和拉杆螺母用12Cr13棒材及其制备方法
KR102146354B1 (ko) * 2019-11-19 2020-08-20 주식회사 첼링 내마모성과 내식성이 우수한 주방용 칼 및 그 제조방법
CN114318164B (zh) * 2021-03-22 2023-01-20 武汉钜能科技有限责任公司 耐磨耐蚀工具钢
CN114318131B (zh) * 2021-03-22 2023-01-20 武汉钜能科技有限责任公司 耐磨合金
CN113215482B (zh) * 2021-03-22 2022-05-20 武汉钜能科技有限责任公司 耐磨冷作工具钢
CN113416831A (zh) * 2021-05-27 2021-09-21 中钢集团邢台机械轧辊有限公司 一种宽幅铝冷轧工作辊热处理工艺方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080233225A1 (en) * 2005-08-24 2008-09-25 Uddeholm Tooling Aktiebolag Steel Alloy and Tools or Components Manufacture Out of the Steel Alloy

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247506A (en) * 1975-10-13 1977-04-15 Kobe Steel Ltd Nitrogen-containing powder-sintered high speed steel
JPS5297320A (en) * 1976-02-12 1977-08-16 Kobe Steel Ltd Nitrogen-containing high speed steel produced with powder metallurgy
SE456650C (sv) * 1987-03-19 1989-10-16 Uddeholm Tooling Ab Pulvermetallurgiskt framstaellt kallarbetsstaal
DE4231695C2 (de) * 1992-09-22 1994-11-24 Ver Schmiedewerke Gmbh Verwendung eines Stahls für Werkzeuge
JP4441947B2 (ja) * 1999-05-20 2010-03-31 日本精工株式会社 転がり軸受
SE0200429D0 (sv) * 2002-02-15 2002-02-15 Uddeholm Tooling Ab Stållegering och verktyg tillverkat av stållegeringen
SE526249C2 (sv) * 2003-12-05 2005-08-02 Erasteel Kloster Ab Stålmaterial samt användning av detta material
JP2007009321A (ja) * 2005-06-02 2007-01-18 Daido Steel Co Ltd プラスチック成形金型用鋼
SE529041C2 (sv) * 2005-08-18 2007-04-17 Erasteel Kloster Ab Användning av ett pulvermetallurgiskt tillverkat stål
SE533988C2 (sv) * 2008-10-16 2011-03-22 Uddeholms Ab Stålmaterial och förfarande för framställning därav
US8182617B2 (en) * 2010-10-04 2012-05-22 Moyer Kenneth A Nitrogen alloyed stainless steel and process
SE536596C2 (sv) * 2011-03-04 2014-03-18 Uddeholms Ab Varmarbetsstål och en process för tillverkning av ett varmarbetsstål

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080233225A1 (en) * 2005-08-24 2008-09-25 Uddeholm Tooling Aktiebolag Steel Alloy and Tools or Components Manufacture Out of the Steel Alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160318103A1 (en) * 2013-12-20 2016-11-03 Höganä Ab (Publ) A method for producing a sintered component and a sintered component
US11179778B2 (en) * 2013-12-20 2021-11-23 Höganäs Ab (Publ) Method for producing a sintered component and a sintered component
US11554416B2 (en) 2013-12-20 2023-01-17 Höganäs Ab (Publ) Method for producing a sintered component and a sintered component
CN114150130A (zh) * 2021-12-01 2022-03-08 宁波江丰热等静压技术有限公司 一种热等静压吊具用板材的热处理方法及应用
WO2023141206A1 (en) * 2022-01-19 2023-07-27 Maclean-Fogg Company 3d printed metallic tool die
CN114774643A (zh) * 2022-05-10 2022-07-22 无锡亿宝机械设备有限公司 一种m42材质的全硬化工作辊的改进型热处理方法

Also Published As

Publication number Publication date
BR112016007332B1 (pt) 2020-03-10
EP2857126B1 (en) 2016-05-25
DK2857126T3 (en) 2016-07-04
BR112016007332A2 (pt) 2017-08-01
JP2016537503A (ja) 2016-12-01
KR20160065165A (ko) 2016-06-08
HUE030403T2 (en) 2017-05-29
AU2014330080B2 (en) 2017-11-23
ES2588539T3 (es) 2016-11-03
PT2857126T (pt) 2016-08-18
RU2016109549A (ru) 2017-11-10
JP6488287B2 (ja) 2019-03-20
TW201522664A (zh) 2015-06-16
RU2675308C2 (ru) 2018-12-18
EP2857126A2 (en) 2015-04-08
PL2857126T3 (pl) 2016-11-30
CA2924877C (en) 2022-04-26
WO2015050496A1 (en) 2015-04-09
AU2014330080A1 (en) 2016-03-24
MX2016004080A (es) 2016-10-13
CA2924877A1 (en) 2015-04-09
CN105705667B (zh) 2017-11-21
TWI638054B (zh) 2018-10-11
KR102256012B1 (ko) 2021-05-24
EP2857126A3 (en) 2015-08-05
RU2016109549A3 (pl) 2018-06-29
CN105705667A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
US20160214177A1 (en) Corrosion and wear resistant cold work tool steel
EP3692180B1 (en) Stainless steel, a prealloyed powder obtained by atomizing the steel and use of the prealloyed powder
EP2455508B1 (en) High strength / corrosion-resistant,.austenitic stainless steel with carbon - nitrogen complex additive, and method for manufacturing same
EP3169821B1 (en) Cold work tool steel
US20200232078A1 (en) Steel suitable for hot working tools
EP3034211A1 (en) A wear resistant tool steel produced by HIP
US20160355909A1 (en) Stainless steel for a plastic mould and a mould made of the stainless steel
WO2018056884A1 (en) Hot work tool steel
KR20120050086A (ko) 강도와 연성의 조합과 내공식성이 우수한 고질소 오스테나이트계 스테인리스강 및 이의 제조방법
SE544681C2 (en) Maraging steel for hot-work tools
JP2018159133A (ja) 冷間加工工具鋼
JP2022182485A (ja) 耐食性に優れた工具鋼

Legal Events

Date Code Title Description
AS Assignment

Owner name: UDDEHOLMS AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EJNERMARK, SEBASTIAN;HILLSKOG, THOMAS;EKMAN, LARS;AND OTHERS;SIGNING DATES FROM 20160318 TO 20160429;REEL/FRAME:038722/0934

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION