CN105705667B - 耐腐蚀和磨损的冷作工具钢 - Google Patents

耐腐蚀和磨损的冷作工具钢 Download PDF

Info

Publication number
CN105705667B
CN105705667B CN201480054689.4A CN201480054689A CN105705667B CN 105705667 B CN105705667 B CN 105705667B CN 201480054689 A CN201480054689 A CN 201480054689A CN 105705667 B CN105705667 B CN 105705667B
Authority
CN
China
Prior art keywords
steel
content
computed
under
powder metallurgically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480054689.4A
Other languages
English (en)
Other versions
CN105705667A (zh
Inventor
S.埃纳马克
T.希尔斯科格
L.埃克曼
R.罗伯逊
V.伯奎斯特
J.卡尔森
P.达姆
U.莫斯费尔特
R.埃德文森
A.恩斯特龙斯文森
B.赫格曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uddeholms AB
Original Assignee
Uddeholms AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uddeholms AB filed Critical Uddeholms AB
Publication of CN105705667A publication Critical patent/CN105705667A/zh
Application granted granted Critical
Publication of CN105705667B publication Critical patent/CN105705667B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Heat Treatment Of Steel (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明涉及抵抗腐蚀和磨损的冷作工具钢。该钢包含如下的主要组分(以重量%计):C 0.3‑0.8,N 1.0‑2.2,(C+N)1.3‑2.2,C/N 0.17‑0.50,Si≤1.0,Mn 0.2‑2.0,Cr 13‑30,Mo 0.5‑3.0,V 2.0‑5.0,余量为任选的元素,铁和杂质。

Description

耐腐蚀和磨损的冷作工具钢
技术领域
本发明涉及耐腐蚀和磨损的冷作(冷加工,cold work)工具钢、和冷作钢的制造方法、以及该冷作工具钢的用途。
背景技术
近年来,氮合金化的马氏体工具钢已经被引入市场并取得相当大的兴趣,因为它们组合了高的耐磨性和优异的耐腐蚀性。这些钢具有大范围的应用,例如用于模塑侵蚀性塑料(aggressive plastic)、用于食品加工中的刀具和其它组件、以及用于减少医药工业中由腐蚀引发的污染。
所述钢通常用粉末冶金制造。将基础钢(basic steel)组合物首先粉化(atomize),并随后经历氮化处理以将期望量的氮引入粉末。之后,将所述粉末填充至包套(capsule)并经历热等静压(HIP)以制造各向同性钢。
通常,相比于常规工具钢,将碳量降低至非常低的水平。通过用氮替代大部分的碳可将M7C3和M23C6型的富铬碳化物用非常稳定的MN型-氮化物的硬质粒子替代。
实现了两个重要效果。首先,相对软的和各向异性的M7C3-碳化物相(≈1700HV)被小的均匀分布的MN型硬质相的非常硬且稳定的相(≈2800HV)所代替。由此,在相同体积分数的硬质相的情况下改善了耐磨性。第二,在硬化温度下的固溶体中的Cr、Mo和N的量非常大地增加,因为较少的铬结合在硬质相中,且因为M23C6和M7C3型碳化物对氮没有任何溶解性。由此,较多的铬留在固溶体中,且增强了薄的富铬表面钝化膜,其导致对一般腐蚀和点蚀(pitting corrosion)的抵抗性增加。
因此,为了获得良好的腐蚀性质,已经将碳含量限制至在DE 42 31 695A1中的小于0.3%C、优选小于0.1%C和在WO 2005/054531 A1中的≤0.12%C。
发明内容
本发明的一般目的是提供具有改善的性质(尤其是良好的耐腐蚀性和高硬度的组合)的粉末冶金(PM)制造的氮合金化的冷作工具钢合金。
具体目的是提供在固定的铬含量下具有改善的耐腐蚀性的氮合金化的马氏体冷作工具钢合金。
另一目的是提供所述材料的制造方法。
前述目的以及额外的优点通过提供具有如合金权利要求中阐述的组成的冷作工具钢在很大程度上得以实现。
在权利要求书中限定了本发明。
具体实施方式
以下简要地对要求的合金的化学成分的限制以及单独元素及其彼此的相互作用的重要性进行解释。钢的化学组成的所有百分比在整个说明书中以重量%(wt.%)给出。
碳(0.3-0.8%)
碳以0.3%、优选至少0.35%的最小含量存在。在高碳含量下,M23C6和M7C3型的碳化物将在钢中形成。因此,碳含量不应该超过0.8%。可将碳的上限设置为0.7%或0.6%。优选地,碳含量限制至0.5%。优选的范围是0.32-0.48%、0.35-0.45%、0.37-0.44%和0.38-0.42%。在任何情形下,都应该控制碳的量使得所述钢中的M23C6和M7C3型的碳化物的量限制至10体积%,优选的是,所述钢不含所述碳化物。
氮(1.0-2.2%)
与碳相反,氮不能包含于M7C3中。因此,氮含量应该比碳含量高得多以避免M7C3-碳化物的沉淀。为了得到期望的硬质相的类型和量,相对于强的碳化物形成物(前体,former)(尤其是钒)的含量平衡氮含量。氮含量限制在1.0-2.2%、优选1.1-1.8%或1.3-1.7%。
(C+N)(1.3-2.2%)
碳和氮的总量是本发明的必要特征。(C+N)的组合量应该在1.3-2.2%、优选1.7-2.1%或1.8-2.0%的范围内。
C/N(0.17-0.50)
碳和氮的合适平衡是本发明的必要特征。通过控制碳和氮的含量可控制硬质相的类型和量。具体地,六方相M2X的量将在硬化后降低。因此,C/N比值应该为0.17-0.50。下限比值可为0.18、0.19、0.20、0.21、0.22、0.23、0.24或0.25。上限比值可为0.5、0.48、0.46、0.45、0.44、0.42、0.40、0.38、0.36或0.34。可自由地组合上限比值和下限比值。优选的范围为0.20-0.46和0.22-0.45。
铬(13-30%)
当铬以至少11%的溶解量存在时,其导致在钢表面上钝化膜的形成。铬应该以13-30%的量在钢中存在,以赋予钢良好的淬透性及抗氧化性和耐腐蚀性。优选地,Cr是以大于16%的量存在的,以保证良好的耐点蚀性。下限根据期望应用设置,且可为17%、18%、19%、20%、21%或22%。然而,Cr是强的铁素体形成物,且为了避免硬化后的铁素体,需要控制所述量。由于实践的原因,可将上限降低至26%、24%或甚至22%。优选的范围包括16-26%、18-24%、19-21%、20-22%和21-23%。
钼(0.5-3.0%)
已知Mo对淬透性具有非常有利的效果。改善耐点蚀性也是已知的。最小含量为0.5%,且也可设置为0.6%、0.7%、0.8%或1.0%。钼是强的碳化物形成元素且也是强的铁素体形成物。因此,钼的最大含量为3.0%。优选地,钼限制至2.0%、1.7%或甚至1.5%。
钨(≤1%)
原则上,钼可被两倍的钨所代替。然而,钨是昂贵的,且它也使废金属的处理复杂化。因此,最大量限制至1%、优选0.2%,且最优选不进行添加。
钒(2.0-5.0%)
钒在钢的基质中形成均匀分布的M(N,C)型的初生沉淀氮碳化物。在本申请的钢中,M主要是钒,但可存在显著量的Cr和Mo。因此,钒应该以2-5的量存在。上限可设置为4.8%、4.6%、4.4%、4.2%或4.0%。下限可为2.2%、2.4%、2.5%、2.6%、2.7%、2,8%、2.8%和2.9%。所述上限和所述下限可在权利要求1中列出的限值内自由组合。优选的范围包括2-4%。
铌(≤2.0%)
铌与钒的类似之处在于它形成M(N,C)型的氮碳化物,且原则上可用于代替钒但相比于钒要求双倍量的铌。因此,Nb的最大添加为2.0%。(V+Nb/2)的组合量应该为2.0-5.0%。然而,Nb导致M(N,C)的形状更尖(有角的,angular)。因此,优选的最大量为0.5%。优选地,不添加铌。
硅(≤1.0%)
硅用于脱氧。Si在钢中以溶解形式存在。Si是强的铁素体形成物并因此应该限制至≤1.0%。
锰(0.2-2.0%)
锰有助于改善钢的淬透性,并且锰与硫一起通过形成硫化锰有助于改善机械加工性。因此,锰应该以0.2%的最小含量、优选至少0.3%存在。在较高的硫含量下,锰阻止钢的热脆性。钢应该包含最大2.0%、优选最大1.0%的Mn。优选的范围是0.2-0.5%、0.2-0.4%、0.3-0.5%和0.3-0.4%。
镍(≤5.0%)
镍是任选的,且可以最高至5%的量存在。它赋予钢良好的淬透性和韧性。由于昂贵,应该尽可能地限制钢的镍含量。相应地,Ni含量限制至1%、优选0.25%。
铜(≤3.0%)
Cu是任选元素,其可有助于增大钢的硬度和耐腐蚀性。如果使用,优选的范围是0.02-2%,且最优选的范围是0.04-1.6%。然而,一旦已经添加铜则不可能从钢提取出。这急剧地使废料处理更加困难。由于该原因,正常情况下,不故意添加铜。
钴(≤10.0%)
Co是任选元素。它有助于增大马氏体的硬度。最大量为10%,且如果添加,有效量为约4-6%。然而,由于实践的原因、例如废料处理,不故意添加Co。优选的最大含量为0.2%。
硫(≤0.5%)
S有助于改善钢的机械加工性。在较高的硫含量下,存在热脆性的风险。此外,高的硫含量可对钢的疲劳性质具有不利效果。因此,钢应该包含≤0.5%、优选≤0.035%。
Be、Bi、Se、Mg和REM(稀土金属)
可将这些元素以所要求的量添加至钢以进一步改善机械加工性、可热加工性和/或焊接性。
硼(≤0.01%)
可使用B以进一步增大钢的硬度。将量限制至0.01%、优选≤0.004%。
Ti、Zr、Al和Ta
这些元素是碳化物形成物,且可以所要求的范围存在于合金中以改变硬质相的组成。然而,正常情况下,这些元素均不添加。
硬质相
硬质相MX、M2X、M23C6和M7C3的总含量应该不超过50体积%,其中M是以上详细说明的金属中的一种或多种,尤其是V、Mo和/或Cr,且X为C、N和/或B,和其中所述硬质相的含量满足以下要求(以体积%计):
更优选地,MX的含量为5-15体积%,M2X的含量为≤3体积%,和M23C6+M7C3的含量≤3体积%。最优选地,所述钢不含组分M7C3
PRE
耐点蚀性当量(pitting resistance equivalent,PRE)通常用于定量不锈钢的耐点蚀性。较高值表示较高的耐点蚀性。对于高氮马氏体不锈钢,可使用如下表达式:
PRE=%Cr+3.3%Mo+30%N
其中%Cr、%Mo和%N是经计算的在奥氏体化温度(TA)下在基质中溶解的平衡含量,其中在奥氏体中溶解的铬含量为至少13%。溶解含量能用关于实际奥氏体化温度(TA)的Thermo-Calc计算,和/或在淬火后的钢中测量。
所述奥氏体化温度(TA)在950-1200℃、典型地1080-1150℃的范围。
根据以上推理,在奥氏体化温度下的奥氏体组成可对钢的耐点蚀性具有相当大的影响。经计算的PRE-值的下限可为25、26、27、28、29、30、31、32或33。
高氮不锈钢是基于碳被氮代替。通过用氮替代大部分的碳,可用MN-型氮化物的非常稳定的硬质粒子替代M7C3和M23C6型富铬碳化物。因此,在硬化温度下固溶体中的Cr、Mo和N的量非常大地增加,因为较少的铬结合在硬质相中和因为M23C6和M7C3型碳化物对氮没有任何溶解性。由此,较多的铬留在固溶体中且加强了薄的富铬表面钝化膜,其导致增大的耐一般腐蚀性和耐点蚀性。相应地,将预期,如果碳代替一部分所述氮,则耐点蚀性将降低。因此,本领域已知的高氮不锈钢具有低的碳含量。
然而,本发明人已经惊奇地发现可通过将碳含量增大至0.3%以上来增大耐腐蚀性,如将结合实施例进行讨论的。
钢的制造
具有所要求的化学组成的工具钢可通过常规的气体粉化、随后将粉末氮化后进行HIP而制造。在气体粉化之后在钢中的氮含量通常小于0.2%。因此,余下的氮在粉末的氮化处理期间添加。在固结后,钢可以经HIP的形式使用,或者成形为期望形状。正常情况下,钢在使用前经历硬化和回火。奥氏体化可通过在950-1200℃、典型地1080-1150℃范围的奥氏体化温度(TA)下退火而进行。典型的处理是在1080℃下退火30分钟。钢可通过借助在液氮中深冷在真空炉中淬火而硬化,和然后在200℃下以2小时回火两次(2x2h)。
实施例1
在本实施例中,根据本发明的钢与具有较低碳含量和不同碳和氮之间的平衡的钢进行比较。两种钢通过粉末冶金制造。
将基础钢组合物熔融并经历气体粉化。随后,使获得的粉末经历氮化处理以将期望量的氮引入所述粉末。将氮含量从约0.1%增大至相应含量。
之后,使经氮化的粉末通过在1100℃下2小时的常规热等静压(HIP)转变为各向同性的固体钢主体。施加的压力为100MPa。
由此获得的钢具有如下组成(以重量%计):
余量的铁和杂质。
所述钢在1080℃下奥氏体化30分钟,并通过借助在液氮中的深冷在真空炉中淬火而硬化,随后在200℃以2小时回火2次(2x2h)。本发明的钢具有60HRC的硬度,而对比钢具有58HRC的硬度。
合金的显微结构由回火马氏体和硬质相组成。在两种钢的显微结构中确认两种不同的硬质相:MX和M2X。
在对比钢中,六方的M2X是多数相,而面心立方的MX-相是少数相。然而,在本发明的钢中,MX是多数相,而M2X是少数相。
对点蚀的材料敏感性通过阳极极化扫描进行实验检查。将具有饱和的Ag/AgCl参比电极和碳网(carbon mesh)对电极的电化学电池用于循环极化测量。首先,使用0.1M的NaCl溶液记录500目的磨细的样品的开路电位(open circuit potential,OCP)以确保达到稳定的电位。接着,以10mV/分钟的扫描速率进行所述循环极化测量。初始电位为相对于OCP的-0.2V,且终止电位设置为OCP。通过在软件中选择设置,当阳极电流密度达到0.1mA/cm2时,向上的电位扫描自动反向。
图1公开了示意性的阳极极化曲线和能从该曲线获得的信息。正向扫描给出关于点蚀开始的信息,和反向扫描提供关于合金再钝化(repassivation)行为的信息。Eb是点蚀击穿(breakdown)的电位值,在该电位值以上将引起新的点斑(pit)和已有的点斑将蔓延。随着在反向扫描上电位的降低,存在电流密度的减小。在反向扫描与正向扫描相交的情况下所述合金再钝化。Ep是再钝化电位或保护电位,即低于该电位没有点蚀发生。Eb和Ep之间的差异与对点蚀和缝隙腐蚀的敏感性相关。所述差异越大,敏感性越大。
Eb(V) Ep(V)
本发明 0.38 0.07
对比 0.30 -0.10
表1.阳极极化的结果
表1公开了具有增加的碳含量的本发明的钢具有较少的遭受局部腐蚀的倾向,而且,本发明的钢也比对比钢更容易再钝化。相应地,本发明的钢对点蚀和缝隙腐蚀的敏感小得多。
这些结果是完全预料不到的,因为本发明的钢具有比对比钢低的Cr、Mo和N含量。因此的原因是目前无法完全理解的。然而,本发明人猜测所述差异可能与奥氏体化和淬火后残留在钢中的硬质相的类型和量有关。
实施例2
对于具有不同C和N含量以及如下的基本组成(以重量%计)的钢以Thermo-Calc计算碳和氮的相对量对该钢中不同硬质相的形成的影响:Cr:19.8、Mo:2.5、V:2.75、Si:0.3、Mn:0.3、余量Fe。
C N C/N MX M2X M23C6 Cr Mo N PRE
对比 0.1 2.05 0.05 4.2 12.7 0 13 2.5 0.23 28.2
对比 0.2 1.9 0.11 4.0 11.3 0 14 2.6 0.24 29.7
本发明 0.3 1.75 0.17 3.9 9.8 0 15 2.6 0.26 31.4
本发明 0.4 1.6 0.25 3.9 8.0 0.6 16 2.6 0.27 32.7
本发明 0.5 1.45 0.34 4.2 6.0 2.6 16 2.4 0.27 32.0
本发明 0.6 1.3 0.46 4.6 3.7 4.6 16 2.3 0.26 31.4
对比 0.7 1.15 0.60 5.0 1.5 6.5 16.5 2.2 0.26 31.4
表2.在1080℃下实施例2的结果。以重量%计的元素浓度。以体积%计的硬质相。CrMoN表示经计算的在1080℃在基质中的各元素的溶解含量。PRE由所述溶解含量计算。
图2公开了硬质相的量随着C/N比的变化,且可看出M2X的量随C/N比的增大而迅速减少。然而,M23C6在约0.25的C/N比下已经开始形成。
图3公开了计算的PRE-值随着C/N比的变化,且可看出根据本发明的钢获得了最高值。
实施例3
对于具有不同C和N含量以及如下的基本组成(以重量%计)的钢以Thermo-Calc计算碳和氮的相对量对该钢中的不同硬质相的形成的影响:Cr:18.2、Mo:1.04、V:3.47、Si:0.3、Mn:0.3、余量Fe。
C N C/N MX M2X M23C6 Cr Mo N PRE
对比 0.1 2.05 0.05 7.0 7.4 0 14.0 1.15 0.23 24.7
对比 0.2 1.9 0.11 6.8 6.1 0 14.5 1.16 0.24 25.5
本发明 0.3 1.75 0.17 6.7 4.7 0 15.5 1.16 0.26 27.1
本发明 0.4 1.6 0.25 6.6 3.1 0 16.5 1.16 0.27 28.4
本发明 0.5 1.45 0.34 6.8 1.2 1.6 16.8 1.1 0.27 28.5
本发明 0.6 1.3 0.46 6.8 0 3.5 16.8 1.0 0.25 27.6
对比 0.7 1.15 0.60 6.3 0 5.2 16.4 0.9 0.21 25.7
表3.在1080℃下实施例3的结果。元素浓度以重量%计。硬质相以体积%计。CrMoN表示经计算的在1080℃在基质中的各元素的溶解含量。PRE由所述溶解含量计算。
图4公开了硬质相的量随C/N比的变化,且可看出M2X的量随C/N比的增大而非常迅速地减少。也可看出M23C6在约0.3的C/N比下开始形成。
图5公开了计算的PRE-值随C/N比的变化,且可再次看出根据本发明的钢获得最高值。
这些结果证实,碳和氮的合适平衡是本发明的必要特征。可实现仔细地受控的碳含量的增加而不导致与钢中的M23C6和M7C3型碳化物相关的问题。这些结果也揭示了,如果如权利要求中限定的控制碳和氮的含量,则硬化后六方相M2X的量将减少。该相主要是指Cr2N,但也可包括显著量的Mo。M2X量的减少是在奥氏体化期间溶解的结果。尽管在某些情况下这些元素的一部分可在增加的MX部分中被发现(图2),但是看起来M2X的溶解导致溶解在基质中的Cr、Mo和N的量增加,PRE-数相应地增加直至某一极限值。之后,PRE-值作为M23C6形成的结果将降低,因为所述相富含Cr和Mo。
可有助于表1和图1中公开的改善的耐腐蚀性的另一机理可为,在硬质相M2X周围的边界区域可由于富含Cr和Mo的M2X的形成而消耗Cr和Mo。
可影响耐腐蚀性的另一可能机理是硬质相MX中的碳含量增加可导致该相中Cr的溶解度的降低。这会导致MX的体积分数的降低,且更多的铬保留在固溶体中,这有助于改善耐腐蚀性。
相应地,本发明提供具有改善的耐腐蚀性和高的硬度的组合的粉末合金(PM)制造的氮合金化的冷作工具钢。
工业适用性
本发明的冷作工具钢特别适用于要求良好的耐磨型和高的耐点蚀性的组合的应用中。

Claims (15)

1.粉末冶金制造的钢,其由如下组成(以重量%计):
余量的铁和杂质。
2.根据权利要求1的粉末冶金制造的钢,其中V的最大含量限制至4.8%。
3.根据权利要求1-2的任一项的粉末冶金制造的钢,其中所述钢满足以下要求的至少一项(以重量%计):
4.根据权利要求1-2的任一项的粉末冶金制造的钢,其中所述钢满足以下要求的至少一项(以重量%计):
5.根据权利要求1-2的任一项的粉末冶金制造的钢,其中所述钢满足以下要求的至少一项(以重量%计):
除了当如权利要求4中定义的添加Co时以外,
6.根据权利要求1-2的任一项的粉末冶金制造的钢,其中显微结构包括回火马氏体和由MX、M2X、M23C6和M7C3中的一种或多种组成的硬质相,且其中所述钢具有58-64HRC的硬度。
7.根据权利要求1-2的任一项的粉末冶金制造的钢,其中所述硬质相MX、M2X、M23C6和M7C3的含量满足如下要求(以体积%计):
MX 5-25,
M2X ≤10,
M23C6+M7C3 ≤10,
其中M为V、Mo和Cr中的一种或多种,且X为C、N或B中的一种或多种。
8.根据权利要求1-2的任一项的粉末冶金制造的钢,其中在1080℃的奥氏体化温度TA下的所述钢具有≥18的经计算的PRE,其中PRE=Cr+3.3Mo+30N,且Cr、Mo和N是经计算的在TA下在基质中溶解的平衡含量,其中所述奥氏体中溶解的铬含量为至少13%。
9.根据权利要求1-2的任一项的粉末冶金制造的钢,其中在1080℃的奥氏体化温度TA下的所述钢具有≥20的经计算的PRE,其中PRE=Cr+3.3Mo+30N,且Cr、Mo和N是经计算的在TA下在基质中溶解的平衡含量,其中所述奥氏体中溶解的铬含量为至少16%。
10.根据权利要求1-2的任一项的粉末冶金制造的钢,其中在1080℃的奥氏体化温度TA下的所述钢具有≥22的经计算的PRE,其中PRE=Cr+3.3Mo+30N,且Cr、Mo和N是经计算的在TA下在基质中溶解的平衡含量。
11.根据权利要求1-2的任一项的粉末冶金制造的钢,其中在1080℃的奥氏体化温度(TA)下的所述钢具有≥25的经计算的PRE,其中PRE=Cr+3.3Mo+30N,且Cr、Mo和N是经计算的在TA下在基质中溶解的平衡含量。
12.根据权利要求7的粉末冶金制造的钢,其中所述硬质相MX的含量满足如下要求(以体积%计):
MX为5-15
M2X≤1
M23C6+M7C3≤1。
13.具有如权利要求1-12的任一项中定义的组成的钢的制造方法,包括如下步骤:使具有如前述权利要求的任一项中定义的除氮含量外的化学组成的钢合金粉化,使粉末经历氮化处理以调节所述合金的氮含量至前述权利要求的任一项中定义的含量,将所述粉末填充至包套中且使该包套经历HIP-处理,形成所得的钢并使其经历硬化和回火。
14.根据权利要求13的钢的制造方法,包括在950-1200℃硬化30分钟,将经硬化的钢在液氮中深冷,和在180-250℃以两小时回火两次。
15.根据权利要求13的钢的制造方法,包括在950-1200℃硬化30分钟,将经硬化的钢在液氮中深冷,和在450-550℃以两小时回火两次。
CN201480054689.4A 2013-10-02 2014-10-02 耐腐蚀和磨损的冷作工具钢 Active CN105705667B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE1351164-7 2013-10-02
SE1351164 2013-10-02
PCT/SE2014/051143 WO2015050496A1 (en) 2013-10-02 2014-10-02 Corrosion and wear resistant cold work tool steel

Publications (2)

Publication Number Publication Date
CN105705667A CN105705667A (zh) 2016-06-22
CN105705667B true CN105705667B (zh) 2017-11-21

Family

ID=51690837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480054689.4A Active CN105705667B (zh) 2013-10-02 2014-10-02 耐腐蚀和磨损的冷作工具钢

Country Status (17)

Country Link
US (1) US20160214177A1 (zh)
EP (1) EP2857126B1 (zh)
JP (1) JP6488287B2 (zh)
KR (1) KR102256012B1 (zh)
CN (1) CN105705667B (zh)
AU (1) AU2014330080B2 (zh)
BR (1) BR112016007332B1 (zh)
CA (1) CA2924877C (zh)
DK (1) DK2857126T3 (zh)
ES (1) ES2588539T3 (zh)
HU (1) HUE030403T2 (zh)
MX (1) MX2016004080A (zh)
PL (1) PL2857126T3 (zh)
PT (1) PT2857126T (zh)
RU (1) RU2675308C2 (zh)
TW (1) TWI638054B (zh)
WO (1) WO2015050496A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3084029B1 (en) 2013-12-20 2019-08-21 Höganäs AB (publ) A method for producing a sintered component and a sintered component
CN105177437A (zh) * 2015-09-24 2015-12-23 安庆市灵宝机械有限责任公司 一种耐磨损耐腐蚀合金钢
JP7167428B2 (ja) * 2017-11-10 2022-11-09 昭和電工マテリアルズ株式会社 鉄基焼結合金材及びその製造方法
RU2651071C1 (ru) * 2017-11-27 2018-04-18 Юлия Алексеевна Щепочкина Сплав на основе железа
CN108893673A (zh) * 2018-06-04 2018-11-27 江苏新华合金电器有限公司 蒸发器拉杆和拉杆螺母用12Cr13棒材及其制备方法
KR102146354B1 (ko) * 2019-11-19 2020-08-20 주식회사 첼링 내마모성과 내식성이 우수한 주방용 칼 및 그 제조방법
CN113215482B (zh) * 2021-03-22 2022-05-20 武汉钜能科技有限责任公司 耐磨冷作工具钢
CN114318164B (zh) * 2021-03-22 2023-01-20 武汉钜能科技有限责任公司 耐磨耐蚀工具钢
CN114318131B (zh) * 2021-03-22 2023-01-20 武汉钜能科技有限责任公司 耐磨合金
CN113416831A (zh) * 2021-05-27 2021-09-21 中钢集团邢台机械轧辊有限公司 一种宽幅铝冷轧工作辊热处理工艺方法
CN114150130B (zh) * 2021-12-01 2023-09-08 宁波江丰热等静压技术有限公司 一种热等静压吊具用板材的热处理方法及应用
WO2023141206A1 (en) * 2022-01-19 2023-07-27 Maclean-Fogg Company 3d printed metallic tool die
CN114774643A (zh) * 2022-05-10 2022-07-22 无锡亿宝机械设备有限公司 一种m42材质的全硬化工作辊的改进型热处理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101248204A (zh) * 2005-08-24 2008-08-20 尤迪霍尔姆工具公司 合金钢及由该合金钢制造的工具或部件
TW201029776A (en) * 2008-10-16 2010-08-16 Uddeholm Tooling Ab Steel material and a method for its manufacture

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247506A (en) * 1975-10-13 1977-04-15 Kobe Steel Ltd Nitrogen-containing powder-sintered high speed steel
JPS5297320A (en) * 1976-02-12 1977-08-16 Kobe Steel Ltd Nitrogen-containing high speed steel produced with powder metallurgy
SE456650C (sv) * 1987-03-19 1989-07-11 Uddeholm Tooling Ab Pulvermetallurgiskt framstaellt kallarbetsstaal
DE4231695C2 (de) 1992-09-22 1994-11-24 Ver Schmiedewerke Gmbh Verwendung eines Stahls für Werkzeuge
JP4441947B2 (ja) * 1999-05-20 2010-03-31 日本精工株式会社 転がり軸受
SE0200429D0 (sv) * 2002-02-15 2002-02-15 Uddeholm Tooling Ab Stållegering och verktyg tillverkat av stållegeringen
SE526249C2 (sv) * 2003-12-05 2005-08-02 Erasteel Kloster Ab Stålmaterial samt användning av detta material
JP2007009321A (ja) * 2005-06-02 2007-01-18 Daido Steel Co Ltd プラスチック成形金型用鋼
SE529041C2 (sv) * 2005-08-18 2007-04-17 Erasteel Kloster Ab Användning av ett pulvermetallurgiskt tillverkat stål
US8182617B2 (en) * 2010-10-04 2012-05-22 Moyer Kenneth A Nitrogen alloyed stainless steel and process
SE536596C2 (sv) * 2011-03-04 2014-03-18 Uddeholms Ab Varmarbetsstål och en process för tillverkning av ett varmarbetsstål

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101248204A (zh) * 2005-08-24 2008-08-20 尤迪霍尔姆工具公司 合金钢及由该合金钢制造的工具或部件
TW201029776A (en) * 2008-10-16 2010-08-16 Uddeholm Tooling Ab Steel material and a method for its manufacture

Also Published As

Publication number Publication date
KR20160065165A (ko) 2016-06-08
ES2588539T3 (es) 2016-11-03
HUE030403T2 (en) 2017-05-29
BR112016007332A2 (pt) 2017-08-01
EP2857126A3 (en) 2015-08-05
CA2924877A1 (en) 2015-04-09
JP2016537503A (ja) 2016-12-01
TWI638054B (zh) 2018-10-11
CN105705667A (zh) 2016-06-22
EP2857126A2 (en) 2015-04-08
WO2015050496A1 (en) 2015-04-09
BR112016007332B1 (pt) 2020-03-10
EP2857126B1 (en) 2016-05-25
TW201522664A (zh) 2015-06-16
MX2016004080A (es) 2016-10-13
AU2014330080A1 (en) 2016-03-24
RU2016109549A (ru) 2017-11-10
JP6488287B2 (ja) 2019-03-20
AU2014330080B2 (en) 2017-11-23
PL2857126T3 (pl) 2016-11-30
US20160214177A1 (en) 2016-07-28
KR102256012B1 (ko) 2021-05-24
RU2675308C2 (ru) 2018-12-18
CA2924877C (en) 2022-04-26
PT2857126T (pt) 2016-08-18
RU2016109549A3 (zh) 2018-06-29
DK2857126T3 (en) 2016-07-04

Similar Documents

Publication Publication Date Title
CN105705667B (zh) 耐腐蚀和磨损的冷作工具钢
EP0750687B1 (en) High hardness martensitic stainless steel with good pitting corrosion resistance
CN104884660B (zh) 渗碳用钢
CN102770570B (zh) 表面硬化钢和渗碳材料
US20060249230A1 (en) Corrosion and wear resistant alloy
EP3169821B1 (en) Cold work tool steel
CN110139942A (zh) 高硬度耐磨钢及其制造方法
JP3587330B2 (ja) 耐孔食性の優れた高硬度マルテンサイト系ステンレス鋼
JP2968844B2 (ja) 耐孔食性の優れた高硬度マルテンサイト系ステンレス鋼
JP2001049399A (ja) 耐孔食性の優れた高硬度マルテンサイト系ステンレス鋼
EP3126537B1 (en) Dual-phase stainless steel
JPH1018001A (ja) 耐孔食性の優れた高硬度マルテンサイト系ステンレス鋼
CA2475248A1 (en) Nanocarbide precipitation strengthened ultrahigh-strength, corrosion resistant, structural steels
JP2005298840A (ja) 靭性に優れた高強度析出硬化型マルテンサイト系ステンレス鋼
JP5887896B2 (ja) 析出硬化型ステンレス鋼及びその製造方法
CN107761009A (zh) 高强度特种钢
JP2023000442A (ja) マルテンサイト系ステンレス鋼、並びに、マルテンサイト系ステンレス鋼部材及びその製造方法
JPH11350092A (ja) 冷間加工性に優れた高強度高耐食性ステンレス鋼
JP2013221158A (ja) 析出硬化型ステンレス鋼

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant