US20160177425A1 - Aluminum alloy suitable for the high speed production of aluminum bottle and the process of manufacturing thereof - Google Patents
Aluminum alloy suitable for the high speed production of aluminum bottle and the process of manufacturing thereof Download PDFInfo
- Publication number
- US20160177425A1 US20160177425A1 US14/974,661 US201514974661A US2016177425A1 US 20160177425 A1 US20160177425 A1 US 20160177425A1 US 201514974661 A US201514974661 A US 201514974661A US 2016177425 A1 US2016177425 A1 US 2016177425A1
- Authority
- US
- United States
- Prior art keywords
- alloy
- aluminum
- cold rolling
- aluminum alloy
- impurities
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 38
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 25
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 229910045601 alloy Inorganic materials 0.000 claims description 71
- 239000000956 alloy Substances 0.000 claims description 71
- 238000000137 annealing Methods 0.000 claims description 53
- 238000005097 cold rolling Methods 0.000 claims description 50
- 229910052751 metal Inorganic materials 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 31
- 230000006641 stabilisation Effects 0.000 claims description 30
- 238000011105 stabilization Methods 0.000 claims description 30
- 239000012535 impurity Substances 0.000 claims description 22
- 238000001953 recrystallisation Methods 0.000 claims description 22
- 229910052804 chromium Inorganic materials 0.000 claims description 20
- 229910052802 copper Inorganic materials 0.000 claims description 20
- 229910052748 manganese Inorganic materials 0.000 claims description 20
- 229910052710 silicon Inorganic materials 0.000 claims description 20
- 229910052742 iron Inorganic materials 0.000 claims description 19
- 229910052749 magnesium Inorganic materials 0.000 claims description 19
- 229910052719 titanium Inorganic materials 0.000 claims description 19
- 229910052725 zinc Inorganic materials 0.000 claims description 19
- 238000005266 casting Methods 0.000 claims description 13
- 238000005098 hot rolling Methods 0.000 claims description 12
- 239000011651 chromium Substances 0.000 description 16
- 239000010936 titanium Substances 0.000 description 16
- 239000010949 copper Substances 0.000 description 15
- 239000011777 magnesium Substances 0.000 description 15
- 239000011572 manganese Substances 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 239000011701 zinc Substances 0.000 description 14
- 238000000265 homogenisation Methods 0.000 description 11
- 238000007493 shaping process Methods 0.000 description 8
- 238000001350 scanning transmission electron microscopy Methods 0.000 description 5
- 238000001000 micrograph Methods 0.000 description 4
- 238000009749 continuous casting Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 238000000071 blow moulding Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010409 ironing Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 235000015897 energy drink Nutrition 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000014214 soft drink Nutrition 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D15/00—Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D7/00—Casting ingots, e.g. from ferrous metals
- B22D7/005—Casting ingots, e.g. from ferrous metals from non-ferrous metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Rigid or semi-rigid containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material or by deep-drawing operations performed on sheet material
- B65D1/02—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
- B65D1/0207—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
- C21D1/28—Normalising
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
Definitions
- the invention is related to a new aluminum alloy.
- the invention further relates to a method of producing highly shaped aluminum products, such as bottles or cans, using the aluminum alloy.
- the manufacturing process typically involves first producing a cylinder using a drawing and wall ironing (DWI) process.
- DWI drawing and wall ironing
- the resulting cylinder is then formed into a bottle shape using, for example, a sequence of full-body necking steps, blow molding, or other mechanical shaping, or a combination of these processes.
- the demands on any alloy used in such a process or combination of processes are complex.
- a final requirement is the ability to form the bottles at a high speed.
- a high throughput e.g., 1000 bottles per minute
- the shaping of the bottle must be completed in a very short time.
- methods are needed for making preforms from the alloy at high speeds and levels of runability, such as that demonstrated by the current can body alloy AA3104.
- AA3104 contains a high volume fraction of coarse intermetallic particles formed during casting and modified during homogenization and rolling. These particles play a major role in die cleaning during the DWI process, helping to remove any aluminum or aluminum oxide build-up on the dies, which improves both the metal surface appearance and also the runability of the sheet.
- novel alloys that display high strain rate formability at elevated temperatures.
- the alloys can be used for producing highly shaped aluminum products, including bottles and cans.
- the aluminum alloy described herein comprises about 0.15-0.50% Si, 0.35-0.65% Fe, 0.05-0.30% Cu, 0.60-1.10% Mn, 0.80-1.30% Mg, 0.000-0.0080% Cr, 0.000-0.500% Zn, 0.000-0.080% Ti, up to 0.15% of impurities, with the remainder as Al (all in weight percentage (wt. %)).
- products e.g., bottles and cans
- an aluminum alloy as described herein.
- the methods include direct chill (DC) casting of an aluminum alloy as described herein to form a metal product, homogenizing the metal product, hot rolling the metal product to produce a metal sheet, cold rolling the metal sheet (e.g., with a 60% to 90% thickness rejection), optionally recrystallization annealing the rolled sheet, cold rolling the annealed sheet, and stabilization annealing the rolled sheet.
- DC direct chill
- Products e.g., bottles or cans obtained according to the methods are also provided herein.
- FIG. 1 is a scanning transmission electron microscopy (STEM) micrograph of an aluminum alloy according to an embodiment of the invention showing a substructure with average geometrically necessary boundary (GNB) spacing larger than 300 nm.
- STEM scanning transmission electron microscopy
- FIG. 2 is a STEM micrograph of an aluminum alloy according to an embodiment of the invention showing a GNB-containing substructure with average GNB spacing larger than 2.5 ⁇ m.
- FIG. 3 is a STEM micrograph of an aluminum alloy according to an embodiment of the invention showing a GNB-containing substructure with average GNB spacing larger than 8 ⁇ m.
- FIG. 4 is a STEM micrograph of an aluminum alloy according to an embodiment of the invention showing a GNB-free substructure.
- the following aluminum alloys are described in terms of their elemental composition in weight percentage (wt. %) based on the total weight of the alloy. In certain embodiments of each alloy, the remainder is aluminum, with a maximum wt. % of 0.15% for the sum of the impurities.
- the invention is related to a new aluminum alloy system for aluminum bottle applications.
- the alloy compositions exhibit good high strain rate formability at elevated temperatures.
- the high strain rate formability is achieved due to the elemental compositions of the alloys.
- the invention provides highly formable alloys for use in manufacturing highly shaped cans and bottles. In one aspect, the invention provides chemistry and manufacturing processes that are optimized for the high-speed production of aluminum bottles.
- the aluminum alloy comprises:
- the aluminum alloy comprises:
- the aluminum alloy comprises:
- the aluminum alloy comprises:
- the aluminum alloy comprises:
- the aluminum alloy comprises:
- the aluminum alloy comprises:
- the disclosed alloy includes silicon (Si) in an amount from about 0.12% to 0.50% (e.g., from 0.20% to 0.40%, from 0.22% to 0.38%, from 0.25% to 0.35%, from 0.27% to 0.33%, or from 0.12% to 0.28%) based on the total weight of the alloy.
- the alloys can include 0.12%, 0.13%, 0.14%, 0.15%, 0.16%, 0.17%, 0.18%, 0.19% 0.20%, 0.21%, 0.22%, 0.23%, 0.24%, 0.25%, 0.26%, 0.27%, 0.28%, 0.29%, 0.30% 0.31%, 0.32%, 0.33%, 0.34%, 0.35%, 0.36%, 0.37%, 0.38%, 0.39%, 0.40%, 0.41%, 0.42%, 0.43%, 0.44%, 0.45%, 0.46%, 0.47%, 0.48%, 0.49%, or 0.50% Si. All expressed in wt. %.
- the alloy also includes iron (Fe) in an amount from about 0.35% to about 0.65% (e.g., 0.40% to 0.60%, from 0.42% to 0.58%, from 0.44% to 0.56%, from 0.46% to 0.54%, or from 0.32% to 0.52%) based on the total weight of the alloy.
- Fe iron
- the alloys can include 0.32%, 0.33%, 0.34%, 0.35%, 0.36%, 0.37%, 0.38%, 0.39%, 0.40%, 0.41%, 0.42%, 0.43%, 0.44%, 0.45%, 0.46%, 0.47%, 0.48%, 0.49%, 0.50%, 0.51%, 0.52%, 0.53%, 0.54%, 0.55%, 0.56%, 0.57%, 0.58%, 0.59%, 0.60% 0.61%, 0.62%, 0.63%, 0.64%, or 0.65% Fe. All expressed in wt. %.
- the disclosed alloy includes copper (Cu) in an amount from about 0.05% to about 0.30% (e.g., from 0.08% to 0.20%, from 0.10% to 0.18%, from 0.09% to 0.16%, from 0.10% to 0.16%, from 0.109% to 0.16%, or from 0.11% to 0.15%) based on the total weight of the alloy.
- Cu copper
- the alloys can include 0.05%, 0.06%, 0.07%, 0.08% 0.09%, 0.10%, 0.11%, 0.12%, 0.13%, 0.14%, 0.15%, 0.16%, 0.17%, 0.18%, 0.19% 0.20%, 0.21%, 0.22%, 0.23%, 0.24%, 0.25%, 0.26%, 0.27%, 0.28%, 0.29%, or 0.30% Cu. All expressed in wt. %.
- the disclosed alloy includes manganese (Mn) in an amount from about 0.60% to about 1.10% (e.g., about 0.70% to 1.00%, from 0.75% to 0.98%, from 0.78% to 0.94%, from 0.78% to 0.96%, or from 0.80% to 0.94%,) based on the total weight of the alloy.
- Mn manganese
- the alloy can include 0.60%, 0.61%, 0.62%, 0.63%, 0.64%, 0.65%, 0.66%, 0.67%, 0.68%, 0.69%, 0.70%, 0.71%, 0.72%, 0.73%, 0.74%, 0.75%, 0.76%, 0.77%, 0.78%, 0.79%, 0.80%, 0.81%, 0.82%, 0.83%, 0.84%, 0.85%, 0.86%, 0.87%, 0.88%, 0.89%, 0.90%, 0.91%, 0.92%, 0.93%, 0.94%, 0.95%, 0.96%, 0.97%, 0.98%, 0.99%, 1.00%, 1.01%, 1.02%, 1.03%, 1.04%, 1.05%, 1.06%, 1.07%, 1.08%, 1.09%, or 1.10% Mn. All expressed in wt. %.
- the disclosed alloy includes magnesium (Mg) in an amount from about 0.80% to about 1.30% (e.g., from 0.85% to 1.22%, from 0.90% to 1.15%, from 0.90% to 1.10%, or from 0.93% to 1.07%) based on the total weight of the alloy.
- Mg magnesium
- the alloy can include 0.80%, 0.81%, 0.82%, 0.83%, 0.84%, 0.85%, 0.86%, 0.87%, 0.88%, 0.89%, 0.90%, 0.91%, 0.92%, 0.93%, 0.94%, 0.95%, 0.96%, 0.97%, 0.98%, 0.99%, 1.00%, 1.01%, 1.02%, 1.03%, 1.04%, 1.05%, 1.06%, 1.07%, 1.08%, 1.09%, 1.10%, 1.11%, 1.12%, 1.13%, 1.14%, 1.15%, 1.16%, 1.17%, 1.18%, 1.19%, 1.20%, 1.21%, 1.22%, 1.23%, 1.24%, 1.25%, 1.26%, 1.27%, 1.28%, 1.29% or 1.30 Mg. All expressed in wt. %.
- the alloy includes chromium (Cr) in an amount up to about 0.80% (e.g., from 0% to 0.05%, 0% to 0.06%, from 0% to 0.07%, from 0% to 0.08%, from 0.03 to 0.06%, from 0.005% to 0.05%, or from 0.001% to 0.06%) based on the total weight of the alloy.
- Cr chromium
- the alloy can include 0.001%, 0.002%, 0.003%, 0.004%, 0.005%, 0.006%, 0.007%, 0.008%, 0.009%, 0.010%, 0.011%, 0.012%, 0.013%, 0.014%, 0.015%, 0.016%, 0.017%, 0.018%, 0.019%, 0.020%, 0.021%, 0.022%, 0.023%, 0.024%, 0.025%, 0.026%, 0.027%, 0.028%, 0.029%, 0.030%, 0.031%, 0.032%, 0.033%, 0.034%, 0.035%, 0.036%, 0.037%, 0.038%, 0.039%, 0.040%, 0.05%, 0.051%, 0.052%, 0.053%, 0.054%, 0.055%, 0.056%, 0.057%, 0.058%, 0.059%, 0.060%, 0.065%, 0.070%, 0.075%, or 0.08% Cr.
- Cr is not present in the alloy (i.e., 0%). All expressed in wt
- the alloy described herein includes zinc (Zn) in an amount up to about 0.5% (e.g., from 0% to 0.25%, from 0% to 0.2%, from 0% to 0.30%, from 0% to 0.40%, from 0.01% to 0.35%, or from 0.01% to 0.25%) based on the total weight of the alloy.
- Zn zinc
- the alloy can include 0.001%, 0.002%, 0.003%, 0.004%, 0.005%, 0.006%, 0.007%, 0.008%, 0.009%, 0.01%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.10%, 0.11%, 0.12%, 0.13%, 0.14%, 0.15%, 0.16%, 0.17%, 0.18%, 0.19%, 0.20%, 0.21%, 0.22%, 0.23%, 0.24%, 0.25%, 0.26%, 0.27%, 0.28%, 0.29%, 0.30%, 0.31%, 0.32%, 0.33%, 0.34%, 0.35%, 0.36%, 0.37%, 0.38%, 0.39%, 0.40%, 0.41%, 0.42%, 0.43%, 0.44%, 0.45%, 0.46%, 0.47%, 0.48%, 0.49%, or 0.50% Zn. In certain cases, Zn is not present in the first un
- the alloy includes titanium (Ti) in an amount up to about 0.08% (e.g., from 0% to 0.05%, 0% to 0.06%, from 0% to 0.07%, from 0.03 to 0.06%, from 0.005% to 0.05%, or from 0.001% to 0.06%) based on the total weight of the alloy.
- Ti titanium
- the alloy can include 0.001%, 0.002%, 0.003%, 0.004%, 0.005%, 0.006%, 0.007%, 0.008%, 0.009%, 0.01%, 0.011%, 0.012%, 0.013%, 0.014%, 0.015%, 0.016%, 0.017%, 0.018%, 0.019%, 0.02%, 0.021%, 0.022%, 0.023%, 0.024%, 0.025%, 0.026%, 0.027%, 0.028%, 0.029%, 0.03%, 0.031%, 0.032%, 0.033%, 0.034%, 0.035%, 0.036%, 0.037%, 0.038%, 0.039%, 0.04%, 0.05%, 0.051%, 0.052%, 0.053%, 0.054%, 0.055%, 0.056%, 0.057%, 0.058%, 0.059%, 0.06%, 0.065%, 0.07%, 0.075%, or 0.08% Ti.
- Ti is not present in the alloy (i.e., 0%). All expressed in wt
- the alloy compositions can further include other minor elements, sometimes referred to as impurities, in amounts of about 0.15% or below, 0.14% or below, 0.13% or below, 0.12% or below, 0.11% or below, 0.10% or below, 0.09% or below, 0.08% or below, 0.07% or below, 0.06% or below, 0.05% or below, 0.04% or below, 0.03% or below, 0.02% or below, or 0.01% or below.
- impurities may include, but are not limited to, V, Ga, Ni, Sc, Zr, Ca, Hf, Sr, or combinations thereof.
- the alloy composition comprises only unavoidable impurities.
- the remaining percentage of the alloy is aluminum. All expressed in wt. %.
- the aluminum alloys of the present invention display one or more of the following properties: very low earring (maximum mean earring level of 3%); high recycled content (e.g., at least 60%, 65%, 70%, 75%, 80%, 82% or 85%); yield strength 25-36 ksi; excellent die cleaning performance which allows the application of very low die striping pressure; excellent formability which allows extensive neck shaping progression without fracture; excellent surface finished in the final bottles with no visible markings; excellent coating adhesion; high strength to meet the typical axial load (>300 lbs) and dome reversal pressure (>90 psi); overall scrap rate of the bottle making process can be as low as less than 1%.
- the substructure of the aluminum alloy coil made by this method has a geometrically necessary boundary (GNB)-free substructure.
- the substructure has a GNB-containing substructure with an average GNB spacing larger than 10 microns.
- the substructure aluminum alloy coil made by this method has a GNB-containing substructure with average GNB spacing larger than 300 nm (e.g., FIG. 1 ), average GNB spacing larger than 2.5 ⁇ m ( FIG. 2 ), average GNB spacing larger than 8 ⁇ m (e.g., FIG. 3 ), or a GNB-free substructure (e.g., FIG. 4 ).
- the alloy sheet has very low earring.
- the earring balance from the edge, sides, and center (over the coil width) is less than 1.5% (e.g., less than 1.25%, less than 1%).
- the mean earring is less than 4%.
- the mean earring is less than 3.75%, less than 3.5%, less than 3.25%, less than 3%, less than 2.75%, or less than 2.5%.
- the alloy sheet has high recycled content.
- the disclosed alloy composition is a product of a disclosed method.
- aluminum alloy properties are partially determined by the formation of microstructures during the alloy's preparation.
- the method of preparation for an alloy composition may influence or even determine whether the alloy will have properties adequate for a desired application.
- the invention sets forth a method of making an aluminum alloy described herein.
- can body stocks are provided to the customer in the H19 temper.
- the typical H19 temper does not work well as H19 alloys are too brittle.
- an inventive alloy must be processed in a different way, by direct chill (DC) casting, homogenizing, hot rolling, cold rolling, recrystallization annealing, cold rolling, and stabilization annealing.
- the method of making an aluminum alloy as described herein comprises the sequential steps of:
- the method of making the aluminum alloy as described herein comprises the sequential steps of:
- the method of making an aluminum alloy as described herein comprises direct chill casting an aluminum ingot; homogenizing the ingot; hot rolling the homogenized ingot to form a hot rolled product; cold rolling the hot rolled product in a first cold rolling step to produce a first cold rolled product, wherein the first cold rolling step produces an about 60-90% thickness reduction.
- the method further comprises cold rolling the first cold rolled product in a second cold rolling step to produce a second cold rolled product, wherein the second cold rolling step produces an about 15-30% thickness reduction.
- the method further comprises recrystallization annealing the first cold rolled product, wherein the recrystallization annealing is at a metal temperature from about 290-500° C. for about 0.5-4 hrs. In certain embodiments, the recrystallization annealing is at a metal temperature from about 300-450° C. In certain embodiments, the recrystallization annealing is for about 1-2 hrs.
- the method further comprises stabilization annealing of the first cold rolled product if one cold rolling step is used or stabilization annealing of the second cold rolled product if two cold rolling steps are used, wherein the stabilization annealing is at a metal temperature from about 100-300° C. for about 0.5-4 hrs. In certain embodiments, the stabilization annealing is at a metal temperature of from about 120-250° C. In certain embodiments, the stabilization annealing is for about 1-2 hrs.
- the alloy has a composition including about 0.25-0.35 wt. % Si, about 0.44-0.56 wt. % Fe, about 0.09-0.160 wt. % Cu, about 0.78-0.94 wt. % Mn, about 0.90-1.1 wt. % Mg, about 0.000-0.050 wt. % Cr, about 0.000-0.250 wt. % Zn, about 0.000-0.050 wt. % Ti, and up to 0.15 wt.
- the method of making an aluminum alloy as described herein comprises direct chill casting an aluminum ingot; homogenizing the ingot; hot rolling the ingot to form a hot rolled product; cold rolling the hot rolled product to form a cold rolled product, wherein the cold rolling produces an about 60-90% thickness reduction; and stabilization annealing of the cold rolled product, wherein the stabilization annealing is at a metal temperature from about 100-300° C. for about 0.5-4 hrs. In certain embodiments the stabilization annealing is at a metal temperature of 120-250° C. In certain embodiments the stabilization annealing is for about 1-2 hrs.
- the alloy has a composition including about 0.12-0.28 wt. % Si, about 0.32-0.52 wt. % Fe, about 0.09-0.16 wt. % Cu, about 0.78-0.96 wt. % Mn, about 0.90-1.10 wt. % Mg, about 0.000-0.050 wt. % Cr, about 0.000-0.250 wt. % Zn, about 0.000-0.050 wt. % Ti, and up to 0.15 wt.
- the method of making an aluminum alloy as described herein comprises direct chill casting an aluminum ingot; homogenizing the ingot; hot rolling the ingot to form a hot rolled product; cold rolling the hot rolled product in a first cold rolling step, wherein the cold rolling produces an about 60-90% thickness reduction in the hot rolled product; recrystallization annealing of the cold rolled product, wherein the recrystallization annealing is at a metal temperature from about 290-500° C.
- the stabilization annealing is at a metal temperature from about 100-300° C. for about 0.5-4 hrs.
- the recrystallization annealing is at a metal temperature from about 300 to 450° C.
- the recrystallization annealing is for about 1-2 hrs.
- the stabilization annealing is at a metal temperature of 120-250° C. In certain embodiments the stabilization annealing is for about 1-2 hrs.
- the alloy has a composition including 0.12-0.28 wt. % Si, about 0.32-0.52 wt. % Fe, about 0.09-0.16 wt. % Cu, about 0.78-0.96 wt. % Mn, about 0.90-1.10 wt. % Mg, about 0.000-0.050 wt. % Cr, about 0.000-0.250 wt. % Zn, about 0.000-0.050 wt. % Ti, and up to 0.15 wt.
- the method of making an aluminum alloy as described herein comprises direct chill casting an aluminum ingot; homogenizing the ingot; hot rolling the ingot to form a hot rolled product; cold rolling the hot rolled product in a first cold rolling step to form a first cold rolled product, wherein the first cold rolling step produces an about 60-90% thickness reduction in the hot rolled product; cold rolling the first cold rolled product in a second cold rolling step, wherein the second cold rolling step produces an about 15-30% thickness reduction in the product; and stabilization annealing of the second cold rolled product, wherein the stabilization annealing is at a metal temperature from about 100-300° C. for about 0.5-4 hrs. In certain embodiments, the stabilization annealing is at a metal temperature from about 120-250° C. In certain embodiments, the stabilization annealing is for about 1-2 hrs.
- the final temper of the alloys could be either H2x (without interannealing) or H3x or H1x (with interannealing).
- the combination of rolling reduction gives optimized earring and excellent performance in the bodymaker.
- the stabilization annealing cycle was designed to induce specific working hardening characteristics and formability in the alloys allowing extensive neck shaping without fracture.
- the alloys described herein can be cast into ingots using a direct chill (DC) process.
- the DC casting process is performed according to standards commonly used in the aluminum industry as known to one of skill in the art.
- the casting process can include a continuous casting process.
- the continuous casting may include, but are not limited to, twin roll casters, twin belt casters, and block casters.
- the alloys are not processed using continuous casting methods.
- the cast ingot can then be subjected to further processing steps to form a metal sheet.
- the further processing steps include subjecting a metal ingot to a homogenization cycle, a hot rolling step, a cold rolling step, an optional recrystallization annealing step, a second cold rolling step, and a stabilization annealing step.
- the homogenization step can involve a one-step homogenization or a two-step homogenization.
- a one-step homogenization is performed in which an ingot prepared from the alloy compositions described herein is heated to attain a peak metal temperature (PMT). The ingot is then allowed to soak (i.e., held at the indicated temperature) for a period of time during the first stage.
- PMT peak metal temperature
- a two-step homogenization is performed where an ingot prepared from an alloy composition described herein is heated to attain a first temperature and then allowed to soak for a period of time In the second stage, the ingot can be cooled to a temperature lower than the temperature used in the first stage and then allowed to soak for a period of time during the second stage.
- the ingots can be hot rolled to an 5 mm thick gauge or less.
- the ingots can be hot rolled to a 4 mm thick gauge or less, 3 mm thick gauge or less, 2 mm thick gauge or less, or 1 mm thick gauge or less.
- the hot rolling speed and temperature can be controlled such that full recrystallization of the hot rolled materials is achieved during coiling at the exit of the tandem mill.
- the hot rolled products can then be cold rolled to a final gauge thickness.
- a first cold rolling step produces a reduction in thickness of from about 60-90% (e.g. about 50-80%, about 60-70%, about 50-90%, or about 60-80%).
- the first cold rolling step produces a reduction in thickness of about 65%, about 70%, about 75%, about 80%, about 85%, or about 90%.
- a second cold rolling step produces a further reduction in thickness of from about 15-30% (e.g., from about 20-25%, about 15-25%, about 15-20%, about 20-30%, or about 25-30%).
- the second cold rolling step produces a further reduction in thickness of about 15%, 20%, 25%, or 30%.
- an annealing step is a recrystallization annealing (e.g., after the initial cold rolling).
- the recrystallization annealing is at a metal temperature from about 290-500° C. for about 0.5-4 hrs.
- the recrystallization annealing is at a metal temperature from about 300-450° C.
- the recrystallization is for about 1-2 hrs.
- the recrystallization annealing step can include heating the alloy from room temperature to a temperature from about 290° C. to about 500° C. (e.g., from about 300° C. to about 450° C., from about 325° C. to about 425° C., from about 300° C. to about 400° C., from about 400° C. to about 500° C., from about 330° C. to about 470° C., from about 375° C. to about 450° C., or from about 450° C. to about 500° C.).
- a temperature from about 290° C. to about 500° C. (e.g., from about 300° C. to about 450° C., from about 325° C. to about 425° C., from about 300° C. to about 400° C., from about 400° C. to about 500° C., from about 330° C. to about 470° C., from about 375° C. to about 450° C., or from about
- an annealing step is stabilization annealing (e.g., after the final cold rolling).
- the stabilization annealing is at a metal temperature from about 100-300° C. for about 0.5-4 hrs. In one embodiment, the stabilization annealing is at a metal temperature from about 120-250° C. for about 1-2 hrs.
- the stabilization annealing step can include heating the alloy from room temperature to a temperature from about 100° C. to about 300° C. (e.g., from about 120° C. to about 250° C., from about 125° C. to about 200° C., from about 200° C. to about 300° C., from about 150° C. to about 275° C., from about 225° C. to about 300° C., or from about 100° C. to about 175° C.
- the methods described herein can be used to prepare highly shaped metal objects, such as aluminum cans or bottles.
- the cold rolled sheets described above can be subjected to a series of conventional can and bottle making processes to produce preforms.
- the preforms can then be annealed to form annealed preforms.
- the preforms are prepared from the aluminum alloys using a drawing and wall ironing (DWI) process and the cans and bottles are made according to other shaping processes as known to those of ordinary skill in the art.
- DWI drawing and wall ironing
- the shaped aluminum bottle of the present invention may be used for beverages including but not limited to soft drinks, water, beer, energy drinks and other beverages.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Ceramic Engineering (AREA)
- Continuous Casting (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/974,661 US20160177425A1 (en) | 2014-12-19 | 2015-12-18 | Aluminum alloy suitable for the high speed production of aluminum bottle and the process of manufacturing thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462094358P | 2014-12-19 | 2014-12-19 | |
US14/974,661 US20160177425A1 (en) | 2014-12-19 | 2015-12-18 | Aluminum alloy suitable for the high speed production of aluminum bottle and the process of manufacturing thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160177425A1 true US20160177425A1 (en) | 2016-06-23 |
Family
ID=55229830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/974,661 Abandoned US20160177425A1 (en) | 2014-12-19 | 2015-12-18 | Aluminum alloy suitable for the high speed production of aluminum bottle and the process of manufacturing thereof |
Country Status (10)
Country | Link |
---|---|
US (1) | US20160177425A1 (ko) |
EP (1) | EP3234208B1 (ko) |
JP (2) | JP2018502993A (ko) |
KR (1) | KR101988146B1 (ko) |
CN (1) | CN107002185A (ko) |
BR (1) | BR112017010216A2 (ko) |
CA (1) | CA2968894A1 (ko) |
ES (1) | ES2797023T3 (ko) |
MX (1) | MX2017007895A (ko) |
WO (1) | WO2016100800A1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170314112A1 (en) * | 2016-05-02 | 2017-11-02 | Novelis Inc. | Aluminum alloys with enhanced formability and associated methods |
WO2019241070A1 (en) * | 2018-06-12 | 2019-12-19 | Novelis Inc. | Aluminum alloys and methods of manufacture |
US10546724B2 (en) | 2017-05-10 | 2020-01-28 | Mks Instruments, Inc. | Pulsed, bidirectional radio frequency source/load |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3802896A1 (en) * | 2018-06-01 | 2021-04-14 | Novelis, Inc. | Low gauge, levelled can body stock and methods of making the same |
EP4050115A1 (en) | 2021-02-26 | 2022-08-31 | Constellium Rolled Products Singen GmbH & Co.KG | Durable aluminium alloy sheet for decorative applications |
DE102021208437A1 (de) * | 2021-08-04 | 2023-02-09 | Sms Group Gmbh | Verfahren zur Herstellung von Aluminiumband und Gieß-Walzanlage zur Herstellung von Aluminiumband |
DE102023103053A1 (de) | 2023-02-08 | 2024-08-08 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Aluminium-Gusslegierung und Kraftfahrzeugbauteil aus einer solchen Aluminium-Gusslegierung |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5833775A (en) * | 1995-03-09 | 1998-11-10 | Golden Aluminum Company | Method for making an improved aluminum alloy sheet product |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4235646A (en) | 1978-08-04 | 1980-11-25 | Swiss Aluminium Ltd. | Continuous strip casting of aluminum alloy from scrap aluminum for container components |
JP2584615B2 (ja) * | 1986-02-07 | 1997-02-26 | スカイアルミニウム 株式会社 | 成形加工用硬質アルミニウム合金圧延板の製造方法 |
JP2745340B2 (ja) * | 1990-12-26 | 1998-04-28 | スカイアルミニウム株式会社 | アルミニウム2ピース缶体の製造方法 |
JPH06136491A (ja) | 1992-10-27 | 1994-05-17 | Sky Alum Co Ltd | 耳率の低い成形用アルミニウム合金板の製造方法 |
JPH10121176A (ja) * | 1996-10-21 | 1998-05-12 | Furukawa Electric Co Ltd:The | フランジ成形性の優れたdi缶胴用アルミニウム合金板およびその製造方法 |
JPH11181558A (ja) * | 1997-12-22 | 1999-07-06 | Furukawa Electric Co Ltd:The | 低圧陽圧缶胴体用アルミニウム合金板の製造方法 |
JP3600022B2 (ja) * | 1998-07-13 | 2004-12-08 | 三菱アルミニウム株式会社 | 深絞り成形用アルミニウム基合金板の製造方法 |
JP3690784B2 (ja) * | 1999-03-03 | 2005-08-31 | 住友軽金属工業株式会社 | リサイクル性に優れた高成形性アルミニウム合金板及びその製造方法 |
JP3871473B2 (ja) * | 1999-07-26 | 2007-01-24 | 古河スカイ株式会社 | 缶胴用アルミニウム合金板の製造方法 |
JP2004244701A (ja) * | 2003-02-17 | 2004-09-02 | Kobe Steel Ltd | 缶胴用アルミニウム合金冷間圧延板およびその素材として用いられるアルミニウム合金熱間圧延板 |
US7407714B2 (en) * | 2004-05-26 | 2008-08-05 | Aleris Aluminum Koblenz Gmbh | Process by producing an aluminium alloy brazing sheet, aluminium alloy brazing sheet |
JP4460406B2 (ja) | 2004-09-27 | 2010-05-12 | 古河スカイ株式会社 | ボトル缶用アルミニウム合金板及びその製造方法 |
JP4467443B2 (ja) * | 2005-01-31 | 2010-05-26 | 古河スカイ株式会社 | アルミニウム合金板の製造方法 |
JP4019082B2 (ja) * | 2005-03-25 | 2007-12-05 | 株式会社神戸製鋼所 | 高温特性に優れたボトル缶用アルミニウム合金板 |
EP2281910A1 (en) * | 2005-03-25 | 2011-02-09 | Kabushiki Kaisha Kobe Seiko Sho | Aluminium alloy sheet for bottle cans superior in high-temperature properties |
JP3913260B1 (ja) * | 2005-11-02 | 2007-05-09 | 株式会社神戸製鋼所 | ネック部成形性に優れたボトル缶用アルミニウム合金冷延板 |
US20080041501A1 (en) * | 2006-08-16 | 2008-02-21 | Commonwealth Industries, Inc. | Aluminum automotive heat shields |
JP4901457B2 (ja) * | 2006-12-25 | 2012-03-21 | 古河スカイ株式会社 | キャップ用アルミニウム合金板およびその製造方法 |
JP5676870B2 (ja) * | 2009-10-15 | 2015-02-25 | 三菱アルミニウム株式会社 | 再絞り成形性に優れた缶胴用アルミニウム合金板およびその製造方法 |
JP5491937B2 (ja) * | 2010-03-31 | 2014-05-14 | 株式会社神戸製鋼所 | 缶胴用Al合金板およびその製造方法 |
JP5971851B2 (ja) * | 2012-09-19 | 2016-08-17 | 三菱アルミニウム株式会社 | エアゾール缶胴用アルミニウム合金板およびその製造方法 |
FR3005664B1 (fr) * | 2013-05-17 | 2016-05-27 | Constellium France | Tole en alliage d'alliage pour bouteille metallique ou boitier d'aerosol |
CN106103760B (zh) | 2014-03-20 | 2018-06-05 | 株式会社Uacj | Dr罐体用铝合金板及其制造方法 |
-
2015
- 2015-12-18 CN CN201580068120.8A patent/CN107002185A/zh active Pending
- 2015-12-18 BR BR112017010216A patent/BR112017010216A2/pt not_active Application Discontinuation
- 2015-12-18 JP JP2017531172A patent/JP2018502993A/ja active Pending
- 2015-12-18 CA CA2968894A patent/CA2968894A1/en not_active Abandoned
- 2015-12-18 EP EP15828603.9A patent/EP3234208B1/en active Active
- 2015-12-18 US US14/974,661 patent/US20160177425A1/en not_active Abandoned
- 2015-12-18 KR KR1020177016425A patent/KR101988146B1/ko active IP Right Grant
- 2015-12-18 ES ES15828603T patent/ES2797023T3/es active Active
- 2015-12-18 WO PCT/US2015/066638 patent/WO2016100800A1/en active Application Filing
- 2015-12-18 MX MX2017007895A patent/MX2017007895A/es unknown
-
2019
- 2019-06-12 JP JP2019109894A patent/JP2019206757A/ja active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5833775A (en) * | 1995-03-09 | 1998-11-10 | Golden Aluminum Company | Method for making an improved aluminum alloy sheet product |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170314112A1 (en) * | 2016-05-02 | 2017-11-02 | Novelis Inc. | Aluminum alloys with enhanced formability and associated methods |
US10546724B2 (en) | 2017-05-10 | 2020-01-28 | Mks Instruments, Inc. | Pulsed, bidirectional radio frequency source/load |
US10930470B2 (en) | 2017-05-10 | 2021-02-23 | Mks Instruments, Inc. | Pulsed, bidirectional radio frequency source/load |
WO2019241070A1 (en) * | 2018-06-12 | 2019-12-19 | Novelis Inc. | Aluminum alloys and methods of manufacture |
Also Published As
Publication number | Publication date |
---|---|
KR101988146B1 (ko) | 2019-06-11 |
EP3234208A1 (en) | 2017-10-25 |
MX2017007895A (es) | 2017-10-18 |
JP2019206757A (ja) | 2019-12-05 |
ES2797023T3 (es) | 2020-12-01 |
BR112017010216A2 (pt) | 2018-02-06 |
EP3234208B1 (en) | 2020-04-29 |
CN107002185A (zh) | 2017-08-01 |
JP2018502993A (ja) | 2018-02-01 |
CA2968894A1 (en) | 2016-06-23 |
KR20170084285A (ko) | 2017-07-19 |
WO2016100800A1 (en) | 2016-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3234208B1 (en) | Aluminum alloy suitable for the high speed production of aluminum bottle and the process of manufacturing thereof | |
RU2687791C2 (ru) | Алюминиевые сплавы для упаковочной продукции сложной формы и способы их получения | |
AU2017261184B2 (en) | Aluminum alloys with enhanced formability and associated methods | |
US10947613B2 (en) | Alloys for highly shaped aluminum products and methods of making the same | |
JP2021532261A (ja) | 成形性の高いアルミニウム合金及びそのアルミニウム合金製品の製造方法 | |
JPH08325664A (ja) | 絞り加工用高強度熱処理型アルミニウム合金板およびその製造方法 | |
JP2001288523A (ja) | 高成形性アルミニウム合金板およびその製造方法 | |
JPH10121177A (ja) | 高速しごき成形性の優れたdi缶胴用アルミニウム合金板およびその製造方法 | |
KR20100009683A (ko) | 알루미늄 합금 판재의 열처리 방법 | |
TWI591188B (zh) | 高強度鋼材及其製造方法 | |
JPH05339670A (ja) | 高強度でカップ歪み模様に優れたアルミニウム合金硬質板及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NOVELIS INC., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GO, JOHNSON;WEN, WEI;KANG, DAEHOON;AND OTHERS;SIGNING DATES FROM 20160129 TO 20160502;REEL/FRAME:038445/0189 |
|
AS | Assignment |
Owner name: STANDARD CHARTERED BANK, ENGLAND Free format text: SECURITY INTEREST;ASSIGNOR:NOVELIS INC.;REEL/FRAME:041389/0077 Effective date: 20170113 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
AS | Assignment |
Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, GEORGIA Free format text: SECURITY INTEREST;ASSIGNOR:NOVELIS INC.;REEL/FRAME:049247/0325 Effective date: 20190517 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |