US20150322296A1 - Pressure-sensitive adhesive compound containing a cross-linked nanoparticle network, method of production and use thereof - Google Patents

Pressure-sensitive adhesive compound containing a cross-linked nanoparticle network, method of production and use thereof Download PDF

Info

Publication number
US20150322296A1
US20150322296A1 US14/648,423 US201414648423A US2015322296A1 US 20150322296 A1 US20150322296 A1 US 20150322296A1 US 201414648423 A US201414648423 A US 201414648423A US 2015322296 A1 US2015322296 A1 US 2015322296A1
Authority
US
United States
Prior art keywords
pressure
sensitive adhesive
phase
adhesive
elastomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/648,423
Other languages
English (en)
Inventor
Klaus Keite-Telgenbüscher
Christian Schuh
Bernd Lühmann
Thilo Dollase
Minyoung Bai
Thorsten Krawinkel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tesa SE
Original Assignee
Tesa SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tesa SE filed Critical Tesa SE
Assigned to TESA SE reassignment TESA SE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KRAWINKEL, THORSTEN, BAI, Minyoung, KEITE-TELGENBÜSCHER, Klaus, SCHUH, CHRISTIAN, DOLLASE, THILO, Lühmann, Bernd
Publication of US20150322296A1 publication Critical patent/US20150322296A1/en
Assigned to TESA SE reassignment TESA SE CHANGE OF ADDRESS Assignors: TESA SE
Abandoned legal-status Critical Current

Links

Images

Classifications

    • C09J7/0221
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J125/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Adhesives based on derivatives of such polymers
    • C09J125/02Homopolymers or copolymers of hydrocarbons
    • C09J125/04Homopolymers or copolymers of styrene
    • C09J125/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/02Vinyl aromatic monomers and conjugated dienes
    • C09J153/025Vinyl aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/387Block-copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/04Polymer mixtures characterised by other features containing interpenetrating networks
    • C09J2201/122
    • C09J2201/128
    • C09J2201/606
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/122Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present only on one side of the carrier, e.g. single-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/302Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2425/00Presence of styrenic polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2453/00Presence of block copolymer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2852Adhesive compositions
    • Y10T428/287Adhesive compositions including epoxy group or epoxy polymer

Definitions

  • the present invention relates to a pressure-sensitive adhesive comprising a connected nanoparticle network, to methods for producing same, and to the use thereof especially for encapsulating an electronic arrangement.
  • PSAs Pressure-sensitive adhesives
  • PSAs are used across a host of applications, since they offer many desired characteristic features such as, for example, removability and ease of application.
  • certain conventional PSAs have a strength which is not necessarily sufficient to assure and maintain their adhesion to certain substrates.
  • a conventional PSA is possibly not able to withstand exposure to elevated temperatures or high humidity.
  • the application of a PSA for example, to acrylic sheets and polycarbonate sheets, which are known to “outgas materials” and are difficult to bond, may lead to blistering and delamination.
  • Curable adhesives are employed in applications where substrates require considerable resistance and high-strength adhesion.
  • Conventional curable adhesives are normally not used as PSAs, and are also not provided in a form which is easy to apply, such as tape, for example.
  • curable adhesives are desirable, since they ensure optically clear, strongly adhering laminates (layered substrates, for example).
  • curable adhesives contain reactive chemical building blocks, such as epoxy adhesives, for example, which contain epoxide groups. On curing, these building blocks are able to connect with one another via the epoxide groups, with the aid of a hardener, and form a stable, three-dimensional network. This network formation is a key cause of the generally high strengths and good adhesive properties of epoxy adhesives on many materials.
  • IPNs interpenetrating networks
  • IPNs are defined as combinations of two polymers in network form, of which at least one has been crosslinked or polymerized in the immediate vicinity of the other (see “Interpenetrating Polymer Networks” in “Encyclopedia of Polymer Science and Engineering”, vol. 10, pages 272 to 311, published online: 15 Mar. 2004, DOI: 10.1002/0471440264.pst170, John Wiley & Sons, Inc.).
  • each polymer forms a separate network, and the two networks are present alongside one another.
  • the system is therefore a two-phase system. Covalent bonds between them are absent.
  • Such networks with mutual penetration have been produced sequentially (from polymer A and monomer B) or simultaneously (from monomer A and monomer B).
  • Combined preferably are an elastomer and a glass, as for example a polyurethane and a polymethacrylate.
  • the product is a strengthened elastomer or a resin of high impact strength.
  • the simultaneous technique involves combining two linear polymers, prepolymers, or monomers of kinds A and B with the respective crosslinking agents in the liquid stage, in other words in bulk, melt, solution, or dispersion, and simultaneously polymerizing or crosslinking them. In this case it is necessary to select substances which do not react with one another.
  • the sequential technique involves swelling a crosslinked polymer A with a monomer of kind B and then polymerizing or crosslinking the latter in situ with addition of crosslinking agents.
  • a semi-interpenetrating network is the combination of a linear noncrosslinked polymer with a first crosslinked polymer, the first crosslinked polymer being synthesized in the presence of the other.
  • the noncrosslinked polymer penetrates the network of the crosslinked polymer, and has the effect that the two components are virtually inseparable physically because of interhooking and interlooping.
  • This semi-interpenetrating network allows a combination of properties of two polymers, even when they are thermodynamically incompatible.
  • IPN systems are examples of polymer mixtures where there is no macroscopic phase separation.
  • thermodynamically induced phase separation is such that it has substantially occurred even before it can be prevented by the kinetically induced changes (that is, the crosslinking). In these cases, the intermixing of the phases is minimal.
  • phase separation can be almost completely circumvented. It must be borne in mind here that complete compatibility (which occurs extremely rarely) is unnecessary for complete phase mixing, in other words mutual penetration, since the “permanent” coiling that is brought about by mutual penetration prevents phase separation. In the case of moderate compatibilities, the phase behavior (the resulting morphology) becomes complex; intermediate stages are the result. Accordingly, there are IPN systems with domains of dispersed phases that range from a few micrometers through several hundred angstroms, and systems having domain structures which can no longer be resolved (complete mixing). It is for this reason that IPNs with little phase separation generally have only one glass transition temperature.
  • interpenetrating networks are notable for better resistance toward separation, and often advantageous mechanical properties.
  • the degradation resistance of the interpenetrating networks is commonly better than that of copolymers in which the incompatible polymers are connected to one another covalently in the form of blocks.
  • IPNs are also used in the field of adhesives, as described in U.S. Pat. No. 4,302,553 A, for example.
  • the effect of the technology of the IPN modification of adhesives therefore lies in the utilization of synergy effects which are exhibited only in the combination of two networks but which cannot be observed in the individual networks. The result of this is frequently a maximization of desired properties and a possible minimization of unwanted properties.
  • IPNs are also known from the field of the pressure-sensitive adhesives.
  • EP 0 621 931 B1 (DE 692 21 324 T2) describes hybrid adhesives which are prepared from acrylate monomers and epoxide monomers and which therefore form a simultaneous IPN.
  • a PSA can be obtained only if the reaction comes to a halt before full curing has taken place (B-stage). In this stage, the PSA film must generally be stored with cooling. The components in the mixture are not very compatible with one another, and the resulting films of adhesive are often opaque after curing, suggesting the formation of relatively large domains (examples 9 to 12).
  • WO 2004/060946 A1 (DE 603 06 961 T2) describes an adhesive composition which comprises an acrylate copolymer, acrylated oligomers, and an initiator which kicks off the radical polymerization.
  • a semi-IPN is formed, which leads to a highly transparent adhesive and points to low phase separation.
  • a prerequisite for this is good compatibility between the components. This compatibility is achieved through the combination of acrylate copolymers with acrylate oligomers.
  • a disadvantage here is that similar classes of compound are combined with one another in this case, meaning that the spectrum of attainable synergistic effects is lower than in the case of different classes of compound.
  • U.S. Pat. No. 5,747,567 A discloses semi-IPNs by mixing of PSAs based on natural and synthetic rubbers and also acrylates with the components of a silicone-based PSA (silicone resins, MQ resins, for example, and silicone fluids), the latter crosslinking in the presence of the former, by means of a condensation reaction, to form a silicone PSA.
  • a silicone-based PSA silicone resins, MQ resins, for example, and silicone fluids
  • the examples disclose only mixing at the emulsion level. Since discrete phases which already exist are mixed with one another here, the system is one of a highly phase-separated semi-IPN of two viscoelastic phases.
  • WO 2012/061032 A1 discloses adhesives where a reactive isocyanate prepolymer has been dispersed in a styrene block copolymer PSA, this prepolymer forming a semi-IPN within the PSA phase following crosslinking by means of atmospheric moisture.
  • the proportion of the reactive resin here is between about 40 to 70 wt % of the PSA. While there is a reference to the possibility of the formation of complete IPNs, blends, or a reinforcing phase (claim 1 ), the examples in fact only evidence the formation of semi-IPNs ([0038]). A disadvantage of these PSAs is that they must be stored away from moisture. Although other reactive resins are mentioned, there is no teaching disclosed with regard to further favorable combinations.
  • EP 1 658 319 B1 encompasses a molding composition comprising a mixture of interpenetrating polymers with a first phase of a crosslinked isobutene polymer and a second phase of a stiffening polymer that comprises (meth)acrylic and/or vinylaromatic units, the first phase comprising the reaction product of an isobutene polymer having on average at least 1,4 functional groups in the molecule and of a crosslinking agent having on average at least two functional groups in the molecule, which have complementary functionality to the functional groups of the isobutene polymer.
  • the IPN here may be produced simultaneously or sequentially—with the crosslinked isobutene phase as the provided network. No pressure-sensitively adhesive molding compositions are disclosed in the examples.
  • polymeric compatibilizers polyethylene glycol for example.
  • the polymeric compatibilizers are preferably crosslinked. In this way, the polymeric compatibilizer is able to form a network that penetrates the first phase.
  • a disadvantage of this kind of compatibilizing is the high complexity of the now ternary system, making the control of the properties more difficult.
  • EP 2 160 443 B1 discloses a semi-interpenetrating network having a first phase of a linear noncrosslinked isobutene polymer and a second phase of a crosslinked polymer, the crosslinked polymer being obtained by crosslinking buildup reaction in the presence of the isobutene polymer.
  • the crosslinked polymer is obtained by radical polymerization of ethylenically unsaturated monomers, more particularly of styrene and methacrylates.
  • the semi-interpenetrating networks obtained exhibit predominantly two mechanical relaxations at ⁇ 50° C. and above room temperature, which are characteristic of PIB and of the respective second polymer. This is an indication of the presence of discrete polymer phases. Phase separation is predominantly very strong, meaning that the materials obtained are white due to light scattering.
  • monomers and monomer mixtures are used which produce a polymer or copolymer having a solubility parameter which differs from that of the isobutene polymer by less than 1 MPa 1/2 , preferably less than 0.7 MPa 1/2 , more particularly less than 0.5 MPa 1/2 .
  • solubility parameter which differs from that of the isobutene polymer by less than 1 MPa 1/2 , preferably less than 0.7 MPa 1/2 , more particularly less than 0.5 MPa 1/2 .
  • the mutual compatibility of the polymers is high and the extractable fraction of the network is small.
  • the nature of the buildup reaction is not seen as critical. It may, for example, involve a chain-growth addition polymerization of ethylenically unsaturated monomers, which may be catalyzed radically, anionically, or cationically, or a polyaddition or a polycondensation. Radical polymerization, however, is preferred.
  • the buildup and the chemical nature of the crosslinked polymer are likewise not considered to be critical, provided the polymer can be prepared from precursors which are at least partly miscible with the isobutene polymer. No technical solution is disclosed for the case where there is no adequate miscibility.
  • EP 2 160 443 B1 discloses the incidence of a certain phase separation prior to the buildup reaction, causing isobutene polymer to emerge at the external surfaces. Although this does achieve better wetting, this boundary layer penetrated by the buildup constituent no longer weakens the bonding performance later on (weak boundary layer). For adhesive tapes, therefore, compositions of this kind which tend toward phase separation are unsuitable.
  • Another route to the production of multiphase morphologies is the in situ generation of, for example, nanoparticulate fillers within a polymer phase or during the polymerization.
  • the particles of filler may be organic, more particularly polymeric, inorganic, or hybrid in nature (for example, inorganic-organic hybrid materials from a sol-gel process).
  • Complex multiphase polymer-polymer morphologies generated in situ are also known, an example being high-impact polystyrene (HIPS), wherein the rubber domains encased in one another are obtained by free radical polymerization of styrene-polybutadiene solutions with continuous stirring.
  • HIPS high-impact polystyrene
  • the material with the smaller proportion on a volume basis is present as a disperse phase within the material having the larger fraction.
  • thermoplastic polymer in this case must be soluble in the uncured epoxy resin, but in the course of the curing reaction must be incompatible with the epoxy resin polymer, resulting in phase separation during the curing procedure.
  • the phase separation process is halted, giving the thermoplastic or elastomeric polymer in the form of microscopic spherical domains in the epoxy resin matrix.
  • microphase-separated systems include, for example, PSAs based on styrene block copolymers, where domains of polystyrene form after solidification from a melt or after the evaporation of solvent, and endow the PSA with increased cohesion by virtue of their glass transition temperature above room temperature. This is often also called “physical crosslinking” (see DE 103 61 540 A1).
  • the acid-modified and/or acid anhydride-modified elastomers and epoxy resins are used in a proportion such that the molar fraction of epoxide groups and anhydride groups is just equivalent.
  • the common elastomers with only low levels of modification and low molecular mass epoxy resins having a low epoxide equivalent are used, the result is only very small amounts—of below 10 wt %, based on the modified styrene block copolymer—of epoxy resin used.
  • the epoxy resin acts as a crosslinking agent for the modified elastomers, and forms its own second phase to a small extent at best.
  • U.S. Pat. No. 6,294,270 B, U.S. Pat. No. 6,423,367 B, and U.S. Pat. No. 6,489,042 B describe crosslinkable mixtures of epoxidized vinylaromatic block copolymers and epoxy resins, one of the stated applications being an adhesive for the bonding of two electronic components. In view of the crosslinking, therefore, these systems are not IPNs. Described primarily is crosslinking by irradiation with UV light. For this purpose, a very high proportion of more than 90 wt % of the epoxidized vinylaromatic block copolymer has proven the ideal solution here. Essentially, the epoxy resin here as well acts as a crosslinking agent for the modified elastomers, and forms its own second phase to a small extent, if at all.
  • DE 10 2004 031 190 A1 discloses an adhesive at least of a) an epoxide-modified vinylaromatic block copolymer, b) an epoxy resin, and c) a hardener which executes crosslinking with the epoxide groups at high temperatures, the ratio of a) to b) lying between 40:60 and 80:20.
  • the chemical crosslinking of the resin with the elastomer results in very high strengths being achieved within the adhesive film. Because of the crosslinking, therefore, the system is not an IPN.
  • the addition of tackifier resins compatible with the elastomer block of the block copolymers is also possible. If elastomers are used which are not chemically crosslinkable, the bond strengths, as shown in the comparative example, are much lower than in those with crosslinking possibility.
  • Multiphase PSAs also include, in particular, those PSAs in which fillers are bonded covalently to components of the PSA, more particularly to the base polymer (see WO 2006/120136 A1).
  • the fillers advantageously are nanoscale.
  • a disadvantage of this solution is the difficulty of dispersing the nanoscale fillers in the matrix homogeneously and without the formation of agglomerates.
  • a method for reliably producing such PSAs and for overcoming hurdles, such as the deficient compatibility of the polymer constituents, for example, and hence a small portfolio in the selection of the polymer constituents is also demand for a method for reliably producing such PSAs and for overcoming hurdles, such as the deficient compatibility of the polymer constituents, for example, and hence a small portfolio in the selection of the polymer constituents.
  • the invention relates accordingly to a pressure-sensitive adhesive comprising at least two constituents, each forming a phase, from which an IPN having at least two phases is formed by buildup reaction, more particularly crosslinking buildup reaction, the first phase (elastomer phase) having at least a DSC softening temperature of less than 23° C. and the second phase after the buildup reaction having a DSC softening temperature of greater than 23° C., and the second phase after the buildup reaction having the morphology of a connected nanoparticle network.
  • FIG. 1 is a scanning electron micrograph of the adhesive film of example 6.
  • FIG. 2 is a photograph showing the completeness of the connected nanoparticle network of the adhesive film of example 6.
  • FIG. 3 is an electron micrograph of the adhesive of comparative example C3.
  • FIG. 4 illustrates stress-strain curves for examples 1, 3, 6 and 7.
  • the softening point is understood to be the temperature (or temperature range) at which amorphous or semicrystalline polymers undergo transition from the glassy or semicrystalline, hard-elastic state into a soft state.
  • the softening temperature of homopolymers, copolymers, hard blocks and soft blocks, and uncured reactive resins is determined calorimetrically by way of Differential Scanning calorimetry (DSC) in accordance with DIN 53765:1994-03. Heating curves and cooling curves run with a rate of 10 K/min. The specimens are subjected to measurement in A1 crucibles with perforated lid under a nitrogen atmosphere. The heating curve evaluated is the second heating curve. In the case of amorphous substances, the glass transition temperatures which occur are defined as softening temperature; in the case of (semi)crystalline substances, as the melting temperatures. A glass transition can be discerned as a step in the thermogram. The glass transition temperature is evaluated as the middle point of this step. A melting temperature can be discerned as a peak in the thermogram. The melting temperature recorded is that temperature at which the highest exotherm occurs.
  • DSC Differential Scanning calorimetry
  • the PSA of the invention therefore comprises an IPN which consists of a phase with little or no crosslinking (elastomer phase) and of a highly crosslinked phase (hard phase), the hard phase developing the morphology of a connected nanoparticle network.
  • the IPN is preferably a semi-IPN in which the first phase, the elastomer phase, is present in a form in which it is not crosslinked, more particularly not covalently crosslinked.
  • Interloops of molecule chains are not considered to be crosslinking in the sense of the invention, with one exception: in the sense of the invention, the definition is that crosslinking via multiple chain entanglements, resulting from the weight average M w of the first phase (elastomer phase) corresponding to at least 5 times, preferably 25 times, the entanglement molecular weight is regarded as a variant of physical crosslinking.
  • rubbers as well may be chemically crosslinked, they can also be employed without additional crosslinking provided their molar masses are high enough (which is the case for many natural and synthetic systems).
  • the desired elastic properties in long-chain rubbers result from the entanglements, or the entanglement molar masses, which are polymer-characteristic (with regard to the concept and for a series of polymers, see L. J. Fetters et al., Macromolecules, 1994, 27, pages 4639 to 4647).
  • the elastomer phase is preferably physical (for example through formation of domains in the case of block copolymers) or coordinative.
  • coordinative bonds are ligand-central atom bonds in complexes, in other words the formation of a coordinative bond with metal atoms, which may be present in elemental form, in the form of metal salts and/or in the form of metal complexes, and also all other donor-acceptor bonds [in this regard, see, for example, D. Philp, J. F. Stoddard, Angew. Chem., 1996, 108, 1242; M. Rehahn, Acta Polym., 1998, 49, 201; B. G. G. Lohmeijer, U.S. Schubert, J. Polym. Sci. A Polym. Chem., 2003, 41, 1413, and literature cited in each of the foregoing].
  • An example is the coordination of acid groups to metal chelates.
  • a PSA of this kind is obtained by a method for producing a connected nanoparticle network, characterized by the following steps:
  • the buildup reaction may be a crosslinking reaction, a chain-growth addition polymerization, or a one-, two-, or three-dimensional chain growth reaction.
  • the steps may also take place simultaneously to one another, especially the buildup of the nanoparticles and also the simultaneous connecting thereof during the buildup.
  • Steps 1 and 2 may proceed simultaneously if, for example, the reaction is commenced with the mixing-together of the components.
  • the buildup from nanoparticles avoids the development of the coarse-scale co-continuous structure, since the co-continuous structure is constructed from nanoscale structural elements. Moreover, a co-continuous structure of this kind can be obtained even with a lower volume fraction of the hard phase than in the case of a conventional phase separation.
  • the connected nanoparticle network is present ideally in the form of a string-of-pearls structure (as is known, for example, for aerogels), but may also be marked by other forms.
  • PSAs are adhesives which permit a durable join to the substrate even under relatively weak applied pressure and which after use can be detached from the substrate again substantially without residue.
  • PSAs At room temperature, PSAs have a permanently pressure-sensitively adhesive effect, hence having a sufficiently low viscosity and a high initial tack, allowing them to wet the surface of the respective substrate even under low applied pressure.
  • the bondability of such adhesives derives from their adhesive properties, and the redetachability from their cohesive properties.
  • a variety of materials are suitable as a basis for PSAs.
  • PSAs which can be used are all PSAs known to the skilled person, in other words, for example, those based on acrylates and/or methacrylates, polyurethanes, natural rubbers, synthetic rubbers, styrene block copolymer compositions with an elastomer block composed of unsaturated or hydrogenated polydiene blocks (polybutadiene, polyisoprene, copolymers of both, and also other elastomer blocks familiar to the skilled person), polyolefins, fluoropolymers and/or silicones.
  • PSAs which can be used are all PSAs known to the skilled person, in other words, for example, those based on acrylates and/or methacrylates, polyurethanes, natural rubbers, synthetic rubbers, styrene block copolymer compositions with an elastomer block composed of unsaturated or hydrogenated polydiene blocks (polybutadiene, polyisoprene, copolymers of both,
  • compositions which possess pressure-sensitively adhesive properties in accordance with the “Handbook of Pressure Sensitive Adhesive Technology” by Donatas Satas (Satas & Associates, Warwick 1999), especially those which meet the Dahlquist criterion.
  • elastomers based on acrylates and/or methacrylates polyurethanes, natural rubbers, synthetic rubbers such as butyl, (iso)butyl, nitrile, or butadiene rubbers, styrene block copolymers with an elastomer block composed of unsaturated or partly or fully hydrogenated polydiene blocks (polybutadiene, polyisoprene, poly(iso)butylene, copolymers thereof, and further elastomer blocks familiar to the skilled person), polyolefins, fluoropolymers and/or silicones.
  • the natural rubber may be selected in principle from all available grades such as, for example, crepe, RSS, ADS, TSR, or CV types, according to required levels of purity and of viscosity
  • the synthetic rubber or rubbers may be selected from the group of randomly copolymerized styrene-butadiene rubbers (SBR), butadiene rubbers (BR), synthetic polyisoprenes (IR), butyl rubbers (IIR), halogenated butyl rubbers (XIIR), acrylate rubbers (ACM), ethylene-vinyl acetate copolymers (EVA), or polyurethanes, and/or blends thereof.
  • these elastomers have a molar mass which is greater than their 5-fold, preferably 25-fold, entanglement molar mass. “Based on” or “on the basis of” means in the present context that the properties of the polymer mixture are determined at least to a large extent by the fundamental properties of this polymer (the so-called base polymer), without, of course, ruling out an additional influence on these properties through use of modifying auxiliaries or adjuvants, or of further polymers, in the composition. In particular this may mean that the fraction of the base polymer in the overall mass of the elastomeric phase is more than 50 wt %.
  • the polymer may be linear, branched, star-shaped, or grafted in structure, to give but a few examples, and may be constructed as a homopolymer, as a random copolymer, as an alternating, or as a block copolymer.
  • the designation “random copolymer” in the context of this invention entails not only those copolymers in which the comonomers used in the polymerization are incorporated purely randomly, but also those in which there are gradients in the comonomer composition and/or local accumulations of individual comonomer kinds in the polymer chains. Individual polymer blocks may be built up as a copolymer block (random or alternating).
  • the vinylaromatic block is an agent for physical crosslinking through the formation of domains of the PSA, and on the other hand the vinylaromatic blocks may act as compatibilizers for the reactive component, so facilitating the production of a homogeneous mixture.
  • Block copolymers with a soft acrylate block as well are particularly suitable, though.
  • the hard phase of the interpenetrating network of the invention is formed by a polymer, more particularly a crosslinked polymer, whose softening point is greater than 23° C.
  • the polymer, more particularly crosslinked polymer is obtained preferably by crosslinking buildup reaction in the presence of the elastomer phase (sequential IPN).
  • a crosslinking buildup reaction is a reaction in which branches and/or crosslinks into the growing polymer chains are incorporated in parallel to the buildup of a macromolecule from reactive components (monomeric and/or oligomeric constituents).
  • reactive component it is possible in principle to use all reactive constituents known to the skilled person in the field of PSAs or reactive adhesives and forming crosslinking macromolecules in a buildup reaction, these constituents being as described for example in Gerd Habenicht: Kleben-Grundlagen, Technologien, füren, 6 th edition, Springer, 2009. Examples are constituents which form epoxides, polyesters, polyethers, polyurethanes, phenolic resin-based, cresol based, or novolak based polymers, polysulfides, or acrylic polymers (acrylic, methacrylic).
  • the buildup and the chemical nature of the hard phase are not critical, provided they can be produced from precursors which are at least partly miscible with the elastomer phase, and provided the buildup reaction can be carried out under conditions, more particularly in terms of the temperatures employed, nature of catalysts used, and the like, that do not lead to any substantial impairment and/or decomposition of the elastomer phase.
  • the mass ratio of elastomer phase to hard phase can be from 85:15 up to 50:50.
  • a hard-phase fraction of more than 50 wt % in general the development of the structure of the invention, in other words a co-continuous structure formed by connected particles, is no longer observed; in general a known co-continuous structure is produced, in other words a homogeneous co-continuous structure not formed by connected particles, or there is even a phase inversion, so that the hard phase is the matrix in which the elastomer phase is dispersed.
  • Preferred in accordance with the invention is a hard-phase fraction of less than/equal to 50 wt %, since otherwise the PSA becomes too soft, meaning that it is no longer advantageous over liquid adhesives in terms of its manageability in its uncured state.
  • a hard-phase fraction of greater than/equal to 15 wt % is preferred, since otherwise the hard phase frequently adopts a disperse morphology.
  • the buildup of the hard phase is accomplished preferably via reaction mechanisms (which can be designated slow) in which the lifetime of the reactive species is >1 s, more preferably >1 min. This is true especially of cationic and controlled radical polymerizations, in which the number of linked monomers in the polymer formed is time-dependent. This is not the case for free radical polymerizations.
  • the buildup reaction is accomplished preferably cationically or by means of a controlled radical mechanism (for example, RAFT, ATRP, NMRP).
  • RAFT RAFT
  • ATRP ATRP
  • NMRP a controlled radical mechanism
  • the number of reaction nuclei and hence the number and size of the particles can be determined via the amount of initiator or of chain transfer agent, since particles grow only from these nuclei.
  • free radical polymerization the number of particles is dependent on factors including the number of chain transfer reactions, and is therefore relatively uncontrollable.
  • block copolymers include at least one kind of block having a softening temperature of greater than 40° C., such as, for example, vinylaromatics (including partly or fully hydrogenated versions), methyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, and isobornyl acrylate.
  • the block copolymer includes one kind of block having a softening temperature of less than ⁇ 20° C.
  • soft blocks examples include polyethers such as, for example, polyethylene glycol, polypropylene glycol, or polytetrahydrofuran, polydienes such as, for example, polybutadiene or polyisoprene, (partly) hydrogenated polydienes such as, for example, polyethylenebutylene, polyethylenepropylene, or polybutylenebutadiene, polybutylene, polyisobutylene, polyalkyl vinyl ethers, polymer blocks of ⁇ , ⁇ -unsaturated esters, such as acrylate copolymers in particular.
  • polyethers such as, for example, polyethylene glycol, polypropylene glycol, or polytetrahydrofuran
  • polydienes such as, for example, polybutadiene or polyisoprene
  • hydrogenated polydienes such as, for example, polyethylenebutylene, polyethylenepropylene, or polybutylenebutadiene, polybutylene, polyisobutylene
  • polyalkyl vinyl ethers
  • the soft block is of apolar construction and in that case comprises preferably butylene or isobutylene or hydrogenated polydienes as homopolymer block or copolymer block, the latter preferably copolymerized with itself or with one another or with further comonomers, which with particular preference are apolar comonomers.
  • suitable apolar comonomers are (partly) hydrogenated polybutadiene, (partly) hydrogenated polyisoprene and/or polyolefins.
  • the PSA of the invention comprises at least one kind of a reactive resin based on a cyclic ether for radiation crosslinking and optionally thermal crosslinking, with a softening temperature of less than 40° C., preferably of less than 20° C.
  • the reactive resins based on cyclic ethers are, in particular, epoxides, in other words, compounds which carry at least one oxirane group, or oxetanes. They may be aromatic or, more particularly, aliphatic or cycloaliphatic in nature.
  • Reactive resins which can be used may be monofunctional, difunctional, trifunctional, tetrafunctional, or more highly functional through polyfunctional in architecture, with the functionality relating to the cyclic ether group.
  • Examples are 3,4-epoxycyclohexylmethyl 3′,4′-epoxycyclohexanecarboxylate (EEC) and derivatives, dicyclopentadiene dioxide and derivatives, 3-ethyl-3-oxetanemethanol and derivatives, diglycidyl tetrahydrophthalate and derivatives, diglycidyl hexahydrophthalate and derivatives, 1,2-ethane diglycidyl ether and derivatives, 1,3-propane diglycidyl ether and derivatives, 1,4-butanediol diglycidyl ether and derivatives, higher 1,n-alkane diglycidyl ethers and derivatives, bis[(3,4-epoxycyclohexyl)methyl]adipate and derivatives, vinylcyclohexyl dioxide and derivatives, 1,4-cyclohexanedimethanol bis(3,4-epoxycyclohexanecarbox
  • Reactive resins can be used in their monomeric form or else dimeric form, trimeric form, etc., up to and including their oligomeric form.
  • the adhesive formulation additionally comprises at least one kind of photoinitiator for the cationic curing of the reactive resins.
  • the initiators for cationic UV curing more particularly, sulfonium-, iodonium- and metallocene-based systems are usable.
  • anions which serve as counterions to the abovementioned cations include tetrafluoroborate, tetraphenylborate, hexafluorophosphate, perchlorate, tetrachloroferrate, hexafluoroarsenate, hexafluoroantimonate, pentafluorohydroxyantimonate, hexachloroantimonate, tetrakispentafluorophenylborate, tetrakis(pentafluoromethylphenyl)borate, bi(trifluoromethylsulfonyl)amides and tris(trifluoromethylsulfonyl)methides.
  • anions especially for iodonium-based initiators, are also chloride, bromide or iodide, although preference is given to initiators essentially free of chlorine and bromine.
  • the usable systems include
  • Examples of commercialized photoinitiators are Cyracure UVI-6990, Cyracure UVI-6992, Cyracure UVI-6974 and Cyracure UVI-6976 from Union Carbide, Optomer SP-55, Optomer SP-150, Optomer SP-151, Optomer SP-170 and Optomer SP-172 from Adeka, San-Aid SI-45L, San-Aid SI-60L, San-Aid SI-80L, San-Aid SI-100L, San-Aid SI-110L, San-Aid SI-150L and San-Aid SI-180L from Sanshin Chemical, SarCat CD-1010, SarCat CD-1011 and SarCat CD-1012 from Sartomer, Degacure K185 from Degussa, Rhodorsil Photoinitiator 2074 from Rhodia, CI-2481, CI-2624, CI-2639, CI-2064, CI-2734, CI-2855, CI-2823 and
  • Photoinitiators are employed uncombined or as a combination of two or more photoinitiators.
  • Advantageous photoinitiators are those which exhibit absorption at less than 350 nm and advantageously at greater than 250 nm. Initiators which absorb above 350 nm, in the violet light range, for example, can likewise be employed. Sulfonium-based photoinitiators are employed with particular preference, since they have advantageous UV absorption characteristics.
  • photosensitizers are diphenolmethanone and derivatives, acetophenone derivatives, for example Irgacure 651, anthracene derivatives such as 2-ethyl-9,10-dimethoxyanthracene and 9-hydroxymethylanthracene, phenyl ketone derivatives such as 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one and 4-(2-hydroxyethoxyl)phenyl 2-hydroxy-2-methylpropyl ketone (Irgacure 184, Darocure 1173, Irgacure 2959), and thioxanthenone derivatives such as 4-isopropyl-9-thioxanthenone or 1-chloro-4-propoxythioxanthenone.
  • acetophenone derivatives for example Irgacure 651, anthracene derivatives such as 2-ethyl-9,10-dimethoxyanthracene and 9-
  • Particularly preferred combinations of photoinitiator and sensitizer take into account the different redox potentials and retardation potentials of intermediates, as is the case for combinations of diaryliodonium-based photoinitiators with acetophenone sensitizers, and as described in Bulut U., Crivello J. V., J. Polym. Sci. 2005, 43, pages 3205 to 3220.
  • compatibilizer which is miscible with both components, but which itself does not react with one of the two constituents during the buildup reaction(s) of the IPN. This facilitates the attainment of the structure of the invention, since in the case of the control of the formation of the structure of the invention, there is no need to take account of any other reactant. Also possible, however, is a reactive compatibilizer.
  • Compatibilizers used are frequently block copolymers one of whose blocks is compatible with one constituent and the other of whose blocks is compatible with the other constituent. It has emerged that for the formation of the structure of the invention, a compatibilizer is advantageously used that is not based on a block copolymer. Owing to its high philicity for the reactive component, the block that is compatible for the reactive resin restricts the capacity of this component to diffuse, so hindering the formation of a structure of the invention. Sufficient diffusion, however, is necessary to allow the reactive component to reach the dedicated reaction centers.
  • tackifier resins of the kind known to the skilled person from Satas, for example.
  • the PSA comprises at least one kind of a preferably at least partly hydrogenated tackifier resin, advantageously those which are compatible with the elastomer component and/or, where a copolymer composed of hard blocks and soft blocks is used, primarily with the soft block (plasticizer resins).
  • such a tackifier resin has a softening temperature, as measured by the ring & ball method, of greater than 25° C. It is advantageous, furthermore, if in addition at least one kind of tackifier resin having a softening temperature of less than 20° C. is used. Via such a resin it is possible, if necessary, to fine-tune on the one hand the adhesive performance, and on the other hand the flow behavior on the bonding substrate.
  • resins in the PSA may advantageously partly or fully hydrogenated resins based on rosin and rosin derivatives, hydrogenated polymers of dicyclopentadiene, partially, selectively or fully hydrogenated hydrocarbon resins based on C 5 , C 5 /C 9 , or C 9 monomer streams, polyterpene resins based on ⁇ -pinene and/or ⁇ -pinene and/or ⁇ -limonene and/or ⁇ 3 -carene, hydrogenated polymers of preferably pure C 8 and C 9 aromatics.
  • Aforementioned tackifier resins may be used both alone and in a mixture.
  • Both liquid resins and resins which are solid at room temperature may be employed here.
  • polar resins are known to be compatible to the skilled person, examples being terpene-phenol or rosin based resins, as may likewise be found in Satas.
  • the homogeneous mixture may be produced in bulk, in solution, or in the melt.
  • a sufficient sign of the presence of the homogeneous mixture is that the mixture appears visually clear, in other words not turbid.
  • the appearance in this context is evaluated at room temperature; in the melt or in bulk, the appearance at the production temperature of the mixture is evaluated.
  • Turbidities as a result of other ingredients of the mixture are not considered in this evaluation. They may optionally be removed by centrifugation or filtration, in order for the mixture to be examined for homogeneity.
  • the mixture is preferably produced in solution, since in this case it is easier to achieve a homogeneous distribution.
  • the selection of the solvents is guided by the constituents. Preference is given to a combination of at least two solvents, of which one has a solubility parameter difference of not more than 3 (J/MPa) 1/2 relative to the solubility parameter of one constituent, and the other has a solubility parameter difference of not more than 3 (J/MPa) 1/2 relative to the solubility parameter of the other constituent.
  • solubility parameters Hilderbrandt parameters at 25° C. are employed. Since the measurement is very complicated, the values are taken from the Handbook of Solubility Parameters and Other Cohesion Parameters (Allan F. M. Barton: CRC Handbook of Solubility Parameters and Other Cohesion Parameters, CRC Press, 1991). If solubility parameters are not present therein in experimentally determined form, they are calculated according to the Group Contribution Method of Stefanis-Panayiotou (Int. J. Thermophys. 2008, vol. 29, pages 568 to 585).
  • Layers and adhesive tapes are produced after the mixing of the formulation and before the implementation of the buildup reaction. Layers may be produced in bulk, in solution, or in the melt, using the techniques known to the skilled person for the production of layer structures, more particularly of layers of adhesive.
  • the adhesive of the invention can be used in a single-sided or double-sidedly adhesive tape. This mode of administration allows particularly simple and uniform application of the adhesive.
  • the adhesive here is produced before the buildup reaction is performed.
  • the adhesive may have customary adjuvants added, such as ageing inhibitors (antiozonants, antioxidants, light stabilizers, etc.).
  • Additives for the adhesive that are typically utilized are as follows:
  • the adjuvants or additives are not mandatory; the adhesive also works without their addition, individually or in any desired combination.
  • Fillers can be used advantageously in the PSAs of the invention.
  • fillers in the adhesive it is preferred to use nanoscale and/or transparent fillers.
  • a filler is termed nanoscale if in at least one dimension it has a maximum extent of about 100 nm, preferably about 10 nm.
  • Particular preference is given to using those fillers which are transparent in the adhesive and have a platelet-shaped crystallite structure and a high aspect ratio with homogeneous distribution.
  • the fillers with a platelet-like crystallite structure and with aspect ratios of well above 100 generally have a thickness of only a few nm, but the length and/or width of the crystallites may be up to several ⁇ m. Fillers of this kind are likewise referred to as nanoparticles.
  • the particulate architecture of the fillers with small dimensions, moreover, is particularly advantageous for a transparent embodiment of the PSA.
  • the fillers are not mandatory; the adhesive also operates without the addition thereof individually or in any desired combination.
  • PSA of the invention is transparent in the stated sense.
  • Transparency here denotes an average transmittance of the adhesive in the visible range of light of at least 75%, preferably higher than 80%, more preferably higher than 88%, this consideration being based on uncorrected transmission, in other words without subtracting losses through interfacial reflection.
  • the adhesive preferably exhibits a haze of less than 5.0%, preferably less than 2.5%.
  • the PSA may be produced and processed from solution, from dispersion and from the melt. Preference is given to its production and processing from solution or from the melt. Particularly preferred is the manufacture of the adhesive from solution.
  • the constituents of the PSA are dissolved in a suitable solvent, for example toluene or mixtures of mineral spirit and acetone, and the solution is applied to the carrier using techniques that are general knowledge. In the case of processing from the melt, this may involve application techniques via a nozzle or a calender.
  • coatings with doctor blades, knives, rollers or nozzles are known, to name but a few.
  • the coating temperature it is possible in solvent-free operations to influence the coating outcome.
  • the skilled person is familiar with the operational parameters for obtaining transparent adhesive layers.
  • the coating outcome can be influenced via the selection of the solvent or solvent mixture.
  • the skilled person is familiar with selection of suitable solvents.
  • Combinations of, in particular, apolar solvents boiling below 100° C. with solvents which boil above 100° C., more particularly aromatic solvents, are very suitable.
  • Coating from solvents or from the melt is advantageous.
  • formulations according to the invention offer great advantages, as has already been stated earlier on above.
  • the adhesive of the invention can be used with particular advantage in a single-sided or double-sided adhesive tape. This mode of presentation permits particularly simple and uniform application of the adhesive.
  • the PSA of the invention may be applied on both sides of the carrier (with identical or different composition), or the adhesive applied to one of the two sides may be different from the adhesive of the invention that is specially adapted to the particular end application.
  • the adhesive tape preferably comprises a layer of the PSA of the invention or it consists of a single or two or more layers of the PSA of the invention.
  • the general expression “adhesive tape” encompasses a carrier material which is provided on one or both sides with a (pressure-sensitive) adhesive.
  • the carrier material encompasses all sheetlike structures, examples being two-dimensionally extended films or film sections, tapes with an extended length and limited width, tape sections, diecuts (in the form of edge surrounds or borders of an (opto)electronic arrangement, for example), multi-layer arrangements, and the like.
  • the expression “adhesive tape” also encompasses what are called “adhesive transfer tapes”, i.e. an adhesive tape without carrier.
  • the adhesive is instead applied prior to application between flexible liners which are provided with a release coat and/or have anti-adhesive properties.
  • first one liner is removed, the adhesive is applied, and then the second liner is removed.
  • the adhesive can thus be used directly to join two surfaces in (opto)electronic arrangements.
  • adhesive tapes which operate not with two liners, but instead with a single liner with double-sided release. In that case the web of adhesive tape is lined on its top face with one side of a double-sidedly releasing liner, while its bottom face is lined with the reverse side of the double-sidedly releasing liner, more particularly of an adjacent turn in a bale or roll.
  • polymer films, film composites, or films or film composites that have been provided with organic and/or inorganic layers are preferred in the present case to use polymer films, film composites, or films or film composites that have been provided with organic and/or inorganic layers.
  • films/film composites may be composed of any common plastics used for film manufacture, examples—though without restriction—including the following:
  • polyethylene polypropylene—especially the oriented polypropylene (OPP) produced by monoaxial or biaxial stretching, cyclic olefin copolymers (COC), polyvinyl chloride (PVC), polyesters—especially polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), ethylene-vinyl alcohol (EVOH), polyvinylidene chloride (PVDC), polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), polycarbonate (PC), polyamide (PA), polyethersulfone (PES) or polyimide (PI).
  • OPP oriented polypropylene
  • COC cyclic olefin copolymers
  • PVC polyvinyl chloride
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • EVOH ethylene-vinyl alcohol
  • PVDC polyvinylidene chloride
  • PVDF polyvinylidene fluoride
  • PAN poly
  • the adhesives used as the top and bottom layer may be identical or different adhesives of the invention, and/or the layer thicknesses thereof that are used may be the same or different.
  • the carrier in this case may have been pretreated according to the prior art on one or both sides, with the achievement, for example, of an improvement in adhesive anchorage. It is also possible for one or both sides to have been furnished with a functional layer which is able to function, for example, as a shutout layer.
  • the layers of PSA may optionally be lined with release papers or release films. Alternatively it is also possible for only one layer of adhesive to be lined with a double-sidedly releasing liner.
  • an adhesive of the invention is provided in the double-sidedly (self-)adhesive tape, and also any desired further adhesive is provided, for example one which adheres particularly well to a masking substrate or exhibits particularly good repositionability.
  • the thickness of the PSA is preferably between 1 ⁇ m and 2000 ⁇ m, more preferably between 5 ⁇ m and 500 ⁇ m, and very preferably between about 12 ⁇ m and 250 ⁇ m.
  • Layer thicknesses between 50 ⁇ m and 150 ⁇ m are used when the aim is to achieve improved adhesion on the substrate and/or a damping effect.
  • Layer thicknesses between 1 ⁇ m and 50 ⁇ m reduce the amount of material used. However, there is a reduction of the adhesion on the substrate.
  • the thickness of the individual layer or layers of PSA is preferably between 1 ⁇ m and 2000 ⁇ m, more preferably between 5 ⁇ m and 500 ⁇ m, and very preferably between about 12 ⁇ m and 250 ⁇ m.
  • another adhesive is used as well as the one adhesive of the invention in double-sided adhesive tapes, it may also be advantageous if its thickness is above 150 ⁇ m.
  • the bond strengths to steel were determined in analogy to ISO 29862 (Method 3) at 23° C. and 50% relative humidity with a peel speed of 300 mm/min and a peel angle of 180°.
  • the reinforcing film used was an etched PET film with a thickness of 50 ⁇ m, as available from Coveme (Italy).
  • the measurement strip was bonded using a roll-on machine at a temperature of 23° C.
  • the adhesive tapes were peeled off immediately after application.
  • the measurement (in N/cm) was obtained as the average from three individual measurements. The testing was performed on non-crosslinked specimens.
  • OTR Oxygen
  • WVTR Water Vapor
  • the permeability for oxygen (OTR) and water vapor (WVTR) was determined in accordance with DIN 53380 Part 3 and ASTM F-1249, respectively.
  • OTR oxygen
  • WVTR water vapor
  • the oxygen permeability is measured at 23° C. and a relative humidity of 50%.
  • the water vapor permeability is determined at 38° C. and a relative humidity of 90%. The testing was performed on noncrosslinked specimens.
  • the characteristic variable for the cohesion of the IPN of the invention was determined in the form of the tensile-stress curve in analogy to DIN EN ISO 527-3.
  • test specimens form analogous to type 2: measurement length 30 mm, width 4 mm
  • the testing was performed on crosslinked specimens.
  • the evaluation of the tackifier resin softening temperature is conducted according to the relevant methodology, which is known as ring & ball and is standardized according to ASTM E28.
  • the tackifier resin softening temperature of the resins is determined using an automatic ring & ball tester HRB 754 from Herzog. Resin specimens are first finely mortared. The resulting powder is introduced into a brass cylinder with a base aperture (internal diameter at the top part of the cylinder 20 mm, diameter of the base aperture in the cylinder 16 mm, height of the cylinder 6 mm) and melted on a hotplate. The amount introduced is selected such that the resin after melting fully fills the cylinder without protruding.
  • the resulting sample body, complete with cylinder, is inserted into the sample mount of the HRB 754.
  • Glycerin is used to fill the heating bath where the tackifier resin softening temperature lies between 50° C. and 150° C.
  • the test balls have a diameter of 9.5 mm and weigh 3.5 g.
  • the ball is arranged above the sample body in the heating bath and is placed down on the sample body. 25 mm beneath the base of the cylinder is a collecting plate, which has a light barrier 2 mm above it. During the measuring procedure, the temperature is raised at 5° C./min.
  • the ball Within the temperature range of the tackifier resin softening temperature, the ball begins to move through the base aperture in the cylinder, until finally coming to rest on the collecting plate. In this position, it is detected by the light barrier, and at this point in time the temperature of the heating bath is recorded. A duplicate determination is conducted.
  • the tackifier resin softening temperature is the average value from the two individual measurements.
  • the softening temperature of homopolymers, copolymers, hard blocks and soft blocks and uncured reactive resins is determined calorimetrically by means of differential scanning calorimetry (DSC) in accordance with DIN 53765:1994-03. Heating curves run with a heating rate of 10 K/min. The specimens are measured in A1 crucibles with a perforated lid under a nitrogen atmosphere. The heating curve evaluated is the second curve. In the case of amorphous substances, the glass transition temperatures occurring are defined as softening temperature; in the case of (semi)crystalline substances, the melting temperatures. A glass transition can be seen as a step in the thermogram. The glass transition temperature is evaluated as the middle point of this step. A melting temperature can be recognized as a peak in the thermogram. The melting temperature recorded is the temperature at which maximum heat change occurs.
  • DSC differential scanning calorimetry
  • the transmittance of the adhesive was determined in analogy to ASTM D1003-11 (Procedure A (Byk Haze-gard Dual haze meter), standard illuminant D65). There is no correction for interfacial reflection losses. The testing took place on crosslinked specimens having a thickness of about 50 ⁇ m.
  • the HAZE value describes the fraction of transmitted light which is scattered forward at large angles by the irradiated sample.
  • the HAZE value hence quantifies material defects in the surface or the structure that disrupt clear transmission.
  • the method for measuring the haze value is described in the ASTM D 1003 standard. This standard requires the recording of four transmission measurements. For each transmission measurement, the light transmittance is calculated. The four transmittances are used to calculate the percentage haze value. The HAZE value is measured using a Haze-gard Dual from Byk-Gardner GmbH. The testing took place on crosslinked specimens having a thickness of about 50 ⁇ m.
  • the average molecular weight M w (weight average) is determined by means of gel permeation chromatography (GPC).
  • the eluent used is THF with 0.1% by volume trifluoroacetic acid. Measurement takes place at 25° C.
  • the precolumn used is PSS-SDV, 5 ⁇ m, 10 3 ⁇ , ID 8.0 mm ⁇ 50 mm. Separation was carried out using the columns PSS-SDV, 5 ⁇ m, 10 3 ⁇ , 10 5 ⁇ and 10 6 ⁇ , each with an ID of 8.0 mm ⁇ 300 mm.
  • the sample concentration is 4 g/l, the flow rate 1.0 ml per minute. Measurement takes place against PS standards.
  • test specimen investigated is a square specimen having an edge length of 25 mm.
  • MMAP is the mixed methylcyclohexane-aniline cloud point, determined using a modified ASTM C 611 method. Methylcyclohexane is used for the heptane employed in the standard test method. The method uses resin/aniline/methylcyclohexane in a ratio of 1/2/1 (5 g/10 ml/5 ml), and the cloud point is determined by cooling a heated, clear mixture of the three components until complete clouding is just established.
  • the DACP is the diacetone alcohol cloud point, and is determined by cooling a heated solution of 5 g resin, 5 g xylene and 5 g diacetone alcohol until the point is reached at which the solution turns cloudy.
  • the copolymer used for the inventive examples and for comparative examples 1 and 2 was an SEBS with 13 wt % block polystyrene content from Kraton. Kraton G 1657 was used. The molar mass (weight average) is about 120 000 g/mol for the triblocks.
  • the reactive resin selected in examples C1 and also 2 to 8 was Uvacure 1500 from Dow, a cycloaliphatic diepoxide (3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate).
  • the glass transition temperature of Uvacure 1500 was ⁇ 53° C.
  • the photoinitiator was added subsequently to the solution.
  • the reactive resin used in comparative example 3 was SR833s from Sartomer, a cycloaliphatic diacrylate (tricyclodecanedimethanol diacrylate).
  • example 5 from EP 2160443 B1 was selected. Preparation took place in analogy to the details in that specification. The result was a pasty composition. Consequently it was not possible to carry out bond strength measurements. This composition is therefore not suitable as adhesive for an adhesive tape.
  • the formulation was coated from solution onto a siliconized PET liner and dried at 120° C. for 15 minutes.
  • the coatweight was 50 g/m 2 .
  • the specimens were lined with a further ply of a siliconized but more easily releasing PET liner.
  • test rod was coated directly with the composition at a thickness of 50 ⁇ m, then contacted with the second test rod, and the assembly was cured in an oven at 70° C. for 6 hours.
  • FIG. 1 shows a scanning electron micrograph of example 6.
  • the particulate hard phases of crosslinked epoxide with a size around 50 nm form macroscopic superstructures composed of these particles.
  • This connected nanoparticle network, with diverse passages, completely pervades the adhesive.
  • the table below shows the WVTR and the OTR for the inventive and comparative examples, with the fraction of the hard phase increasing continually from C2 via C1 and up to example 8, with C9 representing the pure hard phase.
  • the OTR is evidently dependent on the internal cross-sectional area proportions of the constituents, since oxygen permeates through the elastomer phase to a substantially greater extent than through the hard phase.
  • the OTR values exhibit a virtually linear correlation (the greater the amount of epoxide, the lower the OTR).
  • the pure elastomer resin system already has a low WVTR of 24 g/m 2 d; the pure epoxide (by virtue of its polarity) has a very high WVTR of 123 g/m 2 d.
  • the WVTR here does not increase in proportion with the increasing epoxide fraction. This suggests that the effect in question here is not a cross-sectional area effect, the WVTR instead being also influenced substantially by the morphology.
  • C1 it is shown microscopically that the hard phase is in disperse form. Consequently, no permeation channels are formed in the IPN, and so the WVTR is close to that of the elastomer phase.
  • the PSAs of the invention are therefore particularly suitable for the sealing of the packaging and of the encapsulation of water-sensitive materials.
  • examples 3, 6, and 7 exhibit a much higher modulus than example 1.
  • the low initial rise in example 1 points to the presence of a substantially disperse phase of the epoxide, which does not produce any significant increase in modulus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Adhesive Tapes (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
US14/648,423 2013-01-29 2014-01-13 Pressure-sensitive adhesive compound containing a cross-linked nanoparticle network, method of production and use thereof Abandoned US20150322296A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13152987.7 2013-01-29
EP13152987.7A EP2759514A1 (de) 2013-01-29 2013-01-29 Haftklebemasse enthaltend ein verbundenes Nanopartikelnetzwerk, Verfahren zu ihrer Herstellung sowie die Verwendung derselben
PCT/EP2014/050500 WO2014117993A1 (de) 2013-01-29 2014-01-13 Haftklebemasse enthaltend ein verbundenes nanopartikelnetzwerk, verfahren zu ihrer herstellung sowie die verwendung derselben

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/050500 A-371-Of-International WO2014117993A1 (de) 2013-01-29 2014-01-13 Haftklebemasse enthaltend ein verbundenes nanopartikelnetzwerk, verfahren zu ihrer herstellung sowie die verwendung derselben

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/369,406 Division US11142672B2 (en) 2013-01-29 2019-03-29 Pressure-sensitive adhesive compound containing a cross-linked nanoparticle network, method of production and use thereof

Publications (1)

Publication Number Publication Date
US20150322296A1 true US20150322296A1 (en) 2015-11-12

Family

ID=47749631

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/648,423 Abandoned US20150322296A1 (en) 2013-01-29 2014-01-13 Pressure-sensitive adhesive compound containing a cross-linked nanoparticle network, method of production and use thereof
US16/369,406 Active 2034-03-13 US11142672B2 (en) 2013-01-29 2019-03-29 Pressure-sensitive adhesive compound containing a cross-linked nanoparticle network, method of production and use thereof
US17/471,642 Active 2034-02-07 US11866614B2 (en) 2013-01-29 2021-09-10 Pressure-sensitive adhesive compound containing a cross-linked nanoparticle network, method of production and use thereof

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/369,406 Active 2034-03-13 US11142672B2 (en) 2013-01-29 2019-03-29 Pressure-sensitive adhesive compound containing a cross-linked nanoparticle network, method of production and use thereof
US17/471,642 Active 2034-02-07 US11866614B2 (en) 2013-01-29 2021-09-10 Pressure-sensitive adhesive compound containing a cross-linked nanoparticle network, method of production and use thereof

Country Status (10)

Country Link
US (3) US20150322296A1 (de)
EP (2) EP2759514A1 (de)
JP (1) JP6362621B2 (de)
KR (1) KR102187043B1 (de)
CN (1) CN105121332B (de)
BR (1) BR112015016758A2 (de)
MX (1) MX2015008640A (de)
RU (1) RU2015135796A (de)
TW (1) TWI600741B (de)
WO (1) WO2014117993A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160223269A1 (en) * 2015-02-04 2016-08-04 Outlast Technologies, LLC Thermal management films containing phase change materials
US20170325336A1 (en) * 2014-11-18 2017-11-09 Hitachi Chemical Company, Ltd. Semiconductor device and manufacturing method therefor, and resin composition for forming flexible resin layer
US9960389B1 (en) 2017-05-05 2018-05-01 3M Innovative Properties Company Polymeric films and display devices containing such films
US10294415B2 (en) 2014-06-09 2019-05-21 iGlass Technology, Inc. Electrochromic composition and electrochromic device using same
US10344208B2 (en) 2014-06-09 2019-07-09 iGlass Technology, Inc. Electrochromic device and method for manufacturing electrochromic device
CN111521632A (zh) * 2020-04-07 2020-08-11 燕山大学 一种利用dsc鉴别溶液混合程度的方法
US11319468B2 (en) 2015-03-24 2022-05-03 Lg Chem, Ltd. Adhesive composition
CN114644901A (zh) * 2022-03-22 2022-06-21 苏州世华新材料科技股份有限公司 一种uv固化网格排气胶及其制备方法
US11384261B2 (en) 2016-04-04 2022-07-12 Tesa Se Radiation-activatable pressure-sensitive adhesive tape having a dark reaction and use thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017189389A1 (en) * 2016-04-29 2017-11-02 3M Innovative Properties Company Adhesive and damping film
KR101935048B1 (ko) 2017-03-09 2019-01-03 정주영 색상 조절이 가능한 색변환필름 또는 색변환용기
FR3091832B1 (fr) * 2019-01-17 2023-04-28 Saint Gobain Intercalaire acoustique hybride constitué d’une couche de cœur adhésive en nanocomposites à matrice polymère
DE102021004134B3 (de) 2021-08-11 2022-12-08 Lohmann Gmbh & Co. Kg Atmungsaktive Klebstoffmembran, Verfahren zur Herstellung und medizinische Abdeckung
CN114921209B (zh) * 2022-06-02 2022-11-29 广州宝捷电子材料科技有限公司 一种环氧树脂胶粘剂及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130284364A1 (en) * 2010-10-25 2013-10-31 Marysusan Couturier Adhesives For Construction Materials Such As Tiles

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302553A (en) 1970-10-30 1981-11-24 Harry L. Frisch Interpenetrating polymeric networks
US3729313A (en) 1971-12-06 1973-04-24 Minnesota Mining & Mfg Novel photosensitive systems comprising diaryliodonium compounds and their use
US3741769A (en) 1972-10-24 1973-06-26 Minnesota Mining & Mfg Novel photosensitive polymerizable systems and their use
AU497960B2 (en) 1974-04-11 1979-01-25 Minnesota Mining And Manufacturing Company Photopolymerizable compositions
US4058401A (en) 1974-05-02 1977-11-15 General Electric Company Photocurable compositions containing group via aromatic onium salts
US4256828A (en) 1975-09-02 1981-03-17 Minnesota Mining And Manufacturing Company Photocopolymerizable compositions based on epoxy and hydroxyl-containing organic materials
US4138255A (en) 1977-06-27 1979-02-06 General Electric Company Photo-curing method for epoxy resin using group VIa onium salt
US4231951A (en) 1978-02-08 1980-11-04 Minnesota Mining And Manufacturing Company Complex salt photoinitiator
US4250053A (en) 1979-05-21 1981-02-10 Minnesota Mining And Manufacturing Company Sensitized aromatic iodonium or aromatic sulfonium salt photoinitiator systems
US5089536A (en) 1982-11-22 1992-02-18 Minnesota Mining And Manufacturing Company Energy polmerizable compositions containing organometallic initiators
US5747567A (en) 1988-10-31 1998-05-05 General Elecric Company Silicone adhesive and organic adhesive composites
US5416134A (en) * 1990-05-29 1995-05-16 Ashland Oil, Inc. Water-borne acrylic emulsion pressure sensitive latex adhesive composition
US5266402A (en) * 1990-12-18 1993-11-30 Minnesota Mining And Manufacturing Company Interpenetrating pressure-sensitive adhesive polymer networks
US5262232A (en) 1992-01-22 1993-11-16 Minnesota Mining And Manufacturing Company Vibration damping constructions using acrylate-containing damping materials
DE19808809A1 (de) * 1998-03-03 1999-09-09 Degussa Vernetzende Basisschicht für Fixiereinlagen nach dem Doppelpunktverfahren
JPH11343478A (ja) * 1998-06-01 1999-12-14 Sekisui Chem Co Ltd 硬化型粘接着剤組成物、硬化型粘接着シート及び接着方法
US6294270B1 (en) 1998-12-23 2001-09-25 3M Innovative Properties Company Electronic circuit device comprising an epoxy-modified aromatic vinyl-conjugated diene block copolymer
US6489042B2 (en) 1998-12-23 2002-12-03 3M Innovative Properties Company Photoimageable dielectric material for circuit protection
JP2000290619A (ja) * 1999-04-09 2000-10-17 Sekisui Chem Co Ltd 硬化型粘接着剤組成物及び硬化型粘接着シート
JP3573109B2 (ja) * 2000-06-22 2004-10-06 ソニーケミカル株式会社 Ipn型接着剤、ipn型接着シート及び接着方法
JP2002265777A (ja) * 2001-03-12 2002-09-18 Matsushita Electric Works Ltd ポリフェニレンオキサイド樹脂組成物、プリプレグ、積層板、プリント配線板、多層プリント配線板
US6908722B2 (en) 2001-06-29 2005-06-21 Jsr Corporation Acid generator, sulfonic acid, sulfonic acid derivatives and radiation-sensitive resin composition
EP1539825A4 (de) * 2002-07-24 2007-05-02 Adhesives Res Inc Transformierbares haftklebeband und verwendung davon in bildschirmen
US6887917B2 (en) * 2002-12-30 2005-05-03 3M Innovative Properties Company Curable pressure sensitive adhesive compositions
US7083694B2 (en) * 2003-04-23 2006-08-01 Integrated Materials, Inc. Adhesive of a silicon and silica composite particularly useful for joining silicon parts
DE10338245A1 (de) 2003-08-20 2005-03-24 Basf Ag Formmasse
DE10361540A1 (de) 2003-12-23 2005-07-28 Tesa Ag Chemisch vernetzbare, durch Zug in Richtung der Verklebungsebene lösbare Klebestreifen
DE102004031188A1 (de) 2004-06-28 2006-01-19 Tesa Ag Hitzeaktivierbares Klebeband für die Verklebung von elektronischen Bauteilen und Leiterbahnen
DE102004031190A1 (de) 2004-06-28 2006-01-19 Tesa Ag Hitzeaktivierbares Klebeband für die Verklebung von elektronischen Bauteilen und Leiterbahnen
DE102005022782A1 (de) 2005-05-12 2006-11-16 Tesa Ag Haftklebemassen und Verfahren zu deren Herstellung
JP5670616B2 (ja) 2006-12-01 2015-02-18 株式会社カネカ ポリシロキサン系組成物
ATE484546T1 (de) 2007-06-19 2010-10-15 Basf Se Semi-interpenetrierendes netzwerk mit einer phase eines linearen unvernetzten isobutenpolymers
JP2009108144A (ja) * 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd フレキシブルハロゲンフリーエポキシ樹脂組成物、樹脂付き金属箔、カバーレイフィルム、プリプレグ、プリント配線板用積層板、金属張フレキシブル積層板
JP2009235205A (ja) * 2008-03-26 2009-10-15 Tomoegawa Paper Co Ltd 粘着剤組成物及びそれを用いた粘着シート
DE102008041097A1 (de) * 2008-08-07 2010-02-11 Wacker Chemie Ag Verfahren zur Herstellung von siliconbasierten Schäumen
JP5262459B2 (ja) * 2008-09-03 2013-08-14 Jsr株式会社 歯科用成型体
EP2368956A1 (de) * 2010-03-26 2011-09-28 Sika Technology AG Formgedächtnis-Material auf Basis eines Strukturklebstoffs
EP2368955A1 (de) * 2010-03-26 2011-09-28 Sika Technology AG Formgedächtnis-Material auf Basis eines Strukturklebstoffs
WO2011139692A1 (en) * 2010-04-28 2011-11-10 W.R. Grace & Co.-Conn. Waterproofing membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130284364A1 (en) * 2010-10-25 2013-10-31 Marysusan Couturier Adhesives For Construction Materials Such As Tiles

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11698565B2 (en) 2014-06-09 2023-07-11 Vitro Flat Glass Llc Electrochromic device and method for manufacturing electrochromic device
US10294415B2 (en) 2014-06-09 2019-05-21 iGlass Technology, Inc. Electrochromic composition and electrochromic device using same
US10344208B2 (en) 2014-06-09 2019-07-09 iGlass Technology, Inc. Electrochromic device and method for manufacturing electrochromic device
US10698285B2 (en) 2014-06-09 2020-06-30 iGlass Technology, Inc. Electrochromic device and method for manufacturing electrochromic device
US11330721B2 (en) 2014-11-18 2022-05-10 Showa Denko Materials Co., Ltd Resin film, and laminated film including base material film, resin film formed on base material film, and protective film attached to resin film
US20170325336A1 (en) * 2014-11-18 2017-11-09 Hitachi Chemical Company, Ltd. Semiconductor device and manufacturing method therefor, and resin composition for forming flexible resin layer
US10674612B2 (en) * 2014-11-18 2020-06-02 Hitachi Chemical Company, Ltd. Semiconductor device and manufacturing method therefor, and resin composition for forming flexible resin layer
US11147166B2 (en) 2014-11-18 2021-10-12 Showa Denko Materials Co., Ltd. Method for producing semiconductor device
US20160223269A1 (en) * 2015-02-04 2016-08-04 Outlast Technologies, LLC Thermal management films containing phase change materials
US11319468B2 (en) 2015-03-24 2022-05-03 Lg Chem, Ltd. Adhesive composition
US11384261B2 (en) 2016-04-04 2022-07-12 Tesa Se Radiation-activatable pressure-sensitive adhesive tape having a dark reaction and use thereof
US10797269B2 (en) 2017-05-05 2020-10-06 3M Innovative Properties Company Polymeric films and display devices containing such films
US11472909B2 (en) 2017-05-05 2022-10-18 3M Innovative Properties Company Polymeric films and display devices containing such films
US9960389B1 (en) 2017-05-05 2018-05-01 3M Innovative Properties Company Polymeric films and display devices containing such films
CN111521632A (zh) * 2020-04-07 2020-08-11 燕山大学 一种利用dsc鉴别溶液混合程度的方法
CN114644901A (zh) * 2022-03-22 2022-06-21 苏州世华新材料科技股份有限公司 一种uv固化网格排气胶及其制备方法

Also Published As

Publication number Publication date
EP2951123B1 (de) 2021-03-03
US11142672B2 (en) 2021-10-12
KR102187043B1 (ko) 2020-12-04
US20190241775A1 (en) 2019-08-08
CN105121332A (zh) 2015-12-02
WO2014117993A1 (de) 2014-08-07
EP2951123A1 (de) 2015-12-09
JP6362621B2 (ja) 2018-07-25
US20210403771A1 (en) 2021-12-30
EP2759514A1 (de) 2014-07-30
BR112015016758A2 (pt) 2017-07-11
TW201432014A (zh) 2014-08-16
MX2015008640A (es) 2015-10-05
JP2016504475A (ja) 2016-02-12
KR20150115852A (ko) 2015-10-14
CN105121332B (zh) 2019-05-10
US11866614B2 (en) 2024-01-09
RU2015135796A (ru) 2017-03-03
TWI600741B (zh) 2017-10-01

Similar Documents

Publication Publication Date Title
US11866614B2 (en) Pressure-sensitive adhesive compound containing a cross-linked nanoparticle network, method of production and use thereof
CN109071728B (zh) 具有高度官能化的聚(甲基)丙烯酸酯的水蒸汽阻挡胶粘剂组合物
KR102315779B1 (ko) 연속 폴리머 상을 갖는 접착제를 특징으로 하는 접착 테이프
KR102033152B1 (ko) 침투물 배리어로서 경질 블록 및 연질 블록을 갖는 가교 가능한 접착제 컴파운드
DE102012202377A1 (de) Klebemasse insbesondere zur Kapselung einer elektronischen Anordnung
CN109219624B (zh) 用于胶粘剂体系的官能化(共)聚合物
CN113166594A (zh) 潜在反应性胶粘剂膜
US10144853B2 (en) Adhesive compound with reduced yellowness index
WO2019162035A1 (de) Zusammensetzung zur erzeugung einer klebemasse insbesondere zur kapselung einer elektronischen anordnung

Legal Events

Date Code Title Description
AS Assignment

Owner name: TESA SE, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KEITE-TELGENBUESCHER, KLAUS;SCHUH, CHRISTIAN;LUEHMANN, BERND;AND OTHERS;SIGNING DATES FROM 20150611 TO 20150710;REEL/FRAME:036142/0420

AS Assignment

Owner name: TESA SE, GERMANY

Free format text: CHANGE OF ADDRESS;ASSIGNOR:TESA SE;REEL/FRAME:037317/0675

Effective date: 20150422

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION