US20150241844A1 - Display Method and Display Apparatus - Google Patents

Display Method and Display Apparatus Download PDF

Info

Publication number
US20150241844A1
US20150241844A1 US14/638,234 US201514638234A US2015241844A1 US 20150241844 A1 US20150241844 A1 US 20150241844A1 US 201514638234 A US201514638234 A US 201514638234A US 2015241844 A1 US2015241844 A1 US 2015241844A1
Authority
US
United States
Prior art keywords
display
transparent substrate
display apparatus
beams
display beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/638,234
Other languages
English (en)
Inventor
Yoshiaki Horikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Assigned to OLYMPUS CORPORATION reassignment OLYMPUS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HORIKAWA, YOSHIAKI
Publication of US20150241844A1 publication Critical patent/US20150241844A1/en
Assigned to OLYMPUS CORPORATION reassignment OLYMPUS CORPORATION CHANGE OF ADDRESS Assignors: OLYMPUS CORPORATION
Priority to US15/936,010 priority Critical patent/US10534317B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/10Processes or apparatus for producing holograms using modulated reference beam
    • G03H1/12Spatial modulation, e.g. ghost imaging
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0808Methods of numerical synthesis, e.g. coherent ray tracing [CRT], diffraction specific
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/20Coherence of the light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/40Particular irradiation beam not otherwise provided for
    • G03H2222/46Reconstruction beam at reconstruction stage
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/50Geometrical property of the irradiating beam
    • G03H2222/52Divergent beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/50Geometrical property of the irradiating beam
    • G03H2222/53Collimated beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/50Geometrical property of the irradiating beam
    • G03H2222/54Convergent beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/16Optical waveguide, e.g. optical fibre, rod
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/23Diffractive element
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/30Modulation
    • G03H2225/31Amplitude only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/30Modulation
    • G03H2225/32Phase only

Definitions

  • the present invention relates to a display apparatus and display method.
  • the display beam is emitted from a display screen of a liquid crystal display element.
  • the display beam emitted from the display screen is converted into a parallel beam by an objective lens to enter the transparent substrate.
  • the display beam is internally reflected repeatedly in the transparent substrate to propagate in the substrate. Every time the display beam is internally reflected, the display beam partly is emitted out of the substrate. Since display beams emit out of the substrate at multiple locations in this way, the display beams are emitted from the entire surface of the transparent substrate. Consequently, the diameter of the overall display beams emitting out of the transparent substrate is larger than the diameter of the beam incident on the transparent substrate.
  • the display beam emitted from the transparent substrate In order for the viewer to see a virtual image of the display screen, it is necessary for the display beam emitted from the transparent substrate to enter his/her eye.
  • the diameter of the display beam emitting out of the transparent substrate is large. Consequently, the allowable range of alignment of the eye with the display beam (or the transparent substrate) is larger than that in the case where the diameter of the display beam is small. Therefore, the viewer can observe the virtual image more easily.
  • the display beam emitting from the transparent substrate is a parallel beam. This allows the viewer to observe a virtual image located in rear of the transparent substrate. Furthermore, since the display beam has a large diameter, it is not necessary for the viewer to locate his/her eye close to the display apparatus.
  • the location in rear of the transparent substrate refers to a location on the opposite or far side of the transparent substrate to the location of the viewer.
  • a display method comprises:
  • the display beam is produced holographically.
  • a display apparatus comprises:
  • a splitter that lets the display beam partly emit out of the transparent substrate every time the display beam is internally reflected.
  • FIGS. 1A and 1B are diagrams showing the basic construction of an apparatus and how a display beam propagates, where FIG. 1A shows a case in which a divergent beam is made incident on a transparent substrate, and FIG. 1B shows a case in which a parallel beam is made incident on a transparent substrate;
  • FIGS. 2A and 2B are diagrams showing a method and apparatus for producing a display beam holographically, where FIG. 2A is a diagram showing an ordinary optical system used to observe a virtual image, and FIG. 2B is a diagram showing an optical system that produces a display beam holographically;
  • FIG. 3 is a block diagram of a process of obtaining a hologram by computation
  • FIGS. 4A and 4B are diagrams showing a display apparatus according to a first embodiment, where FIG. 4A shows a case in which a divergent beam is made incident on a transparent substrate, and FIG. 4B shows a case in which a parallel beam is made incident on a transparent substrate;
  • FIG. 5 is a diagram showing a display apparatus according to a second embodiment
  • FIGS. 6A and 6B are diagrams showing a display apparatus according to a third embodiment, where FIG. 6A shows a case in which a divergent beam is made incident on a transparent substrate, and FIG. 6B shows a case in which a parallel beam is made incident on a transparent substrate;
  • FIGS. 7A and 7B are diagrams showing a display apparatus according to a fourth embodiment, where FIG. 7A is a diagram showing the construction of a first transparent substrate and how a display beam propagates, and FIG. 7B is a diagram showing the construction of a second transparent substrate and how display beams propagate;
  • FIG. 8 is a diagram showing the overall construction of the display apparatus according to the fourth embodiment.
  • FIGS. 9A and 9B are diagrams showing a construction in the case where a sufficiently large angle of diffraction of a display beam cannot be provided, where FIG. 9A is a diagram showing the construction of a first transparent substrate, and FIG. 9B is a diagram showing the relationship between incident light, diffracted light, and zero-order light;
  • FIGS. 10A and 10B are diagrams showing a display apparatus according to a fifth embodiment, where FIG. 10A shows a case in which a reflective spatial phase modulator is used, and FIG. 10B shows a case in which a transmissive spatial phase modulator is used;
  • FIG. 11 is a diagram showing beams emitted from the display apparatus of the embodiment, where the optical distances of the beams are visualized.
  • a display beam produced holographically is caused to be internally reflected repeatedly in a transparent substrate to propagate in the transparent substrate, and the internally reflected display beam partly is emitted out of the transparent substrate for display every time the display beam is internally reflected.
  • the display beam propagates, multiple display beams are emitted from the transparent substrate. In this way, the display beams are emitted from almost the entire surface of the transparent substrate.
  • a display beam is produced holographically. Therefore, a display method having high optical performance can be realized with a small and slim apparatus.
  • Producing a display beam holographically means producing (or reproducing) a display beam using a hologram.
  • the display beams As the display beam propagates, multiple display beams are emitted from the transparent substrate. A viewer can view an image by seeing one of the display beams or a plurality of display beams. Therefore, the display beams can be regarded collectively as a single display beam having a large diameter. Not only axial display beams representing the center of a picture but also off-axis display beams representing a point on the edge of the picture can also be regarded collectively as a single display beam having a large diameter. Thus, in the display method of this embodiment, multiple beams emitted from the transparent substrate are equivalent to a single display beam having a large diameter emitted from the entire surface of the transparent substrate.
  • the entire surface of the transparent substrate constitutes an exit pupil, and the size of the exit pupil is equal to the size of the transparent substrate.
  • the size of the pupil is large, as is the case with a magnifier whose pupil extends over its entirety, and therefore the viewer can see a virtual image without locating his/her head near the display apparatus.
  • the display beams emitted out of the transparent substrate are beams that display a virtual image at infinity.
  • a virtual image is formed at infinity (at a distant location). Therefore, each of the plurality of display beams emitted from the transparent substrate forms, when seen by the viewer, a virtual image at infinity. Consequently, even if the viewer's eyes are presbyopic and can be focused only on far points, the viewer can see display in focus.
  • the viewer can see a virtual image formed at infinity by seeing any one of the display beams or seeing a plurality of display beams at the same time.
  • the display beams (which are produced holographically) are parallel beams.
  • the display method of this embodiment causes a display beam to be reflected, amplitude-splits the reflected display beam to produce a beam travelling in the direction same as the travelling direction of the reflected display beam and a beam travelling in a direction different from the travelling direction of the reflected display beam, and performs the reflecting and the amplitude-splitting repeatedly.
  • the display beam may be a beam produced by diffraction.
  • FIGS. 1A and 1B are diagrams showing the basic construction of the display apparatus of this embodiment and how a display beam propagates, where FIG. 1A shows a case in which a divergent beam is made incident on the transparent substrate, and FIG. 1B shows a case in which a parallel beam is made incident on the transparent substrate.
  • the display apparatus of this embodiment has an LCOS (Liquid Crystal On Silicone, which is a reflective liquid crystal display device) 3 , 3 ′, a transparent substrate 4 , and a diffraction grating 5 .
  • the LCOS 3 , 3 ′ is an SPM (Spatial Phase Modulator), which is a hologram display element that produces a display beam 2 holographically.
  • the LCOS 3 , 3 ′ may be replaced by a transmission liquid crystal display.
  • the transparent substrate 4 has a first interface (first transmitting surface) 4 a and a second interface (second transmitting surface) 4 b .
  • the display beam 2 is reflected (total reflection) on the internal surfaces such as the first interface 4 a and the second interface 4 b of the transparent substrate 4 , so that the display beam 2 propagates inside the transparent substrate 4 .
  • the diffraction grating 5 serves as splitting means. Every time the display beam 2 is internally reflected, the diffraction grating 5 lets the beam partly emit out of the transparent substrate 4 .
  • the diffraction grating 5 is arranged at a location between the first interface 4 a and the second interface 4 b .
  • the diffraction grating 5 is arranged in such a way as to be opposed to the LCOS 3 , 3 ′.
  • the diffraction grating 5 may be composed of a volume hologram.
  • FIG. 1A shows a case in which illumination light emitting from a light source (not shown) is a divergent beam.
  • the divergent beam 1 enters the transparent substrate through the first interface 4 a and is incident on the LCOS 3 provided on the second interface 4 b .
  • the LCOS 3 is displaying a phase hologram (hologram pattern or phase pattern), so that the divergent beam 1 incident on the LCOS 3 is diffracted by the phase hologram (LCOS 3 ). Consequently, a display beam 2 is produced holographically by means of the LCOS 3 .
  • the display beam 2 is produced as first-order diffracted light (first-order light) by the hologram displayed on the LCOS 3 .
  • the zero-order diffracted light (zero-order light) produced by direct reflection by the LCOS 3 is emitted out of the transparent substrate 4 .
  • the phase hologram displayed on the LCOS 3 is one that produces a parallel display beam 2 when a divergent beam 1 is incident on it.
  • the display beam 2 is an axial display beam (i.e. a beam emitting from the center of the picture).
  • Off-axis display beams i.e. beams emitting from points in the picture other than the center
  • the off-axis display beams are also produced holographically by means of the LCOS 3 , though the off-axis display beams are not shown in the drawing.
  • FIG. 1B shows a case in which illumination light emitting from the light source (not shown) is a parallel beam.
  • the parallel beam 1 ′ enter the transparent substrate through the first interface 4 a and is incident on the LCOS 3 ′ provided on the second interface 4 b .
  • the LCOS 3 ′ is displaying a phase hologram (hologram pattern or phase pattern), so that the illumination light incident on the LCOS 3 ′ is diffracted by the phase hologram (LCOS 3 ′). Consequently, a display beam 2 is produced holographically by means of the LCOS 3 ′.
  • the display beam 2 is produced as first-order diffracted light (first-order light) by the hologram displayed on the LCOS 3 ′.
  • the zero-order diffracted light (zero-order light) produced by direct reflection by the LCOS 3 ′ is emitted out of the transparent substrate 4 .
  • the phase hologram displayed on the LCOS 3 ′ is one that produces a parallel display beam 2 when a parallel beams 1 ′ is incident on it.
  • the display beam 2 is an axial display beam (i.e. a beam emitting from the center of the picture).
  • Off-axis display beams i.e. beams emitting from points in the picture other than the center
  • a convergent beam may be made incident on the LCOS 3 , 3 ′.
  • the LCOS 3 , 3 ′ may be adapted to display a hologram that produces a parallel display beam when a convergent beam is incident on it.
  • FIG. 2A is a diagram showing an ordinary optical system used to view a virtual image.
  • FIG. 2B is a diagram showing an optical system used to produce a display beams holographically.
  • the display beams are beams with which a viewer sees a virtual image (parallel beams 10 , 12 in FIG. 2A ).
  • the optical system shown in FIG. 2A is composed of a display device 6 such as an LCD and a lens 7 . If the display device 6 is located at the position of the focal point (front focal point) of the lens 7 , a picture 8 displayed on the display device 6 is projected to infinity by the lens 7 .
  • Solid lines 9 represent a beam emitting from the center (on the axis) of the display device 6
  • broken lines 11 represent a beam emitting from a point on the edge (off-axis) of the display device 6 .
  • the beam represented by the solid lines 9 becomes a parallel beam 10 when emitting from the lens 7 .
  • the beam represented by the broken lines 11 also becomes a parallel beam 12 when emitting from the lens 7 .
  • the parallel beams 10 and 12 enter the pupil 14 of the viewer's eye 13 . Consequently, the viewer can see an image 15 of the picture 8 . Since the beams 10 and 12 incident on the viewer's pupil 14 are parallel beams, the viewer sees a virtual image located in rear of the display apparatus (on the left side of the display device 6 in FIG. 2A ), namely a virtual image located at infinity. Therefore, even if the viewer's eyes are presbyopic and can be focused only on far points, the viewer can see the picture 8 in focus.
  • FIG. 2B shows an optical system used to holographically produce parallel beams 10 , 12 .
  • This optical system is composed of a coherent light source 16 and an SPM (Spatial Phase Modulator) 17 .
  • An example of the coherent light source 16 is an LD (Laser Diode).
  • An example of the SPM 17 is an LCOS described above.
  • the SPM 17 is a hologram display element. Hereinafter, the hologram display element will be referred to as the SPM.
  • a hologram has a hologram pattern.
  • the hologram pattern is an interference pattern formed by two wave fronts.
  • One of the wave fronts is one emitting from the lens 7
  • the other wave front is one emitting from the coherent light source 16 in FIG. 2B .
  • the wave front emitting from the lens 7 (parallel beams 10 , 12 ) contains information of an image of the picture 8 .
  • the wave front emitting from the coherent light source 16 is a wave front that forms interference fringes and, at the same time, is used to produce reproduction light from the hologram.
  • the light emitted from the display device 6 is incoherent light. Consequently, light emitted from the display device 6 and the wave front emitting from the coherent light source 16 will not interfere, even if they are superposed. In other word, a hologram pattern cannot be obtained by superposition. Therefore, in practice, a hologram (hologram pattern) is obtained by computation.
  • the hologram obtained by computation is displayed on the SPM 17 , which is illuminated by the coherent light source 16 . In this way, a hologram or parallel beams 10 , 12 are reproduced.
  • the display beam 2 shown in FIGS. 1A and 1B is the parallel beam 10 among the parallel beams 10 and 12 .
  • the viewer can view the picture 8 by seeing the parallel beams 10 , 12 that are thus produced holographically.
  • the parallel beams 10 , 12 enter the pupil 14 of the viewer's eye 13 to form an image 15 .
  • the lens 7 In the optical system shown in FIG. 2A , it is necessary for the lens 7 to project an image of the off-axis portion of the picture (the portion of the picture displayed in the peripheral or outer portion of the display device 6 ) onto the eye 13 with high resolving power. To this end, the lens 7 is composed of a plurality of lenses in practice. It is also necessary for the lens 7 to have a large diameter. For these reasons, if the optical system shown in FIG. 2A is used in the display apparatus, it is difficult to make the display apparatus slim and compact.
  • FIG. 3 is a block diagram of a process of preparing hologram by computation.
  • image data 18 is firstly prepared.
  • the image data 18 is data to be input to the display device 6 in FIG. 2A .
  • the wave front emitting from the lens 7 is computed by Fourier-transforming the image data 18 by the Fourier transform 20 .
  • a spatial frequency distribution obtained by Fourier transform includes a spatial phase distribution as well as a spatial intensity distribution, it is not possible to create a phase hologram having a high diffraction efficiency.
  • random phase addition 19 is performed before the Fourier transform 20 . Adding (superposing) random phase information to the image data 18 in advance can average the spatial intensity values after the Fourier transform over the entire spatial frequency plane or can substantially equalize the spatial intensities. Consequently, it is possible to form a hologram as a phase hologram having only phase information.
  • correction 21 is performed.
  • the correction 21 is based on the arrangement of the optical system. For example, in the case of the optical system shown in FIG. 2B , a hologram (parallel beams 10 , 12 ) is reproduced using a wave front emitting from the coherent light source 16 . It is necessary that this reproduction can produce accurate display beams 2 (parallel beams 10 , 12 ). Since the wave front emitted from the coherent light source 16 is a spherical wave, the correction 21 computes a hologram using information of this spherical wave. Then the result of computation (hologram information) is input to SPM driver control 22 . A hologram is displayed on the SPM (or LCOS 3 , 3 ′, in FIGS. 1A and 1B ) based on control information supplied by the SPM driver control 22 .
  • the display beam 2 emitted from the LCOS 3 is totally reflected at the first interface 4 a of the transparent substrate 4 and then incident on the diffraction grating 5 .
  • the display beam 2 is partly diffracted by the diffraction grating 5 .
  • the direction of diffraction is normal to the first interface 4 a .
  • the beam diffracted by the diffraction grating 5 is emitted from the transparent substrate 4 to the outside to become a display beam 2 a.
  • the display beam 2 transmitted through the diffraction grating 5 is totally reflected at the second interface 4 b of the transparent substrate 4 and then passes through the diffraction grating 5 .
  • the display beam 2 having passed through the diffraction grating 5 is totally reflected at the first interface 4 a again and incident on the diffraction grating 5 .
  • the display beam 2 is partially diffracted by the diffraction grating 5 .
  • the direction of diffraction is normal to the first interface 4 a .
  • the beam diffracted by the diffraction grating 5 is emitted from the transparent substrate 4 to the outside to become a display beam 2 b .
  • the display beam 2 further propagates in the transparent substrate 4 to produce another display beam 2 c in the same manner. With repetition of the above process, a lot of display beams ( 2 a , 2 b , 2 c ) are emitted from the entire surface of the transparent substrate 4 (or the first interface 4 a ).
  • the viewer can see a virtual image if at least one of the display beams 2 a , 2 b , 2 c is incident on his/her eye.
  • the image data 18 is motion video data
  • the viewer can see motion video.
  • the image data is still image data
  • the observer can see a still image.
  • the display beam 2 are produced using the LCOS 3 . Therefore, there can be provided a small and slim display apparatus having high optical performance.
  • a beam made incident on the LCOS 3 may only be axial beams. Therefore, light emitted from the light source may directly be used as a beam to be incident on the LCOS 3 . In this case, it is not necessary to provide a lens for beam conversion, leading to size reduction and slimming of the display apparatus.
  • a lens used to convert a convergent beam or a divergent beam into a parallel beam can be simple. Consequently, even in the case where a beam made incident on the LCOS 3 ′ is a parallel beam, slimming and size reduction of the display apparatus can be achieved.
  • the display beam 2 is produced holographically by the LCOS 3 , 3 ′. This allows slimming and size reduction of the display apparatus.
  • a plurality of display beams 2 a , 2 b , 2 c are emitted from the transparent substrate 4 .
  • the viewer can see a virtual image if at least one of the display beams is incident on the pupil of his/her eye.
  • there are a plurality of display beams 2 a , 2 b , 2 c which are equivalent to a display beam having a large diameter.
  • the display beam includes an axial beam representing the center of the picture and off-axis beams representing points on the edge of the picture.
  • the diameters of both types of display beams are large, and the exit pupil extends over the entire surface of the transparent substrate from which the display beams emitted.
  • the allowable range of alignment of the eye with the display beam (or the transparent substrate 4 ) is larger than that in the case where the diameter of the display beam is smaller. Therefore, the viewer can see the virtual image easily.
  • an LCOS or a transmission liquid crystal display device is used as the SPM.
  • a deformable mirror may also be used.
  • Types of deformable mirrors include one having a plurality of small mirrors, each of which is deflected and one in which one thin mirror is deformed.
  • the display apparatus can be produced, for example, by firstly forming a recess on a portion of the transparent substrate 4 on which the diffraction grating 5 is to be arranged, then arranging the diffraction grating 5 in the recess, and thereafter covering the diffraction grating 5 with a transparent part that substantially fits the recess.
  • the display apparatus can be produced by forming a slit-like recess parallel to the first interface 4 a on a side surface of the transparent substrate 4 , then inserting the diffraction grating 5 into the recess, and thereafter covering the side surface with a transparent part or adhesive.
  • FIGS. 4A and 4B A display apparatus according to a first embodiment is shown in FIGS. 4A and 4B .
  • FIG. 4A shows a case in which a divergent beam is made incident on the transparent substrate
  • FIG. 4 b shows a case in which a parallel beam is made incident on the transparent substrate.
  • an LCOS (reflective liquid crystal display device) 3 , 3 ′ is used as an SPM (spatial phase modulator).
  • the display apparatus of this embodiment includes a light source 24 , an LCOS (reflective liquid crystal display device) 3 , 3 ′, a transparent substrate 4 , and a diffraction grating 5 .
  • LCOS reflective liquid crystal display device
  • the components having the same functions as those in the display apparatus shown in FIG. 1 are denoted by the same reference numerals to eliminate description of them.
  • the transparent substrate 4 has a first interface (first transmitting surface) 4 a and a second interface (second transmitting surface) 4 b .
  • a display beam 2 is reflected (total reflection) on the internal surfaces or the first interface 4 a and the second interface 4 b of the transparent substrate 4 , so that the display beam 2 propagates inside the transparent substrate 4 .
  • the LCOS 3 , 3 ′ is an SPM (Spatial Phase Modulator), which is an element that produces a display beam 2 .
  • the LCOS 3 , 3 ′ is a hologram display element that produces a display beam 2 holographically.
  • the LCOS 3 , 3 ′ is arranged at a location between the light source 24 and the second interface 4 b . More specifically, the LCOS 3 , 3 ′ is provided on the side of the second interface 4 b that is in contact with the air.
  • the diffraction grating 5 serves as splitting means. Every time the display beam 2 is internally reflected, the diffraction grating 5 lets the beam partly emit out of the transparent substrate 4 .
  • the diffraction grating 5 is arranged at a location between the first interface 4 a and the second interface 4 b .
  • the diffraction grating 5 is arranged in such a way as to be opposed to the LCOS 3 , 3 ′.
  • the diffraction grating 5 may be composed of a volume hologram. When the transparent substrate 4 is seen from the light source 24 side, the LCOS 3 , 3 ′ and the diffraction grating 5 are arranged side by side.
  • a display beam 2 is emitted from the LCOS 3 , 3 ′.
  • the display beam 2 propagates in the substrate 4 , and display beams 2 a , 2 b , 2 c are emitted out of the transparent substrate 4 .
  • display beams 2 b , 2 c are produced, though not illustrated.
  • the LCOS 3 shown in FIG. 4A is displaying a hologram (phase hologram) that produces a parallel display beam 2 when a divergent beam 1 is made incident on it. Therefore, a divergent beam 1 emitted from the light source 24 may be directly made incident on the LCOS 3 without any conversion. This consequently allows the light source 24 to be arranged close to the transparent substrate 4 and the LCOS 3 . In the case shown in FIG. 4A , the light source 24 is in contact with the first interface 4 a . This enables slimming and size reduction of the display apparatus.
  • the light source 24 may be arranged closer to the second interface 4 b than the first interface 4 a .
  • a recess (cavity) extending from the first interface 4 a into the transparent substrate 4 may be formed, and the light source 24 may be arranged in that recess. This enables further slimming and size reduction of the display apparatus.
  • the light source 24 may be arranged at a location a little away from the first interface 4 a (in the proximity of the first interface 4 a ) so long as slimming or size reduction of the display apparatus is not prevented.
  • the display apparatus shown in FIG. 4A does not need a lens for beam conversion, slimming and size reduction of the display apparatus can be achieved.
  • the LCOS 3 ′ shown in FIG. 4B is displaying a hologram that produces a parallel display beam 2 when a parallel beam 1 ′ is made incident on it. Therefore, a lens 25 is provided in the optical path from the light source 24 to the LCOS 3 ′. This lens 25 converts a divergent beam 1 into a parallel beam 1 ′.
  • the lens 25 provided in the apparatus makes it difficult to arrange the light source 24 in the proximity of the first interface 4 a . Consequently, the display apparatus shown in FIG. 4B might not be slimmed down or reduced in size so much as the display apparatus shown in FIG. 4A .
  • the lens 25 can be made simple.
  • the lens 25 may be constituted by a small number of lenses.
  • a single lens is adequate as the lens 25 in the display apparatus shown in FIG. 4B .
  • Aberrations of the lens may be corrected in the aforementioned correction 21 ( FIG. 3 ).
  • the display apparatus can be made slimmer and smaller in size than the conventional display apparatus (shown in FIG. 2A ).
  • the LOCS 3 , 3 ′ may be arranged to be closer to the first interface 4 a than the second interface 4 b (namely, between the first interface 4 a and the second interface 4 b ).
  • Hologram information of the hologram to be displayed by the LCOS 3 is corrected by correction 21 ( FIG. 3 ). With this correction, an accurate display beam 2 is produced when a divergent beam 1 is incident on the LCOS 3 .
  • hologram information of the hologram to be displayed by the LCOS 3 ′ is also corrected by correction 21 ( FIG. 3 ). With this correction, an accurate display beam 2 is produced when a parallel beam 1 ′ is incident on the LCOS 3 ′.
  • the zero-order light reflected by the LCOS 3 (zero-order diffracted light) is emitted from the transparent substrate 4 as diverging light. Therefore, it does not adversely affect the display (or observation of the virtual image).
  • zero-order light reflected by the LCOS 3 ′ is emitted from the transparent substrate 4 perpendicularly without change (i.e. as a parallel beam). Therefore, it does not adversely affect the display (or observation of the virtual image).
  • the LCOS 3 and the LCOS 3 ′ are arranged in such a way that the condition that zero order light is transmitted through the transparent substrate 4 and first-order light (or the display beam 2 ) is totally reflected by the transparent substrate 4 (or the interfaces 4 a , 4 b ) is met. Therefore, zero-order light does not adversely affect the display (or observation of the virtual image).
  • the display apparatus of this embodiment since the beams incident on the viewer's eye are parallel beams, the viewer would see a virtual image located in rear of the display apparatus or a virtual image at infinity. Therefore, even if the viewer's eyes are presbyopic and can be focused only on far points, the viewer can see the picture 8 in focus.
  • FIG. 5 A display apparatus according to a second embodiment is shown in FIG. 5 .
  • the display apparatus of this embodiment has an additional LCOS 26 arranged in the optical path from the light source 24 to the LCOS 3 ′.
  • the LCOS 3 ′ is arranged on the first interface 4 a
  • the LCOS 26 is arranged on the second interface 4 b .
  • the components having the same functions as those in the display apparatus according to the first embodiment are denoted by the same reference numerals to eliminate description of them.
  • the LCOS 3 ′ is displaying a hologram that produces a parallel display beam 2 when a parallel beam 1 ′ is made incident on it.
  • the LCOS 26 is displaying a hologram that produces a parallel beam 1 ′ when a divergent beam 1 is made incident on it.
  • a divergent beam 1 emitted from the light source 24 is incident on the LCOS 26 .
  • the divergent beam 1 is converted into a parallel beam 1 ′ by the LCOS 26 .
  • the parallel beam 1 ′ after the conversion is emitted from the LCOS 26 .
  • the parallel beam 1 ′ emitting from the LCOS 26 is incident on the LCOS 3 ′.
  • the LCOS 3 ′ produces (reproduces) a display beam 2 from the parallel beam 1 ′, and the display beam 2 is emitted from the LCOS 3 ′.
  • display beams 2 a , ( 2 b , 2 c ) are emitted outside from the transparent substrate 4 .
  • the LCOS 26 having a function like the lens 25 can be arranged on the second interface 4 b .
  • the display apparatus can be slimmed down and reduced in size to a degree substantially the same as the display apparatus shown in FIG. 4A (first embodiment).
  • the LCOS 3 ′ and the diffraction grating 5 overlap each other. Actually, however, the LCOS 3 ′ and the diffraction grating 5 are arranged side by side so that display beam 2 a diffracted by the diffraction grating 5 does not pass through the LCOS 3 ′.
  • the axial display beam 2 is illustrated, and off-axis beams are not illustrated for the sake of simplicity. It should naturally be understood that there also are off-axial beams.
  • the LCOS 26 may be replaced by an ordinary hologram (or hologram lens). In that case, it is preferred that the hologram used be a volume hologram because of its diffraction efficiency.
  • FIGS. 6A and 6B A display apparatus according to a third embodiment is shown in FIGS. 6A and 6B .
  • FIG. 6A shows a case in which a divergent beam is made incident on the transparent substrate
  • FIG. 6B shows a case in which a parallel beam is made incident on the transparent substrate.
  • the display apparatus of this embodiment uses an LCD (transmission liquid crystal display device) as an SPM (spatial phase modulator).
  • the display apparatus of this embodiment has a light source 24 , an LCD (transmission liquid crystal display device) 27 , 27 ′, a transparent substrate 4 , and a diffraction grating 5 .
  • the components having the same functions as those in the display apparatus according to the first embodiment are denoted by the same reference numerals to eliminate description of them.
  • the LCD 27 , 27 ′ is an SPM (Spatial Phase Modulator), which is a hologram display element that produces display beams 2 holographically.
  • the LCD 27 , 27 ′ is arranged at a location between the light source 24 and the second interface 4 b . More specifically, the LCD 27 , 27 ′ is provided on the side of the second interface 4 b that is in contact with the air.
  • a divergent beam 1 emitting from the light source 24 is made incident on the LCD 27 .
  • a parallel beam 1 ′ emitting from the light source 24 (not shown) is made incident on the LCD 27 ′.
  • a phase hologram is displayed on the LCD 27 , 27 ′, so that a display beam 2 is produced as first-order diffracted light (first-order light).
  • display beams 2 a , 2 b , 2 c is emitted out of the transparent substrate 4 , in the same manner as in the display apparatus according to the first embodiment.
  • the LCD 27 is displaying a hologram (phase hologram) that produces a parallel display beam 2 when a divergent beam 1 is made incident on it. Therefore, a divergent beam 1 emitted from the light source 24 may be directly made incident on the LCD 27 without any conversion. This consequently allows the light source 24 to be arranged close to the transparent substrate 4 and the LCD 27 . Therefore, the display apparatus can be slimmed down or reduced in size.
  • a hologram phase hologram
  • the LCD 27 ′ shown in FIG. 6B is displaying a hologram that produces a parallel display beam 2 when a parallel beam 1 ′ is made incident on it. Therefore, it is necessary to provide a lens (not shown) in the optical path from the light source 24 to the LCD 27 ′. However, it is sufficient that only the axial beam be made incident on the LCD 27 ′. Therefore, the lens can be made simple.
  • the lens may be composed of a small number of lenses.
  • a single lens is adequate as the aforementioned lens. Aberrations of the lens may be corrected in the aforementioned correction 21 ( FIG. 3 ).
  • the display apparatus can be made slimmer and smaller in size than the conventional display apparatus (shown in FIG. 2A ).
  • the LCD 27 , 27 ′ may be arranged at a location a little away from the second interface 4 b so long as slimming or size reduction of the display apparatus is not prevented.
  • the LCD 27 , 27 ′ may be arranged at a location closer to the first interface 4 a than the second interface 4 b (namely, at a location between the first interface 4 a and the second interface 4 b ).
  • the light source 24 and the LCD 27 , 27 ′ may be arranged on the first interface 4 a side.
  • Hologram information of a hologram displayed on the LCD 27 is corrected by the correction 21 ( FIG. 3 ), as with in the display apparatus according to the first embodiment. With this correction, an accurate display beam 2 is produced when a divergent beam 1 is incident on the LCD 27 . Hologram information of a hologram displayed on the LCD 27 ′ is also corrected by the correction 21 ( FIG. 3 ) in a similar manner. With this correction, an accurate display beam 2 is produced when a parallel beam 1 ′ is incident on the LCD 27 ′.
  • zero-order light (zero-order diffracted light) transmitted through the LCD 27 is emitted from the transparent substrate 4 as diverging light. Therefore, it does not adversely affect the display (or observation of a virtual image).
  • zero-order light having passed through the LCD 27 ′ is emitted from the transparent substrate 4 perpendicularly without change (i.e. as a parallel beam). Therefore, it does not adversely affect the display (or observation of the virtual image).
  • the LCD 27 and the LCD 27 ′ are arranged in such a way that the condition that zero order light is transmitted through the transparent substrate 4 and first-order light (or display beams 2 ) is totally reflected by the transparent substrate 4 (or the interfaces 4 a , 4 b ) is met. Therefore, zero-order light does not adversely affect the display (or observation of the virtual image).
  • the display apparatus of this embodiment since the beams incident on the viewer's pupil are parallel beams, the viewer sees a virtual image located in rear of the display apparatus, namely a virtual image at infinity. Therefore, even if the viewer's eyes are presbyopic and can be focused only on far points, the viewer can see the picture 8 in focus.
  • An ordinary LCD that displays intensity information may be used as the LCD 27 , 27 ′.
  • what is displayed on the LCD is not a phase hologram but an amplitude hologram, leading to lower diffraction efficiency.
  • FIGS. 7A , 7 B, and 8 A display apparatus according to a fourth embodiment is shown in FIGS. 7A , 7 B, and 8 .
  • FIG. 7A is a diagram showing the construction of a first transparent substrate and how a display beam propagates.
  • FIG. 7B is a diagram showing the construction of a second transparent substrate and how display beams propagate.
  • FIG. 8 is a diagram showing the overall construction of the display apparatus.
  • the display apparatus of this embodiment has a first transparent substrate 30 and a second transparent substrate 36 .
  • the first transparent substrate 30 is located on an end portion of the second transparent substrate 36 .
  • the first transparent substrate 30 is fixed to the second transparent substrate 36 at this location.
  • the first transparent substrate 30 includes an SPM 29 , a beam splitter 31 , and a diffraction grating 32 .
  • the second transparent substrate 36 includes a beam splitter 37 , a diffraction grating 38 , and a diffraction grating 39 . It is preferred that the diffraction gratings 32 , 38 , and 39 be volume holograms.
  • the SPM 29 is a spatial phase modulator that produces a display beam 34 holographically.
  • display beams 34 are internally reflected repeatedly to propagate.
  • the beam splitter 31 causes the display beam 34 to partially enter the second transparent substrate 36 every time the display beam 34 is internally reflected in the first transparent substrate 30 .
  • the beam splitter 37 causes the display beams 34 to partially emit out of the second transparent substrate 36 every time the display beams 34 are internally reflected in the second transparent substrate 36 .
  • FIGS. 7A , 7 B, and 8 in showing the beam (illumination light) incident on the display apparatus and display beams, only the center ray in the axial beam is illustrated for the sake of simplicity. In the following, they are mentioned as beams. As will naturally be understood, there also are off-axis beams, though not shown in the drawings.
  • the first transparent substrate 30 is a transparent member having a rectangular outer shape.
  • the SPM 29 , the beam splitter 31 , and the diffraction grating 32 are arranged along the direction of its long side (the X axis direction).
  • the display beams 34 propagate along the direction of its long side.
  • the thickness of the first transparent substrate 30 is, for example, 2 to 4 mm.
  • the outer shapes of the beam splitter 31 and the diffraction grating 32 are both rectangular.
  • the beam splitter 31 and the diffraction grating 32 are arranged in such a way as to be opposed to each other.
  • the beam splitter 31 is arranged between two interfaces of the first transparent substrate 30 .
  • the diffraction grating 32 is arranged on one of the interfaces of the first transparent substrate 30 .
  • An end of the aforementioned one interface has a cut portion.
  • the SPM 29 is arranged on an oblique surface of the cut portion.
  • One of the end faces (on a short side) between the two interfaces is a slanted surface.
  • a parallel beam 33 is incident on this slanted surface.
  • a parallel beam 33 emitting from an LD light source (not shown) is made incident on the SPM 29 .
  • a display beam 34 is produced as first-order light by a hologram displayed on the SPM 29 .
  • the display beam 34 is totally reflected by an internal surface (interface) of the first transparent substrate 30 .
  • the display beam 34 having been totally reflected is split by the beam splitter 31 into transmitted light and reflected light.
  • the transmitted light is incident on the diffraction grating 32 provided on the interface of the first transparent substrate 30 . Then, the light is diffracted by the diffraction grating 32 toward the beam splitter 31 . The diffracted light is emitted from the first transparent substrate 30 perpendicularly as a display beam 34 a .
  • the display beam 34 a emitting perpendicularly from the first transparent substrate 30 enters the second transparent substrate 36 ( FIG. 7B ).
  • the reflected light is totally reflected by the internal surface (interface) of the first transparent substrate again and incident on the beam splitter 31 again. Then, it is split by the beam splitter 31 again into transmitted light and reflected light.
  • the transmitted light resulting from the second splitting is incident on the diffraction grating 32 . Then, the light is diffracted by the diffraction grating 32 toward the beam splitter 31 . The diffracted light is emitted from the first transparent substrate 30 perpendicularly as a display beam 34 b .
  • the display beam 34 b emitting perpendicularly from the first transparent substrate 30 enters on the second transparent substrate 36 ( FIG. 7B ).
  • the reflected light resulting from the second splitting is totally reflected again by the internal surface (interface) of the first transparent substrate 30 . Thereafter, a display beam 34 c is produced in a similar manner as the display beams 34 a and 34 b.
  • the display beam 34 is totally reflected by the internal surface (interface) of the first transparent substrate 30 repeatedly to propagate in the first transparent substrate 30 .
  • the display beam 34 a , the display beam 34 b , and the display beam 34 c successively are emitted from the first transparent substrate 30 perpendicularly and enter the second transparent substrate 36 .
  • the number of emitting beams ( 34 a , 34 b , 34 c ) illustrated is three, for the sake of simplicity. The number of the beams is not limited to three.
  • the diffraction grating 32 be a volume hologram, which provides a high diffraction efficiency.
  • the zero-order light 35 regularly reflected by the SPM 29 is not totally reflected in the first transparent substrate 30 but directly is emitted out of the first transparent substrate 30 .
  • the zero-order light 35 thus emitting is vanished by a trap unit (not shown).
  • the second transparent substrate 36 is a transparent member having a substantially rectangular outer shape. Its length along the X axis direction (short side) is equal to the length of the long side of the first transparent substrate 30 . Its length along the Z axis direction (long side) is longer than the short side of the first transparent substrate 30 .
  • the outer shape of the second transparent substrate 36 is not limited to rectangular.
  • the display beams 34 propagate along the Z axis direction.
  • the thickness of the second transparent substrate 36 is, for example, 2 to 4 mm.
  • the diffraction grating 39 has a rectangular outer shape. It is preferred that the length of the short side of the diffraction grating 39 be not longer than the length of the short side of the first transparent substrate 30 .
  • the diffraction grating 39 is arranged on one of the interfaces of the second transparent substrate 36 .
  • the diffraction grating 39 is arranged at a location at which it is opposed to the diffraction grating 32 .
  • the beam splitter 37 and the diffraction grating 38 are both arranged in a region that does not overlap the diffraction grating 39 (or the first transparent substrate 30 ).
  • the beam splitter 37 and the diffraction grating 38 are arranged in such a way as to be opposed to each other.
  • the beam splitter 37 is arranged between the two interfaces of the second transparent substrate 36 .
  • the diffraction grating 38 is arranged on one of the interfaces of the second transparent substrate 36 (on the interface on which the diffraction grating 39 is arranged).
  • the display beams 34 a , 34 b , 34 c incident on the second transparent substrate 36 are diffracted by the diffraction grating 39 .
  • the diffracted display beams 34 a , 34 b , 34 c are totally reflected by the internal surface (interface) of the second transparent substrate 36 and incident on the beam splitter 37 .
  • the description will be directed to the display beam 34 a.
  • the display beam 34 a is split by the beam splitter 37 into transmitted light and reflected light.
  • the transmitted light is incident on the diffraction grating 38 and diffracted by the diffraction grating 38 toward the beam splitter 37 .
  • the diffracted light is emitted from the second transparent substrate 36 perpendicularly as a display beam 34 d.
  • the reflected light is totally reflected again by the internal surface (interface) of the second transparent substrate 36 and incident on the beam splitter 37 again. Then, the light is split by the beam splitter 37 again into transmitted light and reflected light.
  • the transmitted light resulting from the second splitting is incident on the diffraction grating 38 and diffracted by the diffraction grating 38 toward the beam splitter 37 .
  • the diffracted light is emitted from the second transparent substrate 36 perpendicularly as a display beam 34 e.
  • a display beam 34 f is produced in a similar manner as the display beams 34 a and 34 b.
  • the display beam 34 a is totally reflected by the internal surfaces (interfaces) of the second transparent substrate 36 repeatedly to propagate in the second transparent substrate 36 .
  • the display beams 34 a propagates, the display beam 34 d , the display beam 34 e , and the display beam 34 f successively are emitted from the second transparent substrate 36 perpendicularly.
  • the display beams 34 b and 34 c are also the case with the display beams 34 b and 34 c .
  • the display beams 34 spread along one direction 41 of the display apparatus as they propagate in the first transparent substrate 30 and also spread along another direction 42 of the display apparatus as they propagate in the second transparent substrate 36 . Consequently, display beams 43 are emitted from all over the surface 40 of the display apparatus.
  • the SPM 29 is displaying a hologram that produces a parallel display beam 34 when a parallel beam 33 is incident on it. Therefore, it is necessary to provide a lens (not shown) in the optical path from the light source to the SPM 29 . Nevertheless, it is sufficient that only the axial beam be made incident on the SPM 29 . Therefore, the lens can be made simple.
  • the lens may be constituted by a small number of lenses. A single lens is adequate as this lens in the display apparatus of this embodiment. Aberrations of the lens may be corrected in the aforementioned correction 21 ( FIG. 3 ). For the above reasons, even though the beam made incident on the SPM 29 is a parallel beam, the display apparatus can be made slimmer and smaller in size than the conventional display apparatus (shown in FIG. 2A ).
  • the beams made incident on the SPM 29 may be a divergent beam.
  • the SPM 29 may be adapted to display a hologram that produces a parallel display beam 34 when a divergent beam is made incident on it.
  • a divergent beam emitted from the light source may be directly made incident on the SPM 29 without any conversion. This allows the light source to be arranged close to the transparent substrate 30 and the SPM 29 . Therefore, the display apparatus can be slimmed down or reduced in size.
  • a convergent beam may be made incident on the SPM 29 .
  • the display beams As the display beams propagate, a plurality of display beams 34 d , 34 e , 34 f are emitted from the second transparent substrate 36 .
  • a viewer can view an image by seeing one of the display beams or a plurality of display beams. Therefore, the display beams can be regarded collectively as a single display beam having a large diameter. Not only axial display beams representing the center of a picture but also off-axis display beams representing a point on the edge of the picture can also be regarded collectively as a single display beam having a large diameter.
  • multiple beams emitted from the surface 40 of the display apparatus are equivalent to a single display beam having a large diameter emitted from the entirety of the surface 40 of the display apparatus. Therefore, the entirety of the surface 40 of the display apparatus constitutes an exit pupil, and the size of the exit pupil is equal to the size of the surface 40 of the display apparatus.
  • the size of the pupil is large, as is the case with a magnifier whose pupil extends over its entirety, and therefore the viewer can see a virtual image without locating his/her head near the display apparatus.
  • the display beams 34 d , 34 e , 34 f are beams that display a virtual image at infinity.
  • a virtual image is formed at infinity (at a distant location). Therefore, each of the plurality of display beams emitted from the second transparent substrate 36 forms, when seen by the viewer, a virtual image at infinity. Consequently, even if the viewer's eyes are presbyopic and can be focused only on far points, the viewer can see display in focus.
  • the viewer can see a virtual image formed at infinity by seeing any one of the display beams or seeing a plurality of display beams at the same time.
  • two transparent substrates may be used to provide a display apparatus having two-dimensional extension.
  • the surface on which the SPM 29 is provided is slanted relative to the surface on which the diffraction grating 32 is provided ( FIG. 7A ).
  • This configuration is effective in cases where it is not possible to provide a sufficiently large angle of diffraction for the display beam 34 emitting from the SPM 29 .
  • FIG. 9A is a diagram showing the construction of the first transparent substrate
  • FIG. 9B is a diagram showing the relationship between the incident light, diffracted light, and zero-order light.
  • the components having the same functions as those shown in FIG. 7A are denoted by the same reference numerals to eliminate description of them.
  • a hologram is displayed on the SPM (LCOS, LCD) 44 .
  • the hologram is a kind of diffraction grating. Therefore, the light incident on the SPM 44 (at an angle of incidence of ⁇ R ) is diffracted at a angle of diffraction of ⁇ S as shown in FIG. 9B . Consequently, diffracted light is emitted from the SPM 44 .
  • zero-order light also is emitted from the SPM 44 . The zero-order light is emitted from the SPM 44 at a angle of reflection of ⁇ R .
  • the relationship between the angle of incidence ⁇ R , the angle of diffraction ⁇ S , and the pitch d of the diffraction grating is as follows, with ⁇ being the wavelength of the incident light.
  • the SPM 44 is structured as a one-dimensional or two-dimensional array of small pixels. A hologram is displayed by the small pixels. Consequently, the size of two small pixels or twice the pixel pitch corresponds to the pitch d of the diffraction grating.
  • the surface on which the SPM 44 is provided is slanted relative to the surface on which the diffraction grating 32 is provided. This helps separation of the reflected light and the diffracted light.
  • the angle of view of ⁇ 5.7 degrees is intended to be suitable for a case in which the display of a mobile device such as a cellular phone is seen at a distance of distinct vision. Since the view angle range is 11.4 degrees, in order to separate a display beam 34 and zero-order light 35 , it is necessary for the display beam 34 L (i.e. off-axis principal ray of the display beam (which is diffracted light or first-order diffracted light) and the zero-order light to have an angular difference of at least 12 degrees. When this is the case, the angle formed by the display beam 34 L (off-axis principal ray of the display beam 34 ) and the zero-order light 35 is 0.6 degree, which allows separation of the zero-order light 35 .
  • the display beam 34 L off-axis principal ray of the display beam 34
  • the zero-order light 35 is 0.6 degree, which allows separation of the zero-order light 35 .
  • the pixel pitch of the SPM 44 that displays phase information is 3 ⁇ m. Then, the pitch of the diffraction grating (a state of the hologram) displayed on the SPM 44 is 6 ⁇ m. If the angle of incidence ⁇ R is 60 degrees, the angle of diffraction ⁇ S calculated from equation 1 is 72 degrees. Thus, an angular difference of 12 degrees can be provided, as needed.
  • the display beam 34 is incident on the internal surface (interface) of the transparent substrate 30 at an angle of incidence of 51.6 degrees, so that the display beam can be totally reflected to propagate in the transparent substrate 30 .
  • FIGS. 10A and 10B A display apparatus according to a fifth embodiment is shown in FIGS. 10A and 10B .
  • FIG. 10A shows a case in which a reflective spatial phase modulator is used
  • FIG. 10B shows a case in which a transmissive spatial phase modulator is used.
  • the display apparatus of this embodiment is adapted to trap zero-order light emitting from the spatial phase modulator.
  • the components having the same functions as those in the display apparatus according to the first embodiment are denoted by the same reference numerals to eliminate description of them. How the display beam 2 propagates and is emitted from the transparent substrate 4 is the same as the display apparatus according to the first embodiment.
  • a divergent beam 1 emitted from a light source 24 is converted by a lens 45 into a convergent beam 46 and made incident on an LCOS 47 .
  • a display beam 2 is produced by a phase hologram displayed on the LCOS 47 .
  • a slanted surface is provided at an end of a first interface 4 a .
  • This slanted surface is slanted toward a second interface 4 b .
  • the lens 45 is arranged on this slanted surface.
  • a slanted surface is also provided at an end of the second interface 4 b .
  • This slanted surface is slanted toward the first interface 4 a .
  • the LCOS 47 is arranged on this slanted surface.
  • a trap 48 is provided at a location from which the slanted surface extends from the second interface 4 b .
  • the trap 48 extends perpendicularly from the second interface 4 b toward the diffraction grating 5 .
  • a divergent beam 1 emitted from a light source 24 is converted by a lens 45 into a convergent beam 46 and made incident on an LCD 47 ′.
  • a display beam 2 is produced by a phase hologram displayed on the LCD 47 ′.
  • the lens 45 is arranged on the side surface extending between the first interface 4 a and the second interface 4 b .
  • the LCD 47 ′ is arranged obliquely between the first interface 4 a and the second interface 4 b .
  • the LCD 47 ′ is located between the lens 45 and the trap 48 .
  • the light source 24 is, for example, a semiconductor laser.
  • the light source 24 emits a divergent beam 1 .
  • the divergent beam 1 is converted into a convergent beam 46 by the lens 45 .
  • the convergent beam is incident on the LCOS 47 /LCD 47 ′.
  • the LCOS 47 /LCD 47 ′ produces zero-order light and a display beam 2 .
  • the LCOS 47 used in the display apparatus shown in FIG. 10A is a reflective SPM. Therefore, zero-order light regularly reflected by the LCOS 47 travels toward the trap 48 .
  • the LCD 47 ′ used in the display apparatus shown in FIG. 10B is a transmissive SPM. Therefore, zero-order light that has straightly passed (or been transmitted) through the LCD 47 travels toward the trap 48 .
  • the trap 48 is a component that absorbs or blocks light. Therefore, the zero-order light incident on the trap 48 is absorbed or blocked the trap 48 . Consequently, the zero-order light does not adversely affect the display beam 2 (or observation of the virtual image).
  • the beam made incident on the LCOS 47 /LCD 47 ′ is a convergent beam 46 . Consequently, the zero-order light emitting from the LCOS 47 /LCD 47 ′ is also a convergent beam. Therefore, the zero-order beam does not diverge while it travels to the trap 48 . In consequence, the zero-order light does not adversely affect the display beam 2 . It is preferred that the beam diameter of the zero-order light at the location of the trap 48 be smaller than the size of the trap 48 . It is more preferred that the zero-order beam converges to a spot, if possible.
  • the hologram information of the hologram displayed on the LCOS 47 /the LCD 47 ′ is corrected by the correction 21 ( FIG. 3 ). With this correction, an accurate display beam 2 is produced when the convergent beam 46 is incident on the LCOS 47 /LCD 47 ′.
  • the lens 45 may be integral with the transparent substrate 4 .
  • the lens 45 may be replaced by a LCOS or an ordinary hologram, as is the case with the second embodiment. This enables slimming and size reduction of the display apparatus.
  • the LCD 47 ′ is integrally provided in the transparent substrate 4 .
  • the LCD 47 ′ is sandwiched between two transparent members, in an exemplary case.
  • the LCD 47 may be replaced by the LCD 47 ′, and the LCD 47 ′ may be covered with another transparent member from the side of the LCD 47 ′.
  • FIG. 11 is a diagram showing beams emitted from the display apparatus of this embodiment, where the optical distances of the beams are visualized. This will be described in the following taking the display apparatus according to the fourth embodiment as an example.
  • display beams 43 is emitted from the surface 40 of the second transparent substrate 36 in the display apparatus.
  • the display beams 43 include display beams 34 d , 34 e , 34 f shown in FIG. 7B . (It should be understood that a lot of beams other than these three beams are emitted from the surface 40 .)
  • a part of the display beams is incident on the viewer's eye 51 , and the viewer can see the display (i.e. an virtual image).
  • FIG. 11 shows display beams emitting from three positions 50 a , 50 b , 50 c .
  • the three display beams include a display beam 34 , an outermost off-axis display beam 34 Uo, and an outermost off-axis display beam 34 Lo.
  • the display beam 34 corresponds to a beam emitting from an axial point (at the center of a picture).
  • the outermost off-axis display beam 34 Uo corresponds to a beam emitting from an outermost off-axis point (on one edge of the picture).
  • the outermost off-axis display beam 34 Lo corresponds to a beam emitting from an outermost off-axis point (of the other edge of the picture).
  • the positions 50 a , 50 b , and 50 c represent optical positions of the SPM 29 ( FIG. 8 ) seen from the viewer. These optical positions represent the distances from the surface 40 of the second transparent substrate 36 to the SPM 29 .
  • the position 50 a represents the optical position of the SPM 29 in the case where the display beam 34 is totally reflected in the second transparent substrate 36 only once and is emitted out of it.
  • the position 50 b represents the optical position of the SPM 29 in the case where the display beam is totally reflected in the second transparent substrate 36 twice and is emitted out of it.
  • the position 50 c represents the optical position of the SPM 29 in the case where the display beam is totally reflected in the second transparent substrate 36 three times and is emitted out of it.
  • the difference of two optical positions is represented by the difference ⁇ of the optical distances.
  • the difference ⁇ of the optical distances is the propagation distance resulting from one total reflection in the second transparent substrate 36 . More specifically, it is the distance through which the display beam 34 propagates (or travels) from the beam splitter 37 to the interface and them back from the interface to the beam splitter 37 .
  • the SPM 29 produces display beam 34 , the outermost off-axis display beam 34 Lo, and the outermost off-axis display beam 34 Uo holographically with coherent light. Consequently, the display beam 34 , the outermost off-axis display beam 34 Lo, and the outermost off-axis display beam 34 Uo are also coherent beams. While in the case shown in FIG. 11 , the display beams incident on the viewer's pupil 51 are mainly display beams ( 34 , 34 L, 34 U) emitting from the position 50 b , display beams emitting from the positions 50 a and/or 50 c may also be incident on the pupil 51 if the pupil 51 is located at a different position.
  • the display beams emitting from the positions 50 a , 50 b , and 50 c are coherent beams. Consequently, if a display beam emitting from the position 50 b and a display beam emitting from the position 50 a are incident on the viewer's pupil 51 , the two beams would interfere, so that the viewer see an unintended image (virtual image).
  • the unintended image is, for example, an image having deteriorated image quality.
  • the coherence length of the light source 24 be shorter than the difference ⁇ of optical distances. In other words, it is preferred that the coherence length of the light source 24 be shorter than the propagation distance resulting from one total reflection in the second transparent substrate 36 . If this is the case, it is possible to prevent an unintended image from being formed, even if a plurality of display beams having different optical distances are incident on the viewer's eye.
  • an SPM is used to produce display beams holographically.
  • display beams can be produced holographically without using an SPM.
  • a film on which a hologram pattern is recorded may be set at the position of the SPM.
  • the film may be replaced by something having properties that allow recording of a hologram pattern only once.
  • the present invention can provide a display method and display apparatus having excellent optical performance while being small and slim.
  • the display method and apparatus according to the present invention is advantageous in that the apparatus can have excellent optical performance while being small and slim.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Holo Graphy (AREA)
  • Liquid Crystal (AREA)
US14/638,234 2012-09-05 2015-03-04 Display Method and Display Apparatus Abandoned US20150241844A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/936,010 US10534317B2 (en) 2012-09-05 2018-03-26 Display method and display apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012194964A JP5984591B2 (ja) 2012-09-05 2012-09-05 表示方法及び表示装置
JP2012-194964 2012-09-05
PCT/JP2013/060911 WO2014038237A1 (fr) 2012-09-05 2013-04-11 Procédé et dispositif d'affichage

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060911 Continuation WO2014038237A1 (fr) 2012-09-05 2013-04-11 Procédé et dispositif d'affichage

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/936,010 Division US10534317B2 (en) 2012-09-05 2018-03-26 Display method and display apparatus

Publications (1)

Publication Number Publication Date
US20150241844A1 true US20150241844A1 (en) 2015-08-27

Family

ID=50236862

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/638,234 Abandoned US20150241844A1 (en) 2012-09-05 2015-03-04 Display Method and Display Apparatus
US15/936,010 Active US10534317B2 (en) 2012-09-05 2018-03-26 Display method and display apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/936,010 Active US10534317B2 (en) 2012-09-05 2018-03-26 Display method and display apparatus

Country Status (3)

Country Link
US (2) US20150241844A1 (fr)
JP (1) JP5984591B2 (fr)
WO (1) WO2014038237A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018085081A1 (fr) * 2016-11-01 2018-05-11 Microsoft Technology Licensing, Llc Projecteur holographique pour affichage de guide d'ondes
US20180149873A1 (en) * 2016-11-30 2018-05-31 Magic Leap, Inc. Method and system for high resolution digitized display
US10755481B2 (en) 2017-05-16 2020-08-25 Magic Leap, Inc. Systems and methods for mixed reality

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016085430A (ja) * 2014-10-29 2016-05-19 セイコーエプソン株式会社 虚像表示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070070504A1 (en) * 2005-09-29 2007-03-29 Katsuyuki Akutsu Optical device and image display apparatus
US20100039796A1 (en) * 2008-08-18 2010-02-18 Sony Corporation Image display apparatus
US20120092750A1 (en) * 2009-06-23 2012-04-19 Seereal Technologies S.A. Lighting device for a direct viewing display
WO2012062681A1 (fr) * 2010-11-08 2012-05-18 Seereal Technologies S.A. Dispositif d'affichage, notamment visiocasque basé sur le multiplexage temporel et spatial de carreaux d'hologrammes
US20120218481A1 (en) * 2009-10-27 2012-08-30 Milan Momcilo Popovich Compact holographic edge illuminated eyeglass display

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS465152Y1 (fr) 1967-06-08 1971-02-23
US6002829A (en) 1992-03-23 1999-12-14 Minnesota Mining And Manufacturing Company Luminaire device
KR100573634B1 (ko) * 1997-01-13 2006-04-26 미네소타 마이닝 앤드 매뉴팩춰링 캄파니 조명 장치
US6222971B1 (en) 1998-07-17 2001-04-24 David Slobodin Small inlet optical panel and a method of making a small inlet optical panel
IL157837A (en) * 2003-09-10 2012-12-31 Yaakov Amitai Substrate-guided optical device particularly for three-dimensional displays
WO2005088384A1 (fr) 2004-03-12 2005-09-22 Nikon Corporation Systeme optique d’affichage d’images et appareil d’affichage d’images
EP1952189B1 (fr) 2005-11-21 2016-06-01 Microvision, Inc. Ecran d'affichage avec substrat a guidage d'image
JP2007219106A (ja) * 2006-02-16 2007-08-30 Konica Minolta Holdings Inc 光束径拡大光学素子、映像表示装置およびヘッドマウントディスプレイ
JP4934331B2 (ja) * 2006-03-06 2012-05-16 ハリソン東芝ライティング株式会社 面状発光デバイス
US8477315B2 (en) * 2007-02-09 2013-07-02 Seiko Epson Corporation Volume hologram, light source device, illumination device, monitor, and image display device
JP2008216579A (ja) * 2007-03-02 2008-09-18 Olympus Corp ホログラフィックプロジェクション方法及びホログラフィックプロジェクション装置
EP2329302B1 (fr) * 2008-09-16 2019-11-06 BAE Systems PLC Améliorations portant sur ou en relation avec des guides d'onde
US11320571B2 (en) * 2012-11-16 2022-05-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view with uniform light extraction
US8861057B2 (en) * 2012-06-27 2014-10-14 Ergophos, Llc Speckle-reduced laser illumination device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070070504A1 (en) * 2005-09-29 2007-03-29 Katsuyuki Akutsu Optical device and image display apparatus
US20100039796A1 (en) * 2008-08-18 2010-02-18 Sony Corporation Image display apparatus
US20120092750A1 (en) * 2009-06-23 2012-04-19 Seereal Technologies S.A. Lighting device for a direct viewing display
US20120218481A1 (en) * 2009-10-27 2012-08-30 Milan Momcilo Popovich Compact holographic edge illuminated eyeglass display
WO2012062681A1 (fr) * 2010-11-08 2012-05-18 Seereal Technologies S.A. Dispositif d'affichage, notamment visiocasque basé sur le multiplexage temporel et spatial de carreaux d'hologrammes
US20130222384A1 (en) * 2010-11-08 2013-08-29 Seereal Technologies S.A. Display device, in particular a head-mounted display, based on temporal and spatial multiplexing of hologram tiles

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018085081A1 (fr) * 2016-11-01 2018-05-11 Microsoft Technology Licensing, Llc Projecteur holographique pour affichage de guide d'ondes
US10254542B2 (en) 2016-11-01 2019-04-09 Microsoft Technology Licensing, Llc Holographic projector for a waveguide display
CN109891332A (zh) * 2016-11-01 2019-06-14 微软技术许可有限责任公司 用于波导显示的全息投影仪
US20180149873A1 (en) * 2016-11-30 2018-05-31 Magic Leap, Inc. Method and system for high resolution digitized display
US10678055B2 (en) * 2016-11-30 2020-06-09 Magic Leap, Inc. Method and system for high resolution digitized display
US11686944B2 (en) 2016-11-30 2023-06-27 Magic Leap, Inc. Method and system for high resolution digitized display
US10755481B2 (en) 2017-05-16 2020-08-25 Magic Leap, Inc. Systems and methods for mixed reality
US11107288B2 (en) 2017-05-16 2021-08-31 Magic Leap, Inc. Systems and methods for mixed reality
US11651566B2 (en) 2017-05-16 2023-05-16 Magic Leap, Inc. Systems and methods for mixed reality
US11935206B2 (en) 2017-05-16 2024-03-19 Magic Leap, Inc Systems and methods for mixed reality

Also Published As

Publication number Publication date
JP2014052408A (ja) 2014-03-20
WO2014038237A1 (fr) 2014-03-13
JP5984591B2 (ja) 2016-09-06
US10534317B2 (en) 2020-01-14
US20180217555A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
JP6223228B2 (ja) 表示装置
KR102678957B1 (ko) 광 가이드를 포함하는 디스플레이 장치
US10534317B2 (en) Display method and display apparatus
EP2153266B1 (fr) Expanseur de faisceau diffractif et afficheur virtuel basé sur un expanseur de faisceau diffractif
US11287655B2 (en) Holographic display apparatus and method for providing expanded viewing window
CN115421304A (zh) 利用全息布拉格光栅的2d光瞳扩展器
US11204587B2 (en) Holographic display apparatus
JP2007279313A (ja) 光学素子の製造方法、光学素子、映像表示装置およびヘッドマウントディスプレイ
US11774758B2 (en) Waveguide display with multiple monochromatic projectors
KR20180065421A (ko) 백라이트 유닛 및 이를 포함하는 홀로그래픽 디스플레이 장치
KR20190005283A (ko) 홀로그래픽 헤드 업 표시 장치
US11709358B2 (en) Staircase in-coupling for waveguide display
JP2010204397A (ja) 映像表示装置、およびヘッドマウントディスプレイ
CN218675520U (zh) 一种基于波导的全息成像系统和电子显示设备
CN114779479B (zh) 近眼显示装置及穿戴设备
JP2009540353A (ja) エレクトロホログラフィックディスプレイにおける実効画素ピッチを低減する方法及び低減された実効画素ピッチを含むエレクトロホログラフィックディスプレイ
US20230008461A1 (en) Optical device for exit pupil expansion (epe) and display apparatus including the optical device
JP5315974B2 (ja) 光路コンバイナ、映像表示装置およびヘッドマウントディスプレイ
JP2023008330A (ja) ホログラフィ用再生照明光照射装置およびホログラフィックディスプレイ
US20230038253A1 (en) Method for recording holographic optical element for head-up display
KR20200145622A (ko) 확장된 시야창을 제공하는 홀로그래픽 디스플레이 장치 및 디스플레이 방법
US11914145B2 (en) Floating hologram system using holographic optical element
US11940628B2 (en) Display device having common light path region
US20240231103A1 (en) K-space analysis for geometrical waveguide
CN115576111B (zh) 一种ar显示设备

Legal Events

Date Code Title Description
AS Assignment

Owner name: OLYMPUS CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HORIKAWA, YOSHIAKI;REEL/FRAME:035084/0705

Effective date: 20150118

AS Assignment

Owner name: OLYMPUS CORPORATION, JAPAN

Free format text: CHANGE OF ADDRESS;ASSIGNOR:OLYMPUS CORPORATION;REEL/FRAME:045552/0191

Effective date: 20170410

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION