US20150137580A1 - High-efficiency mining method for percussing falling-materials without trapping materials and high-efficiency mining machine for percussing falling-materials without trapping materials - Google Patents

High-efficiency mining method for percussing falling-materials without trapping materials and high-efficiency mining machine for percussing falling-materials without trapping materials Download PDF

Info

Publication number
US20150137580A1
US20150137580A1 US14/400,615 US201314400615A US2015137580A1 US 20150137580 A1 US20150137580 A1 US 20150137580A1 US 201314400615 A US201314400615 A US 201314400615A US 2015137580 A1 US2015137580 A1 US 2015137580A1
Authority
US
United States
Prior art keywords
impact
layer material
teeth
layer
blanking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/400,615
Other languages
English (en)
Inventor
Suhua Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20150137580A1 publication Critical patent/US20150137580A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C27/00Machines which completely free the mineral from the seam
    • E21C27/10Machines which completely free the mineral from the seam by both slitting and breaking-down
    • E21C27/12Machines which completely free the mineral from the seam by both slitting and breaking-down breaking-down effected by acting on the vertical face of the mineral, e.g. by percussive tools
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C25/00Cutting machines, i.e. for making slits approximately parallel or perpendicular to the seam
    • E21C25/02Machines slitting solely by one or more percussive tools moved through the seam
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C27/00Machines which completely free the mineral from the seam
    • E21C27/20Mineral freed by means not involving slitting
    • E21C27/28Mineral freed by means not involving slitting by percussive drills with breaking-down means, e.g. wedge-shaped tools
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/18Mining picks; Holders therefor
    • E21C35/19Means for fixing picks or holders
    • E21C35/193Means for fixing picks or holders using bolts as main fixing elements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/18Mining picks; Holders therefor
    • E21C35/19Means for fixing picks or holders
    • E21C35/197Means for fixing picks or holders using sleeves, rings or the like, as main fixing elements
    • E21C2035/1826
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/18Mining picks; Holders therefor
    • E21C35/188Mining picks; Holders therefor characterised by adaptations to use an extraction tool

Definitions

  • the present invention belongs to the field of machinery, is especially suitable for the field of digging machinery or engineering machinery, and particularly relates to an efficient impact blanking digging method without material clamping and an efficient impact blanking digging machine without material clamping.
  • the existing impact type digging impact mechanisms as punching and cutting digging equipment, impact heading equipment, bucket excavating equipment and the like is generally a double-layer impact mechanism or a multilayer impact mechanism.
  • the structural forms of an inner-layer impact mechanism and an outer-layer impact mechanism are generally uniform structures or similar structures. Therefore, in a material impacting process of the impact mechanisms, a material clamped between the impact mechanisms cannot be discharged.
  • the material after being dug by the inner-layer impact mechanism close to a material layer, the material is clamped between the inner and outer-layer impact mechanisms and cannot be discharged, a material block failing to be discharged is extruded into broken materials, thus reducing the lump material rate of the produced material and increasing the operation resistance of the impact mechanisms, and the material block failing to be discharged causes break-off of the impact mechanisms to damage the application performance of the equipment and even prevent continuous production if the case is serious.
  • the present invention provides an efficient impact blanking digging method without material clamping and an efficient impact blanking digging machine without material clamping.
  • the present invention provides an efficient impact blanking digging method without material clamping, including the following steps: an impact blanking mechanism and the like are arranged on the machine body of a digging machine, wherein the impact blanking mechanism includes an outer-layer material impact mechanism and/or an inner-layer material impact mechanism and the like, the outer-layer material impact mechanism and the inner-layer material impact mechanism are arranged side by side, the outer-layer material impact mechanism includes outer-layer material impact teeth and the like, the arrangement of the outer-layer material impact teeth is conductive to blanking the outer-layer material of a material layer to be dug, the outer-layer material impact teeth are conductive to enabling the material blanked by the inner-layer material impact mechanism to flow out from the gaps of the outer-layer material impact teeth and/or a discharge hole is reserved on the outer-layer material impact mechanism to enable the material blanked by the inner-layer material impact mechanism to flow out from the discharge hole of the outer-layer material impact mechanism, the inner-layer material impact mechanism includes inner-layer material impact teeth and the like, and the inner-layer material
  • the present invention further provides an efficient impact blanking digging machine without material clamping used for implementing the efficient impact blanking digging method without material clamping, including a machine body, a walking mechanism and the like, wherein the efficient impact blanking digging machine without material clamping further includes an impact blanking mechanism and the like, the walking mechanism is arranged at the front part, the rear part or the lower part and the like of the machine body, the impact blanking mechanism is connected with the machine body, the impact blanking mechanism includes an outer-layer material impact mechanism and/or an inner-layer material impact mechanism and the like, the outer-layer material impact mechanism and the inner-layer material impact mechanism are arranged adjacently, the outer-layer material impact mechanism includes outer-layer material impact teeth and the like, the inner-layer material impact mechanism includes inner-layer material impact teeth and the like, the arrangement of the outer-layer material impact teeth is conductive to blanking the outer-layer material of a material layer to be dug and is conductive to enabling the material blanked by the inner-layer material impact teeth to flow out from the gaps of the outer-layer material
  • the arrangement and/or shape of the outer-layer material impact teeth is conductive to blanking the outer-layer material of the material layer to be dug and is conductive to enabling the material blanked by the inner-layer material impact teeth to flow out from the gaps of the outer-layer material impact teeth.
  • the outer-layer material impact mechanism includes an outer-layer material impact tooth frame and the like, wherein the outer-layer material impact teeth and the outer-layer material impact tooth frame are movably connected or are integrated.
  • the inner-layer material impact mechanism includes an inner-layer material impact tooth frame and the like, wherein the inner-layer material impact teeth and the inner-layer material impact tooth frame are movably connected or are integrated.
  • the outer-layer material impact teeth include one or more rows of impact teeth and the like.
  • the inner-layer material impact teeth include one or more rows of impact teeth and the like.
  • the impact teeth include a front row of impact teeth and/or a rear row of impact teeth and the like.
  • the front row of impact teeth and/or rear row of impact teeth include impact teeth with non material clamping shapes, wherein the impact teeth with non material clamping shapes are conductive to discharging the material blanked by the front row impact teeth and/or rear row impact teeth and the like and are conductive to continuous digging, discharging and the like.
  • the arrangement and/or shape of the front row of impact teeth of the same outer-layer material impact tooth is conductive to enabling the material shoveled off by the rear row of impact teeth to flow out from the gaps of the front row of impact teeth.
  • the front row of impact teeth and the rear row of impact teeth form a length difference, the length difference is equal to an impact stroke or the length difference is larger than the impact stroke or the length difference is smaller than the impact stroke, and the like, the front row of impact teeth and/or the rear row of impact teeth are used for impacting a material wall into a step shape to break the structural strength of the material wall, and during secondary impact, the front row of impact teeth and/or the rear row of impact teeth are used for blanking through a free surface formed by the step-shaped material wall, in order to reduce the impact resistance, reduce the granularity of the material block and facilitate the outflow of the material.
  • the outer-layer material impact teeth and the outer-layer material impact tooth frame and/or the inner-layer material impact teeth and the inner-layer material impact tooth frame are connected by means of a bolt, a catching groove, a pin, a pin shaft, an eccentric connecting element, an inserting hole, a jaw and/or a taper sleeve and the like.
  • the arrangement and/or shape of the inner-layer material impact teeth is conductive to blanking and cleaning a material surface, so as to form the material surface into a necessary shape.
  • the outer-layer material impact teeth include a main outer-layer material impact tooth and/or an outer-layer material top face cleaning tooth and/or an outer-layer material bottom surface cleaning tooth and the like.
  • the outer-layer material impact teeth include a main outer-layer material impact tooth and/or an outer-layer material top face cleaning tooth and/or an outer-layer material bottom surface cleaning tooth and the like, and the main outer-layer material impact tooth and/or the outer-layer material top face cleaning tooth and/or the outer-layer material bottom surface cleaning tooth and the like are used for cleaning the top face and/or the bottom surface of the material wall while blanking.
  • the inner-layer material impact teeth include a main inner-layer material impact tooth and/or an inner-layer material top face cleaning tooth and/or an inner-layer material bottom surface cleaning tooth and the like.
  • the inner-layer material impact teeth include a main inner-layer material impact tooth and/or an inner-layer material top face cleaning tooth and/or an inner-layer material bottom surface cleaning tooth and the like, and the main inner-layer material impact tooth and/or the inner-layer material top face cleaning tooth and/or the inner-layer material bottom surface cleaning tooth and the like are used for cleaning the material wall while blanking to facilitate retaining and protecting, in order to ensure the successful pass of the machine body to perform continuous digging.
  • the inner-layer material impact teeth and/or the inner-layer material impact tooth frame and the like incline towards the material wall for certain angles, to help the inner-layer material impact teeth to obliquely cut the material wall.
  • the outer-layer material impact mechanism includes an outer-layer impact stroke component and the like, and the outer-layer material impact teeth and/or the outer-layer material impact tooth frame and the like are symmetrically arranged at two ends of the outer-layer impact stroke component.
  • the outer-layer material impact mechanism includes an outer-layer impact stroke component and the like, and the outer-layer material impact teeth and/or the outer-layer material impact tooth frame and the like are asymmetrically arranged at two ends of the outer-layer impact stroke component.
  • the outer-layer material impact mechanism includes an outer-layer impact stroke component and the like, and the outer-layer material impact teeth and/or the outer-layer material impact tooth frame and the like are arranged at one end of the outer-layer impact stroke component.
  • the outer-layer impact stroke component and the outer-layer material impact tooth frame are movably connected or are integrated.
  • the inner-layer material impact mechanism includes an inner-layer impact stroke component and the like, and the inner-layer material impact teeth and/or the inner-layer material impact tooth frame and the like are symmetrically arranged at two ends of the inner-layer impact stroke component.
  • the inner-layer material impact mechanism includes an inner-layer impact stroke component and the like, and the inner-layer material impact teeth and/or the inner-layer material impact tooth frame and the like are asymmetrically arranged at two ends of the inner-layer impact stroke component.
  • the inner-layer material impact mechanism includes an inner-layer impact stroke component and the like, and the inner-layer material impact teeth and/or the inner-layer material impact tooth frame and the like are arranged at one end of the inner-layer impact stroke component.
  • the inner-layer impact stroke component and the inner-layer material impact tooth frame are movably connected or are integrated.
  • the outer-layer material impact mechanism includes an outer-layer impact stroke component and the like, the outer-layer material impact teeth and/or the outer-layer material impact tooth frame are arranged at one end of the outer-layer impact stroke component, and a counterweight member is arranged at the other end of the outer-layer impact stroke component.
  • the inner-layer material impact mechanism includes an inner-layer impact stroke component and the like, the inner-layer material impact teeth and/or the inner-layer material impact tooth frame are arranged at one end of the inner-layer impact stroke component, and a counterweight member is arranged at the other end of the inner-layer impact stroke component.
  • the outer-layer material impact tooth frame includes a rear supporting seat, an outer-layer material impact tooth supporting frame and the like, the rear supporting seat and the outer-layer material impact tooth supporting frame and the like form a discharge hole, and there is one or multiple discharge holes.
  • the discharge hole includes an arched discharge hole and/or a cambered discharge hole and/or a square discharge hole and/or a trapezoidal discharge hole and/or a triangular discharge hole and/or a polygonal discharge hole and/or a deformed discharge hole and the like.
  • the height of the rear supporting seat is smaller than or equal to or larger than the height of the outer-layer material impact tooth supporting frame.
  • the rear supporting seat and the outer-layer material impact tooth supporting frame are movably connected or are integrated.
  • the impact blanking mechanism includes a power box body and the like, the rear supporting seat is provided with a rear supporting seat material baffle and the like, and the rear supporting seat material baffle is arranged along the surface of the power box body and relatively reciprocates along the surface of the power box body.
  • the impact blanking mechanism includes a power box body and the like
  • the inner-layer material impact mechanism includes an inner-layer tooth seat and the like
  • the inner-layer tooth seat is provided with an inner-layer tooth seat material baffle and the like
  • the inner-layer tooth seat material baffle is arranged along the surface of the power box body and relatively reciprocates along the surface of the power box body.
  • the impact blanking mechanism includes an impact actuator and the like, a breakage-proof impact actuator structure and the like are arranged between the impact actuator and the outer-layer material impact tooth frame and/or the inner-layer material impact tooth frame, the breakage-proof impact actuator structure includes a rotary breakage-proof impact actuator structure or a separated breakage-proof impact actuator structure or a buffering breakage-proof impact actuator structure and the like, the impact actuator is used for driving the outer-layer material impact teeth and/or the inner-layer material impact teeth to impact, an impact counteraction force is applied to the breakage-proof impact actuator structure, and the rotary breakage-proof impact actuator structure rotates or the separated breakage-proof impact actuator structure separately isolates or the buffering breakage-proof impact actuator structure buffers and the like to prevent the impact counteraction force from breaking off and damaging the impact actuator.
  • the outer-layer impact stroke component includes outer-layer reciprocating guide rods and the like, the outer-layer reciprocating guide rods are symmetrically or asymmetrically arranged on the outer-layer material impact tooth frame, the outer-layer reciprocating guide rods are symmetrically arranged to enlarge the correction force of the outer-layer material impact tooth frame to maintain the reciprocating impact balance of the outer-layer material impact tooth frame, in order to prevent the break-off of the outer-layer material impact tooth frame and the impact actuator.
  • the inner-layer impact stroke component includes inner-layer reciprocating guide rods and the like, the inner-layer reciprocating guide rods are symmetrically or asymmetrically arranged on the inner-layer material impact tooth frame, the outer-layer reciprocating guide rods are symmetrically arranged to enlarge the correction force of the inner-layer material impact tooth frame to maintain the reciprocating impact balance of the inner-layer material impact tooth frame, in order to prevent the break-off of the inner-layer material impact tooth frame and the impact actuator.
  • the machine body includes a hydraulic system and/or an electric system and/or a water mist spray system and the like.
  • the machine body includes a rotary disk and the like, the rotary disk is arranged at the upper part and/or the lower part and the like of the machine body, when the rotary disk is arranged at the upper part of the machine body, the impact blanking mechanism is arranged on the rotary disk, the rotary disk drives the impact blanking mechanism to rotate to perform impact blanking in multiple directions, when the rotary disk is arranged at the lower part of the machine body, the impact blanking mechanism is arranged on the machine body, the rotary disk drives the machine body to rotate, and the machine body drives the impact blanking mechanism to rotate to perform impact blanking in multiple directions.
  • the utility model Compared with the existing digging equipment, the utility model has the following beneficial effects:
  • the arrangement of the outer-layer material impact teeth is conductive to blanking the outer-layer material of the material layer to be dug, the outer-layer material impact teeth are conductive to enabling the material blanked by the inner-layer material impact mechanism to flow out from the gaps of the outer-layer material impact teeth and/or the discharge hole is reserved on the outer-layer material impact mechanism to enable the material blanked by the inner-layer material impact mechanism to flow out from the discharge hole of the outer-layer material impact mechanism, the inner-layer material impact mechanism and the outer-layer material impact mechanism cooperate to realize impact blanking and discharging, so that the problem that the material clamped between the impact blanking mechanisms cannot be discharged to cause continuous digging failure of the digging machine is solved, successful digging, blanking, discharging and material loading of the impact blanking digging machine are achieved, and the digging efficiency is improved; 2) since the discharge hole is arranged between the rear supporting seat and the outer-layer material impact tooth supporting frame, the outer-layer material impact teeth are arranged on the outer-layer material impact tooth supporting frame, to reduce the lengths
  • FIG. 1 is a front view of an efficient impact blanking digging machine without material clamping in embodiment 1;
  • FIG. 2 is a top view of an efficient impact blanking digging machine without material clamping in embodiment 1;
  • FIG. 3 is a schematic diagram of a structure of an outer-layer material impact mechanism of an efficient impact blanking digging machine without material clamping in embodiment 1;
  • FIG. 4 is a schematic diagram of a structure of an inner-layer material impact mechanism of an efficient impact blanking digging machine without material clamping in embodiment 1;
  • FIG. 5 is a schematic diagram of installation of impact teeth of an efficient impact blanking digging machine without material clamping in embodiment 1;
  • FIG. 6 is a front view of an efficient impact blanking digging machine without material clamping in embodiment 2;
  • FIG. 7 is a top view of an efficient impact blanking digging machine without material clamping in embodiment 2;
  • FIG. 8 is a schematic diagram of an overlooking structure of an impact blanking digging mechanism in embodiment 2;
  • FIG. 9 is a schematic diagram of installation of impact teeth of an efficient impact blanking digging machine without material clamping in embodiment 2;
  • FIG. 10 is a front view of an efficient impact blanking digging machine without material clamping in embodiment 3;
  • FIG. 11 is a top view of an efficient impact blanking digging machine without material clamping in embodiment 3;
  • FIG. 12 is a schematic diagram of an overlooking structure of an impact blanking digging mechanism in embodiment 3;
  • FIG. 13 is a schematic diagram of a structure of an outer-layer material impact mechanism of an efficient impact blanking digging machine without material clamping in embodiment 3;
  • FIG. 14 is a schematic diagram of a structure of an inner-layer material impact mechanism of an efficient impact blanking digging machine without material clamping in embodiment 3;
  • FIG. 15 is a schematic diagram of installation of impact teeth of an efficient impact blanking digging machine without material clamping in embodiment 3;
  • FIG. 16 is a schematic diagram of a front view structure of an impact blanking digging mechanism in embodiment 4.
  • FIG. 17 is a schematic diagram of an overlooking structure of an impact blanking digging mechanism in embodiment 4.
  • FIG. 18 is a schematic diagram of a front view structure of an impact blanking digging mechanism in embodiment 5;
  • FIG. 19 is a schematic diagram of a structure of an outer-layer material impact mechanism of an efficient impact blanking digging machine without material clamping in embodiment 6;
  • FIG. 20 is a schematic diagram of a structure of an inner-layer material impact mechanism of an efficient impact blanking digging machine without material clamping in embodiment 6;
  • FIG. 21 is a front view of an efficient impact blanking digging machine without material clamping in embodiment 7;
  • FIG. 22 is a schematic diagram of an overlooking structure of an impact blanking digging mechanism in embodiment 7;
  • FIG. 23 is a schematic diagram of a structure of an outer-layer material impact mechanism of an efficient impact blanking digging machine without material clamping in embodiment 7;
  • FIG. 24 is a schematic diagram of a structure of an inner-layer material impact mechanism of an efficient impact blanking digging machine without material clamping in embodiment 7;
  • FIG. 25 is a schematic, diagram of installation of impact teeth of an efficient impact blanking digging machine without material clamping in embodiment 7;
  • FIG. 26 is a front view of an efficient impact blanking digging machine without material clamping in embodiment 8.
  • 1 represents a machine body
  • 2 represents a walking mechanism
  • 3 represents an impact blanking mechanism
  • 4 represents an outer-layer material impact mechanism
  • 4 . 1 represents an outer-layer material impact tooth
  • 4 . 2 represents an outer-layer material impact tooth frame
  • 4 . 2 . 1 represents a rear supporting seat
  • 4 . 2 . 2 represents an outer-layer material impact tooth supporting frame
  • 4 . 3 represents an outer-layer impact stroke component
  • 4 . 3 . 1 represents an outer-layer reciprocating guide rod
  • 5 represents an inner-layer material impact mechanism
  • 5 . 1 represents an inner-layer material impact tooth
  • 5 . 2 represents an inner-layer material impact tooth frame
  • 5 . 3 represents an inner-layer impact stroke component, 5 . 3 .
  • 1 represents an inner-layer reciprocating guide rod
  • 5 . 4 represents an inner-layer tooth seat
  • 6 represents a pin
  • 7 represents an impact actuator
  • 8 represents a discharge hole
  • 9 represents a catching groove
  • 10 represents an impact tooth
  • 11 represents a front row of impact teeth
  • 12 represents a rear row of impact teeth
  • 13 represents a main outer-layer material impact tooth
  • 14 represents an outer-layer material top face cleaning tooth
  • 15 represents an outer-layer material bottom face cleaning tooth
  • 16 represents a main inner-layer material impact tooth
  • 17 represents an inner-layer material top face cleaning tooth
  • 18 represents an inner-layer material bottom face cleaning tooth
  • 19 represents a rear supporting seat material baffle
  • 20 represents a power box body
  • 21 represents a breakage-proof impact actuator structure, 21 .
  • 1 represents a rotary breakage-proof impact actuator structure
  • 21 . 2 represents a separated breakage-proof impact actuator structure
  • 21 . 3 represents a buffering breakage-proof impact actuator structure
  • 22 represents a counterweight member
  • 23 represents a pin shaft
  • 24 represents a rotary disk
  • 25 represents an inner-layer material side face cleaning tooth.
  • an efficient impact blanking digging machine without material clamping used for implementing an efficient impact blanking digging method without material clamping includes a machine body 1 , a walking mechanism 2 , an impact blanking mechanism 3 and the like, wherein the walking mechanism 2 is arranged at the front part and the rear part and the like of the machine body 1 , the impact blanking mechanism 3 is connected with the machine body 1 , the impact blanking mechanism 3 includes an outer-layer material impact mechanism 4 and an inner-layer material impact mechanism 5 and the like, the outer-layer material impact mechanism 4 and the inner-layer material impact mechanism 5 are arranged adjacently, the outer-layer material impact mechanism 4 includes outer-layer material impact teeth 4 .
  • the inner-layer material impact mechanism 5 includes inner-layer material impact teeth 5 . 1 and the like, the arrangement of the outer-layer material impact teeth 4 . 1 is conductive to blanking the outer-layer material of a material layer to be dug and is conductive to enabling the material blanked by the inner-layer material impact teeth 5 . 1 to flow out from the gaps of the outer-layer material impact teeth 4 . 1 , and the inner-layer material impact mechanism 5 and the outer-layer material impact mechanism 4 cooperate to realize impact blanking and discharging.
  • the arrangement and/or shape of the outer-layer material impact teeth 4 . 1 is conductive to blanking the outer-layer material of the material layer to be dug and is conductive to enabling the material blanked by the inner-layer material impact teeth 5 . 1 to flow out from the gaps of the outer-layer material impact teeth 4 . 1 .
  • the outer-layer material impact mechanism 4 includes an outer-layer material impact tooth frame 4 . 2 and the like, wherein the outer-layer material impact teeth 4 . 1 and the outer-layer material impact tooth frame 4 . 2 are movably connected and can also be integrated.
  • the inner-layer material impact mechanism 5 includes an inner-layer material impact tooth frame 5 . 2 and the like, wherein the inner-layer material impact teeth 5 . 1 and the inner-layer material impact tooth frame 5 . 2 are movably connected and can also be integrated.
  • outer-layer material impact teeth 4 . 1 and the outer-layer material impact tooth frame 4 . 2 and/or the inner-layer material impact teeth 5 . 1 and the inner-layer material impact tooth frame 5 . 2 are connected by means of a pin 6 and can also be connected by means of a bolt, a catching groove, a pin shaft, an eccentric connecting element, an inserting hole, a jaw and/or a taper sleeve and the like.
  • the outer-layer material impact mechanism 4 includes an outer-layer impact stroke component 4 . 3 and the like, and the outer-layer material impact teeth 4 . 1 and the outer-layer material impact tooth frame 4 . 2 are symmetrically arranged at the two ends of the outer-layer impact stroke component 4 . 3 .
  • the outer-layer impact stroke component 4 . 3 and the outer-layer material impact tooth frame 4 . 2 are movably connected and can also be integrated.
  • the inner-layer material impact mechanism 5 includes an inner-layer impact stroke component 5 . 3 and the like, and the inner-layer material impact teeth 5 . 1 and/or the inner-layer material impact tooth frame 5 . 2 are symmetrically arranged at the two ends of the inner-layer impact stroke component 5 . 3 .
  • the inner-layer impact stroke component 5 . 3 and the inner-layer material impact tooth frame 5 . 2 are movably connected and can also be integrated.
  • the outer-layer impact stroke component 4 . 3 includes outer-layer reciprocating guide rods 4 . 3 . 1 and the like, the outer-layer reciprocating guide rods 4 . 3 . 1 are symmetrically arranged on the outer-layer material impact tooth frame 4 . 2 , the outer-layer reciprocating guide rods 4 . 3 . 1 are symmetrically arranged to enlarge the correction force of the outer-layer material impact tooth frame 4 . 2 to maintain the reciprocating impact balance of the outer-layer material impact tooth frame 4 . 2 , in order to prevent the break-off of the outer-layer material impact tooth frame 4 . 2 and the impact actuator 7 , and the outer-layer reciprocating guide rods can also be asymmetrically arranged.
  • the inner-layer impact stroke component 5 . 3 includes inner-layer reciprocating guide rods 5 . 3 . 1 and the like, the inner-layer reciprocating guide rods 5 . 3 . 1 are symmetrically arranged on the inner-layer material impact tooth frame 5 . 2 , the outer-layer reciprocating guide rods 4 . 3 . 1 are symmetrically arranged to enlarge the correction force of the inner-layer material impact tooth frame 5 . 2 and to maintain the reciprocating impact balance of the inner-layer material impact tooth frame 5 . 2 , in order to prevent the break-off of the inner-layer material impact tooth frame 5 . 2 and the impact actuator 7 , and the outer-layer reciprocating guide rods can also be asymmetrically arranged.
  • the machine body 1 includes a hydraulic system and/or an electric system and/or a water mist spray system and the like.
  • an efficient impact blanking digging machine without material clamping used for implementing an efficient impact blanking digging method without material clamping includes a machine body 1 , a walking mechanism 2 , an impact blanking mechanism 3 and the like, wherein the walking mechanism 2 is arranged at the front part and the rear part and the like of the machine body 1 , the impact blanking mechanism 3 is connected with the machine body 1 , the impact blanking mechanism 3 includes an outer-layer material impact mechanism 4 and/or an inner-layer material impact mechanism 5 and the like, the outer-layer material impact mechanism 4 and the inner-layer material impact mechanism 5 are arranged adjacently, the outer-layer material impact mechanism 4 includes outer-layer material impact teeth 4 .
  • the inner-layer material impact mechanism 5 includes inner-layer material impact teeth 5 . 1 and the like, the arrangement of the outer-layer material impact teeth 4 . 1 is conductive to blanking the outer-layer material of a material layer to be dug and is conductive to enabling the material blanked by the inner-layer material impact teeth 5 . 1 to flow out from the gaps of the outer-layer material impact teeth 4 . 1 , the outer-layer material impact mechanism 4 is provided with a discharge hole 8 to enable the material blanked by the inner-layer material impact mechanism 5 to flow out from the discharge hole 8 of the outer-layer material impact mechanism 4 , and the inner-layer material impact mechanism 5 and the outer-layer material impact mechanism 4 cooperate to realize impact blanking and discharging.
  • the outer-layer material impact tooth frame 4 . 2 includes a rear supporting seat 4 . 2 . 1 , an outer-layer material impact tooth supporting frame 4 . 2 . 2 and the like, the rear supporting seat 4 . 2 . 1 and the outer-layer material impact tooth supporting frame 4 . 2 . 2 form the discharge hole 8 , and the number of the discharge hole 8 is one, and can also be two or more and the like.
  • the discharge hole 8 includes an arched discharge hole and the like, and can also be a square discharge hole and/or a cambered discharge hole and/or a trapezoidal discharge hole and/or a triangular discharge hole and/or a polygonal discharge hole and/or a deformed discharge hole and the like.
  • the height of the rear supporting seat 4 . 2 . 1 is smaller than the height of the outer-layer material impact tooth supporting frame 4 . 2 . 2 and can also be equal to or larger than the height of the outer-layer material impact tooth supporting frame 4 . 2 . 2 .
  • the rear supporting seat 4 . 2 . 1 and the outer-layer material impact tooth supporting frame 4 . 2 . 2 are integrated and can also be movably connected.
  • the inner-layer material impact tooth frame 5 . 2 inclines towards the material wall for a certain angle, to help the inner-layer material impact teeth 5 . 1 to obliquely cut the material wall.
  • outer-layer material impact teeth 4 . 1 and the outer-layer material impact tooth frame 4 . 2 and/or the inner-layer material impact teeth 5 . 1 and the inner-layer material impact tooth frame 5 . 2 are connected by means of a catching groove 9 and can also be connected by means of a bolt, a pin, a pin shaft, an eccentric connecting element, an inserting hole, a jaw and/or a taper sleeve and the like.
  • an efficient impact blanking digging machine without material clamping used for implementing an efficient impact blanking digging method without material clamping includes a machine body 1 , a walking mechanism 2 , an impact blanking mechanism 3 and the like, wherein the walking mechanism 2 is arranged at the front part or the rear part or the bottom or the like of the machine body 1 , the impact blanking mechanism 3 is connected with the machine body 1 , the impact blanking mechanism 3 includes an outer-layer material impact mechanism 4 and an inner-layer material impact mechanism 5 and the like, the outer-layer material impact mechanism 4 and the inner-layer material impact mechanism 5 are arranged adjacently, the outer-layer material impact mechanism 4 includes outer-layer material impact teeth 4 .
  • the inner-layer material impact mechanism 5 includes inner-layer material impact teeth 5 . 1 and the like, the arrangement of the outer-layer material impact teeth 4 . 1 is conductive to blanking the outer-layer material of a material layer to be dug and is conductive to enabling the material blanked by the inner-layer material impact teeth 5 . 1 to flow out from the gaps of the outer-layer material impact teeth 4 . 1 and/or the outer-layer material impact mechanism 4 is provided with a discharge hole 8 to enable the material blanked by the inner-layer material impact mechanism 5 to flow out from the discharge hole 8 of the outer-layer material impact mechanism 4 and the like, and the inner-layer material impact mechanism 5 and the outer-layer material impact mechanism 4 cooperate to realize impact blanking and discharging.
  • the outer-layer material impact teeth 4 . 1 include more than a row of impact teeth 10 and the like, or one row of impact teeth can also be arranged.
  • the inner-layer material impact teeth 5 . 1 include more than a row of impact teeth 10 and the like, or one row of impact teeth can also be arranged.
  • the impact teeth 10 include a front row of impact teeth 11 and a rear row of impact teeth 12 and the like.
  • the front row of impact teeth 11 and/or the rear row of impact teeth 12 include impact teeth 10 with non material clamping shapes, wherein the impact teeth 10 with non material clamping shapes are conductive to discharging the material blanked by the front row impact teeth 11 and/or the rear row impact teeth 12 and are conductive to continuous digging and discharging.
  • the arrangement and shape of the front row of impact teeth 11 of the same outer-layer material impact tooth 4 . 1 are conductive to enabling the material shoveled off by the rear row of impact teeth 12 to flow out from the gaps of the front row of impact teeth 11 .
  • the front row of impact teeth 11 and the rear row of impact teeth 12 form a length difference, the length difference is equal to an impact stroke or the length difference is larger than the impact stroke or the length difference is smaller than the impact stroke, the front row of impact teeth 11 and the rear row of impact teeth 12 are used for impacting a material wall into a step shape to break the structural length of the material wall, and during secondary impact, the front row of impact teeth 11 and the rear row of impact teeth 12 are used for blanking through a free surface formed by the step-shaped material wall, in order to reduce the impact resistance, reduce the granularity of the material block and facilitate the outflow of the material.
  • outer-layer material impact teeth 4 . 1 and the outer-layer material impact tooth frame 4 . 2 and/or the inner-layer material impact teeth 5 . 1 and the inner-layer material impact tooth frame 5 . 2 are connected by means of an inserting hole and can also be connected by means of a bolt, a catching groove, a pin, a pin shaft, an eccentric connecting element, a jaw and/or a taper sleeve and the like.
  • the arrangement and/or shape of the inner-layer material impact teeth 5 . 1 is conductive to blanking and cleaning a material surface, so as to form the material surface into a necessary shape.
  • the outer-layer material impact teeth 4 . 1 include a main outer-layer material impact tooth 13 and/or an outer-layer material top face cleaning tooth 14 and/or an outer-layer material bottom surface cleaning tooth 15 and the like.
  • the outer-layer material impact teeth 4 . 1 include a main outer-layer material impact tooth 13 and/or an outer-layer material top face cleaning tooth 14 and/or an outer-layer material bottom surface cleaning tooth 15 and the like, and the main outer-layer material impact tooth 13 and/or the outer-layer material top face cleaning tooth 14 and/or the outer-layer material bottom surface cleaning tooth 15 and the like are used for cleaning the top face and/or the bottom surface of the material wall while blanking.
  • the inner-layer material impact teeth 5 . 1 include a main inner-layer material impact tooth 16 and/or an inner-layer material top face cleaning tooth 17 and/or an inner-layer material bottom surface cleaning tooth 18 and/or an inner-layer material side face cleaning tooth 25 and the like.
  • the inner-layer material impact teeth 5 . 1 include a main inner-layer material impact tooth 16 and/or an inner-layer material top face cleaning tooth 17 and/or an inner-layer material bottom surface cleaning tooth 18 and/or an inner-layer material side face cleaning tooth 25 and the like, and the main inner-layer material impact tooth 16 and/or the inner-layer material top face cleaning tooth 17 and/or the inner-layer material bottom surface cleaning tooth 18 and/or the inner-layer material side face cleaning tooth 25 and the like are used for cleaning the material wall while blanking to facilitate retaining and protecting, in order to ensure the successful pass of the machine body 1 to perform continuous digging.
  • the inner-layer material impact tooth frame 5 . 2 inclines towards the material wall for a certain angle, to help the inner-layer material impact teeth 5 . 1 to obliquely cut the material wall.
  • the outer-layer material impact mechanism 4 includes an outer-layer impact stroke component 4 . 3 and the like, and the outer-layer material impact teeth 4 . 1 and/or the outer-layer material impact tooth frame 4 . 2 are symmetrically arranged at the two ends of the outer-layer impact stroke component 4 . 3 .
  • the outer-layer impact stroke component 4 . 3 and the outer-layer material impact tooth frame 4 . 2 are movably connected or are integrated.
  • the inner-layer material impact mechanism 5 includes an inner-layer impact stroke component 5 . 3 and the like, and the inner-layer material impact teeth 5 . 1 and/or the inner-layer material impact tooth frame 5 . 2 are symmetrically arranged at the two ends of the inner-layer impact stroke component 5 . 3 .
  • the inner-layer impact stroke component 5 . 3 and the inner-layer material impact tooth frame 5 . 2 are movably connected or are integrated.
  • the outer-layer material impact tooth frame 4 . 2 includes a rear supporting seat 4 . 2 . 1 , an outer-layer material impact tooth supporting frame 4 . 2 . 2 and the like, the rear supporting seat 4 . 2 . 1 and the outer-layer material impact tooth supporting frame 4 . 2 . 2 form the discharge hole 8 , and the number of the discharge hole 8 is two, and can also be one or more.
  • the discharge hole 8 includes an arched discharge hole and can also include a cambered discharge hole and/or a square discharge hole and/or a trapezoidal discharge hole and/or a triangular discharge hole and/or a polygonal discharge hole and/or a deformed discharge hole.
  • the height of the rear supporting seat 4 . 2 . 1 is smaller than the height of the outer-layer material impact tooth supporting frame 4 . 2 . 2 and can also be equal to or larger than the height of the outer-layer material impact tooth supporting frame 4 . 2 . 2 .
  • the rear supporting seat 4 . 2 . 1 and the outer-layer material impact tooth supporting frame 4 . 2 . 2 are movably connected or are integrated.
  • the impact blanking mechanism 3 includes a power box body 20 and the like, the rear supporting seat is provided with a rear supporting seat material baffle 19 and the like, and the rear supporting seat material baffle 19 is arranged along the surface of the power box body 20 and relatively reciprocates along the surface of the power box body 20 .
  • the impact blanking mechanism 3 includes a power box body 20 and the like
  • the inner-layer material impact mechanism 5 includes an inner-layer tooth seat 5 . 4 and the like
  • the inner-layer tooth seat 5 . 4 is provided with an inner-layer tooth seat material baffle 19 and the like
  • the inner-layer tooth seat material baffle 19 is arranged along the surface of the power box body 20 and relatively reciprocates along the surface of the power box body 20 .
  • the impact blanking mechanism 3 includes an impact actuator 7 and the like, a breakage-proof impact actuator structure 21 and the like are arranged between the impact actuator 7 and the outer-layer material impact tooth frame 4 . 2 and/or the inner-layer material impact tooth frame 5 . 2 , the breakage-proof impact actuator structure 21 includes a rotary breakage-proof impact actuator structure 21 . 1 and can also adopt a separated breakage-proof impact actuator structure or a buffering breakage-proof impact actuator structure and the like, the impact actuator 7 is used for driving the outer-layer material impact teeth 4 . 1 and/or the inner-layer material impact teeth 5 . 1 to impact, an impact counteraction force is applied on the breakage-proof impact actuator structure 21 , and the rotary breakage-proof impact actuator structure 21 . 1 rotates to prevent the impact counteraction force from breaking off and damaging the impact actuator 7 .
  • the outer-layer impact stroke component 4 . 3 includes outer-layer reciprocating guide rods 4 . 3 . 1 and the like, the outer-layer reciprocating guide rods 4 . 3 . 1 are symmetrically arranged on the outer-layer material impact tooth frame 4 . 2 , the outer-layer reciprocating guide rods 4 . 3 . 1 are symmetrically arranged to enlarge the correction force of the outer-layer material impact tooth frame 4 . 2 to maintain the reciprocating impact balance of the outer-layer material impact tooth frame 4 . 2 , in order to prevent the break-off of the outer-layer material impact tooth frame 4 . 2 and the impact actuator 7 .
  • the inner-layer impact stroke component 5 . 3 includes inner-layer reciprocating guide rods 5 . 3 . 1 and the like, the inner-layer reciprocating guide rods 5 . 3 . 1 are symmetrically arranged on the inner-layer material impact tooth frame 5 . 2 , the outer-layer reciprocating guide rods 4 . 3 . 1 are symmetrically arranged to enlarge the correction force of the inner-layer material impact tooth frame 5 . 2 and to maintain the reciprocating impact balance of the inner-layer material impact tooth frame 5 . 2 , in order to prevent the break-off of the inner-layer material impact tooth frame 5 . 2 and the impact actuator 7 .
  • the outer-layer material impact mechanism 4 includes an outer-layer impact stroke component 4 . 3 and the like, the outer-layer material impact teeth 4 . 1 and/or the outer-layer material impact tooth frame 4 . 2 are arranged at one end of the outer-layer impact stroke component 4 . 3 , and a counterweight member 22 is arranged at the other end of the outer-layer impact stroke component 4 . 3 .
  • the inner-layer material impact mechanism 5 includes an inner-layer impact stroke component 5 . 3 and the like, the inner-layer material impact teeth 5 . 1 and/or the inner-layer material impact tooth frame 5 . 2 and the like are arranged at one end of the inner-layer impact stroke component 5 . 3 , and a counterweight member 22 and the like are arranged at the other end of the inner-layer impact stroke component 5 . 3 .
  • the outer-layer material impact tooth frame 4 . 2 includes a rear supporting seat 4 . 2 . 1 , an outer-layer material impact tooth supporting frame 4 . 2 . 2 and the like, the rear supporting seat 4 . 2 . 1 and the outer-layer material impact tooth supporting frame 4 . 2 . 2 form a discharge hole 8 , and the number of the discharge hole 8 is one, and can also be more.
  • the discharge hole 8 includes a square discharge hole and the like, and can also be an arched discharge hole and/or a cambered discharge hole and/or a trapezoidal discharge hole and/or a triangular discharge hole and/or a polygonal discharge hole and/or a deformed discharge hole and the like.
  • the height of the rear supporting seat 4 . 2 . 1 is equal to the height of the outer-layer material impact tooth supporting frame 4 . 2 . 2 and can also be larger than or smaller than the height of the outer-layer material impact tooth supporting frame 4 . 2 . 2 .
  • the impact blanking mechanism 3 includes an impact actuator 7 and the like, a breakage-proof impact actuator structure 21 and the like are arranged between the impact actuator 7 and the outer-layer material impact tooth frame 4 . 2 and/or the inner-layer material impact tooth frame 5 . 2 , the breakage-proof impact actuator structure includes a separated breakage-proof impact actuator structure 21 . 2 and the like or a rotary breakage-proof impact actuator structure or a buffering breakage-proof impact actuator structure and the like, the impact actuator 7 is used for driving the outer-layer material impact teeth 4 . 1 and/or the inner-layer material impact teeth 5 . 1 to impact, an impact counteraction force is applied on the breakage-proof impact actuator structure 21 , and the separated breakage-proof impact actuator structure 21 . 2 separately isolates to prevent the impact counteraction force from breaking off and damaging the impact actuator 7 .
  • the outer-layer impact stroke component 4 . 3 includes outer-layer reciprocating guide rods 4 . 3 . 1 and the like, the outer-layer reciprocating guide rods 4 . 3 . 1 are asymmetrically arranged on the outer-layer material impact tooth frame 4 . 2 to maintain the reciprocating impact balance of the outer-layer material impact tooth frame 4 . 2 , in order to prevent the break-off of the outer-layer material impact tooth frame 4 . 2 and the impact actuator 7 .
  • the inner-layer impact stroke component 5 . 3 includes inner-layer reciprocating guide rods 5 . 3 . 1 and the like, the inner-layer reciprocating guide rods 5 . 3 . 1 are asymmetrically arranged on the inner-layer material impact tooth frame 5 . 2 to maintain the reciprocating impact balance of the inner-layer material impact tooth frame 5 . 2 , in order to prevent the break-off of the inner-layer material impact tooth frame 5 . 2 and the impact actuator 7 .
  • the outer-layer material impact tooth frame 4 . 2 includes a rear supporting seat 4 . 2 . 1 , an outer-layer material impact tooth supporting frame 4 . 2 . 2 and the like, the rear supporting seat 4 . 2 . 1 and the outer-layer material impact tooth supporting frame 4 . 2 . 2 form a discharge hole 8 , and the number of the discharge hole 8 is two, and can also be one or more.
  • the discharge hole 8 includes a trapezoidal discharge hole and the like, and can also be an arched discharge hole and/or a cambered discharge hole and/or a square discharge hole and/or a triangular discharge hole and/or a polygonal discharge hole and/or a deformed discharge hole and the like.
  • the height of the rear supporting seat 4 . 2 . 1 is smaller than the height of the outer-layer material impact tooth supporting frame 4 . 2 . 2 and can also be larger than or equal to the height of the outer-layer material impact tooth supporting frame 4 . 2 . 2 .
  • the impact blanking mechanism 3 includes an impact actuator 7 and the like, a breakage-proof impact actuator structure and the like are arranged between the impact actuator 7 and the outer-layer material impact tooth frame 4 . 2 and/or the inner-layer material impact tooth frame 5 . 2 , the breakage-proof impact actuator structure 21 includes a buffering breakage-proof impact actuator structure 21 . 3 and the like or a rotary breakage-proof impact actuator structure or a separated breakage-proof impact actuator structure and the like, the impact actuator 7 is used for driving the outer-layer material impact teeth 4 . 1 and/or the inner-layer material impact teeth 5 . 1 to impact, an impact counteraction force is applied on the breakage-proof impact actuator structure 21 , and the buffering breakage-proof impact actuator structure 21 . 3 buffers to prevent the impact counteraction force from breaking off and damaging the impact actuator 7 .
  • the outer-layer material impact mechanism 4 includes an outer-layer impact stroke component 4 . 3 and the like, the outer-layer material impact teeth 4 . 1 and/or the outer-layer material impact tooth frame 4 . 2 and the like are asymmetrically arranged at the two ends of the outer-layer impact stroke component 4 . 3 .
  • the outer-layer material impact mechanism 4 includes an outer-layer impact stroke component 4 . 3 and the like, the outer-layer material impact teeth 4 . 1 and the like are arranged at one end of the outer-layer impact stroke component 4 . 3 , and the outer-layer material impact tooth frame 4 . 2 and the like are arranged at the other end of the outer-layer impact stroke component 4 . 3 .
  • the outer-layer impact stroke component 4 . 3 and the outer-layer material impact tooth frame 4 . 2 are movably connected or are integrated.
  • the inner-layer material impact mechanism 5 includes an inner-layer impact stroke component 5 . 3 and the like, the inner-layer material impact teeth 5 . 1 and/or the inner-layer material impact tooth frame 5 . 2 and the like are asymmetrically arranged at the two ends of the inner-layer impact stroke component 5 . 3 .
  • the inner-layer material impact mechanism 5 includes an inner-layer impact stroke component 5 . 3 and the like, the inner-layer material impact teeth 5 . 1 and the like are arranged at one end of the inner-layer impact stroke component 5 . 3 , and the inner-layer material impact tooth frame 5 . 2 and the like are arranged at the other end.
  • the inner-layer impact stroke component 5 . 3 and the inner-layer material impact tooth frame 5 . 2 are movably connected or are integrated.
  • the outer-layer material impact tooth frame 4 . 2 includes a rear supporting seat 4 . 2 . 1 , an outer-layer material impact tooth supporting frame 4 . 2 . 2 and the like, the rear supporting seat 4 . 2 . 1 and the outer-layer material impact tooth supporting frame 4 . 2 . 2 form a discharge hole 8 , and the number of the discharge holes 8 is one or more.
  • the discharge hole 8 includes a triangular discharge hole and the like, and can also be an arched discharge hole and/or a cambered discharge hole and/or a square discharge hole and/or a polygonal discharge hole and/or a deformed discharge hole and the like.
  • the height of the rear supporting seat 4 . 2 . 1 is smaller than the height of the outer-layer material impact tooth supporting frame 4 . 2 . 2 and can also be equal to or larger than the height of the outer-layer material impact tooth supporting frame 4 . 2 . 2 .
  • the rear supporting seat and the outer-layer material impact tooth supporting frame 4 . 2 . 2 are movably connected or are integrated.
  • an efficient impact blanking digging machine without material clamping used for implementing an efficient impact blanking digging method without material clamping includes a machine body 1 , a walking mechanism 2 , an impact blanking mechanism 3 and the like, wherein the walking mechanism 2 is arranged at the lower part of the machine body 1 , the impact blanking mechanism 3 is connected with the machine body 1 , the impact blanking mechanism 3 includes an outer-layer material impact mechanism 4 and an inner-layer material impact mechanism 5 and the like, the outer-layer material impact mechanism 4 and the inner-layer material impact mechanism 5 are arranged adjacently, the outer-layer material impact mechanism 4 includes outer-layer material impact teeth 4 . 1 and the like, the inner-layer material impact mechanism 5 includes inner-layer material impact teeth 5 .
  • the arrangement of the outer-layer material impact teeth 4 . 1 is conductive to blanking the outer-layer material of a material layer to be dug and is conductive to enabling the material blanked by the inner-layer material impact teeth 5 . 1 to flow out from the gaps of the outer-layer material impact teeth 4 . 1 and/or the outer-layer material impact mechanism 4 is provided with a discharge hole to enable the material blanked by the inner-layer material impact mechanism 5 to flow out from the discharge hole of the outer-layer material impact mechanism 4 , and the inner-layer material impact mechanism 5 and the outer-layer material impact mechanism 4 cooperate to realize impact blanking and discharging.
  • the arrangement and/or shape of the outer-layer material impact teeth 4 . 1 is conductive to blanking the outer-layer material of the material layer to be dug and is conductive to enabling the material blanked by the inner-layer material impact teeth 5 . 1 to flow out from the gaps of the outer-layer material impact teeth 4 . 1 .
  • the outer-layer material impact mechanism 4 includes an outer-layer material impact tooth frame 4 . 2 and the like, and the outer-layer material impact teeth 4 . 1 and the outer-layer material impact tooth frame 4 . 2 are movably connected or are integrated.
  • the inner-layer material impact mechanism 5 includes an inner-layer material impact tooth frame 5 . 2 and the like, and the inner-layer material impact teeth 5 . 1 and the inner-layer material impact tooth frame 5 . 2 are movably connected or are integrated.
  • the outer-layer material impact teeth 4 . 1 include more than a row of impact teeth 10 and the like, or one row of impact teeth 10 can also be arranged.
  • the inner-layer material impact teeth 5 . 1 include more than a row of impact teeth 10 , or one row of impact teeth 10 can also be arranged.
  • the impact teeth 10 include a front row of impact teeth 11 and a rear row of impact teeth 12 and the like.
  • the front row of impact teeth 11 and/or the rear row of impact teeth 12 include impact teeth 10 with non material clamping shapes, wherein the impact teeth 10 with non material clamping shapes are conductive to discharging the material blanked by the front row impact teeth 11 and/or the rear row impact teeth 12 and the like and are conductive to continuous digging and discharging.
  • the arrangement and shape of the front row of impact teeth 11 of the same outer-layer material impact tooth 4 . 1 is conductive to enabling the material shoveled off by the rear row of impact teeth 12 to flow out from the gaps of the front row of impact teeth 11 .
  • the front row of impact teeth 11 and the rear row of impact teeth 12 form a length difference, the length difference is equal to an impact stroke or the length difference is larger than the impact stroke or the length difference is smaller than the impact stroke, the front row of impact teeth 11 and the rear row of impact teeth 12 are used for impacting a material wall into a step shape to break the structural length of the material wall, and during secondary impact, the front row of impact teeth 11 and the rear row of impact teeth 12 are used for blanking through a free surface formed by the step-shaped material wall, in order to reduce the impact resistance, reduce the granularity of the material block and facilitate the outflow of the material.
  • outer-layer material impact teeth 4 . 1 and the outer-layer material impact tooth frame 4 . 2 and/or the inner-layer material impact teeth 5 . 1 and the inner-layer material impact tooth frame 5 . 2 and the like are connected by means of a pin shaft 23 and can also be connected by means of a bolt, a catching groove, a pin, an eccentric connecting element, a jaw and/or a taper sleeve and the like.
  • the outer-layer material impact teeth 4 . 1 include a main outer-layer material impact tooth 13 and the like, and can also include an outer-layer material top face cleaning tooth 14 and/or an outer-layer material bottom surface cleaning tooth 15 and the like.
  • the inner-layer material impact teeth 5 . 1 include a main inner-layer material impact tooth 16 and the like, and can also include an inner-layer material top face cleaning tooth 17 and/or an inner-layer material bottom surface cleaning tooth 18 and/or an inner-layer material side face cleaning tooth 25 and the like.
  • the main inner-layer material impact tooth 16 and/or the inner-layer material top face cleaning tooth 17 and/or the inner-layer material bottom surface cleaning tooth 18 and/or the inner-layer material side face cleaning tooth 25 and the like are used for cleaning the material wall while blanking to facilitate retaining and protecting, in order to ensure the successful pass of the machine body 1 to perform continuous digging.
  • the outer-layer material impact mechanism 4 includes an outer-layer impact stroke component 4 . 3 and the like, the outer-layer material impact teeth 4 . 1 and/or the outer-layer material impact tooth frame 4 . 2 and the like are asymmetrically arranged at the two ends of the outer-layer impact stroke component 4 . 3 , the outer-layer material impact teeth 4 . 1 and/or the outer-layer material impact tooth frame 4 . 2 and the like are arranged at one end of the outer-layer impact stroke component 4 . 3 , and the outer-layer impact stroke component 4 . 3 and the outer-layer material impact tooth frame 4 . 2 are movably connected or are integrated.
  • the inner-layer material impact mechanism 5 includes an inner-layer impact stroke component 5 . 3 and the like, the inner-layer material impact teeth 5 . 1 and/or the inner-layer material impact tooth frame 5 . 2 and the like are asymmetrically arranged at the two ends of the inner-layer impact stroke component 5 . 3 , the inner-layer material impact teeth 5 . 1 and/or the inner-layer material impact tooth frame 5 . 2 and the like are arranged at one end of the inner-layer impact stroke component 5 . 3 , and the inner-layer impact stroke component 5 . 3 and the inner-layer material impact tooth frame 5 . 2 are movably connected or are integrated.
  • the outer-layer material impact tooth frame 4 . 2 includes a rear supporting seat 4 . 2 . 1 , an outer-layer material impact tooth supporting frame 4 . 2 . 2 and the like, the rear supporting seat 4 . 2 . 1 and the outer-layer material impact tooth supporting frame 4 . 2 . 2 form a discharge hole 8 , and the number of the discharge hole 8 is one or more.
  • the discharge hole 8 includes a cambered discharge hole and the like, and can also include an arched discharge hole and/or a square discharge hole and/or a trapezoidal discharge hole and/or a triangular discharge hole and/or a polygonal discharge hole and/or a deformed discharge hole and the like.
  • the height of the rear supporting seat 4 . 2 . 1 is larger than the height of the outer-layer material impact tooth supporting frame 4 . 2 . 2 and can also be smaller than or equal to the height of the outer-layer material impact tooth supporting frame 4 . 2 . 2 .
  • the rear supporting seat 4 . 2 . 1 and the outer-layer material impact tooth supporting frame 4 . 2 . 2 are movably connected or are integrated.
  • the impact blanking mechanism 3 includes a power box body 20 and the like, the rear supporting seat is provided with a rear supporting seat material baffle 19 and the like, and the rear supporting seat material baffle 19 is arranged along the surface of the power box body 20 and relatively reciprocates along the surface of the power box body 20 .
  • the impact blanking mechanism 3 includes a power box body 20 and the like
  • the inner-layer material impact mechanism 5 includes an inner-layer tooth seat 5 . 4 and the like
  • the inner-layer tooth seat 5 . 4 is provided with an inner-layer tooth seat material baffle 19 and the like
  • the inner-layer tooth seat material baffle 19 is arranged along the surface of the power box body 20 and relatively reciprocates along the surface of the power box body 20 .
  • the impact blanking mechanism 3 includes an impact actuator 7 and the like, a breakage-proof impact actuator structure 21 and the like are arranged between the impact actuator 7 and the outer-layer material impact tooth frame 4 . 2 and/or the inner-layer material impact tooth frame 5 . 2 , the breakage-proof impact actuator structure 21 includes a buffering breakage-proof impact actuator structure 21 . 3 and the like or a rotary breakage-proof impact actuator structure or a separated breakage-proof impact actuator structure and the like, the impact actuator 7 is used for driving the outer-layer material impact teeth 4 . 1 and/or the inner-layer material impact teeth 5 . 1 to impact, an impact counteraction force is applied on the breakage-proof impact actuator structure, and the buffering breakage-proof impact actuator structure buffers to prevent the impact counteraction force from breaking off and damaging the impact actuator 7 .
  • the outer-layer impact stroke component 4 . 3 includes outer-layer reciprocating guide rods 4 . 3 . 1 and the like, the outer-layer reciprocating guide rods 4 . 3 . 1 are symmetrically arranged on the outer-layer material impact tooth frame 4 . 2 , the outer-layer reciprocating guide rods 4 . 3 . 1 are symmetrically arranged to enlarge the correction force of the outer-layer material impact tooth frame 4 . 2 to maintain the reciprocating impact balance of the outer-layer material impact tooth frame 4 . 2 , in order to prevent the break-off of the outer-layer material impact tooth frame 4 . 2 and the impact actuator 7 .
  • the inner-layer impact stroke component 5 . 3 includes inner-layer reciprocating guide rods 5 . 3 . 1 and the like, the inner-layer reciprocating guide rods 5 . 3 . 1 are symmetrically arranged on the inner-layer material impact tooth frame 5 . 2 , the outer-layer reciprocating guide rods 4 . 3 . 1 are symmetrically arranged to enlarge the correction force of the inner-layer material impact tooth frame 5 . 2 to maintain the reciprocating impact balance of the inner-layer material impact tooth frame 5 . 2 , in order to prevent the break-off of the inner-layer material impact tooth frame 5 . 2 and the impact actuator 7 .
  • the machine body 1 includes a hydraulic system and/or an electric system and/or a water mist spray system and the like.
  • the machine body 1 includes a rotary disk and the like, the rotary disk is arranged at the upper part of the machine body 1 , the impact blanking mechanism 3 is arranged on the rotary disk, the rotary disk drives the impact blanking mechanism 3 to rotate to perform impact blanking in multiple directions, the rotary disk can also be arranged at the lower part of the machine body 1 , the impact blanking mechanism 3 is arranged on the machine body 1 , the rotary disk drives the machine body 1 to rotate, and the machine body 1 drives the impact blanking mechanism 3 to rotate to perform impact blanking in multiple directions.
  • the machine body 1 includes a rotary disk and the like, the rotary disk is arranged at the lower part of the machine body 1 , the impact blanking mechanism 3 is arranged on the machine body 1 , the rotary disk drives the machine body 1 to rotate, and the machine body 1 drives the impact blanking mechanism 3 to rotate to perform impact blanking in multiple directions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Earth Drilling (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Toys (AREA)
US14/400,615 2012-05-12 2013-05-10 High-efficiency mining method for percussing falling-materials without trapping materials and high-efficiency mining machine for percussing falling-materials without trapping materials Abandoned US20150137580A1 (en)

Applications Claiming Priority (89)

Application Number Priority Date Filing Date Title
CN201210155150.0 2012-05-12
CN201210155169 2012-05-12
CN201210155167 2012-05-12
CN201210155169.5 2012-05-12
CN201210155150 2012-05-12
CN201210155148.3 2012-05-12
CN201210155167.6 2012-05-12
CN201210155148 2012-05-12
CN201210226675 2012-06-24
CN201210226675.9 2012-06-24
CN201210226673.X 2012-06-24
CN201210226655 2012-06-24
CN201210226688 2012-06-24
CN201210226673 2012-06-24
CN201210226688.6 2012-06-24
CN201210226655.1 2012-06-24
CN201210226780.2 2012-06-28
CN201210226780 2012-06-28
CN201210297181 2012-08-06
CN201210297181.X 2012-08-06
CN201210297219.3 2012-08-06
CN201210297219 2012-08-06
CN201210293046.8 2012-08-13
CN201210293192 2012-08-13
CN201210297164 2012-08-13
CN201210290393 2012-08-13
CN201210290379.5 2012-08-13
CN201210293253.3 2012-08-13
CN201210290401 2012-08-13
CN201210290379 2012-08-13
CN201210293192.0 2012-08-13
CN201210290393.5 2012-08-13
CN201210293049.1 2012-08-13
CN201210293049 2012-08-13
CN201210290401.6 2012-08-13
CN201210290392.0 2012-08-13
CN201210293169.1 2012-08-13
CN201210290392 2012-08-13
CN201210293253 2012-08-13
CN201210293169 2012-08-13
CN201210293236.X 2012-08-13
CN201210293237 2012-08-13
CN201210293237.4 2012-08-13
CN201210293046 2012-08-13
CN201210297164.6 2012-08-13
CN201210293236 2012-08-13
CN201210347294 2012-09-10
CN201210347294.6 2012-09-10
CN201210346367.X 2012-09-11
CN201210346367 2012-09-11
CN201210378528.3 2012-09-11
CN201210378528 2012-09-11
CN201210454001.4 2012-11-07
CN201210454531.9 2012-11-07
CN201210454001 2012-11-07
CN201210454531 2012-11-07
CN201210454125 2012-11-07
CN201210454125.2 2012-11-07
CN201210596479.0 2012-12-28
CN201210596479 2012-12-28
CN201310020905 2013-01-06
CN201310020905.0 2013-01-06
CN201310058074.6 2013-02-22
CN201310058118 2013-02-22
CN201310058119.X 2013-02-22
CN201310058119 2013-02-22
CN201310058073.1 2013-02-22
CN201310058071.2 2013-02-22
CN201310058117 2013-02-22
CN201310058138.2 2013-02-22
CN201310058118.5 2013-02-22
CN201310058073 2013-02-22
CN201310058117.0 2013-02-22
CN201310058074 2013-02-22
CN201310058071 2013-02-22
CN201310058138 2013-02-22
CN201310058064.2 2013-02-22
CN201310058084.X 2013-02-22
CN201310058064 2013-02-22
CN201310058084 2013-02-22
CN201310100163 2013-03-13
CN201310100163.2 2013-03-13
CN201310118683.6 2013-03-23
CN201310118683 2013-03-23
CN201310158412.3 2013-04-12
CN201310158415 2013-04-12
CN201310158415.7 2013-04-12
CN201310158412 2013-04-12
PCT/CN2013/000553 WO2013170629A1 (zh) 2012-05-12 2013-05-10 一种高效不夹料冲击落料的采掘方法及高效不夹料冲击落料采掘机

Publications (1)

Publication Number Publication Date
US20150137580A1 true US20150137580A1 (en) 2015-05-21

Family

ID=49532883

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/400,615 Abandoned US20150137580A1 (en) 2012-05-12 2013-05-10 High-efficiency mining method for percussing falling-materials without trapping materials and high-efficiency mining machine for percussing falling-materials without trapping materials

Country Status (11)

Country Link
US (1) US20150137580A1 (es)
EP (1) EP2848767A4 (es)
CN (1) CN103388474B (es)
AP (1) AP2014008132A0 (es)
AU (1) AU2013262356B2 (es)
CA (1) CA2873253A1 (es)
CO (1) CO7230345A2 (es)
EA (1) EA201492065A1 (es)
IN (1) IN2014DN10622A (es)
MX (1) MX2014013782A (es)
WO (1) WO2013170629A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015101347A1 (zh) * 2014-01-03 2015-07-09 刘素华 浮动套密封往复冲击装置浮动密封的方法及采掘装载机密封浮动套浮动密封往复冲击装置
UA120176C2 (uk) * 2014-01-29 2019-10-25 Сухуа Лю Частина, яка здійснює зворотно-поступальні ударні рухи та з'єднана з валом з неконцентрично розташованими секціями за допомогою підшипників, для здійснення способу з'єднання частини, яка здійснює зворотно-поступальні ударні рухи, з валом з неконцентрично розташованими секціями за допомогою підшипників

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1148976A (en) * 1909-04-24 1915-08-03 Harry A Kuhn Mining-machine.
US1172876A (en) * 1914-07-30 1916-02-22 George A Waldeck Tunneling-machine.
USRE23859E (en) * 1954-08-10 Sloane
US2798709A (en) * 1954-10-18 1957-07-09 Joseph P Ruth Mining machine of the rotary type having reciprocating impact means
US2923536A (en) * 1958-08-25 1960-02-02 Walter E Marshall Impact type cutting device for excavating machinery
US3754790A (en) * 1970-11-18 1973-08-28 Dobson Park Ind Self-propelled vehicle for a rock working machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU726330A1 (ru) * 1977-05-16 1980-04-05 Ордена Трудового Красного Знамени Институт Горного Дела Им.А.А.Скочинского Министерства Угольной Промышленности Ссср Устройство управлени бойком ударного струга
CN1012093B (zh) * 1987-12-31 1991-03-20 于士真 一种地下采煤机
CA2152699A1 (en) * 1995-06-27 1996-12-28 Timothy H. Giffin Rotary hammer
CN1062051C (zh) * 1996-03-30 2001-02-14 山西矿业学院 冲击式采煤机
CN102400682A (zh) * 2010-09-07 2012-04-04 刘素华 高效成块铲煤机
CN202125295U (zh) * 2011-06-13 2012-01-25 刘素华 杆连动直冲铲煤机
CN203584426U (zh) * 2012-05-12 2014-05-07 刘素华 一种不夹料冲击落料采掘机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE23859E (en) * 1954-08-10 Sloane
US1148976A (en) * 1909-04-24 1915-08-03 Harry A Kuhn Mining-machine.
US1172876A (en) * 1914-07-30 1916-02-22 George A Waldeck Tunneling-machine.
US2798709A (en) * 1954-10-18 1957-07-09 Joseph P Ruth Mining machine of the rotary type having reciprocating impact means
US2923536A (en) * 1958-08-25 1960-02-02 Walter E Marshall Impact type cutting device for excavating machinery
US3754790A (en) * 1970-11-18 1973-08-28 Dobson Park Ind Self-propelled vehicle for a rock working machine

Also Published As

Publication number Publication date
EA201492065A1 (ru) 2015-04-30
MX2014013782A (es) 2016-11-30
AU2013262356A1 (en) 2015-01-22
CN103388474B (zh) 2016-12-28
CA2873253A1 (en) 2013-11-21
EP2848767A1 (en) 2015-03-18
AP2014008132A0 (en) 2014-12-31
IN2014DN10622A (es) 2015-09-11
EP2848767A4 (en) 2016-08-17
CO7230345A2 (es) 2015-03-31
CN103388474A (zh) 2013-11-13
AU2013262356B2 (en) 2016-07-07
WO2013170629A1 (zh) 2013-11-21

Similar Documents

Publication Publication Date Title
CN105971598A (zh) 通孔齿座快速安装拆卸往复冲齿的方法及通孔齿座快速安装拆卸往复冲齿冲击装置
AU2013262356B2 (en) High-efficiency mining method for percussing falling-materials without trapping materials and high-efficiency mining machine for percussing falling-materials without trapping materials
CN103510954B (zh) 设置出料洞出料的往复冲击采掘方法及实现该方法的设置出料洞出料往复冲击采掘机
CN206127986U (zh) 一种用于水利水电工程边坡的防护系统
CN218407327U (zh) 旋挖钻机的捞砂斗
CN203584426U (zh) 一种不夹料冲击落料采掘机
CN210066876U (zh) 一种破碎锤增压器
CN104389515A (zh) 一种液压钻机冲击锤
CN206971295U (zh) 一种导杆式抓斗
CN211395589U (zh) 一种清污机用抗冲击齿耙
CN203531898U (zh) 一种设置出料洞出料往复冲击采掘机
CN206220091U (zh) 易截断的cfg桩
CN202730762U (zh) 混凝土预制桩专用夹桩器
CN205617463U (zh) 一种振动破碎松石器
CN206046152U (zh) 碎枝机齿
CN203905941U (zh) 装有防护板冲击设备
CN104847253B (zh) 一种可快速维修的放水盘及其制作方法
CN212452551U (zh) 一种可以破碎拦污栅固结污物的清污抓斗
CN213597083U (zh) 一种液压破碎锤
CN204385733U (zh) 人工挖孔桩护壁模板
CN212026405U (zh) 一种液压破碎锤的防护装置
CN107956232A (zh) 岩石层地基破碎用多斗钩式铲斗装置
CN207159992U (zh) 一种建筑桩
CN211547732U (zh) 一种地下破障用尖劈结构
CN203184210U (zh) 一种固定溜筛

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION