US20150132076A1 - Cutting tool made of cubic boron nitride-based sintered material - Google Patents

Cutting tool made of cubic boron nitride-based sintered material Download PDF

Info

Publication number
US20150132076A1
US20150132076A1 US14/400,980 US201314400980A US2015132076A1 US 20150132076 A1 US20150132076 A1 US 20150132076A1 US 201314400980 A US201314400980 A US 201314400980A US 2015132076 A1 US2015132076 A1 US 2015132076A1
Authority
US
United States
Prior art keywords
boron nitride
cubic boron
layer
cbn
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/400,980
Other versions
US9662711B2 (en
Inventor
Yosuke Miyashita
Masahiro Yano
Tadakazu Ohashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Assigned to MITSUBISHI MATERIALS CORPORATION reassignment MITSUBISHI MATERIALS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MIYASHITA, YOSUKE, OHASHI, TADAKAZU, YANO, MASAHIRO
Publication of US20150132076A1 publication Critical patent/US20150132076A1/en
Application granted granted Critical
Publication of US9662711B2 publication Critical patent/US9662711B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62813Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62836Nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62884Coating the powders or the macroscopic reinforcing agents by gas phase techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62889Coating the powders or the macroscopic reinforcing agents with a discontinuous coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/361Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/401Cermets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T407/00Cutters, for shaping
    • Y10T407/27Cutters, for shaping comprising tool of specific chemical composition

Definitions

  • the present invention relates to a cutting tool made of cubic boron nitride (hereinafter indicated as cBN) based sintered material (hereinafter, referred to as a cBN tool).
  • cBN cubic boron nitride
  • the cBN cutting tool which uses the cBN-based sintered material (hereinafter referred as cBN sintered compact) as its tool material with a low affinity to the workpiece, is known in cutting work on a ferrous workpiece such as steel, casted iron, or the like.
  • a cBN cutting tool which contains: cBN in 40 to 80 volume % as the hard phase; and the balance of the ceramics compound such as carbides, nitrides, borides, or the like of elements belonging to 4a, 5a, 6a groups in the periodic table as the binding phase, is known.
  • Patent Literature 2 Patent Literature 2
  • a cBN cutting tool is proposed.
  • the cutting tool body of the cBN cutting tool is a sintered body produced by using cBN particles coated uniformly by Al 2 O 3 layers without a rift on the surfaces of the cBN particles as a raw material powder. It is known that by using the cBN cutting tool, the crater wear resistance and the chipping resistance of the cutting tool are improved.
  • the cBN sintered material is produced by using cBN particles coated by Al 2 O 3 layers as raw a material powder in advance. Because of this, the cBN is not directly exposed on the surface of the rake face when the cBN sintered material is used as the cutting tool body. Having the cBN not being exposed on the surface of the rake face contributes to improvement of wear resistance. However, in this case, residual stress is generated due to difference of thermal expansion characteristics between the cBN and the Al 2 O 3 layer. Thus, when the cBN cutting tool is used on intermittent cutting of high hardened steel, the service life of the cutting tool becomes short-lived since its chipping resistance and fracturing resistance are not sufficient.
  • the technical problem to be solved by the present invention which is the purpose of the present invention, is to provide a cBN cutting tool that exhibits excellent chipping resistance and fracturing resistance in the intermittent cutting work on high hardened steel.
  • the cBN cutting tool related to the present invention exhibits an excellent cutting performance for a long-term usage.
  • the inventors of the present invention conducted an intensive study, focusing on the cBN particles that are the hard phase component of the cBN cutting tool. Then they obtained findings described below.
  • the coated-cBN particles which are coated by the Al 2 O 3 layer on their surfaces in advance, are used as the raw material powder.
  • the cBN sintered material is produced by sintering under the ultrahigh-pressure and high-temperature condition in which pressure and temperature are set to 5 GPa and 1500° C., respectively, after mixing the raw material power with the binding phase powder and preforming.
  • the residual tensile stress is formed to the Al 2 O 3 layer coated on the surfaces of the cBN particles due to the difference of their thermal expansion characteristics.
  • the inventors of the present invention intended to improve the performance of the cutting tool by preventing chipping formation and fracturing formation because of the cracks, by forming an Al 2 O 3 layer with a rift on the surface of the cBN particle partially to suppress crack formation by the tensile stress in the boundaries due to the difference of thermal tension characteristics between the surface of the cBN particle and the Al 2 O 3 layer coated on the cBN particle.
  • the present invention is made based on the finding described above, and has aspects shown below.
  • a cutting tool made of a cubic boron nitride-based sintered material including a cutting tool body that is a cubic boron nitride-based material containing at least cubic boron nitride particles as a hard phase component, wherein
  • each of the cubic boron nitride particles includes an Al 2 O 3 layer with an average layer thickness of 1.0-10 nm on a surface of the each of the cubic boron nitride particles, a rift with an average rift formation ratio of 0.02-0.20 being formed in the Al 2 O 3 layer, and
  • the cubic boron nitride-based sintered material includes a binding phase containing at least one selected from a group consisting of: titanium nitride; titanium carbide; titanium carbonitride; titanium boride; aluminum nitride; aluminum oxide; inevitable products; and mutual solid solution thereof, around the each of cubic boron nitride particles.
  • a volume of a region 50 nm from the surface of the each of the cubic boron nitride particles toward an outside of the each of the cubic boron nitride particles is defined as 100 volume %
  • a total content of Al 2 O 3 formed on the surface of the each of the cubic boron nitride particles and Al 2 O 3 existing in the binding phase included in the region is 2-40 volume %.
  • the rift formed in the Al 2 O 3 layer is formed by: inserting the cubic boron nitride particles, on each of which the Al 2 O 3 layer is formed, in a container made of cemented carbide; and performing ball-mill mixing in a presence of cemented carbide balls.
  • the cutting tool made of a cubic boron nitride-based material according to any one of (1) to (5), wherein a content ratio of the cubic boron nitride particles relative to an entire cubic boron nitride-based sintered material is 50-80 volume %.
  • a method of producing a cutting tool made of a cubic boron nitride-based material including the steps of:
  • the method of producing a cutting tool made of a cubic boron nitride-based sintered material according to (7) described above, wherein the step of introducing a rift includes the steps of:
  • the cBN tool of an aspect of the present invention is a cutting tool made of a cubic boron nitride-based sintered material including a cutting tool body that is a cubic boron nitride-based material containing at least cubic boron nitride particles as a hard phase component.
  • Each of the cubic boron nitride particles includes an Al 2 O 3 layer with an average layer thickness of 1.0-10 nm on a surface of the each of the cubic boron nitride particles, a rift with an average rift formation ratio of 0.02-0.20 being formed in the Al 2 O 3 layer.
  • the cubic boron nitride-based sintered material includes a binding phase containing at least one selected from a group consisting of: titanium nitride; titanium carbide; titanium carbonitride; titanium boride; aluminum nitride; aluminum oxide; inevitable products; and mutual solid solution thereof, around the each of cubic boron nitride particles. Also, the content ratio of the cubic boron nitride particles relative to an entire cubic boron nitride-based sintered material is 50-80 volume %. By having the configurations, the sintered material becomes the sintered material in which crack formation is reduced; fracturing resistance is increased; and toughness is increased.
  • the volume of a region 50 nm from the surface of the each of the cubic boron nitride particles toward an outside of the each of the cubic boron nitride particles is defined as 100 volume %
  • the total content of Al 2 O 3 formed on the surface of the each of the cubic boron nitride particles and Al 2 O 3 existing in the binding phase in the region is 2-40 volume %.
  • chipping resistance and fracturing resistance can be obtained by having the texture in which the content amount of the binding phase made of titanium nitride or the like is increased in the vicinity of the cBN particles, while retaining sufficient interface strength. Moreover, by reducing the amount of Al 2 O 3 in the vicinity of the cBN particles, the cBN particle holding force by the binding phase made of titanium nitride or the like can be strengthened; and progress of fracturing due to detachment of a cBN particle can be suppressed.
  • the method of producing a cutting tool made of a cubic boron nitride-based sintered material the method being other aspect of the present invention (hereinafter referred as the cBN cutting tool producing method of the present invention)
  • the above-described cBN tool of the present invention can be produced efficiently.
  • FIG. 1 is a cross-sectional image of the cBN particle including an Al 2 O 3 layer, which was used for measurement of the rift formation ratio and had the average layer thickness of 6.0 nm.
  • FIG. 2 is a cross-sectional image of the cBN particle including an Al 2 O 3 layer, which was used for measurement of the rift formation ratio and had the average layer thickness of 3.9 nm.
  • the cBN particle included in the cutting tool body of the cBN tool which is an embodiment of the present invention, is coated by an extremely thin aluminum oxide layer whose average layer thickness is 1.0-10 nm.
  • the aluminum oxide layer can be formed by ALD (Atomic Layer Deposition) method.
  • ALD method is a type of CVD method. In ALD method, a layer is deposited by reacting molecules of raw material compounds per a layer on the substrate in a vacuum chamber and repeating purges of the raw material compounds, such as Ar and nitrogen.
  • a TiN layer which is formed on the outer side of the aluminum oxide layer if necessary, can be formed by the above-described ALD method.
  • Formation of the aluminum oxide layer and the TiN layer by ALD method is explained below.
  • the Al 2 O 3 layer with the average layer thickness of 10 nm is coated on the surfaces of the cBN particles as explained below.
  • the cBN particles are inserted into a furnace and the temperature in the furnace is raised to about 350° C. Then, a cycle is repeated multiple times until an intended layer thickness is obtained using the Al(CH 3 ) 3 gas, which is the precursor of Al and the H 2 O gas as a reaction gas.
  • (1) Ar+Al(CH 3 ) 3 gas introducing process; (2) Ar gas purging process; (3) Ar+H 2 O gas introducing process; and (4) Ar gas purging process are performed sequentially.
  • the Al 2 O 3 layer is deposited by performing the process described above for 1 hour.
  • the TiN layer is deposited by ALD method in the same manner on the Al 2 O 3 layer coated on the surfaces of the cBN particles
  • the cBN particles are inserted into a furnace and the temperature in the furnace is raised to 400° C. Then, a cycle is repeated multiple times until an intended layer thickness is obtained using TiCl 4 gas and NH 3 gas as the raw material gases. In one set of the cycle, (1) Ar+TiCl 4 gas introducing process; (2) Ar gas purging process; (3) Ar+NH 3 gas introducing process; and (4) Ar gas purging process, are performed sequentially.
  • a partial rift is formed in the Al 2 O 3 layer of the cBN particles on which the TiN layer is deposited to produce the cBN particles whose surfaces are exposed in the rift parts by mixing and agitating the cBN particles with a ball mill for 0.25-3.0 hours.
  • reaction products such as MN, TiB 2 , and the like, would be reduced in the ultra-high pressure and temperature treatment.
  • the sintering reaction in the vicinity of the surfaces of the cBN particles does not proceed sufficiently, and hardness of the cBN sintered material reduces.
  • the amount of Al 2 O 3 in the vicinity of the surfaces of the cBN particles is set within a predetermined range by regulating the layer thickness of the TiN layer within a predetermined range. More specifically, it is found that a preferable total content ratio of Al 2 O 3 formed in the surfaces of the cBN particles; and Al 2 O 3 , which is an inevitable product existing in the binding phase, is 2-40 volume %, in the case where the volume of region 50 nm from the surface of the cBN particle is defined 100 volume %.
  • the volume % of Al 2 O 3 can be obtained as area % in the binarized image which is obtained from TEM (Transmission Electron Microscopy) image.
  • the cBN particles prepared as described above and raw material powders which are selected from the group consisting of: the TiN powder; the TiC powder; the TiCN powder; the TiAl 3 powder; the Al powder; the Al 2 O 3 powder; and the binding phase raw material of the WC powder, are wet-mixed uniformly. Then, after drying the obtained mixed powder, it is molded at the molding pressure of 1 MPa by a hydraulic press. Next, the molded body is heat treated in the condition of 1 Pa of vacuum at 1000° C. for 30 minutes to be degassed.
  • the molded body is stacked with a cemented carbide substrate and treated in an ultra-high pressure and temperature condition, such as pressure of 5.5 GPa, temperature of 1400° C., and the retention time of 30 minutes to obtain the cBN sintered material.
  • an ultra-high pressure and temperature condition such as pressure of 5.5 GPa, temperature of 1400° C., and the retention time of 30 minutes to obtain the cBN sintered material.
  • the crack formation is suppressed in the interface due to the thermal expansion characteristics difference between the surface of the cBN particle and the Al 2 O 3 layer coated on the surface of the particle in the cBN tool, since the surface of the cBN particle is coated by the Al 2 O 3 layer with the rift partially.
  • the chipping formation and fracturing formation due to the cracking are prevented.
  • the TiN layer on the Al 2 O 3 layer on the surface of the cBN particle by depositing the TiN layer on the Al 2 O 3 layer on the surface of the cBN particle, the formation of Al 2 O 3 irreversibly formed in the vicinity of the cBN particles during sintering can be suppressed.
  • the structure with an increased content of TiN or the like can be obtained in the vicinity of the cBN particles, while retaining sufficient interface strength.
  • excellent chipping and fracturing resistances can be obtained.
  • the cBN particle holding force by the binding phase which is made of titanium nitride; titanium carbide; titanium carbonitride: titanium boride; aluminum nitride; aluminum oxide; inevitable products; and a mutual solid solution thereof, can be increased, and the progress of fracturing due to the detachment of the cBN particles can be suppressed.
  • cBN sintered materials are made of the hard phase component and the binding phase normally.
  • the cBN sintered material which is the cutting tool body of the cBN tool of the present invention, includes the cBN particles, which are coated by the Al 2 O 3 layers, as the hard phase component.
  • a rift is formed partially to the Al 2 O 3 layer by kneading the cBN particles by a ball mill in the state where the TiN layer is formed on the Al 2 O 3 layer.
  • the structure with an increased content of the binding phase component such as titanium nitride; titanium carbonate; titanium carbonitride; titanium boride; and the like, can be obtained in the vicinity of the cBN particles.
  • the cBN tool with excellent chipping and fracturing resistances can be obtained.
  • the amount of Al 2 O 3 formation originated from the Al components or the like in the binding phase during sintering can be reduced in the vicinity of the surfaces of the cBN particles, since the cBN particles are sintered in the state where the cBN particles are coated by the TiN layers.
  • the cBN particle holding force by the binding phase can be increased, and the progress of fracturing due to detachment of cBN particles can be suppressed.
  • the average grain size of the cBN particles used in the present invention is not particularly limited in terms of the technical effect of the present invention. However, it is preferable that the average grain size of the cBN particles is within the range from 0.5-8 ⁇ m
  • fracturing resistance is improved.
  • chipping originated from the protruding and recessed shapes in the cutting edge, which are formed by detaching of the cBN particles on the tool surface during usage of the tool is suppressed.
  • propagation of the cracks, which are formed by the stress loaded on the cutting edge during usage of the tool and develop from the interface between the cBN particle and the binding phase, or the cracks, which develop after splitting of the cBN particle is suppressed by the cBN particles dispersed in the sintered material. Because of these, the cBN tool can obtain excellent fracturing resistance.
  • the average grain size of the cBN particles is set within the range of 0.5-8 ⁇ m.
  • the content ratio of the cBN particles relative to the cBN sintered material is not particularly limited in terms of the technical effect of the present invention. However, if it were less than 50 volume %, hard materials in the sintered material would become scarce, lowering fracturing resistance when it is used as a tool. On the other hand, if it exceeded 80 volume %, the voids that become the origin of cracks would be formed in the sintered material, lowering the fracturing resistance. Thus, in order to exhibit the technical effect of the present invention even at a higher level, it is preferable that the content ratio of the cBN particles relative to the cBN sintered material is set within the range of 50-80 volume %.
  • the content ratio of cBN particles (volume %) relative to the cBN sintered material is defined as the area ratio of the area occupied by the cBN particles in the image analysis in the case where: the sectional structure of the cBN sintered material is observed by SEM (Scanning Electron Microscopy) in the visual field area of about 15 ⁇ m ⁇ 15 ⁇ m; and the parts corresponding to the cBN particles in the obtained secondary electron image are extracted by image processing.
  • the cBN particles, on which the coating layer is formed by the Al 2 O 3 layer with the partial rift can be produced, for example, by following the processes (I)-(III) described below.
  • a thin-layered Al 2 O 3 layer is formed on the surfaces of the cBN particles by ALD method.
  • the thin-layered Al 2 O 3 layer can be formed without initiating aggregation of cBN particles since the Al 2 O 3 layer can be formed on the surface of the cBN particle one layer at a time in ALD method.
  • the Al 2 O 3 layer with the layer thickness of 10 nm can be formed on the surface of the cBN particle for example by: inserting cBN particles with the average grain size of 0.5-8 ⁇ m in the furnace; increasing temperature in the furnace to about 350° C.; and repeating a cycle of: (1) Ar+Al(CH 3 ) 3 gas introducing process; (2) Ar gas purging process; (3) Ar+H 2 O gas introducing process; and (4) Ar gas purging process, until the intended layer thickness is obtained, for example by performing the repetition to form the layer for 1 hour.
  • Formation of the Al 2 O 3 layer without a rift on the surface of the cBN particle is confirmed by observing the cross section of the cBN particle by TEM after polishing the cross section of the cBN particle obtained as described above and thin slicing using FIB (Focused Ion Beam)
  • a TiN layer is formed on the Al 2 O 3 layer by ALD method.
  • cBN particles are inserted in the furnace, and the temperature in the furnace is increased to 400° C. Then, a cycle of: (1) Ar+TiCl 4 gas introducing process; (2) Ar gas purging process; (3) Ar+NH 3 gas introducing process; and (4) Ar gas purging process, is repeated using TiCl 4 gas and NH 3 gas as raw material gases until the thickness of the TiN layer reaches to the intended layer thickness (10-100 nm) to obtain the TiN layer with the intended layer thickness.
  • the cBN particles that the TiN layers are formed on their Al 2 O 3 layers are inserted in a container made of cemented carbide and ball-mixing is performed in the presence of the cemented carbide balls (for example, diameter of 1 mm) for 0.25-3.0 hours.
  • the cemented carbide balls for example, diameter of 1 mm
  • the TiN powder, the TiC powder, the TiCN powder, the TiAl 3 powder, the Al powder, Al 2 O 3 powder, and the WC powder are provided as the raw material powders for binder material.
  • the dried mixed powders are molded by a hydraulic press at a molding pressure of 1 MPa in the same condition to obtain the molded material.
  • the molded material is subjected to heat treatment in the condition of: 1 Pa or less of vacuum; 1000° C. of temperature; and 30 minutes of the retention time. Then, the molded material is degassed.
  • the molded material is stacked with a cemented carbide alloy substrate and subjected to an ultra-high pressure and temperature treatment in the condition of: 5.5 GPa of pressure; 1400° C. of temperature; and 30 minutes of the retention time, to obtain the cBN sintered material of the cBN tool of the present invention.
  • the average layer thickness of the Al 2 O 3 layer coating the surface of the cBN particle (that is the Al 2 O 3 layer in which the rift is formed partially) is needed to be 1-10 nm.
  • the adhesive strength of the interface between the cBN particle and the binding phase such as titanium nitride or the like would be reduced and the toughness of the sintered material is reduced. Furthermore, the interface becomes tend to be the origin of cracking, reducing fracturing resistance.
  • the average layer thickness of the Al 2 O 3 layer exceeded 10 nm, the tensile residual stress would be a large value in the Al 2 O 3 layer on the surface of the cBN particle of the sintered material.
  • cracking is like to occur in the interface between the surface of the cBN particle and the Al 2 O 3 layer when it is used as a tool, reducing the chipping and fracturing resistances.
  • the relative content ratio of the binding phase such as titanium nitride or the like is reduced and wear resistance is reduced.
  • the average layer thickness of the Al 2 O 3 layer coated on the surface of the cBN particle is set to 1-10 nm.
  • a partial rift is formed in the Al 2 O 3 layer coated on the surface of the cBN particle.
  • the partial rift is defined by the average rift formation ratio. That is, the surface of the cBN particle contacts the binding phase such as titanium nitride or the like in a practical way in the rift. This is the essential requirement for obtaining the technical effect of the present invention. More specifically, it is preferable that the rift is formed partially in such a way that the average rift formation ratio is 0.02-0.20.
  • the average rift formation ratio were less than 0.02, it would lead to the state where the surface of the cBN particle is coated by the Al 2 O 3 layer almost entirely. In this case, the residual tensile stress is generated in the Al 2 O 3 layer, and cracks are tend to be formed in the interface between the cBN particle and the Al 2 O 3 layer due to the synergic action of the intermittent and impacting load during the cutting work and the above-described residual tensile stress. On the other hand, if the average rift formation ratio exceeded 0.20, the ratio of the rift formation would be too high. In this case, the original technical effect that can be obtained by forming the Al 2 O 3 layer coated on the surface of the cBN particle is weakened.
  • the average formation ratio of the rift formed in the Al 2 O 3 layer coated on the cBN particle is set to 0.02-0.20.
  • the formation ratio of the rift formed in the Al 2 O 3 layer coated on the surface of the cBN particle can be calculated by the measurement method described below.
  • a preferable thickness of the thin-sliced piece is 30 nm-130 nm. If the thickness were less than 30 nm, it would become difficult to handle. If it exceeded 130 nm, analysis of the image would be difficult. Therefore, these configurations are not preferable.
  • the observed area is about 200 nm ⁇ 200 nm.
  • the magnification is set to an extent allowing observing the interface between the cBN particle and the binding phase.
  • FIGS. 1 and 2 show cross-sectional images of cBN particles with Al 2 O 3 layers having different average layer thicknesses.
  • FIG. 1 shows the TEM image used for measurement of the average formation ratio of the rift formed in the Al 2 O 3 layer coated on the cBN particle with the Al 2 O 3 layer having the average layer thickness of 6.0 nm.
  • FIG. 2 shows the TEM image used for measurement of the average formation ratio of the rift formed in the Al 2 O 3 layer coated on the cBN particle with the Al 2 O 3 layer having the average layer thickness of 3.9 nm.
  • Elemental mapping is performed on the intermittent cross-sectional images obtained as described above by using a function of TEM. Then, the parts of: Al>5 atomic %; and O>5 atomic %, are binarized. Then, overlapping parts qualifying the both criteria at the same time indicated in black are defined as the Al 2 O 3 -existing region.
  • cBN particles with observable interfaces with the binding phase are placed under further investigation.
  • the surface of the cBN particle is equally divided into 20 sections or more with the interval of 10 nm or less (the part indicated by “ ⁇ ” in FIGS. 1 and 2 ).
  • the layer thicknesses of the Al 2 O 3 layer at each location are measured, and the average layer thickness of the Al 2 O 3 layer of the cBN particle is obtained by averaging these measured values.
  • the sections corresponding to the rift in sections equally divided into at least 20 sections are counted (the counted number n i ).
  • the ratio which is the rift formation ratio n i /N i in the cBN particle, is calculated.
  • the average rift formation ratio n/N is calculated from the average value of the above described counts.
  • the residual stress in the interface between the binding phase and the surface of the cBN particle can be loosened up by: using the cBN particles that are produced as described above and coated by the Al 2 O 3 layer, in which the rift is partially formed, as the material raw powder for the hard phase component; and having the surface of the cBN particle contact the binding phase made of titanium nitride or the like in a practical way in the rift, in producing the cBN tool.
  • chipping and fracturing resistances can be improved.
  • the cBN sintered material is produced by: using the cBN particles, which are produced as described above, and the binding phase component, such as the titanium nitride powder or the like, as the raw material powder for the binding phase formation; blending the both raw material powders to obtain the predetermined blend composition; and performing sintering under the standard ultra-high pressure and temperature condition.
  • the binding phase component such as the titanium nitride powder or the like
  • the components normally included in the cBN sintered materials such as nitrides, carbides, borides, oxides of the elements belonging to 4 a , 5 a , 6 a groups in the periodic table and mutual solid solution thereof, can be mentioned. There is no reason for prohibiting inclusion of one or more selected from the above mentioned components.
  • the TiN layer which is formed on the surface of the cBN particle coated by the Al 2 O 3 layer, functions as the component for formation of the binding phase during sintering; and reacts with the blended raw material powder for formation of the binding phase.
  • the thicker the TiN layer the harder the progress of the reaction with the raw material powder for formation of the binding phase in the vicinity of the cBN particles.
  • the average layer thickness of the TiN layer is not particularly limited in the present invention. However, it is preferable that the layer thickness of the TiN layer is set to 1-100 nm.
  • the average diameter of the TiN layer were less than 10 nm, the function to suppress formation of Al 2 O 3 irreversibly produced in the vicinity of the cBN particles during sintering is reduced. Thus, the Al 2 O 3 amount is increased and the strength of the interface would be reduced.
  • the average diameter of the TiN layer exceeded 100 nm, the amount of Al 2 O 3 irreversibly produced in the vicinity of the cBN particles would be reduced.
  • the sintering reaction does not proceed sufficiently in the vicinity of the cBN particles and hardness of the cBN sintered material is reduced. Thus, cracks tend to be formed in the interface between the surface of the cBN particle and the TiN layer when it is used as a tool, and chipping and fracturing resistances are reduced.
  • the average layer thickness of the TiN layer farmed on the surface of the cBN particles as the outermost layer is set to 10-100 nm.
  • the average layer thickness of the TiN layer is calculated by: obtaining the layer thicknesses at 5 locations from an image in which the cross section of the cBN particle coated by the TiN layer is observed by using TEM; and averaging the values.
  • the Al 2 O 3 amount irreversibly formed in the vicinity of the cBN particles can be adjusted by controlling the layer thickness of the TiN layer formed on the cBN particles. If the total amount of this amount and the Al 2 O 3 amount formed on the surface of the cBN particle in advance exceeded 40 volume %, in the case where a volume of a region 50 nm from the surface of the cBN particles is defined as 100 volume %, the cBN holding force by the binding phase would be reduced. In this case, progress of fracturing due to detachment of cBN particles is stimulated. Therefore, the configuration is not preferable.
  • the total amount were 2 volume % or less, the sintering reaction in the vicinity of the cBN particles would not proceed sufficiently to reduce the hardness of the cBN sintered material.
  • the total content of Al 2 O 3 is set to 2 volume % or more.
  • the measurement method of the total content of Al 2 O 3 formed on the surface of the cBN particles and Al 2 O 3 existing in the binding phase included in the region 50 nm from the surface of the cBN particles in the case where a volume of a region 50 nm from the surface of the cBN particles is defined as 100 volume % it is measured by: observing the cross section of the cBN material in the viewing field of 200 ⁇ 200 nm by TEM; extracting parts of: Al>5 atomic %; and O>5 atomic %, measured by elemental mapping in TEM; binarizing the overlapped parts; and obtaining an image in which the overlapped regions are indicated in black.
  • the total Al 2 O 3 amount is obtained by: calculating the area ratio corresponding to the black region (the Al 2 O 3 -existing region), in which existence of Al and O overlaps in the image analysis in the region 50 nm from the surface of the cBN particle; and defining the ratio as the total content ratio (volume %) of Al 2 O 3 formed on the surface of the cBN particle and Al 2 O 3 existing in the binding phase.
  • the cBN tool of the present invention is explained in detail based on Examples below.
  • a thin-filmed Al 2 O 3 layer was formed using the cBN particles with the average grain size of 0.5-8 ⁇ m as the substrates by ALD method.
  • the thin-filmed Al 2 O 3 layer was formed on the surface of the cBN particle by: inserting cBN particles with the average grain size of 0.5-8 ⁇ m in the furnace; increasing temperature in the furnace to 350° C.; and repeating a cycle of: (1) Ar+Al(CH 3 ) 3 gas introducing process; (2) Ar gas purging process; (3) Ar+H 2 O gas introducing process; and (4) Ar gas purging process, using Al(CH 3 ) 3 gas, which was a precursor of Al, as the film deposition gas and H 2 O gas as the reaction gas in accordance with the intended layer thicknesses indicated in Table 1 (1-10 nm).
  • a TiN layer was deposited on the Al 2 O 3 layer formed on the surface of the cBN particle similarly by ALD method.
  • cBN particles were inserted in the furnace, and the temperature in the furnace was increased to 400° C. Then, a cycle of: (1) Ar+TiCl 4 gas introducing process; (2) Ar gas purging process; (3) Ar+NH 3 gas introducing process; and (4) Ar gas purging process, was repeated using TiCl 4 gas and NH 3 gas as raw material gases until the thickness of the TiN layer reached to the intended layer thickness (10-100 nm) to obtain the TiN layer with the intended layer thickness.
  • the cBN particles 1-15 in which the surfaces of the cBN particles were exposed in the rift parts were produced by: blending the cBN particles, which the thin-filmed Al 2 O 3 layer produced in the process (II) was formed on their surfaces and the TiN layer was further formed above the Al 2 O 3 layer, and cemented carbide balls (diameter of 1 mm) so that their weight ratio became 1:10-1:20; inserting them in a container made of cemented carbide; performing the ball mill mixing in the condition of: the ball mill revolution of 50 rpm; and the mixing time of 0.25-3.0 hours, after adding an organic solvent to form the partial rifts in the Al 2 O 3 layer.
  • Disc plates of the cBN sintered materials were obtained as explained below.
  • cBN particle powders 1-15 were prepared.
  • the partial rift was formed in the Al 2 O 3 layer produced as described above and the surface of the cBN particle was exposed in the rift part.
  • the TiN powder; the TiC powder; the TiCN powder; the TiAl 3 powder; the Al powder; the Al 2 O 3 powder; and the WC powder were prepared.
  • the raw material powders selected from the above-described raw material powders and the cBN particle powders were blended so that the content ratio of the cBN particle powder was 50-80 volume % in the case where the total amount of the blended raw material powders and the cBN particle powder was defined as 100 volume %.
  • they were subjected to wet-mixing.
  • they were subjected to press molding into the dimension of: 50 mm of the diameter; and 1.5 mm of the thickness, at the molding pressure of 1 MPa by a hydraulic press.
  • the molded materials were subjected to the heat treatment in the condition of: vacuum atmosphere of 1 Pa or less of the pressure; 1000° C.
  • each of the pre-sintered materials was stacked with a separately prepared supporting piece made of WC-based cemented carbide and inserted into a standard ultra-high pressure sintering apparatus in the above-described stacked state.
  • the supporting piece had the composition of: 8 mass % of Co; and the WC balance, and the dimension of: 50 mm of the diameter; and 2 mm of the thickness.
  • the stacked materials were subjected to the ultra-high pressure and temperature sintering in the normal condition of: 5.5 GPa of the pressure; 1400° C. of the temperature; and 30 minutes of the retention time.
  • the cBN tools 1-15 of the present invention with the insert shape of ISO standard CNGA120408 were produced as explained below.
  • the cBN sintered disc plates were sawed by a wire-electrical discharge machine into a predetermined dimension. Then, each of the sawn pieces was soldered on the soldering portion (corner part) of the main body of the insert made of WC-based cemented carbide, which had the composition of: 5 mass % of Co; 5 mass % of TaC; and the WC balance and the insert had the insert shape of ISO standard CNGA120408, using the Ag-base soldering material with the composition of: 26% of Cu; 5% of Ti; and the Ag balance. After soldering, the pieces were subjected to polishing on: the top and bottom surfaces; and outer periphery, and to the honing treatment. By following the above explained procedures, the cBN tools 1-15 of the present invention were obtained.
  • cBN particle powders on which Al 2 O 3 layers were not formed; and cBN particle powders, on which Al 2 O 3 layers with average layer thickness that were out of range in the configuration of the present invention were formed, were prepared as raw material powders.
  • the cBN particle powders 16-28 as shown in Table 2 were prepared.
  • the TiN powder; the TiC powder; the TiCN powder; the TiAl 3 powder; the Al powder; the Al 2 O 3 powder; and the WC powder each of which had the average grain size within the range of 0.3-0.9 ⁇ m, were prepared.
  • the blended materials were subjected to the same treatment operations (drying, molding, heat treating, pre-sintering, sintering, and the like) as in the case of Example of the present invention to produce the cBN tools 16-28 of Comparative Example.
  • compositions of the sintered materials in Tables 1 and 2 were determined by elemental mapping of TEM and XRD (X-ray Diffraction) on the cross sections of the cBN sintered materials.
  • the maximum cutting length was set to 2.5 km. Presence or absence of chipping and fracturing at the cutting edge was checked every 0.1 km of the cutting length.
  • the cBN hard phase was uniformly distributed in the sintered material and homogeneous tool characteristics were obtained by performing sintering using the cBN particles on which the Al 2 O 3 layer with the rift on the surface of the cBN particles partially and the TiN layer were formed.
  • the adhesiveness strength of the interface between the cBN hard phase and the binding phase was improved.
  • the residual tensile stress formed in the Al 2 O 3 layer, in which the rifts were formed partially was significantly reduced compared to one without the rift.
  • the cBN tool of the present invention has excellent chipping and fracturing resistances and is applicable even in the cutting condition other than the intermittent cutting of the high hardened steel.
  • the cBN tool of the present invention can contribute sufficiently to improvement of the performance of the cutting work apparatus; and labor-saving, energy-saving, and reduction of the cost of cutting work.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

A cBN tool that exhibits: excellent chipping resistance and wear resistance; and excellent cutting performance, for a long term use even in intermittent cutting work on high hardened steel is provided. The cutting tool includes a cutting tool body that is a cubic boron nitride-based material containing cubic boron nitride particles as a hard phase component. In the cutting tool, the cubic boron nitride particles includes an Al2O3 layer with an average layer thickness of 1.0-10 nm on a surface of the cubic boron nitride particles, a rift with an average rift formation ratio of 0.02-0.20 being formed in the Al2O3 layer, and the cubic boron nitride-based sintered material includes a binding phase containing at least one selected from a group consisting of: titanium nitride; titanium carbide; titanium carbonitride; titanium boride; aluminum nitride; aluminum oxide; inevitable products; and mutual solid solution thereof, around the cubic boron nitride particles.

Description

    CROSS-REFERENCE TO RELATED PATENT APPLICATIONS
  • This application is a U.S. National Phase Application under 35 U.S.C. §371 of International Patent Application No. PCT/JP20131058778, filed Mar. 26, 2013, and claims the benefit of Japanese Patent Applications No. 2012-112492, filed on May 16, 2012, and No. 2013-060098, filed Mar. 22, 2013, all of which are incorporated by reference in their entirety herein. The International Application was published in Japanese on Nov. 21, 2013 as International Publication No. WO/2013/172095 under PCT Article 21(2).
  • FIELD OF THE INVENTION
  • The present invention relates to a cutting tool made of cubic boron nitride (hereinafter indicated as cBN) based sintered material (hereinafter, referred to as a cBN tool).
  • BACKGROUND OF THE INVENTION
  • Conventionally, the cBN cutting tool, which uses the cBN-based sintered material (hereinafter referred as cBN sintered compact) as its tool material with a low affinity to the workpiece, is known in cutting work on a ferrous workpiece such as steel, casted iron, or the like. For example, as shown in Patent Literature 1 (PTL 1), a cBN cutting tool, which contains: cBN in 40 to 80 volume % as the hard phase; and the balance of the ceramics compound such as carbides, nitrides, borides, or the like of elements belonging to 4a, 5a, 6a groups in the periodic table as the binding phase, is known. Also, as shown in Patent Literature 2 (PTL 2), a cBN cutting tool is proposed. In the cutting tool disclosed in PTL 2, the cutting tool body of the cBN cutting tool is a sintered body produced by using cBN particles coated uniformly by Al2O3 layers without a rift on the surfaces of the cBN particles as a raw material powder. It is known that by using the cBN cutting tool, the crater wear resistance and the chipping resistance of the cutting tool are improved.
  • RELATED ART DOCUMENTS Patent Literature
  • PTL 1: Japanese Unexamined Patent Application, First Publication No. S53-77811 (A)
  • PTL 2: Japanese Unexamined Patent Application, First Publication No. 2011-183524 (A)
  • Problems to be Solved by the Present Invention
  • In the conventionally known cBN cutting tool disclosed in PTL 2, the cBN sintered material is produced by using cBN particles coated by Al2O3 layers as raw a material powder in advance. Because of this, the cBN is not directly exposed on the surface of the rake face when the cBN sintered material is used as the cutting tool body. Having the cBN not being exposed on the surface of the rake face contributes to improvement of wear resistance. However, in this case, residual stress is generated due to difference of thermal expansion characteristics between the cBN and the Al2O3 layer. Thus, when the cBN cutting tool is used on intermittent cutting of high hardened steel, the service life of the cutting tool becomes short-lived since its chipping resistance and fracturing resistance are not sufficient.
  • Under the circumstances described above, the technical problem to be solved by the present invention, which is the purpose of the present invention, is to provide a cBN cutting tool that exhibits excellent chipping resistance and fracturing resistance in the intermittent cutting work on high hardened steel. In addition, the cBN cutting tool related to the present invention exhibits an excellent cutting performance for a long-term usage.
  • Means to Solving the Problems
  • In order to overcome the above-described problem, the inventors of the present invention conducted an intensive study, focusing on the cBN particles that are the hard phase component of the cBN cutting tool. Then they obtained findings described below.
  • In the cBN sintered compact of the conventional cBN cutting tool disclosed in PTL 2, the coated-cBN particles, which are coated by the Al2O3 layer on their surfaces in advance, are used as the raw material powder. The cBN sintered material is produced by sintering under the ultrahigh-pressure and high-temperature condition in which pressure and temperature are set to 5 GPa and 1500° C., respectively, after mixing the raw material power with the binding phase powder and preforming. The residual tensile stress is formed to the Al2O3 layer coated on the surfaces of the cBN particles due to the difference of their thermal expansion characteristics.
  • When the cBN cutting tool is applied to the intermittent cutting on high hardened steel, the phenomenon explained below was observed. That is, cracks are formed particularly on the boundaries between the Al2O3 layer and cBN particle exposed on the surface of the rake face due to the intermittent and impacting load during cutting and the residual tensile stress mentioned above. Then, making the cracks origins, chipping and fracturing occur.
  • Under the circumstance described above, the inventors of the present invention intended to improve the performance of the cutting tool by preventing chipping formation and fracturing formation because of the cracks, by forming an Al2O3 layer with a rift on the surface of the cBN particle partially to suppress crack formation by the tensile stress in the boundaries due to the difference of thermal tension characteristics between the surface of the cBN particle and the Al2O3 layer coated on the cBN particle.
  • SUMMARY OF THE INVENTION
  • The present invention is made based on the finding described above, and has aspects shown below.
  • (1) A cutting tool made of a cubic boron nitride-based sintered material including a cutting tool body that is a cubic boron nitride-based material containing at least cubic boron nitride particles as a hard phase component, wherein
  • each of the cubic boron nitride particles includes an Al2O3 layer with an average layer thickness of 1.0-10 nm on a surface of the each of the cubic boron nitride particles, a rift with an average rift formation ratio of 0.02-0.20 being formed in the Al2O3 layer, and
  • the cubic boron nitride-based sintered material includes a binding phase containing at least one selected from a group consisting of: titanium nitride; titanium carbide; titanium carbonitride; titanium boride; aluminum nitride; aluminum oxide; inevitable products; and mutual solid solution thereof, around the each of cubic boron nitride particles.
  • (2) The cutting tool made of a cubic boron nitride-based material according to (1) described above, wherein
  • in a case where a volume of a region 50 nm from the surface of the each of the cubic boron nitride particles toward an outside of the each of the cubic boron nitride particles is defined as 100 volume %, a total content of Al2O3 formed on the surface of the each of the cubic boron nitride particles and Al2O3 existing in the binding phase included in the region is 2-40 volume %.
  • (3) The cutting tool made of a cubic boron nitride-based material according to (1) or (2) described above, wherein an average grain size of the cubic boron nitride particles is 0.5-8 μm.
  • (4) The cutting tool made of a cubic boron nitride-based material according to any one of (1) to (3) described above, wherein a TiN layer with an average layer thickness of 10-100 nm is formed on the Al2O3 layer.
  • (5) The cutting tool made of a cubic boron nitride-based material according to any one of (1) to (4) described above, wherein
  • the rift formed in the Al2O3 layer is formed by: inserting the cubic boron nitride particles, on each of which the Al2O3 layer is formed, in a container made of cemented carbide; and performing ball-mill mixing in a presence of cemented carbide balls.
  • (6) The cutting tool made of a cubic boron nitride-based material according to any one of (1) to (5), wherein a content ratio of the cubic boron nitride particles relative to an entire cubic boron nitride-based sintered material is 50-80 volume %.
  • (7) A method of producing a cutting tool made of a cubic boron nitride-based material, the method including the steps of:
  • forming an Al2O3 layer with an average layer thickness of 1.0-10 nm on each of cubic boron nitride particles;
  • introducing a rift with an average rift formation ratio of 0.02-0.20 in the Al2O3 layer; and
  • sintering a mixed powder containing the cubic boron nitride particles coated with the Al2O3 layer in which the rift is introduced to obtain the cubic boron nitride-based material.
  • (8) The method of producing a cutting tool made of a cubic boron nitride-based sintered material according to (7) described above, wherein the step of introducing a rift includes the steps of:
  • inserting the cubic boron nitride particles in a container made of cemented carbide; and
  • performing ball-mill mixing in a presence of cemented carbide balls.
  • (9) The method of producing a cutting tool made of a cubic boron nitride-based sintered material according to (7) or (8) described above, wherein formation of the Al2O3 layer in the step of forming an Al2O3 layer is performed by ALD method.
  • (10) The method of producing a cutting tool made of a cubic boron nitride-based sintered material according to any one of (7) to (9) described above, the method further includes the step of forming a TiN layer on the cubic boron nitride particles after the step of forming an Al2O3 layer.
  • (11) The method of producing a cutting tool made of a cubic boron nitride-based material according to any one of (7) to (10), wherein a content ratio of the cubic boron nitride particles relative to an entire cubic boron nitride-based sintered material is 50-80 volume %.
  • Effects of the Invention
  • The cBN tool of an aspect of the present invention (hereinafter referred as the cBN tool of the present invention) is a cutting tool made of a cubic boron nitride-based sintered material including a cutting tool body that is a cubic boron nitride-based material containing at least cubic boron nitride particles as a hard phase component. Each of the cubic boron nitride particles includes an Al2O3 layer with an average layer thickness of 1.0-10 nm on a surface of the each of the cubic boron nitride particles, a rift with an average rift formation ratio of 0.02-0.20 being formed in the Al2O3 layer. The cubic boron nitride-based sintered material includes a binding phase containing at least one selected from a group consisting of: titanium nitride; titanium carbide; titanium carbonitride; titanium boride; aluminum nitride; aluminum oxide; inevitable products; and mutual solid solution thereof, around the each of cubic boron nitride particles. Also, the content ratio of the cubic boron nitride particles relative to an entire cubic boron nitride-based sintered material is 50-80 volume %. By having the configurations, the sintered material becomes the sintered material in which crack formation is reduced; fracturing resistance is increased; and toughness is increased.
  • In addition, in the case where the volume of a region 50 nm from the surface of the each of the cubic boron nitride particles toward an outside of the each of the cubic boron nitride particles is defined as 100 volume %, the total content of Al2O3 formed on the surface of the each of the cubic boron nitride particles and Al2O3 existing in the binding phase in the region is 2-40 volume %. By having the configuration, formation of Al2O3 in the vicinity of the cBN particles during sintering can be suppressed. Thus, excellent chipping resistance and fracturing resistance can be obtained by having the texture in which the content amount of the binding phase made of titanium nitride or the like is increased in the vicinity of the cBN particles, while retaining sufficient interface strength. Moreover, by reducing the amount of Al2O3 in the vicinity of the cBN particles, the cBN particle holding force by the binding phase made of titanium nitride or the like can be strengthened; and progress of fracturing due to detachment of a cBN particle can be suppressed.
  • In addition, by the method of producing a cutting tool made of a cubic boron nitride-based sintered material, the method being other aspect of the present invention (hereinafter referred as the cBN cutting tool producing method of the present invention), the above-described cBN tool of the present invention can be produced efficiently.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross-sectional image of the cBN particle including an Al2O3 layer, which was used for measurement of the rift formation ratio and had the average layer thickness of 6.0 nm.
  • FIG. 2 is a cross-sectional image of the cBN particle including an Al2O3 layer, which was used for measurement of the rift formation ratio and had the average layer thickness of 3.9 nm.
  • DETAILED DESCRIPTION OF THE INVENTION Best Mode for Carrying Out the Invention
  • The cBN particle included in the cutting tool body of the cBN tool, which is an embodiment of the present invention, is coated by an extremely thin aluminum oxide layer whose average layer thickness is 1.0-10 nm. The aluminum oxide layer can be formed by ALD (Atomic Layer Deposition) method. ALD method is a type of CVD method. In ALD method, a layer is deposited by reacting molecules of raw material compounds per a layer on the substrate in a vacuum chamber and repeating purges of the raw material compounds, such as Ar and nitrogen.
  • In addition, a TiN layer, which is formed on the outer side of the aluminum oxide layer if necessary, can be formed by the above-described ALD method.
  • Formation of the aluminum oxide layer and the TiN layer by ALD method is explained below.
  • The Al2O3 layer with the average layer thickness of 10 nm is coated on the surfaces of the cBN particles as explained below. The cBN particles are inserted into a furnace and the temperature in the furnace is raised to about 350° C. Then, a cycle is repeated multiple times until an intended layer thickness is obtained using the Al(CH3)3 gas, which is the precursor of Al and the H2O gas as a reaction gas. In one set of the cycle, (1) Ar+Al(CH3)3 gas introducing process; (2) Ar gas purging process; (3) Ar+H2O gas introducing process; and (4) Ar gas purging process, are performed sequentially. For example, the Al2O3 layer is deposited by performing the process described above for 1 hour. After the formation of the Al2O3 layer, the TiN layer is deposited by ALD method in the same manner on the Al2O3 layer coated on the surfaces of the cBN particles
  • In order to deposit the TiN layer on the Al2O3 layer by ALD method, the cBN particles are inserted into a furnace and the temperature in the furnace is raised to 400° C. Then, a cycle is repeated multiple times until an intended layer thickness is obtained using TiCl4 gas and NH3 gas as the raw material gases. In one set of the cycle, (1) Ar+TiCl4 gas introducing process; (2) Ar gas purging process; (3) Ar+NH3 gas introducing process; and (4) Ar gas purging process, are performed sequentially.
  • Next, a partial rift is formed in the Al2O3 layer of the cBN particles on which the TiN layer is deposited to produce the cBN particles whose surfaces are exposed in the rift parts by mixing and agitating the cBN particles with a ball mill for 0.25-3.0 hours.
  • In this process, if the layer thickness of the TiN layer deposited on the Al2O3 layer were too thin, the cBN particle holding force by the binding phase would decrease since the amount of Al2O3, which irreversibly formed in the vicinity of the surfaces of the cBN particles in the cBN sintered materials produced by the ultra-high pressure and temperature treatment, increases. Thus, detachment of the cBN particle proceeds readily during cutting. On the other hand, if the layer thickness of the TiN layer deposited on the Al2O3 layer were too thick, the amount of Al2O3 irreversibly formed in the vicinity of the surfaces of the cBN particles would decrease. Furthermore, the amounts of reaction products, such as MN, TiB2, and the like, would be reduced in the ultra-high pressure and temperature treatment. Thus, the sintering reaction in the vicinity of the surfaces of the cBN particles does not proceed sufficiently, and hardness of the cBN sintered material reduces.
  • Because of the reasons described above, the amount of Al2O3 in the vicinity of the surfaces of the cBN particles is set within a predetermined range by regulating the layer thickness of the TiN layer within a predetermined range. More specifically, it is found that a preferable total content ratio of Al2O3 formed in the surfaces of the cBN particles; and Al2O3, which is an inevitable product existing in the binding phase, is 2-40 volume %, in the case where the volume of region 50 nm from the surface of the cBN particle is defined 100 volume %. The volume % of Al2O3 can be obtained as area % in the binarized image which is obtained from TEM (Transmission Electron Microscopy) image.
  • The cBN particles prepared as described above and raw material powders, which are selected from the group consisting of: the TiN powder; the TiC powder; the TiCN powder; the TiAl3 powder; the Al powder; the Al2O3 powder; and the binding phase raw material of the WC powder, are wet-mixed uniformly. Then, after drying the obtained mixed powder, it is molded at the molding pressure of 1 MPa by a hydraulic press. Next, the molded body is heat treated in the condition of 1 Pa of vacuum at 1000° C. for 30 minutes to be degassed. Then, the molded body is stacked with a cemented carbide substrate and treated in an ultra-high pressure and temperature condition, such as pressure of 5.5 GPa, temperature of 1400° C., and the retention time of 30 minutes to obtain the cBN sintered material. In the cBN tool produced from the cBN sintered material obtained as explained above, cracking formation is suppressed even in high-load cutting; chipping and fracturing resistances are excellent. As a result, the cBN tool exhibits excellent cutting performance for a long-term usage.
  • In other words, the crack formation is suppressed in the interface due to the thermal expansion characteristics difference between the surface of the cBN particle and the Al2O3 layer coated on the surface of the particle in the cBN tool, since the surface of the cBN particle is coated by the Al2O3 layer with the rift partially. Thus, the chipping formation and fracturing formation due to the cracking are prevented.
  • In addition, by depositing the TiN layer on the Al2O3 layer on the surface of the cBN particle, the formation of Al2O3 irreversibly formed in the vicinity of the cBN particles during sintering can be suppressed. Thus, the structure with an increased content of TiN or the like can be obtained in the vicinity of the cBN particles, while retaining sufficient interface strength. As a result, excellent chipping and fracturing resistances can be obtained.
  • Furthermore, by reducing the amount of Al2O3 in the vicinity of the cBN particles, the cBN particle holding force by the binding phase, which is made of titanium nitride; titanium carbide; titanium carbonitride: titanium boride; aluminum nitride; aluminum oxide; inevitable products; and a mutual solid solution thereof, can be increased, and the progress of fracturing due to the detachment of the cBN particles can be suppressed.
  • Components constituting the cBN tool of an embodiment of the present invention are explained in detail below.
  • cBN Sintered Material:
  • cBN sintered materials are made of the hard phase component and the binding phase normally. However, the cBN sintered material, which is the cutting tool body of the cBN tool of the present invention, includes the cBN particles, which are coated by the Al2O3 layers, as the hard phase component. Furthermore, a rift is formed partially to the Al2O3 layer by kneading the cBN particles by a ball mill in the state where the TiN layer is formed on the Al2O3 layer.
  • That is, the crack formation due to the difference of thermal expansion characteristics in the interface, which is tend to be generated normally when the surface of a cBN particle is coated by an Al2O3 layer, is suppressed since surfaces of the cBN particles are coated by the Al2O3 layer in which the rift if formed partially.
  • In addition, irreversible formation of Al2O3 in the vicinity of the cBN particles during sintering can be suppressed by regulating the layer thickness of the TiN layer formed on the Al2O3 layer. Thus, the structure with an increased content of the binding phase component, such as titanium nitride; titanium carbonate; titanium carbonitride; titanium boride; and the like, can be obtained in the vicinity of the cBN particles. As a result, the cBN tool with excellent chipping and fracturing resistances can be obtained.
  • Moreover, the amount of Al2O3 formation originated from the Al components or the like in the binding phase during sintering can be reduced in the vicinity of the surfaces of the cBN particles, since the cBN particles are sintered in the state where the cBN particles are coated by the TiN layers. Thus, the cBN particle holding force by the binding phase can be increased, and the progress of fracturing due to detachment of cBN particles can be suppressed.
  • Average Grain Size of cBN Particles:
  • The average grain size of the cBN particles used in the present invention is not particularly limited in terms of the technical effect of the present invention. However, it is preferable that the average grain size of the cBN particles is within the range from 0.5-8 μm
  • By including the hard cBN particles in the sintered material, fracturing resistance is improved. In addition, by having the cBN particles with the average grain size of 0.5 μm-8 μm dispersed in the sintered material, chipping originated from the protruding and recessed shapes in the cutting edge, which are formed by detaching of the cBN particles on the tool surface during usage of the tool, is suppressed. In addition, propagation of the cracks, which are formed by the stress loaded on the cutting edge during usage of the tool and develop from the interface between the cBN particle and the binding phase, or the cracks, which develop after splitting of the cBN particle, is suppressed by the cBN particles dispersed in the sintered material. Because of these, the cBN tool can obtain excellent fracturing resistance.
  • Therefore, in order to exhibit the technical effect of the present invention even at a higher level, it is preferable that the average grain size of the cBN particles is set within the range of 0.5-8 μm.
  • Content Ratio of cBN Particles Relative to the cBN Sintered Material:
  • The content ratio of the cBN particles relative to the cBN sintered material is not particularly limited in terms of the technical effect of the present invention. However, if it were less than 50 volume %, hard materials in the sintered material would become scarce, lowering fracturing resistance when it is used as a tool. On the other hand, if it exceeded 80 volume %, the voids that become the origin of cracks would be formed in the sintered material, lowering the fracturing resistance. Thus, in order to exhibit the technical effect of the present invention even at a higher level, it is preferable that the content ratio of the cBN particles relative to the cBN sintered material is set within the range of 50-80 volume %.
  • The content ratio of cBN particles (volume %) relative to the cBN sintered material is defined as the area ratio of the area occupied by the cBN particles in the image analysis in the case where: the sectional structure of the cBN sintered material is observed by SEM (Scanning Electron Microscopy) in the visual field area of about 15 μm×15 μm; and the parts corresponding to the cBN particles in the obtained secondary electron image are extracted by image processing.
  • Producing cBN Particles on which the Coating Layer is Formed by the Al2O3 Layer with the Rift:
  • The cBN particles, on which the coating layer is formed by the Al2O3 layer with the partial rift, can be produced, for example, by following the processes (I)-(III) described below.
  • Process (I):
  • First, a thin-layered Al2O3 layer is formed on the surfaces of the cBN particles by ALD method. The thin-layered Al2O3 layer can be formed without initiating aggregation of cBN particles since the Al2O3 layer can be formed on the surface of the cBN particle one layer at a time in ALD method.
  • More specifically, the Al2O3 layer with the layer thickness of 10 nm can be formed on the surface of the cBN particle for example by: inserting cBN particles with the average grain size of 0.5-8 μm in the furnace; increasing temperature in the furnace to about 350° C.; and repeating a cycle of: (1) Ar+Al(CH3)3 gas introducing process; (2) Ar gas purging process; (3) Ar+H2O gas introducing process; and (4) Ar gas purging process, until the intended layer thickness is obtained, for example by performing the repetition to form the layer for 1 hour.
  • Formation of the Al2O3 layer without a rift on the surface of the cBN particle is confirmed by observing the cross section of the cBN particle by TEM after polishing the cross section of the cBN particle obtained as described above and thin slicing using FIB (Focused Ion Beam)
  • Process (II):
  • Next, a TiN layer is formed on the Al2O3 layer by ALD method.
  • In order to form the TiN layer on the Al2O3 layer by ALD method, cBN particles are inserted in the furnace, and the temperature in the furnace is increased to 400° C. Then, a cycle of: (1) Ar+TiCl4 gas introducing process; (2) Ar gas purging process; (3) Ar+NH3 gas introducing process; and (4) Ar gas purging process, is repeated using TiCl4 gas and NH3 gas as raw material gases until the thickness of the TiN layer reaches to the intended layer thickness (10-100 nm) to obtain the TiN layer with the intended layer thickness.
  • Process (III):
  • Next, the cBN particles that the TiN layers are formed on their Al2O3 layers are inserted in a container made of cemented carbide and ball-mixing is performed in the presence of the cemented carbide balls (for example, diameter of 1 mm) for 0.25-3.0 hours. By performing the procedures described above, the cBN particles, which are coated by the Al2O3 layers with the partially formed rifts and a predetermined average layer thickness, can be produced.
  • There are two reasons for producing the cBN particles coated by the Al2O3 layer without a rift in the process (I). One is to make it possible to control the average layer thickness of the Al2O3 layer to the intended value in the following process (II). Another is to make it possible to control the formation ratio of the rift formed along with the surface of the cBN particle in the Al2O3 layer to the intended value in a similar fashion.
  • Process (IV):
  • Producing the cBN Sintered Material:
  • 1) The TiN powder, the TiC powder, the TiCN powder, the TiAl3 powder, the Al powder, Al2O3 powder, and the WC powder are provided as the raw material powders for binder material.
  • 2) The cBN particles, which are obtained in the above-described process (III) and coated by: the Al2O3 layer on which the rift is formed partially; and the TiN layer, and the material powders selected from the above-described raw material powders for binder material, are weighted to obtain the predetermined composition ratio, and wet-mixed uniformly in a container made of cemented carbide.
  • 3) After drying the obtained mixed powders, the dried mixed powders are molded by a hydraulic press at a molding pressure of 1 MPa in the same condition to obtain the molded material.
  • 4) The molded material is subjected to heat treatment in the condition of: 1 Pa or less of vacuum; 1000° C. of temperature; and 30 minutes of the retention time. Then, the molded material is degassed.
  • 5) The molded material is stacked with a cemented carbide alloy substrate and subjected to an ultra-high pressure and temperature treatment in the condition of: 5.5 GPa of pressure; 1400° C. of temperature; and 30 minutes of the retention time, to obtain the cBN sintered material of the cBN tool of the present invention.
  • Average layer thickness of the Al2O3 layer:
  • The average layer thickness of the Al2O3 layer coating the surface of the cBN particle (that is the Al2O3 layer in which the rift is formed partially) is needed to be 1-10 nm.
  • If the average layer thickness of the Al2O3 layer were less than 1 nm, the adhesive strength of the interface between the cBN particle and the binding phase such as titanium nitride or the like would be reduced and the toughness of the sintered material is reduced. Furthermore, the interface becomes tend to be the origin of cracking, reducing fracturing resistance. On the other hand, if the average layer thickness of the Al2O3 layer exceeded 10 nm, the tensile residual stress would be a large value in the Al2O3 layer on the surface of the cBN particle of the sintered material. Thus, cracking is like to occur in the interface between the surface of the cBN particle and the Al2O3 layer when it is used as a tool, reducing the chipping and fracturing resistances. In addition, the relative content ratio of the binding phase such as titanium nitride or the like is reduced and wear resistance is reduced.
  • Therefore, the average layer thickness of the Al2O3 layer coated on the surface of the cBN particle is set to 1-10 nm.
  • Partial Rift Formed in the Al2O3 Layer:
  • A partial rift is formed in the Al2O3 layer coated on the surface of the cBN particle. In the present specification, “the partial rift” is defined by the average rift formation ratio. That is, the surface of the cBN particle contacts the binding phase such as titanium nitride or the like in a practical way in the rift. This is the essential requirement for obtaining the technical effect of the present invention. More specifically, it is preferable that the rift is formed partially in such a way that the average rift formation ratio is 0.02-0.20.
  • If the average rift formation ratio were less than 0.02, it would lead to the state where the surface of the cBN particle is coated by the Al2O3 layer almost entirely. In this case, the residual tensile stress is generated in the Al2O3 layer, and cracks are tend to be formed in the interface between the cBN particle and the Al2O3 layer due to the synergic action of the intermittent and impacting load during the cutting work and the above-described residual tensile stress. On the other hand, if the average rift formation ratio exceeded 0.20, the ratio of the rift formation would be too high. In this case, the original technical effect that can be obtained by forming the Al2O3 layer coated on the surface of the cBN particle is weakened.
  • Thus, it is preferable that the average formation ratio of the rift formed in the Al2O3 layer coated on the cBN particle is set to 0.02-0.20.
  • Measurement Methods of the Average Rift Formation Ratio and the Average Layer Thickness of the Al2O3 Layer after Rift Formation:
  • For example, the formation ratio of the rift formed in the Al2O3 layer coated on the surface of the cBN particle can be calculated by the measurement method described below.
  • After polishing the cross section of the sintered material produced in the above-described process (IV), it is subjected to thin slicing and a transmission electron image is acquired by TEM in order to use for obtaining the average formation ratio of the rift formed in the Al2O3 layer.
  • A preferable thickness of the thin-sliced piece is 30 nm-130 nm. If the thickness were less than 30 nm, it would become difficult to handle. If it exceeded 130 nm, analysis of the image would be difficult. Therefore, these configurations are not preferable. The observed area is about 200 nm×200 nm. The magnification is set to an extent allowing observing the interface between the cBN particle and the binding phase.
  • FIGS. 1 and 2 show cross-sectional images of cBN particles with Al2O3 layers having different average layer thicknesses. FIG. 1 shows the TEM image used for measurement of the average formation ratio of the rift formed in the Al2O3 layer coated on the cBN particle with the Al2O3 layer having the average layer thickness of 6.0 nm. FIG. 2 shows the TEM image used for measurement of the average formation ratio of the rift formed in the Al2O3 layer coated on the cBN particle with the Al2O3 layer having the average layer thickness of 3.9 nm.
  • Elemental mapping is performed on the intermittent cross-sectional images obtained as described above by using a function of TEM. Then, the parts of: Al>5 atomic %; and O>5 atomic %, are binarized. Then, overlapping parts qualifying the both criteria at the same time indicated in black are defined as the Al2O3-existing region.
  • Then, cBN particles with observable interfaces with the binding phase are placed under further investigation. In the investigation, within the observed area of 200 nm×200 nm, the surface of the cBN particle is equally divided into 20 sections or more with the interval of 10 nm or less (the part indicated by “→←” in FIGS. 1 and 2). Then, the layer thicknesses of the Al2O3 layer at each location are measured, and the average layer thickness of the Al2O3 layer of the cBN particle is obtained by averaging these measured values.
  • In addition, the rift in the Al2O3 layer (for example, the parts indicated by “x” in FIGS. 1 and 2) is counted in at least 10 or more (i=1, 2 . . . ) of cBN particles. In the count, the sections corresponding to the rift in sections equally divided into at least 20 sections (the number of the equally divided sections Ni) are counted (the counted number ni). Then, the ratio, which is the rift formation ratio ni/Ni in the cBN particle, is calculated. Then, the average rift formation ratio n/N is calculated from the average value of the above described counts.
  • The residual stress in the interface between the binding phase and the surface of the cBN particle can be loosened up by: using the cBN particles that are produced as described above and coated by the Al2O3 layer, in which the rift is partially formed, as the material raw powder for the hard phase component; and having the surface of the cBN particle contact the binding phase made of titanium nitride or the like in a practical way in the rift, in producing the cBN tool. Thus, chipping and fracturing resistances can be improved.
  • The cBN sintered material is produced by: using the cBN particles, which are produced as described above, and the binding phase component, such as the titanium nitride powder or the like, as the raw material powder for the binding phase formation; blending the both raw material powders to obtain the predetermined blend composition; and performing sintering under the standard ultra-high pressure and temperature condition.
  • As additional constituent in the cBN sintered material, the components normally included in the cBN sintered materials, such as nitrides, carbides, borides, oxides of the elements belonging to 4 a, 5 a, 6 a groups in the periodic table and mutual solid solution thereof, can be mentioned. There is no reason for prohibiting inclusion of one or more selected from the above mentioned components.
  • Average Layer Thickness of the TiN Layer:
  • The TiN layer, which is formed on the surface of the cBN particle coated by the Al2O3 layer, functions as the component for formation of the binding phase during sintering; and reacts with the blended raw material powder for formation of the binding phase. The thicker the TiN layer, the harder the progress of the reaction with the raw material powder for formation of the binding phase in the vicinity of the cBN particles.
  • The average layer thickness of the TiN layer is not particularly limited in the present invention. However, it is preferable that the layer thickness of the TiN layer is set to 1-100 nm.
  • If the average diameter of the TiN layer were less than 10 nm, the function to suppress formation of Al2O3 irreversibly produced in the vicinity of the cBN particles during sintering is reduced. Thus, the Al2O3 amount is increased and the strength of the interface would be reduced. On the other hand, if the average diameter of the TiN layer exceeded 100 nm, the amount of Al2O3 irreversibly produced in the vicinity of the cBN particles would be reduced. However, in this case, the sintering reaction does not proceed sufficiently in the vicinity of the cBN particles and hardness of the cBN sintered material is reduced. Thus, cracks tend to be formed in the interface between the surface of the cBN particle and the TiN layer when it is used as a tool, and chipping and fracturing resistances are reduced.
  • Therefore, the average layer thickness of the TiN layer farmed on the surface of the cBN particles as the outermost layer is set to 10-100 nm.
  • The average layer thickness of the TiN layer is calculated by: obtaining the layer thicknesses at 5 locations from an image in which the cross section of the cBN particle coated by the TiN layer is observed by using TEM; and averaging the values.
  • Total content of Al2O3 formed on the surface of the cBN particles and Al2O3 existing in the binding phase included in the region 50 nm from the surface of the cBN particles in the case where a volume of a region 50 nm from the surface of the cBN particles is defined as 100 volume %:
  • The Al2O3 amount irreversibly formed in the vicinity of the cBN particles can be adjusted by controlling the layer thickness of the TiN layer formed on the cBN particles. If the total amount of this amount and the Al2O3 amount formed on the surface of the cBN particle in advance exceeded 40 volume %, in the case where a volume of a region 50 nm from the surface of the cBN particles is defined as 100 volume %, the cBN holding force by the binding phase would be reduced. In this case, progress of fracturing due to detachment of cBN particles is stimulated. Therefore, the configuration is not preferable. If the total amount were 2 volume % or less, the sintering reaction in the vicinity of the cBN particles would not proceed sufficiently to reduce the hardness of the cBN sintered material. Thus, the total content of Al2O3 is set to 2 volume % or more.
  • In the measurement method of the total content of Al2O3 formed on the surface of the cBN particles and Al2O3 existing in the binding phase included in the region 50 nm from the surface of the cBN particles in the case where a volume of a region 50 nm from the surface of the cBN particles is defined as 100 volume %, it is measured by: observing the cross section of the cBN material in the viewing field of 200×200 nm by TEM; extracting parts of: Al>5 atomic %; and O>5 atomic %, measured by elemental mapping in TEM; binarizing the overlapped parts; and obtaining an image in which the overlapped regions are indicated in black. The total Al2O3 amount is obtained by: calculating the area ratio corresponding to the black region (the Al2O3-existing region), in which existence of Al and O overlaps in the image analysis in the region 50 nm from the surface of the cBN particle; and defining the ratio as the total content ratio (volume %) of Al2O3 formed on the surface of the cBN particle and Al2O3 existing in the binding phase.
  • The cBN tool of the present invention is explained in detail based on Examples below.
  • Examples
  • Producing cBN Particles as Raw Material Powder:
  • Process (I):
  • A thin-filmed Al2O3 layer was formed using the cBN particles with the average grain size of 0.5-8 μm as the substrates by ALD method.
  • More specifically, the thin-filmed Al2O3 layer was formed on the surface of the cBN particle by: inserting cBN particles with the average grain size of 0.5-8 μm in the furnace; increasing temperature in the furnace to 350° C.; and repeating a cycle of: (1) Ar+Al(CH3)3 gas introducing process; (2) Ar gas purging process; (3) Ar+H2O gas introducing process; and (4) Ar gas purging process, using Al(CH3)3 gas, which was a precursor of Al, as the film deposition gas and H2O gas as the reaction gas in accordance with the intended layer thicknesses indicated in Table 1 (1-10 nm).
  • Process (II):
  • Next, a TiN layer was deposited on the Al2O3 layer formed on the surface of the cBN particle similarly by ALD method.
  • In order to form the TiN layer on the Al2O3 layer by ALD method, cBN particles were inserted in the furnace, and the temperature in the furnace was increased to 400° C. Then, a cycle of: (1) Ar+TiCl4 gas introducing process; (2) Ar gas purging process; (3) Ar+NH3 gas introducing process; and (4) Ar gas purging process, was repeated using TiCl4 gas and NH3 gas as raw material gases until the thickness of the TiN layer reached to the intended layer thickness (10-100 nm) to obtain the TiN layer with the intended layer thickness.
  • Process (III):
  • Next, the cBN particles 1-15 in which the surfaces of the cBN particles were exposed in the rift parts were produced by: blending the cBN particles, which the thin-filmed Al2O3 layer produced in the process (II) was formed on their surfaces and the TiN layer was further formed above the Al2O3 layer, and cemented carbide balls (diameter of 1 mm) so that their weight ratio became 1:10-1:20; inserting them in a container made of cemented carbide; performing the ball mill mixing in the condition of: the ball mill revolution of 50 rpm; and the mixing time of 0.25-3.0 hours, after adding an organic solvent to form the partial rifts in the Al2O3 layer.
  • In regard to the average layer thickness of the Al2O3 layer after the ball mill mixing and the average rift formation ratio in Table 1, values obtained based on the above-described calculation methods are shown. In the methods, the values were obtained from the sectional images obtained by TEM after producing the cBN sintered materials as described in detail above.
  • When the cBN particles, which were coated by Al2O3 layer obtained as explained above and subjected to the ball mill treatment after formation of the TiN layer on their outer layers, were observed by using TEM, it was confirmed that the rifts were formed partially in the Al2O3 layer.
  • TABLE 1
    Al2O3 layer Al2O3 within 50 binding phase
    cBN thickness Average rift nm range composition of sintered
    No. (volume %) (nm) formation ratio (volume %) material
    1 60 1 0.04 2 TiN, TiB2, AlN, Al2O3
    2 60 2.1 0.18 5 TiN, TiB2, AlN, Al2O3, WC
    3 60 4 0.20 12 TiN, TiB2, AlN, Al2O3
    4 60 4.2 0.18 14 TiN, TiCN, TiC, TiB2, AlN,
    Al2O3, WC
    5 60 6 0.20 50 TiN, TiCN, TiC, TiB2, AlN,
    Al2O3, WC
    6 60 5 0.10 40 TiN, TiB2, AlN, Al2O3
    7 60 5.1 0.20 15 TiN, TiB2, AlN, Al2O3, WC
    8 60 6.1 0.04 11 TiN, TiB2, AlN, Al2O3
    9 60 8 0.02 15 TiN, TiB2, AlN, Al2O3
    10 60 7.7 0.18 24 TiN, TiCN, TiC, TiB2, AlN,
    Al2O3, WC
    11 60 10 0.12 19 TiN, TiB2, AlN, Al2O3
    12 60 7.9 0.12 58 TiN, TiB2, AlN, Al2O3
    13 70 5 0.04 23 TiN, TiB2, AlN, Al2O3
    14 50 3.4 0.06 45 TiN, TiB2, AlN, Al2O3
    15 80 3 0.18 18 TiN, TiB2, AlN, Al2O3
  • Producing the cBN Sintered Material and the Insert:
  • Disc plates of the cBN sintered materials were obtained as explained below. As raw material powders, cBN particle powders 1-15 were prepared. In the cBN particle powders 1-15, the partial rift was formed in the Al2O3 layer produced as described above and the surface of the cBN particle was exposed in the rift part. Also, as raw material powders, the TiN powder; the TiC powder; the TiCN powder; the TiAl3 powder; the Al powder; the Al2O3 powder; and the WC powder, each of which had the average grain size within the range of 0.3-0.9 μm, were prepared. Then, some of the raw material powders selected from the above-described raw material powders and the cBN particle powders were blended so that the content ratio of the cBN particle powder was 50-80 volume % in the case where the total amount of the blended raw material powders and the cBN particle powder was defined as 100 volume %. After blending, they were subjected to wet-mixing. Then, after drying, they were subjected to press molding into the dimension of: 50 mm of the diameter; and 1.5 mm of the thickness, at the molding pressure of 1 MPa by a hydraulic press. Then, the molded materials were subjected to the heat treatment in the condition of: vacuum atmosphere of 1 Pa or less of the pressure; 1000° C. of the temperature; and 30 minutes of the retention time to obtain the pre-sintered materials by removing the volatile components and the adsorbed components on the surfaces of the powders. Each of the pre-sintered materials was stacked with a separately prepared supporting piece made of WC-based cemented carbide and inserted into a standard ultra-high pressure sintering apparatus in the above-described stacked state. The supporting piece had the composition of: 8 mass % of Co; and the WC balance, and the dimension of: 50 mm of the diameter; and 2 mm of the thickness. Finally, the stacked materials were subjected to the ultra-high pressure and temperature sintering in the normal condition of: 5.5 GPa of the pressure; 1400° C. of the temperature; and 30 minutes of the retention time. By following the above explained procedures, the Disc plates of the cBN sintered materials were obtained. The cBN tools 1-15 of the present invention with the insert shape of ISO standard CNGA120408 were produced as explained below. The cBN sintered disc plates were sawed by a wire-electrical discharge machine into a predetermined dimension. Then, each of the sawn pieces was soldered on the soldering portion (corner part) of the main body of the insert made of WC-based cemented carbide, which had the composition of: 5 mass % of Co; 5 mass % of TaC; and the WC balance and the insert had the insert shape of ISO standard CNGA120408, using the Ag-base soldering material with the composition of: 26% of Cu; 5% of Ti; and the Ag balance. After soldering, the pieces were subjected to polishing on: the top and bottom surfaces; and outer periphery, and to the honing treatment. By following the above explained procedures, the cBN tools 1-15 of the present invention were obtained.
  • TABLE 2
    Al2O3 layer Al2O3 within 50 binding phase
    cBN thickness Average rift nm range composition of sintered
    No. (volume %) (nm) formation ratio (volume %) material
    16 60 2 0.00 6 TiN, TiB2, AlN, Al2O3
    17 60 1.8 0.40 6 TiN, TiB2, AlN, Al2O3
    18 60 8.5 0.30 14 TiN, TiB2, AlN, Al2O3
    19 60 10.8 0.00 35 TiN, TiB2, AlN, Al2O3
    20 60 12 0.30 45 TiN, TiCN, TiC, TiB2, AlN,
    Al2O3
    21 60 15 0.10 13 TiN, TiCN, TiC, TiB2, AlN,
    Al2O3
    22 60 0 8 TiN, TiB2, AlN, Al2O3
    23 60 19 0.18 60 TiN, TiB2, AlN, Al2O3
    24 60 22 0.25 23 TiN, TiB2, AlN, Al2O3, WC
    25 60 60 0.00 100 TiN, TiB2, AlN, Al2O3
    26 60 0 1 TiN, TiB2, AlN, Al2O3
    27 45 5 0.12 20 TiN, TiB2, AlN, Al2O3
    28 85 2 0.10 12 TiN, TiB2, AlN, Al2O3
  • For comparison, cBN particle powders, on which Al2O3 layers were not formed; and cBN particle powders, on which Al2O3 layers with average layer thickness that were out of range in the configuration of the present invention were formed, were prepared as raw material powders. In addition, for the cBN particle powders in which the TiN layer was not formed on the Al2O3 layer, the cBN particle powders 16-28 as shown in Table 2 were prepared. Also, as raw material powders, the TiN powder; the TiC powder; the TiCN powder; the TiAl3 powder; the Al powder; the Al2O3 powder; and the WC powder, each of which had the average grain size within the range of 0.3-0.9 μm, were prepared. Then, some of the raw material powders selected from the above-described raw material powders and the cBN particle powders were blended so that the content ratio of the cBN particle powder was 45-82 volume % in the case where the total amount of the blended raw material powders and the eBN particle powder was defined as 100 volume %. After the blending, the blended materials were subjected to the same treatment operations (drying, molding, heat treating, pre-sintering, sintering, and the like) as in the case of Example of the present invention to produce the cBN tools 16-28 of Comparative Example.
  • The compositions of the sintered materials in Tables 1 and 2 were determined by elemental mapping of TEM and XRD (X-ray Diffraction) on the cross sections of the cBN sintered materials.
  • Using the above-described cBN tools 1-15 of the present invention and the cutting tools 16-28 of Comparative Example, cutting test was performed in the cutting condition indicated below.
  • Work: φ100 mm round rod with 4 slits along the axis direction made of case hardened steel SCM415 (HRC=58-62)
  • Cutting speed: 150 m/min
  • Cutting depth: 0.2 mm
  • Feed rate: 0.1 mm/rev
  • Cutting oil: dry
  • The maximum cutting length was set to 2.5 km. Presence or absence of chipping and fracturing at the cutting edge was checked every 0.1 km of the cutting length.
  • Results in the cutting test are shown in Tables 3 and 4.
  • TABLE 3
    No. Status of cutting edge in 2.5 km cutting
    1 No chipping, No fracturing
    2 No chipping, No fracturing
    3 No chipping, No fracturing
    4 No chipping, No fracturing
    5 Chipping at cutting length of 2.4 km
    6 No chipping, No fracturing
    7 No chipping, No fracturing
    8 No chipping, No fracturing
    9 No chipping, No fracturing
    10 No chipping, No fracturing
    11 No chipping, No fracturing
    12 Chipping at cutting length of 2.4 km
    13 No chipping, No fracturing
    14 Chipping at cutting length of 2.3 km
    15 No chipping, No fracturing
  • TABLE 4
    No. Status of cutting edge in 2.5 km cutting
    16 Fracturing at the cutting length of 1.1 km
    17 Fracturing at the cutting length of 1.7 km
    18 Chipping at cutting length of 1.6 km
    19 Chipping at cutting length of 2.4 km
    20 Fracturing at the cutting length of 1.6 km
    21 Chipping at cutting length of 1.5 km
    22 Fracturing at the cutting length of 0.5 km
    23 Fracturing at the cutting length of 1.4 km
    24 Chipping at cutting length of 1.8 km
    25 Fracturing at the cutting length of 1.2 km
    26 Fracturing at the cutting length of 0.4 km
    27 Chipping at cutting length of 1.6 km
    28 Fracturing at the cutting length of 0.7 km
  • Based on the results shown in Tables 1-4, the following was demonstrated. In the cutting tools 1-15 of the present invention, the cBN hard phase was uniformly distributed in the sintered material and homogeneous tool characteristics were obtained by performing sintering using the cBN particles on which the Al2O3 layer with the rift on the surface of the cBN particles partially and the TiN layer were formed. In these cBN cutting tools 1-15 of the present invention, the adhesiveness strength of the interface between the cBN hard phase and the binding phase was improved. Furthermore, the residual tensile stress formed in the Al2O3 layer, in which the rifts were formed partially, was significantly reduced compared to one without the rift. Because of the reasons described above, chipping and fracturing were suppressed in the cBN cutting tools 1-15 of the present invention even if they were used in the intermittent cutting work of high hardened steel, in which intermittent and impacting load was applied to them. Furthermore, in the cBN tools 1-15 of the present invention, formation of Al2O3 in the vicinity of the cBN particles was suppressed since sintering was performed in the state where the cBN particles were coated by the TiN layers. Because of these results, the cBN cutting tools 1-15 of the present invention exhibited the excellent cutting performance for the long term usage.
  • Contrary to that, in the cBN tools 16-28 of Comparative Example, chipping and fracturing resistances were poor and their tool lives were short lived, since the Al2O3 layer with the rift or the TiN layer were not formed on the surface of the cBN particles, or the average layer thickness of the Al2O3 layer was out of the range defined in the configuration of the present invention.
  • INDUSTRIAL APPLICABILITY
  • The cBN tool of the present invention has excellent chipping and fracturing resistances and is applicable even in the cutting condition other than the intermittent cutting of the high hardened steel. Thus, the cBN tool of the present invention can contribute sufficiently to improvement of the performance of the cutting work apparatus; and labor-saving, energy-saving, and reduction of the cost of cutting work.

Claims (11)

1. A cutting tool made of a cubic boron nitride-based sintered material comprising:
a cutting tool body that is a cubic boron nitride-based material containing at least cubic boron nitride particles as a hard phase component, wherein
each of the cubic boron nitride particles comprises an Al2O3 layer with an average layer thickness of 1.0-10 nm on a surface of the each of the cubic boron nitride particles, a rift with an average rift formation ratio of 0.02-0.20 being formed in the Al2O3 layer, and
the cubic boron nitride-based sintered material comprises a binding phase containing at least one selected from a group consisting of: titanium nitride; titanium carbide; titanium carbonitride; titanium boride; aluminum nitride; aluminum oxide; inevitable products; and mutual solid solution thereof, around the each of cubic boron nitride particles.
2. The cutting tool made of a cubic boron nitride-based material according to claim 1, wherein
in a case where a volume of a region 50 nm from the surface of the each of the cubic boron nitride particles toward an outside of the each of the cubic boron nitride particles is defined as 100 volume %, a total content of Al2O3 formed on the surface of the each of the cubic boron nitride particles and Al2O3 existing in the binding phase included in the region is 2-40 volume %.
3. The cutting tool made of a cubic boron nitride-based material according to claim 1, wherein an average grain size of the cubic boron nitride particles is 0.5-8 μm.
4. The cutting tool made of a cubic boron nitride-based material according to claim 1, wherein a TiN layer with an average layer thickness of 10-100 nm is formed on the Al2O3 layer.
5. The cutting tool made of a cubic boron nitride-based material according to claim 1, wherein
the rift formed in the Al2O3 layer is formed by: inserting the cubic boron nitride particles, on each of which the Al2O3 layer is formed, in a container made of cemented carbide; and performing ball-mill mixing in a presence of cemented carbide balls.
6. The cutting tool made of a cubic boron nitride-based material according to claim 1, wherein a content ratio of the cubic boron nitride particles relative to an entire cubic boron nitride-based sintered material is 50-80 volume %.
7. A method of producing a cutting tool made of a cubic boron nitride-based material, the method comprising the steps of:
forming an Al2O3 layer with an average layer thickness of 1.0-10 nm on each of cubic boron nitride particles;
introducing a rift with an average rift formation ratio of 0.02-0.20 in the Al2O3 layer; and
sintering a mixed powder containing the cubic boron nitride particles coated with the Al2O3 layer in which the rift is introduced to obtain the cubic boron nitride-based material.
8. The method of producing a cutting tool made of a cubic boron nitride-based sintered material according to claim 7, wherein the step of introducing a rift comprises the steps of:
inserting the cubic boron nitride particles in a container made of cemented carbide; and
performing ball-mill mixing in a presence of cemented carbide balls.
9. The method of producing a cutting tool made of a cubic boron nitride-based sintered material according to claim 7, wherein a formation of the Al2O3 layer in the step of forming an Al2O3 layer is performed by an ALD method.
10. The method of producing a cutting tool made of a cubic boron nitride-based sintered material according to claim 7, the method further comprises the step of forming a TiN layer on the cubic boron nitride particles after the step of forming an Al2O3 layer.
11. The method of producing a cutting tool made of a cubic boron nitride-based material according to claim 7, wherein a content ratio of the cubic boron nitride particles relative to an entire cubic boron nitride-based sintered material is 50-80 volume %.
US14/400,980 2012-05-16 2013-03-26 Cutting tool made of cubic boron nitride-based sintered material Active 2033-11-23 US9662711B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2012112492 2012-05-16
JP2012-112492 2012-05-16
JP2013-060098 2013-03-22
JP2013060098A JP5305056B1 (en) 2012-05-16 2013-03-22 Cutting tool made of cubic boron nitride based sintered body
PCT/JP2013/058778 WO2013172095A1 (en) 2012-05-16 2013-03-26 Cutting tool made from cubic boron nitride-based sintered material

Publications (2)

Publication Number Publication Date
US20150132076A1 true US20150132076A1 (en) 2015-05-14
US9662711B2 US9662711B2 (en) 2017-05-30

Family

ID=49529453

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/400,980 Active 2033-11-23 US9662711B2 (en) 2012-05-16 2013-03-26 Cutting tool made of cubic boron nitride-based sintered material

Country Status (6)

Country Link
US (1) US9662711B2 (en)
EP (1) EP2851148B1 (en)
JP (1) JP5305056B1 (en)
CN (1) CN104284747B (en)
IN (1) IN2014KN02644A (en)
WO (1) WO2013172095A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10259751B2 (en) * 2014-06-18 2019-04-16 Hohai University Tungsten carbide-cubic boron nitride composite material and preparation method thereof
CN111848180A (en) * 2019-10-22 2020-10-30 齐鲁工业大学 Alumina-coated cubic boron nitride composite powder and preparation method thereof
US11427512B2 (en) 2020-03-24 2022-08-30 Showa Denko K.K. Cubic boron nitride sintered body and manufacturing method thereof, and tool

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201219642D0 (en) * 2012-11-01 2012-12-12 Norwegian Univ Sci & Tech Ntnu Thermal spraying of ceramic materials
JP5988164B2 (en) * 2013-01-31 2016-09-07 三菱マテリアル株式会社 Cutting tool made of cubic boron nitride based sintered material
JP6343888B2 (en) * 2013-08-27 2018-06-20 三菱マテリアル株式会社 Cubic boron nitride sintered body cutting tool with excellent fracture resistance
JP6637664B2 (en) * 2014-03-28 2020-01-29 三菱マテリアル株式会社 Cubic boron nitride sintered compact cutting tool
JP6575858B2 (en) * 2015-07-30 2019-09-18 三菱マテリアル株式会社 Cubic boron nitride sintered body cutting tool with excellent fracture resistance
AU2017254220B2 (en) * 2016-04-20 2021-12-23 Mitsubishi Materials Corporation Drilling tip, drilling tool, and method of manufacturing drilling tip
US11130713B2 (en) 2016-05-23 2021-09-28 Mitsubishi Materials Corporation Cubic boron nitride sintered material cutting tool
GB201614008D0 (en) 2016-08-16 2016-09-28 Seram Coatings As Thermal spraying of ceramic materials
JP6731185B2 (en) * 2016-09-30 2020-07-29 三菱マテリアル株式会社 Cubic Boron Nitride Based Sintered Body and Cubic Boron Nitride Based Sintered Cutting Tool
US20220250990A1 (en) * 2019-07-18 2022-08-11 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered material and cutting tool
EP3868732B1 (en) * 2020-02-19 2023-06-28 Adico Coated cubic boron nitride particle and method of manufacturing same
WO2021260775A1 (en) * 2020-06-22 2021-12-30 住友電工ハードメタル株式会社 Cutting tool
US11958782B2 (en) 2022-03-08 2024-04-16 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered material
CN115194159B (en) * 2022-07-20 2024-02-13 中原内配集团股份有限公司 Double-layer cubic boron nitride cutter and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139609A (en) * 1977-05-12 1978-12-06 Sumitomo Electric Industries Sintered high hardness object for tool making and method of its manufacture
AU512633B2 (en) 1976-12-21 1980-10-23 Sumitomo Electric Industries, Ltd. Sintered tool
JPS5377811A (en) 1976-12-21 1978-07-10 Sumitomo Electric Ind Ltd Sintered material for tools of high hardness and its preparation
JP2858600B2 (en) * 1991-08-21 1999-02-17 三菱重工業株式会社 Sintered materials for tools
JPH0881271A (en) * 1994-09-14 1996-03-26 Hitachi Tool Eng Ltd Sintered compact of ultrahigh-pressure phase having three-phase structure and its production
JPH08239277A (en) * 1995-03-03 1996-09-17 Ngk Spark Plug Co Ltd Cubic boron nitride composite ceramic tool and production thereof
JP4787387B2 (en) * 1998-07-22 2011-10-05 住友電工ハードメタル株式会社 Cutting tool with excellent crater resistance and strength and method for producing the same
JP4787388B2 (en) * 1998-07-22 2011-10-05 住友電工ハードメタル株式会社 Cutting tool with excellent fracture resistance and manufacturing method thereof
SE532047C2 (en) * 2008-03-07 2009-10-13 Seco Tools Ab Oxide coated cutting tool cutter for chip separating machining of cast iron
US8814965B2 (en) * 2009-11-11 2014-08-26 Tungaloy Corporation Cubic boron nitride sintered body and coated cubic boron nitride sintered body and preparation processes thereof
JP5594568B2 (en) * 2010-03-10 2014-09-24 三菱マテリアル株式会社 Cutting tool made of cubic boron nitride based ultra high pressure sintered material and cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP2011212832A (en) * 2010-03-19 2011-10-27 Mitsubishi Materials Corp Cutting tool made of cubic boron nitride group ultrahigh pressure sintered material
JP5126702B1 (en) * 2011-09-12 2013-01-23 三菱マテリアル株式会社 Cutting tool made of cubic boron nitride based sintered material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10259751B2 (en) * 2014-06-18 2019-04-16 Hohai University Tungsten carbide-cubic boron nitride composite material and preparation method thereof
CN111848180A (en) * 2019-10-22 2020-10-30 齐鲁工业大学 Alumina-coated cubic boron nitride composite powder and preparation method thereof
US11427512B2 (en) 2020-03-24 2022-08-30 Showa Denko K.K. Cubic boron nitride sintered body and manufacturing method thereof, and tool

Also Published As

Publication number Publication date
EP2851148B1 (en) 2020-10-14
EP2851148A1 (en) 2015-03-25
CN104284747A (en) 2015-01-14
JP2013255986A (en) 2013-12-26
IN2014KN02644A (en) 2015-05-08
WO2013172095A1 (en) 2013-11-21
US9662711B2 (en) 2017-05-30
CN104284747B (en) 2016-08-17
EP2851148A4 (en) 2015-12-23
JP5305056B1 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
US9662711B2 (en) Cutting tool made of cubic boron nitride-based sintered material
US9499441B2 (en) Cutting tool made of cubic boron nitride-based sintered material
JP6634647B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP5614460B2 (en) cBN sintered body tool and coated cBN sintered body tool
JP5664795B2 (en) Cubic boron nitride sintered body
JP6082650B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
US10391561B2 (en) Cubic boron nitride-based sintered material and cutting tool made of cubic boron nitride-based sintered material
EP2980046A1 (en) Method for manufacturing cubic boron nitride sintered body, and cubic boron nitride sintered body
JP6343888B2 (en) Cubic boron nitride sintered body cutting tool with excellent fracture resistance
JP7047503B2 (en) A tool having a cubic boron nitride sintered body and a cubic boron nitride sintered body.
JP5892423B2 (en) CBN sintered compact cutting tool with excellent toughness
JP2011212832A (en) Cutting tool made of cubic boron nitride group ultrahigh pressure sintered material
JP6928218B2 (en) Surface-coated cubic boron nitride sintered body tool
JP5594568B2 (en) Cutting tool made of cubic boron nitride based ultra high pressure sintered material and cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP2015182219A (en) Cutting tool made of cubic crystal boron nitride based ultrahigh pressure sintered material
JP6098882B2 (en) Cubic boron nitride sintered body cutting tool with excellent fracture resistance
JP2020011870A (en) Cubic boron nitride sintered compact and tool including cubic boron nitride sintered compact
JP2012086298A (en) Cutting tool made of surface-coated wc-based cemented carbide exhibiting excellent defect resistance in high-speed intermittent cutting of steel
CN105693253B (en) Cubic boron nitride sintered body cutting tool having excellent chipping resistance
JP4770284B2 (en) Cutting tips made of surface-coated cubic boron nitride-based ultra-high pressure sintered material with excellent wear resistance in high-speed intermittent cutting of high-hardness steel
US20230072845A1 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JP5613888B2 (en) Surface-coated WC-based cemented carbide insert
JP4770387B2 (en) Surface coated carbide cutting tool with excellent wear resistance due to hard coating layer in high speed heavy cutting
US20240067574A1 (en) Cubic boron nitride sintered body

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI MATERIALS CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MIYASHITA, YOSUKE;YANO, MASAHIRO;OHASHI, TADAKAZU;REEL/FRAME:034579/0766

Effective date: 20141203

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4