JP2011212832A - Cutting tool made of cubic boron nitride group ultrahigh pressure sintered material - Google Patents

Cutting tool made of cubic boron nitride group ultrahigh pressure sintered material Download PDF

Info

Publication number
JP2011212832A
JP2011212832A JP2011000888A JP2011000888A JP2011212832A JP 2011212832 A JP2011212832 A JP 2011212832A JP 2011000888 A JP2011000888 A JP 2011000888A JP 2011000888 A JP2011000888 A JP 2011000888A JP 2011212832 A JP2011212832 A JP 2011212832A
Authority
JP
Japan
Prior art keywords
cbn
boron nitride
cubic boron
cutting tool
sintered material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011000888A
Other languages
Japanese (ja)
Inventor
Itsuro Tajima
逸郎 田嶋
Chuichi Ohashi
忠一 大橋
Yasusuke Miyashita
庸介 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011000888A priority Critical patent/JP2011212832A/en
Publication of JP2011212832A publication Critical patent/JP2011212832A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cutting tool made of a cubic boron nitride group ultrahigh pressure sintered material with an excellent chipping resistance and excellent wear resistance.SOLUTION: This cutting tool is made of a cubic boron nitride group ultrahigh pressure sintered material with a cBN grain formed by mixing a raw material powder for forming a hard phase, in which a surface of a cBN grain is constantly and continuously covered with composite nitride of Ti and Al with an average membrane thickness of 100-700 nm, with a raw material powder for forming a bonding phase and sintering them as a hard phase, and TiN as a main bonding phase. An intermediate adhesion layer made of a mixed composition of TiBand AlN is constantly and continuously formed on the interface between the hard phase including the cBN grains and the bonding phase. Preferably, complex nitride of Ti and Al covered on the surface of the cBN grain has a gradient composition structure.

Description

本発明は、耐チッピング性と耐摩耗性にすぐれる立方晶窒化ほう素(以下、cBNで示す)基超高圧焼結材料製切削工具(以下、cBN工具という)に関する。   The present invention relates to a cubic boron nitride (hereinafter referred to as cBN) -based super high pressure sintered material cutting tool (hereinafter referred to as a cBN tool) having excellent chipping resistance and wear resistance.

従来、鋼、鋳鉄等の鉄系被削材の切削加工には、被削材との親和性の低い工具材料としてcBN基超高圧焼結材料(以下、cBN焼結体という)を用いたcBN工具が知られており、例えば、特許文献1に示すように、硬質相としてのcBNを20〜80体積%含有し、残部が、周期律表の4a、5a、6aの炭化物、窒化物、ほう化物等を結合相としたcBN工具が知られている。   Conventionally, cBN based ultra-high pressure sintered material (hereinafter referred to as a cBN sintered body) is used as a tool material having a low affinity with the work material for cutting of steel-based work materials such as steel and cast iron. A tool is known. For example, as shown in Patent Document 1, 20 to 80% by volume of cBN as a hard phase is contained, and the balance is carbides, nitrides, nitrides of 4a, 5a, and 6a in the periodic table. A cBN tool using a chemical compound or the like as a binder phase is known.

また、特許文献2に示されるものでは、cBN焼結材における結合相を二次元的に連続形成し、結合相厚みの平均値を1.5μm以下とするとともに、その標準偏差を0.9以下とし、結合相厚みのバラツキを改善することにより、cBN工具の硬度と強度の両立を図り、耐摩耗性と耐欠損性を向上させることが提案されており、特に、結合相厚みのバラツキを改善する一つの方策として、原料粉末をボールミル中で粉砕混合するに先立って、cBN粒子に対して、予め、主たる結合相成分である窒化チタン(以下、TiNで示す)をRFスパッタリングにより被覆しておくことが提案されている。   Moreover, in what is shown by patent document 2, while forming the binder phase in a cBN sintered material two-dimensionally continuously, the average value of binder phase thickness shall be 1.5 micrometers or less, and the standard deviation is 0.9 or less. It has been proposed to improve both the hardness and strength of cBN tools and improve the wear resistance and fracture resistance by improving the variation of the binder phase thickness. As one measure for this, prior to pulverizing and mixing the raw material powder in a ball mill, titanium nitride (hereinafter referred to as TiN), which is the main binder phase component, is coated on the cBN particles in advance by RF sputtering. It has been proposed.

特開昭53−77811号公報JP-A-53-77811 特開2008−208028号公報JP 2008-208028 A

従来から、cBN工具についての硬度と強度の両立を図るために、結合相の熱処理、粉末の粉砕方法、混合方法等について種々の提案がされているが、例えば、従来のcBN工具を高硬度鋼の切削加工に用いた場合には、耐チッピング性と耐摩耗性が未だ不十分であり、工具寿命が短命であるという問題点があった。   Conventionally, in order to achieve both hardness and strength for cBN tools, various proposals have been made on heat treatment of binder phase, powder pulverization method, mixing method, etc. For example, conventional cBN tools are made of high-hardness steel. When used in the above cutting process, there is a problem that the chipping resistance and the wear resistance are still insufficient and the tool life is short.

そこで、本発明は、硬度と強度を相兼ね備え、高硬度鋼の切削加工においてもすぐれた耐チッピング性、耐摩耗性を発揮し、長期の使用にわたりすぐれた切削性能を発揮するcBN工具を提供することを目的とする。   Therefore, the present invention provides a cBN tool which has both hardness and strength, exhibits excellent chipping resistance and wear resistance even in the cutting of high hardness steel, and exhibits excellent cutting performance over a long period of use. For the purpose.

本発明者等は、上記課題を解決するため、cBN工具の硬質相成分であるcBN粒子に着目し、鋭意研究したところ、次のような知見を得た。   In order to solve the above-mentioned problems, the present inventors have paid attention to the cBN particles that are the hard phase components of the cBN tool and conducted intensive research. As a result, the following knowledge was obtained.

従来のcBN工具においては、cBN粒子表面に予め結合相(バインダー)形成成分であるTiNをRFスパッタリングで被覆しておき、その後、これをボールミルで混合すること(例えば、前記特許文献2)が知られているが、このような方法では、cBN粒子の凝集が生じやすく、そのため、cBN焼結体中における硬質相の不均一分散が生じ、均質な工具特性が得られないため、高硬度鋼の切削加工に用いた場合には、チッピングの発生が避けられなかった。   In conventional cBN tools, it is known that TiN, which is a binder phase (binder) forming component, is coated on the cBN particle surface in advance by RF sputtering, and then mixed with a ball mill (for example, Patent Document 2). However, in such a method, the cBN particles are likely to be aggregated, and therefore, the hard phase in the cBN sintered body is non-uniformly dispersed and uniform tool characteristics cannot be obtained. When used for cutting, the occurrence of chipping was inevitable.

そこで、本発明者らは、cBN粒子表面へのTiN被覆を、ALD(Atomic Layer Deposition。真空チャンバ内の基材に、原料化合物の分子を一層ごと反応させ、Arや窒素によるパージを繰り返し行うことで成膜する方法で、CVD法の一種である。)法により行ったところ、cBN粒子の表面がTiN膜で均一に切れ間なく被覆され、cBN粒子相互の凝集が生じなくなることがわかった。   Therefore, the present inventors apply TiN coating on the surface of cBN particles to ALD (Atomic Layer Deposition) by reacting the molecules of the raw material compound one layer at a time with the substrate in the vacuum chamber, and repeatedly purging with Ar or nitrogen. As a result, it was found that the surface of the cBN particles was uniformly covered with the TiN film without any breaks, and the agglomeration of the cBN particles did not occur.

そこで、TiNで均一に切れ間なくコーティングされた上記cBN粒子を硬質相形成用原料粉末とし、また、TiN粉末を結合相形成原料粉末とし、これら原料粉末を混合し焼結することにより、cBN焼結体を作製したところ、cBN粒子の分散性の問題はほぼ解消されることが分かった。   Accordingly, the cBN particles uniformly coated with TiN are used as the raw material powder for forming the hard phase, and the TiN powder is used as the raw material powder for forming the binder phase, and these raw material powders are mixed and sintered, thereby cBN sintering. When the body was produced, it was found that the problem of dispersibility of cBN particles was almost solved.

しかし、上記cBN焼結体により切削工具を作製し、高硬度鋼の切削に供したところ、硬質相であるcBN粒子と主たる結合相を形成するTiNとの界面密着強度が十分でないため、長期の使用においては、依然として、チッピング発生により短寿命であることが分かった。   However, when a cutting tool was prepared from the cBN sintered body and subjected to cutting of high-hardness steel, the interfacial adhesion strength between cBN particles, which are a hard phase, and TiN, which forms the main binder phase, is not sufficient. In use, it was still found to be short-lived due to chipping.

そこで、本発明者らは、cBN粒子からなる硬質相と、主としてTiNからなる結合相の、両相の界面密着強度の向上についてさらに研究を進めたところ、cBN粒子の表面を、チタンとアルミニウムの複合窒化物(以下、TiAlNで示す)で均一に切れ間なく被覆し、また、より好ましくは、cBN粒子の表面近傍でAlの含有比率が高く、cBN粒子表面から遠ざかるにしたがってTiの含有比率が高くなる傾斜組成構造を形成するように、cBN粒子の表面を、TiAlNで均一に切れ間なく被覆し、これを硬質相形成用原料粉末として用い、これを、TiNを主たる結合相とする結合相形成用原料粉末と混合し焼結してcBN焼結体を作製し、さらに、cBN工具を作製したところ、cBN粒子は焼結体中で均一に分散分布し、その結果、cBN工具全体にわたって均質な工具特性が得られるようになった。   Therefore, the present inventors have further researched on the improvement of the interfacial adhesion strength between the hard phase composed of cBN particles and the binder phase composed mainly of TiN, and as a result, the surface of the cBN particles was made of titanium and aluminum. Cover uniformly with a composite nitride (hereinafter referred to as TiAlN), more preferably, the Al content ratio is high near the surface of the cBN particles, and the Ti content ratio increases as the distance from the cBN particle surface increases. In order to form a gradient composition structure, the surface of cBN particles is uniformly coated with TiAlN, and this is used as a raw material powder for forming a hard phase, which is used for forming a binder phase using TiN as a main binder phase. When mixed with raw material powder and sintered to prepare a cBN sintered body and further a cBN tool, cBN particles were uniformly dispersed and distributed in the sintered body. Result, became homogeneous tool characteristics across the cBN tool is obtained.

さらに加えるに、cBN粒子の表面に被覆形成されたTiAlNは、焼結時の高熱により、硬質相のcBN及び結合相のTiNと相互拡散・界面反応を起こし、その結果、cBN硬質相とTiN結合相との界面には、ほう化チタン(以下、TiBで示す)と窒化アルミニウム(以下、AlNで示す)の混合組織からなる中間密着層(界面反応層)が形成されが、この中間密着層は、硬質相のcBN及び結合相のTiNのいずれとも密着強度が高いため、結果として、cBN工具におけるcBN硬質相とTiN結合相との界面密着強度が格段に向上し、すぐれた耐チッピング性、耐摩耗性を発揮するようになることを見出したのである。 In addition, TiAlN coated on the surface of cBN particles causes interdiffusion and interfacial reaction with cBN of the hard phase and TiN of the binder phase due to high heat during sintering. As a result, the cBN hard phase and TiN bonds are bonded. An intermediate adhesion layer (interface reaction layer) composed of a mixed structure of titanium boride (hereinafter referred to as TiB 2 ) and aluminum nitride (hereinafter referred to as AlN) is formed at the interface with the phase. Has high adhesion strength with both hard phase cBN and binder phase TiN, and as a result, the interfacial adhesion strength between cBN hard phase and TiN binder phase in cBN tools is significantly improved, and excellent chipping resistance, They found out that they would exhibit wear resistance.

本発明は、上記知見に基づいてなされたものであって、
「(1) 立方晶窒化ほう素粒子の表面が、100〜700nmの平均膜厚のチタンとアルミニウムの複合窒化物で均一に切れ間なく被覆された硬質相形成用原料粉末を、結合相形成用原料粉末と混合し焼結することにより形成される立方晶窒化ほう素粒子を硬質相とし窒化チタンを主たる結合相とする立方晶窒化ほう素基超高圧焼結材料からなる切削工具であって、
上記立方晶窒化ほう素粒子からなる硬質相と上記結合相との界面には、ほう化チタンと窒化アルミニウムの混合組織からなる中間密着層が均一に切れ間なく形成されていることを特徴とする立方晶窒化ほう素基超高圧焼結材料製切削工具。
The present invention has been made based on the above findings,
“(1) A raw material powder for forming a hard phase, in which the surface of cubic boron nitride particles is uniformly and seamlessly coated with a composite nitride of titanium and aluminum having an average film thickness of 100 to 700 nm, is used. A cutting tool comprising a cubic boron nitride-based ultrahigh pressure sintered material having cubic boron nitride particles formed by mixing and sintering with powder as a hard phase and titanium nitride as the main binder phase,
A cubic contact layer comprising a mixed structure of titanium boride and aluminum nitride is uniformly and seamlessly formed at the interface between the hard phase comprising the cubic boron nitride particles and the binder phase. Cutting tool made of crystal boron nitride based ultra-high pressure sintered material.

(2) 立方晶窒化ほう素粒子の表面を均一に切れ間なく被覆する上記チタンとアルミニウムの複合窒化物は、立方晶窒化ほう素粒子の表面近傍でアルミニウムの含有比率が高く、立方晶窒化ほう素粒子表面から遠ざかった領域においてはチタンの含有比率が高くなる傾斜組成構造を備えていることを特徴とする前記(1)に記載の立方晶窒化ほう素基超高圧焼結材料製切削工具。   (2) The above-mentioned composite nitride of titanium and aluminum that uniformly covers the surface of cubic boron nitride particles has a high aluminum content in the vicinity of the surface of cubic boron nitride particles, and cubic boron nitride. The cutting tool made of a cubic boron nitride-based ultrahigh pressure sintered material according to (1), wherein the cutting composition is provided with a gradient composition structure in which the content ratio of titanium is high in a region far from the particle surface.

(3) 立方晶窒化ほう素粒子の表面を均一に切れ間なく被覆する上記チタンとアルミニウムの複合窒化物は、100〜500nmの平均膜厚の範囲において、上記組成傾斜構造を備えていることを特徴とする前記(2)に記載の立方晶窒化ほう素基超高圧焼結材料製切削工具。
(4) 上記立方晶窒化ほう素基超高圧焼結材料に占める立方晶窒化ほう素の含有割合は、75〜85体積%であることを特徴とする前記(1)乃至(3)に記載の立方晶窒化ほう素基超高圧焼結材料製切削工具。」
を特徴とするものである。
(3) The composite nitride of titanium and aluminum that uniformly covers the surface of cubic boron nitride particles uniformly has a composition gradient structure in the range of an average film thickness of 100 to 500 nm. The cubic boron nitride-based ultrahigh pressure sintered material-made cutting tool according to (2) above.
(4) The content ratio of cubic boron nitride in the cubic boron nitride-based ultrahigh pressure sintered material is 75 to 85% by volume, as described in (1) to (3) above Cutting tool made of cubic boron nitride based ultra high pressure sintered material. "
It is characterized by.

本発明について、以下に説明する。   The present invention will be described below.

本発明のcBN工具を作製するためのcBN原料粉末としては、cBN粒子表面をTiAlNで被覆したcBN粒子を使用するが、cBN粒子を、TiAlNで均一に切れ間なく被覆するための成膜法としては、例えば、ALD(Atomic Layer Deposition)法が好適である。ALD法によれば、cBN粒子表面に、一層ずつTiAlNを成膜させていくことができるので、cBN粒子の凝集を引き起こすことなく、均一な膜厚でピンホールフリーの(均一に切れ間なく)TiAlNを被覆形成することができる。   As the cBN raw material powder for producing the cBN tool of the present invention, cBN particles whose surface is coated with TiAlN are used. However, as a film forming method for uniformly coating cBN particles with TiAlN, For example, an ALD (Atomic Layer Deposition) method is suitable. According to the ALD method, TiAlN can be deposited on the surface of the cBN particles one by one, so that the pinhole-free (uniformly uninterrupted) TiAlN with a uniform thickness without causing aggregation of the cBN particles. Can be coated.

例えば、ALD法により、cBN粒子表面にTiAlNを被覆する場合、流動層炉内にcBN粒子を装入し、例えば、2Torrの減圧下にて、200℃程度に昇温し、Tiの先駆体として、TDMATテトラキスジメチルアミノチタンとAlの先駆体として、DMAH−EPPジメチルアルミニウムハイドライト-エチルピぺリジン及び反応ガスとして、NHアンモニアガスを流入、Arガスパージ工程、NHガス流入工程、Arガスパージ工程を1サイクルとして、このサイクルを繰り返し、例えば、50サイクル(10時間)かけて成膜することにより、膜厚100nmのTiAlNをcBN粒子表面に被覆形成することができ、このTiAlN膜は、TEM(透過型電子顕微鏡)観察によれば、均一な膜厚であってかつピンホールは存在しないことから、均一で切れ間はない被覆が形成されているといえる。 For example, when TiAlN is coated on the surface of cBN particles by the ALD method, the cBN particles are charged into a fluidized bed furnace and heated to about 200 ° C. under a reduced pressure of 2 Torr, for example, as a Ti precursor. As a precursor of TDMAT tetrakisdimethylaminotitanium and Al, DMAH-EPP dimethylaluminum hydride-ethylpiperidine and as a reaction gas, NH 3 ammonia gas is introduced, Ar gas purge step, NH 3 gas inflow step, Ar gas purge step By repeating this cycle as one cycle, for example, by forming a film over 50 cycles (10 hours), a TiAlN film with a film thickness of 100 nm can be formed on the surface of the cBN particle. Type electron microscope), according to the observation It can be said that by the absence, uniform rift not coated is formed.

また、cBN粒子表面に、cBN粒子の表面近傍でAlの含有比率が高く、cBN粒子表面から遠ざかるにしたがってTiの含有比率が高くなる傾斜組成構造を有するTiAlNを被覆する場合には、Tiの先駆体としてのTDMATとAlの先駆体としてDMAH−EPPの配合について、成膜時間あるいはサイクル毎に、次第にTDMATの配合割合が多くなるようにすることによって、傾斜組成構造のTiAlNを被覆形成することができる。   In addition, when the surface of the cBN particle is coated with TiAlN having a gradient composition structure in which the Al content is high near the surface of the cBN particle and the Ti content increases as the distance from the cBN particle surface increases, As for the composition of DMAH-EPP as a precursor of TDMAT and Al as a body, it is possible to form TiAlN having a gradient composition structure by gradually increasing the blending ratio of TDMAT every film formation time or cycle. it can.

なお、cBN粒子表面のTiAlN膜の被覆の均一性については、TEM(透過型電子顕微鏡)観察を行うことによって確認することができる。
図1に、cBN粒子表面がTiAlNで均一に切れ間なく被覆されたcBN粒子の混合状態を示す概略模式図を示す。
Note that the uniformity of the coating of the TiAlN film on the surface of the cBN particles can be confirmed by TEM (transmission electron microscope) observation.
FIG. 1 is a schematic diagram showing a mixed state of cBN particles in which the surface of cBN particles is uniformly coated with TiAlN.

ここで、上記cBN粒子表面に被覆されたTiAlN膜に切れ間があると、cBNがTiNを主とする結合相と直接接触してしまうため、十分な焼結反応が進行しなくなってしまうので、TiAlN膜は均一で切れ間はなく形成されていることが必要である。このような観点からも、cBN粒子表面にTiAlNを被覆する成膜法としては、ALD法が好適である。   Here, if there is a gap in the TiAlN film coated on the surface of the cBN particles, cBN will be in direct contact with the binder phase mainly composed of TiN, so that a sufficient sintering reaction will not proceed. The film needs to be formed uniformly and without gaps. From this point of view, the ALD method is suitable as the film forming method for coating the surface of cBN particles with TiAlN.

また、cBN粒子表面に被覆形成されるTiAlNの平均膜厚は、一般的には、100〜700nmとすることができる。TiAlNの平均膜厚が100nm未満であると、ALD法で成膜しても均一な成膜が難しく、ピンホールの形成あるいはcBN粒子相互の凝集の恐れがある。一方、TiAlNの平均膜厚が700nmを超える場合には、cBN粒子周辺のAl成分濃度が必然的に高くなるが、焼結を行う際に、多量のAlの存在によりcBNとの反応が促進され、TiB、AlN等の反応生成物が過剰に生成するため中間密着層が脆化し、結果として、cBN焼結体の強度を低下させることになる。 Moreover, the average film thickness of TiAlN formed on the surface of the cBN particles can generally be set to 100 to 700 nm. If the average film thickness of TiAlN is less than 100 nm, uniform film formation is difficult even if film formation is performed by the ALD method, and pinhole formation or cBN particle aggregation may occur. On the other hand, when the average film thickness of TiAlN exceeds 700 nm, the Al component concentration around the cBN particles inevitably increases, but the reaction with cBN is promoted by the presence of a large amount of Al during sintering. Further, reaction products such as TiB 2 and AlN are generated excessively, so that the intermediate adhesion layer becomes brittle, and as a result, the strength of the cBN sintered body is reduced.

したがって、cBN粒子表面に被覆形成するTiAlNの平均膜厚は、100〜700nmとすることができる。   Therefore, the average film thickness of TiAlN formed on the cBN particle surface can be 100 to 700 nm.

ただし、cBN粒子表面に傾斜組成構造のTiAlNを被覆形成する場合には、その平均膜厚は100〜500nmの範囲内とすることが望ましい。これは、平均膜厚が500nmを超えるようになると、結果的にAl成分が過多となり、cBNとの反応が促進され、TiB、AlN等の反応生成物が過剰に生成し、中間密着層が脆化することにより、cBN焼結体の強度を低下させることになるからである。 However, when TiAlN having a gradient composition structure is formed on the surface of cBN particles, the average film thickness is preferably in the range of 100 to 500 nm. This is because when the average film thickness exceeds 500 nm, the Al component becomes excessive as a result, the reaction with cBN is promoted, reaction products such as TiB 2 and AlN are generated excessively, and the intermediate adhesion layer is formed. This is because the strength of the cBN sintered body is lowered by embrittlement.

なお、傾斜組成構造のTiAlNを
組成式:(Ti1−XAl)N (但し、Xは原子比)
で表わした場合、cBN粒子の表面近傍(cBN粒子表面から100(nm)の範囲内)の領域でのAlの含有比率Xは、X=0.6〜0.8が好ましく、一方、cBN粒子の表面から遠ざかった領域(平均膜厚をd(nm)とした場合、cBN粒子表面から100(nm)を超え、d(nm)まで離れた領域)におけるXは、X=0.2〜0.4が好ましい。
Note that TiAlN having a gradient composition structure is represented by the composition formula: (Ti 1-X Al X ) N (where X is an atomic ratio).
In the region near the surface of the cBN particle (within 100 (nm) from the cBN particle surface), the Al content ratio X is preferably X = 0.6 to 0.8, while the cBN particle X in a region away from the surface of the material (region where the average film thickness is d (nm), a region exceeding 100 nm from the cBN particle surface and away to d (nm)) is X = 0.2-0. .4 is preferred.

したがって、cBN粒子表面に傾斜組成構造のTiAlNを被覆形成する場合には、平均膜厚は100〜500nmの範囲内とすることが望ましい。   Therefore, when TiAlN having a gradient composition structure is formed on the cBN particle surface, the average film thickness is preferably in the range of 100 to 500 nm.

また、この発明では、cBN焼結体に占めるcBNの含有割合は、75〜85体積%とするが、cBNの含有割合が75体積%未満では、cBN工具として使用した場合に、所望の耐欠損性が得られなくなるからであり、一方、cBNの含有割合が85体積%を超えると、結合相の含有割合が相対的に減少し、焼結性が低下するようになることから、cBN焼結体に占めるcBNの含有割合は、75〜85体積%と定める。   Moreover, in this invention, the content ratio of cBN in the cBN sintered body is 75 to 85% by volume. However, when the content ratio of cBN is less than 75% by volume, when the cBN tool is used as a cBN tool, a desired fracture resistance is obtained. On the other hand, if the content ratio of cBN exceeds 85% by volume, the content ratio of the binder phase is relatively reduced, and the sinterability is lowered. The content ratio of cBN in the body is defined as 75 to 85% by volume.

cBN工具の作製にあたり、上記で作製したTiAlN膜で被覆されたcBN粒子を硬質相形成用原料粉末として用い、さらに、主として結合相(バインダー)を構成する成分であるTiN粉末を少なくとも結合相形成用原料粉末として用い、両原料粉末を所定配合組成になるように配合し、通常の超高圧高温条件下で焼結することにより、cBN焼結体を作製するが、cBN粒子表面がTiAlN膜で被覆されていることによって、cBN粒子相互の凝集を防止することができるので、cBN焼結体全体にわたり、cBNが均一に分散したcBN焼結体を作製することができる。   In producing a cBN tool, the cBN particles coated with the TiAlN film produced above are used as raw material powder for forming a hard phase, and at least TiN powder, which is a component mainly constituting a binder phase (binder), is used for forming a binder phase. Used as raw material powder, both raw material powders are blended so as to have a predetermined composition, and sintered under normal ultra-high pressure and high temperature conditions to produce a cBN sintered body, but the cBN particle surface is coated with a TiAlN film As a result, aggregation of the cBN particles can be prevented, so that a cBN sintered body in which cBN is uniformly dispersed over the entire cBN sintered body can be produced.

なお、cBN焼結体中の他の構成成分としては、cBN焼結体に通常含有される成分、即ち、周期律表4a、5a、6a族元素の窒化物、炭化物、硼化物、酸化物ならびにこれらの固溶体からなる群の中から選択された少なくとも一種以上、が含有されることを何ら妨げるものではない。   In addition, as other constituents in the cBN sintered body, components normally contained in the cBN sintered body, that is, nitrides, carbides, borides, oxides of the periodic table 4a, 5a, and 6a group elements, and It does not prevent at least one or more selected from the group consisting of these solid solutions from being contained.

図2に、cBN焼結体における存在するcBN粒子、cBN粒子表面に形成された中間密着層(TiBとAlNとの混合組織)、これらの周囲に存在する主としてTiNからなる結合相の組織・構造を示す概略模式図である。 FIG. 2 shows the structure of the cBN particles existing in the cBN sintered body, the intermediate adhesion layer (mixed structure of TiB 2 and AlN) formed on the surface of the cBN particles, and the structure of the binder phase mainly composed of TiN around these. It is a schematic diagram which shows a structure.

焼結を行う前にcBN粒子表面に被覆形成されていたTiAlN(図1参照)は、焼結工程を経ることによって、cBN(硬質相)およびTiN(結合相)と拡散・反応し、TiBとAlNとの混合組織(図2参照)を生成する。 TiAlN (see FIG. 1) that has been coated on the surface of the cBN particles prior to sintering diffuses and reacts with cBN (hard phase) and TiN (binding phase) through the sintering process, and TiB 2 And a mixed structure of AlN (see FIG. 2).

生成したTiBとAlNとの混合組織からなる中間密着層は、cBN粒子表面に被覆形成したTiAlNと同様に、cBN硬質相表面の周りに均一に切れ間なく形成される。 The intermediate adhesion layer composed of the mixed structure of TiB 2 and AlN formed is uniformly and continuously formed around the surface of the cBN hard phase in the same manner as TiAlN coated on the surface of the cBN particles.

中間密着層の平均層厚は、cBN粒子に被覆形成したTiAlNの平均膜厚、傾斜組成構造形成の有無および焼結条件等によって影響を受けるが、cBN粒子表面に被覆形成されるTiAlNの平均膜厚が100〜700nmの範囲内である場合には、凡そ、40〜300nmの平均層厚の中間密着層が形成され、また、傾斜組成構造のTiAlNが被覆形成される場合には、TiAlNの平均膜厚が100〜500nmの範囲内であり、かつ、約30〜150nmの平均層厚の中間密着層が形成される。   The average layer thickness of the intermediate adhesion layer is affected by the average film thickness of TiAlN coated on the cBN particles, the presence or absence of the gradient composition structure, the sintering conditions, etc., but the average film of TiAlN formed on the cBN particle surface When the thickness is in the range of 100 to 700 nm, an intermediate adhesion layer having an average layer thickness of about 40 to 300 nm is formed, and when TiAlN having a gradient composition structure is formed, the average of TiAlN is formed. An intermediate adhesion layer having a thickness in the range of 100 to 500 nm and an average layer thickness of about 30 to 150 nm is formed.

既に述べたように、cBN粒子表面のTiAlNの平均膜厚が100nm未満(中間密着層の平均膜厚では40nm未満に相当)であると、ピンホール形成、cBN粒子凝着の恐れがあり、その結果、cBN焼結体としては、焼結反応速度の低下、cBN硬質相の不均一な分布分散が生じるため、均質な焼結体特性が得られず、これをcBN工具として用いた場合には、耐チッピング性の劣るものとなる。   As already described, if the average film thickness of TiAlN on the surface of cBN particles is less than 100 nm (corresponding to the average film thickness of the intermediate adhesion layer is less than 40 nm), pinhole formation and cBN particle adhesion may occur. As a result, as the cBN sintered body, the sintering reaction rate is reduced and the cBN hard phase is non-uniformly distributed and distributed, so that uniform sintered body characteristics cannot be obtained. When this is used as a cBN tool, The chipping resistance is inferior.

一方、TiAlNの平均膜厚が700nmを超える場合(中間密着層の膜厚では300nmを超えるに相当)には、cBN粒子周辺のAl成分濃度が高いために、焼結時に過剰のTiB、AlNが生成し中間密着層が脆化するため、cBN焼結体の強度低下を招くこととなる。 On the other hand, when the average film thickness of TiAlN exceeds 700 nm (corresponding to the film thickness of the intermediate adhesion layer exceeding 300 nm), since the Al component concentration around the cBN particles is high, excessive TiB 2 , AlN during sintering And the intermediate adhesion layer becomes brittle, which leads to a decrease in strength of the cBN sintered body.

特に、傾斜組成構造のTiAlNを形成し、その平均膜厚が500nmを超える場合(中間密着層の膜厚では180nmを超えるに相当)には、上記と同様、cBN焼結体の強度低下を招くこととなる。   In particular, when TiAlN having a gradient composition structure is formed and the average film thickness exceeds 500 nm (corresponding to the film thickness of the intermediate adhesion layer exceeding 180 nm), the strength of the cBN sintered body is reduced as described above. It will be.

したがって、中間密着層の平均層厚は、40〜300nmの範囲内とすることが望ましく、特に、傾斜組成構造のTiAlNを形成した場合には、中間密着層の平均層厚は、30〜150nmの範囲内とすることが望ましい。   Therefore, it is desirable that the average layer thickness of the intermediate adhesion layer be in the range of 40 to 300 nm. In particular, when TiAlN having a gradient composition structure is formed, the average layer thickness of the intermediate adhesion layer is 30 to 150 nm. It is desirable to be within the range.

なお、cBN焼結体のcBN硬質相とTiN結合相との間に、TiAlNが焼結時に分解・反応し、その結果として、TiBとAlNとの混合組織からなる中間密着層が形成されていることは、焼結体をワイヤーカットで切断した後、イオン研磨を用いて表面を平滑化し、その断面をSEM(走査型電子顕微鏡)とEPMA(電子線マイクロアナライザー)を用いて観察することによって確認することができ、また、AES(オージェ電子分光分析)によっても確認することができる。 In addition, TiAlN decomposes and reacts during sintering between the cBN hard phase and the TiN bonded phase of the cBN sintered body, and as a result, an intermediate adhesion layer composed of a mixed structure of TiB 2 and AlN is formed. After cutting the sintered body by wire cutting, the surface is smoothed using ion polishing, and the cross section is observed using SEM (scanning electron microscope) and EPMA (electron beam microanalyzer). It can also be confirmed by AES (Auger electron spectroscopy).

そして、観察された組織状態は、図2の概略模式図に示される通りである。   The observed tissue state is as shown in the schematic schematic diagram of FIG.

上記のとおり、本発明のcBN工具においては、cBN粒子の表面をTiAlNで均一に切れ間なく被覆したものを硬質相形成用原料粉末として用い、これを、TiNを主たる結合相とする結合相形成用原料粉末と混合し焼結して、cBN硬質相とTiN結合相との界面にTiBとAlNの混合組織からなる中間密着層を形成していることにより、cBN硬質相が焼結体中で均一に分散分布し、均質な工具特性が得られるばかりか、中間密着層によるcBN硬質相とTiN結合相との界面密着強度改善によって、すぐれた耐チッピング性、耐摩耗性を発揮するのである。 As described above, in the cBN tool of the present invention, the surface of cBN particles uniformly coated with TiAlN is used as a raw material powder for forming a hard phase, and this is used for forming a bonded phase having TiN as a main bonded phase. By mixing and sintering with the raw material powder, an intermediate adhesion layer composed of a mixed structure of TiB 2 and AlN is formed at the interface between the cBN hard phase and the TiN bonded phase, so that the cBN hard phase is in the sintered body. In addition to being uniformly distributed and obtaining uniform tool characteristics, the intermediate adhesion layer exhibits excellent chipping resistance and wear resistance by improving the interfacial adhesion strength between the cBN hard phase and the TiN bonded phase.

cBN粒子表面がTiAlNで均一に切れ間なく被覆された焼結前の本発明のcBN粒子の混合状態を示す概略模式図である。It is a schematic diagram which shows the mixed state of the cBN particle | grains of this invention before sintering by which the surface of cBN particle | grains was uniformly coat | covered with TiAlN, without sintering. 焼結後の本発明のcBN焼結体に存在するcBN粒子、cBN粒子表面に形成された中間密着層(TiBとAlNとの混合組織)、これらの周囲に存在する主としてTiNからなる結合相の組織・構造を示す概略模式図である。The cBN particles present in the sintered cBN body of the present invention after sintering, the intermediate adhesion layer (mixed structure of TiB 2 and AlN) formed on the surface of the cBN particles, and the binder phase mainly composed of TiN present around these It is a schematic diagram showing the organization and structure.

以下に、本発明のcBN工具を実施例に基づいて説明する。   Below, the cBN tool of this invention is demonstrated based on an Example.

TiAlNで被覆されたcBN粒子の作製:
平均粒径3μmのcBN粒子を基材とし、これに、表1に示される条件のALD(Atomic Layer Deposition)法により、表1に示される膜厚のTiAlN膜を均一にかつ切れ間なく形成する。
Preparation of cBN particles coated with TiAlN:
A cBN particle having an average particle diameter of 3 μm is used as a base material, and a TiAlN film having a film thickness shown in Table 1 is uniformly and continuously formed thereon by an ALD (Atomic Layer Deposition) method under the conditions shown in Table 1.

なお、上記で得られたTiAlNで被覆されたcBN粒子について、TEM(透過型電子顕微鏡)を用いて観察したところ、cBN粒子表面に均一にかつ切れ間なく被覆されていることが確認された。   When the cBN particles coated with TiAlN obtained above were observed using a TEM (transmission electron microscope), it was confirmed that the cBN particles were uniformly and continuously coated on the surface.

Figure 2011212832
原料粉末として、上記で作製したTiAlNを被覆形成したcBN粒子粉末と、いずれも0.3〜0.9μmの範囲内の平均粒径を有するTiN粉末、TiC粉末、TiCN粉末、TiAl粉末、Al粉末、WC粉末を用意し、これら原料粉末を表2に示される配合組成に配合し、ボールミルで48時間アセトンを用いて湿式混合し、乾燥した後、油圧プレスにて成形圧1MPaで直径:50mm×厚さ:1.5mmの寸法にプレス成形し、ついでこの成形体を、圧力:1Paの真空雰囲気中、1000〜1300℃の範囲内の所定温度に30〜60分間保持して熱処理し、揮発成分および粉末表面への吸着成分を除去して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:5GPa、温度:1500℃、保持時間:30分間の条件で超高圧高温焼結し、cBN焼結材を得る。cBN焼結材円板を、ワイヤー放電加工機で所定寸法に切断し、Co:5質量%、TaC:5質量%、WC:残りの組成およびISO規格CNGA120408のインサート形状をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、上下面および外周研磨、ホーニング処理を施すことによりISO規格CNGA120408のインサート形状をもつ表2に示す配合組成の本発明cBN工具1〜10を製造した。
Figure 2011212832
As the raw material powder, cBN particle powder formed by coating TiAlN prepared above, and TiN powder, TiC powder, TiCN powder, TiAl 3 powder, Al having an average particle diameter in the range of 0.3 to 0.9 μm. 2 O 3 powder and WC powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, and are wet-mixed with acetone for 48 hours in a ball mill, dried, and then molded at a pressure of 1 MPa with a hydraulic press. Diameter: 50 mm × thickness: 1.5 mm, press-molded, and then the molded body is heat-treated by holding it at a predetermined temperature in the range of 1000-1300 ° C. for 30-60 minutes in a vacuum atmosphere at a pressure of 1 Pa. Then, volatile components and components adsorbed on the powder surface were removed to obtain a pre-sintered body for cutting edge pieces, and this pre-sintered body was prepared separately, Co: 8% by mass, WC: remaining composition, and In a state of being overlapped with a WC-based cemented carbide support piece having a diameter: 50 mm × thickness: 2 mm, the WC-based cemented carbide support piece is placed in a normal ultra-high pressure sintering apparatus, and pressure: 5 GPa, temperature which is a normal condition. Super high pressure and high temperature sintering under conditions of 1500 ° C. and holding time: 30 minutes to obtain a cBN sintered material. cBN sintered material disc was cut to a predetermined size with a wire electric discharge machine, Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and WC-based carbide with ISO CNCN120408 insert shape The brazing part (corner part) of the alloy insert body is brazed using a brazing material of an Ag alloy having a composition of Cu: 26%, Ti: 5%, and Ag: the rest, and the upper and lower surfaces. Further, the present invention cBN tools 1 to 10 having the composition shown in Table 2 having the insert shape of ISO standard CNGA120408 were manufactured by performing peripheral polishing and honing treatment.

なお、本発明cBN工具1〜10のcBN焼結材について、ワイヤーカットで切断した後、イオン研磨を用いて表面を平滑化し、その断面をSEM(走査型電子顕微鏡)とEPMA(電子線マイクロアナライザー)を用いて観察したところ、いずれも、図2の模式図に示すように、cBN硬質相とTiN結合相との界面にTiBとAlNの混合組織からなる中間密着層が均一にかつ切れ間なく生成していることが確認された。 In addition, about the cBN sintered material of this invention cBN tool 1-10, after cut | disconnecting by a wire cut, the surface is smooth | blunted using ion polishing, The cross section is SEM (scanning electron microscope) and EPMA (electron beam microanalyzer). 2), as shown in the schematic diagram of FIG. 2, the intermediate adhesion layer composed of a mixed structure of TiB 2 and AlN is uniformly and seamlessly formed at the interface between the cBN hard phase and the TiN bonded phase. It was confirmed that it was generated.

比較のため、原料粉末として、TiAlNを被覆形成していない平均粒径3μmのcBN粒子粉末と、いずれも0.3〜0.9μmの範囲内の平均粒径を有するTiN粉末、TiC粉末、TiCN粉末、TiAl粉末、Al粉末、WC粉末を用意し、これら原料粉末を表3に示される配合組成に配合し上記本発明cBN工具1〜10と同様な方法で、ISO規格CNGA120408のインサート形状をもつ表3に示す比較例cBN工具11〜15を製造した。 For comparison, as the raw material powder, cBN particle powder having an average particle diameter of 3 μm not coated with TiAlN, and TiN powder, TiC powder, and TiCN each having an average particle diameter in the range of 0.3 to 0.9 μm. Powder, TiAl 3 powder, Al 2 O 3 powder, and WC powder are prepared, and these raw material powders are blended in the blending composition shown in Table 3, and in the same manner as the above-described cBN tool 1-10 of the present invention, ISO standard CNGA120408 Comparative example cBN tools 11-15 shown in Table 3 having an insert shape were manufactured.

参考のため、平均粒径3μmのcBN粒子を基材とし、これに、表1に示される条件のALD(Atomic Layer Deposition)法により、cBN粒子表面を平均膜厚50nmのTiNで被覆し、このcBN粒子粉末を、硬質相形成用原料粉末として、本発明cBN工具1〜10と同様な方法で、ISO規格CNGA120408のインサート形状をもつ表3に示す参考例cBN工具16,17を製造した。   For reference, cBN particles having an average particle diameter of 3 μm are used as a base material, and the cBN particle surface is coated with TiN having an average film thickness of 50 nm by an ALD (Atomic Layer Deposition) method under the conditions shown in Table 1. Reference examples cBN tools 16 and 17 shown in Table 3 having an ISO standard CNGA120408 insert shape were produced by using the cBN particle powder as a raw material powder for forming a hard phase in the same manner as the cBN tools 1 to 10 of the present invention.

なお、cBN粒子表面にTiNを成膜したALD条件は、表3の(注)に示す。   The ALD conditions for forming TiN on the cBN particle surface are shown in (Note) in Table 3.

Figure 2011212832
Figure 2011212832

Figure 2011212832
上記で得た本発明cBN工具1〜10、比較例cBN工具11〜15および参考例cBN工具16,17について、ビッカース硬度測定、三点曲げによる抗折力測定を行い、その機械的特性を評価した。
表4に、測定結果を示す。
Figure 2011212832
With respect to the present invention cBN tools 1 to 10, comparative example cBN tools 11 to 15 and reference example cBN tools 16 and 17, the Vickers hardness measurement and the bending strength measurement by three-point bending are performed, and the mechanical properties are evaluated. did.
Table 4 shows the measurement results.

また、上記本発明cBN工具1〜10、参考例cBN工具16,17については、焼結体をワイヤーカットで切断した後、イオン研磨を用いて表面を平滑化し、その断面をSEM(走査型電子顕微鏡)とEPMA(電子線マイクロアナライザー)を用いて観察することにより、cBN硬質相とTiN結合相との界面に形成されている組織の確認を行った。
表4に、組織の観察結果を示す。
Moreover, about the said cBN tool 1-10 of this invention and the reference example cBN tools 16 and 17, after cut | disconnecting a sintered compact by a wire cut, the surface is smooth | blunted using ion polishing and the cross section is SEM (scanning-type electron). The structure formed at the interface between the cBN hard phase and the TiN bonded phase was confirmed by observing with a microscope) and EPMA (electron beam microanalyzer).
Table 4 shows the observation results of the tissue.

また、上記の本発明cBN工具1〜10、比較例cBN工具11〜15および参考例cBN工具16,17について、以下の切削条件で切削加工試験を実施し、逃げ面摩耗量あるいは欠損に至る工具寿命を測定した。
《切削条件》
被削材:JIS・SCr420(硬さ:HRC58〜62)の長手方向に6本のV溝(開き角:60度)付丸棒、
切削速度: 180 m/min、
送り: 0.15 mm/rev、
切込み: 0.25 mm、
切削時間: 30 分
の条件での、クロム鋼の乾式切削加工試験。
In addition, the above cBN tools 1 to 10 of the present invention, the comparative examples cBN tools 11 to 15 and the reference examples cBN tools 16 and 17 are subjected to a cutting test under the following cutting conditions, and the tool leads to the flank wear amount or chipping. Lifespan was measured.
<Cutting conditions>
Work material: Round bar with 6 V grooves (opening angle: 60 degrees) in the longitudinal direction of JIS / SCr420 (hardness: HRC58-62),
Cutting speed: 180 m / min,
Feed: 0.15 mm / rev,
Cutting depth: 0.25 mm,
Cutting time: Dry cutting test of chromium steel under the condition of 30 minutes.

上記切削加工試験の測定結果を表4に示した。   Table 4 shows the measurement results of the cutting test.

Figure 2011212832
表2〜4に示される結果から、本発明cBN工具1〜10は、cBN硬質相とTiN結合相との界面にTiBとAlNの混合組織からなる中間密着層が形成されていることによって、硬度、抗折力が高く機械特性にすぐれるばかりか、耐チッピング性、耐摩耗性にもすぐれている。
Figure 2011212832
From the results shown in Table 2-4, the present invention cBN tools 1 to 10 by an intermediate adhesive layer comprising a interface TiB 2 and AlN mixed structure of the cBN hard phase and a TiN binder phase is formed, Not only has high hardness and bending strength, but also excellent mechanical properties, it also has excellent chipping resistance and wear resistance.

これに対して、比較例cBN工具11〜15は、中間密着層が形成されていないために、硬度、抗折力、耐チッピング性、耐摩耗性の何れも劣るものであり、また、参考例cBN工具16,17は、比較例cBN工具に比べれば、チッピング抑制効果があるものの、本発明cBN工具との比較では、硬度、抗折力、耐チッピング性、耐摩耗性の何れの点でも本発明より劣るものであった。   On the other hand, since the comparative example cBN tools 11 to 15 are not formed with an intermediate adhesion layer, they are inferior in hardness, bending strength, chipping resistance, and wear resistance. Although the cBN tools 16 and 17 have an effect of suppressing chipping as compared with the comparative example cBN tool, the cBN tools 16 and 17 are compared with the cBN tool of the present invention in terms of hardness, bending strength, chipping resistance, and wear resistance. It was inferior to the invention.

TiAlNで被覆されたcBN粒子の作製:
平均粒径3μmのcBN粒子を基材とし、これに、表5に示される条件のALD(Atomic Layer Deposition)法により、表5に示される傾斜組成構造および膜厚のTiAlN膜を均一にかつ切れ間なく形成する。
Preparation of cBN particles coated with TiAlN:
Using a cBN particle having an average particle size of 3 μm as a base material, a TiAlN film having a graded composition structure and a film thickness shown in Table 5 is uniformly and slitted by an ALD (Atomic Layer Deposition) method under the conditions shown in Table 5. Form without.

なお、傾斜組成構造は、Tiの先駆体としてのTDMATとAlの先駆体としてDMAH−EPPの配合割合を、成膜時間の経過とともにあるいはサイクル毎に、TDMATの配合割合を次第に高くすることによって、傾斜組成構造のTiAlNを被覆形成した。   The graded composition structure has a composition ratio of TDMAT as a Ti precursor and a composition ratio of DMAH-EPP as an Al precursor by gradually increasing the composition ratio of TDMAT as the film formation time elapses or every cycle. TiAlN having a gradient composition structure was formed by coating.

また、組成傾斜構造に関しては、
cBN粒子の表面近傍(cBN粒子表面から100(nm)の範囲内)の領域でのTiAlN膜の平均組成を、
組成式:(Ti1−αAlα)N (但し、αは原子比)
で表わした場合のαの値と、
cBN粒子の表面から遠ざかった領域(平均膜厚をdとした場合、cBN粒子表面から100(nm)を超え、d(nm)まで離れた領域)におけるTiAlN膜の平均組成を、
組成式:(Ti1−βAlβ)N (但し、βは原子比)
で表わした場合のβの値、
とを求め、これを表5に示した。
Regarding the composition gradient structure,
The average composition of the TiAlN film in the region near the surface of the cBN particles (within a range of 100 (nm) from the surface of the cBN particles)
Composition formula: (Ti 1-α Al α ) N (where α is an atomic ratio)
The value of α in the case of
The average composition of the TiAlN film in a region away from the surface of the cBN particle (in the case where the average film thickness is d, a region exceeding 100 (nm) and away from the cBN particle surface to d (nm)),
Composition formula: (Ti 1-β Al β ) N (where β is an atomic ratio)
Value of β in the case of
This is shown in Table 5.

表5に示すα値、β値について、α>0.5>βであることから、表5に示される条件で作製した硬質相形成用原料粉末は、表5に示される組成傾斜構造を有することは明らかである。   Since α> 0.5> β with respect to the α value and β value shown in Table 5, the raw material powder for forming a hard phase produced under the conditions shown in Table 5 has the composition gradient structure shown in Table 5. It is clear.

なお、αの値とβの値は、EPMA(JEOLJXA−8800RL)による定量分析により測定した。   In addition, the value of (alpha) and the value of (beta) were measured by the quantitative analysis by EPMA (JEOLJXA-8800RL).

また、上記で得られた組成傾斜構造のTiAlNで被覆されたcBN粒子について、TEM(透過型電子顕微鏡)を用いて観察したところ、cBN粒子表面に均一にかつ切れ間なく組成傾斜構造のTiAlNで被覆されていることを確認した。   Further, when the cBN particles coated with TiAlN having the composition gradient structure obtained above were observed using a TEM (transmission electron microscope), the surface of the cBN particles was uniformly and seamlessly coated with TiAlN having the composition gradient structure. Confirmed that it has been.

Figure 2011212832
原料粉末として、上記で作製した組成傾斜構造のTiAlNを被覆形成した表5に示すcBN粒子粉末と、いずれも0.3〜0.9μmの範囲内の平均粒径を有するTiN粉末、TiC粉末、TiCN粉末、TiAl粉末、Al粉末、WC粉末を用意し、これら原料粉末を表6に示される配合組成に配合し、ボールミルで48時間アセトンを用いて湿式混合し、乾燥した後、油圧プレスにて成形圧1MPaで直径:50mm×厚さ:1.5mmの寸法にプレス成形し、ついでこの成形体を、圧力:1Paの真空雰囲気中、1000〜1300℃の範囲内の所定温度に30〜60分間保持して熱処理し、揮発成分および粉末表面への吸着成分を除去して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:5GPa、温度:1500℃、保持時間:30分間の条件で超高圧高温焼結し、cBN焼結材を得る。cBN焼結材円板を、ワイヤー放電加工機で所定寸法に切断し、Co:5質量%、TaC:5質量%、WC:残りの組成およびISO規格CNGA120408のインサート形状をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、上下面および外周研磨、ホーニング処理を施すことによりISO規格CNGA120408のインサート形状をもつ表6に示す配合組成の本発明cBN工具11〜20を製造した。
Figure 2011212832
As the raw material powder, cBN particle powder shown in Table 5 coated with TiAlN having the composition gradient structure prepared above, and TiN powder, TiC powder each having an average particle diameter in the range of 0.3 to 0.9 μm, TiCN powder, TiAl 3 powder, Al 2 O 3 powder, WC powder are prepared, these raw material powders are blended in the blending composition shown in Table 6, wet mixed with acetone for 48 hours in a ball mill, and dried. It was press-molded into a size of diameter: 50 mm × thickness: 1.5 mm at a molding pressure of 1 MPa with a hydraulic press, and this molded body was then brought to a predetermined temperature within a range of 1000 to 1300 ° C. in a vacuum atmosphere of pressure: 1 Pa. Holding for 30 to 60 minutes for heat treatment, removing volatile components and components adsorbed on the powder surface to obtain a pre-sintered body for cutting edge pieces, and this pre-sintered body was prepared separately, Co: 8% by mass, C: Remaining composition and diameter: 50 mm × thickness: 2 mm, and superposed on a WC-based cemented carbide support piece, loaded into a normal ultra high pressure sintering apparatus, under normal conditions The pressure is 5 GPa, the temperature is 1500 ° C., and the holding time is 30 minutes under high pressure and high temperature sintering to obtain a cBN sintered material. cBN sintered material disc was cut to a predetermined size with a wire electric discharge machine, Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and WC-based carbide with ISO CNCN120408 insert shape The brazing part (corner part) of the alloy insert body is brazed using a brazing material of an Ag alloy having a composition of Cu: 26%, Ti: 5%, and Ag: the rest, and the upper and lower surfaces. Further, the present invention cBN tools 11 to 20 having the composition shown in Table 6 and having an insert shape of ISO standard CNGA120408 were manufactured by performing peripheral polishing and honing treatment.

なお、本発明cBN工具11〜20のcBN焼結材について、ワイヤーカットで切断した後、イオン研磨を用いて表面を平滑化し、その断面をSEM(走査型電子顕微鏡)とEPMA(電子線マイクロアナライザー)を用いて観察したところ、いずれも、図2の模式図に示すように、cBN硬質相とTiN結合相との界面にTiBとAlNの混合組織からなる中間密着層が均一にかつ切れ間なく生成していることが確認された。 In addition, about the cBN sintered material of this invention cBN tool 11-20, after cut | disconnecting by a wire cut, the surface is smooth | blunted using ion polishing, The cross section is SEM (scanning electron microscope) and EPMA (electron beam microanalyzer). 2), as shown in the schematic diagram of FIG. 2, the intermediate adhesion layer composed of a mixed structure of TiB 2 and AlN is uniformly and seamlessly formed at the interface between the cBN hard phase and the TiN bonded phase. It was confirmed that it was generated.

Figure 2011212832
上記で得た本発明cBN工具11〜20について、ビッカース硬度測定、三点曲げによる抗折力測定を行い、その機械的特性を評価した。
表7に、測定結果を示す。
Figure 2011212832
About this invention cBN tool 11-20 obtained above, the bending strength measurement by a Vickers hardness measurement and three-point bending was performed, and the mechanical characteristic was evaluated.
Table 7 shows the measurement results.

また、上記本発明cBN工具11〜20については、焼結体をワイヤーカットで切断した後、イオン研磨を用いて表面を平滑化し、その断面をSEM(走査型電子顕微鏡)とEPMA(電子線マイクロアナライザー)を用いて観察することにより、cBN硬質相とTiN結合相との界面に形成されている組織の確認を行った。
表7に、組織の観察結果を示す。
Moreover, about the said cBN tools 11-20 of this invention, after cut | disconnecting a sintered compact by wire cut, the surface is smooth | blunted using ion polishing, The cross section is SEM (scanning electron microscope) and EPMA (electron beam micro). The structure formed at the interface between the cBN hard phase and the TiN bonded phase was confirmed by observing using an analyzer.
Table 7 shows the observation results of the tissue.

また、上記の本発明cBN工具11〜20について、以下の切削条件で切削加工試験を実施し、逃げ面摩耗量あるいは欠損に至る工具寿命を測定した。
《切削条件》
被削材:JIS・SCr420(硬さ:HRC58〜62)の長手方向に6本のV溝(開き角:60度)付丸棒、
切削速度: 180 m/min、
送り: 0.2 mm/rev、
切込み: 0.2 mm、
切削時間: 30 分
の条件での、クロム鋼の乾式切削加工試験。
Moreover, about said cBN tool 11-20 of this invention, the cutting test was implemented on the following cutting conditions, and the tool life which leads to a flank wear amount or a defect | deletion was measured.
<Cutting conditions>
Work material: Round bar with 6 V grooves (opening angle: 60 degrees) in the longitudinal direction of JIS / SCr420 (hardness: HRC58-62),
Cutting speed: 180 m / min,
Feed: 0.2 mm / rev,
Cutting depth: 0.2 mm,
Cutting time: Dry cutting test of chromium steel under the condition of 30 minutes.

上記切削加工試験の測定結果を表7に示した。   Table 7 shows the measurement results of the cutting test.

Figure 2011212832
表7に示される結果から、本発明cBN工具11〜20は、cBN硬質相とTiN結合相との界面に、cBN粒子表面に均一にかつ切れ間なく被覆され組成傾斜構造のTiAlNに由来するTiBとAlNの混合組織からなる中間密着層が形成されていることによって、硬度、抗折力が高く機械特性にすぐれるばかりか、耐チッピング性、耐摩耗性にも一段とすぐれていることが分かる。
Figure 2011212832
From the results shown in Table 7, the cBN tools 11 to 20 of the present invention have TiB 2 derived from TiAlN having a composition gradient structure that is uniformly and seamlessly coated on the cBN particle surface at the interface between the cBN hard phase and the TiN binder phase. It can be seen that the formation of an intermediate adhesion layer composed of a mixed structure of AlN and AlN not only has high hardness and bending strength but also excellent mechanical properties, and also has excellent chipping resistance and wear resistance.

上述のように、この発明のcBN工具は、耐チッピング性、耐摩耗性にすぐれることから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、低コスト化に十分満足に対応できるばかりか、機械的特性にもすぐれていることから、耐摩耗部材、摺動部材等の他分野への幅広い応用も期待できる。   As described above, since the cBN tool of the present invention is excellent in chipping resistance and wear resistance, it is sufficiently satisfied with high performance of the cutting machine, labor saving and energy saving of cutting, and cost reduction. In addition to being able to cope with it, it has excellent mechanical properties, so it can be expected to be widely applied to other fields such as wear-resistant members and sliding members.

Claims (4)

立方晶窒化ほう素粒子の表面が、100〜700nmの平均膜厚のチタンとアルミニウムの複合窒化物で均一に切れ間なく被覆された硬質相形成用原料粉末を、結合相形成用原料粉末と混合し焼結することにより形成される立方晶窒化ほう素粒子を硬質相とし窒化チタンを主たる結合相とする立方晶窒化ほう素基超高圧焼結材料からなる切削工具であって、
上記立方晶窒化ほう素粒子からなる硬質相と上記結合相との界面には、ほう化チタンと窒化アルミニウムの混合組織からなる中間密着層が均一に切れ間なく形成されていることを特徴とする立方晶窒化ほう素基超高圧焼結材料製切削工具。
A raw material powder for forming a hard phase in which the surface of cubic boron nitride particles is uniformly and seamlessly coated with a composite nitride of titanium and aluminum having an average film thickness of 100 to 700 nm is mixed with the raw material powder for forming a binder phase. A cutting tool made of cubic boron nitride-based ultrahigh pressure sintered material having cubic boron nitride particles formed by sintering as a hard phase and titanium nitride as a main binder phase,
A cubic contact layer comprising a mixed structure of titanium boride and aluminum nitride is uniformly and seamlessly formed at the interface between the hard phase comprising the cubic boron nitride particles and the binder phase. Cutting tool made of crystal boron nitride based ultra-high pressure sintered material.
立方晶窒化ほう素粒子の表面を均一に切れ間なく被覆する上記チタンとアルミニウムの複合窒化物は、立方晶窒化ほう素粒子の表面近傍でアルミニウムの含有比率が高く、立方晶窒化ほう素粒子表面から遠ざかった領域においてはチタンの含有比率が高くなる傾斜組成構造を備えていることを特徴とする請求項1に記載の立方晶窒化ほう素基超高圧焼結材料製切削工具。   The titanium and aluminum composite nitride that uniformly covers the surface of cubic boron nitride particles uniformly has a high aluminum content in the vicinity of the surface of cubic boron nitride particles. The cutting tool made of cubic boron nitride-based ultra-high pressure sintered material according to claim 1, wherein the cutting tool is provided with a gradient composition structure in which the content ratio of titanium is high in a region farther away. 立方晶窒化ほう素粒子の表面を均一に切れ間なく被覆する上記チタンとアルミニウムの複合窒化物は、100〜500nmの平均膜厚の範囲において、上記組成傾斜構造を備えていることを特徴とする請求項2に記載の立方晶窒化ほう素基超高圧焼結材料製切削工具。   The composite nitride of titanium and aluminum that uniformly covers the surface of cubic boron nitride particles uniformly has a composition gradient structure in a range of an average film thickness of 100 to 500 nm. Item 3. A cutting tool made of cubic boron nitride-based ultrahigh pressure sintered material according to Item 2. 上記立方晶窒化ほう素基超高圧焼結材料に占める立方晶窒化ほう素の含有割合は、75〜85体積%であることを特徴とする請求項1乃至3のいずれか一項に記載の立方晶窒化ほう素基超高圧焼結材料製切削工具。   4. The cubic according to claim 1, wherein a content ratio of cubic boron nitride in the cubic boron nitride-based ultrahigh pressure sintered material is 75 to 85% by volume. 5. Cutting tool made of crystal boron nitride based ultra-high pressure sintered material.
JP2011000888A 2010-03-19 2011-01-06 Cutting tool made of cubic boron nitride group ultrahigh pressure sintered material Withdrawn JP2011212832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011000888A JP2011212832A (en) 2010-03-19 2011-01-06 Cutting tool made of cubic boron nitride group ultrahigh pressure sintered material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010063832 2010-03-19
JP2010063832 2010-03-19
JP2011000888A JP2011212832A (en) 2010-03-19 2011-01-06 Cutting tool made of cubic boron nitride group ultrahigh pressure sintered material

Publications (1)

Publication Number Publication Date
JP2011212832A true JP2011212832A (en) 2011-10-27

Family

ID=44943109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011000888A Withdrawn JP2011212832A (en) 2010-03-19 2011-01-06 Cutting tool made of cubic boron nitride group ultrahigh pressure sintered material

Country Status (1)

Country Link
JP (1) JP2011212832A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304240A (en) * 2012-03-08 2013-09-18 三菱综合材料株式会社 CBN sintered body cutting tool with excellent toughness
WO2013172095A1 (en) * 2012-05-16 2013-11-21 三菱マテリアル株式会社 Cutting tool made from cubic boron nitride-based sintered material
JP2014147988A (en) * 2013-01-31 2014-08-21 Mitsubishi Materials Corp Cutting tool made of cubic boron nitride-based sintered material
JP2015044259A (en) * 2013-08-27 2015-03-12 三菱マテリアル株式会社 Cubic crystal boron nitride sintered cutting tool excellent in defect resistance
WO2016084929A1 (en) * 2014-11-27 2016-06-02 三菱マテリアル株式会社 Sintered object based on cubic boron nitride, and cutting tool constituted of sintered object based on cubic boron nitride
JP2016108232A (en) * 2014-11-27 2016-06-20 三菱マテリアル株式会社 Cubic boron nitride-based sintered body, and cutting tool made of cubic boron nitride-based sintered body
EP3061738A4 (en) * 2013-10-22 2017-06-14 Tungaloy Corporation Cubic boron nitride sintered body, and coated cubic boron nitride sintered body
WO2017183659A1 (en) * 2016-04-20 2017-10-26 三菱マテリアル株式会社 Excavation chip, excavation tool, and method for manufacturing excavation chip

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184252A (en) * 2012-03-08 2013-09-19 Mitsubishi Materials Corp cBN SINTERED BODY CUTTING TOOL WITH EXCELLENT TOUGHNESS
CN103304240A (en) * 2012-03-08 2013-09-18 三菱综合材料株式会社 CBN sintered body cutting tool with excellent toughness
WO2013172095A1 (en) * 2012-05-16 2013-11-21 三菱マテリアル株式会社 Cutting tool made from cubic boron nitride-based sintered material
JP2013255986A (en) * 2012-05-16 2013-12-26 Mitsubishi Materials Corp Cutting tool of cubic crystal boron nitride based sintered material
CN104284747A (en) * 2012-05-16 2015-01-14 三菱综合材料株式会社 Cutting tool made from cubic boron nitride-based sintered material
CN104284747B (en) * 2012-05-16 2016-08-17 三菱综合材料株式会社 Cubic boron nitride base sintered body cutting tool
US9662711B2 (en) 2012-05-16 2017-05-30 Mitsubishi Materials Corporation Cutting tool made of cubic boron nitride-based sintered material
JP2014147988A (en) * 2013-01-31 2014-08-21 Mitsubishi Materials Corp Cutting tool made of cubic boron nitride-based sintered material
JP2015044259A (en) * 2013-08-27 2015-03-12 三菱マテリアル株式会社 Cubic crystal boron nitride sintered cutting tool excellent in defect resistance
EP3061738A4 (en) * 2013-10-22 2017-06-14 Tungaloy Corporation Cubic boron nitride sintered body, and coated cubic boron nitride sintered body
US9950962B2 (en) 2013-10-22 2018-04-24 Tungaloy Corporation Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JP2016108232A (en) * 2014-11-27 2016-06-20 三菱マテリアル株式会社 Cubic boron nitride-based sintered body, and cutting tool made of cubic boron nitride-based sintered body
WO2016084929A1 (en) * 2014-11-27 2016-06-02 三菱マテリアル株式会社 Sintered object based on cubic boron nitride, and cutting tool constituted of sintered object based on cubic boron nitride
US10391561B2 (en) 2014-11-27 2019-08-27 Mitsubishi Materials Corporation Cubic boron nitride-based sintered material and cutting tool made of cubic boron nitride-based sintered material
WO2017183659A1 (en) * 2016-04-20 2017-10-26 三菱マテリアル株式会社 Excavation chip, excavation tool, and method for manufacturing excavation chip
US10900293B2 (en) 2016-04-20 2021-01-26 Mitsubishi Materials Corporation Drilling tip, drilling tool, and method of manufacturing drilling tip

Similar Documents

Publication Publication Date Title
JP5305056B1 (en) Cutting tool made of cubic boron nitride based sintered body
JP5614460B2 (en) cBN sintered body tool and coated cBN sintered body tool
JP2011212832A (en) Cutting tool made of cubic boron nitride group ultrahigh pressure sintered material
TWI457445B (en) Metal cermet
JP6637664B2 (en) Cubic boron nitride sintered compact cutting tool
JP6439975B2 (en) Cermet manufacturing method
JP6343888B2 (en) Cubic boron nitride sintered body cutting tool with excellent fracture resistance
JPWO2013069657A1 (en) Cubic boron nitride sintered body
JP2014128837A (en) Surface-coated cutting tool with hard coating layer exerting excellent anti-chipping properties
JP2011194511A (en) High toughness cubic boron nitride base ultra-high pressure sintered material and cutting tool
JP5892423B2 (en) CBN sintered compact cutting tool with excellent toughness
JP5594568B2 (en) Cutting tool made of cubic boron nitride based ultra high pressure sintered material and cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP4065666B2 (en) High crater resistance High strength sintered body
JP6575858B2 (en) Cubic boron nitride sintered body cutting tool with excellent fracture resistance
JP2008254159A (en) Surface-coated cutting tool made of cubic boron nitride group ultrahigh-pressure sintered material
JP5407487B2 (en) Surface coated cutting tool
JP2014233767A (en) Cubic boron nitride sinter body cutting tool excellent in crack resistance
JP2010284759A (en) Surface coated cutting tool
JP4770284B2 (en) Cutting tips made of surface-coated cubic boron nitride-based ultra-high pressure sintered material with excellent wear resistance in high-speed intermittent cutting of high-hardness steel
JP5392033B2 (en) Surface coated cutting tool
JP5392046B2 (en) Surface coated cutting tool
JP4235904B2 (en) Surface-coated cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP2005262323A (en) Surface-coated cermet cutting tool with hard coating layer having excellent chipping resistance
WO2016114190A1 (en) Cermet, cutting tool, and method for manufacturing cermet
JP6172519B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance over a long period of time when cutting hardened steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140401