JP2858600B2 - Sintered materials for tools - Google Patents

Sintered materials for tools

Info

Publication number
JP2858600B2
JP2858600B2 JP3209635A JP20963591A JP2858600B2 JP 2858600 B2 JP2858600 B2 JP 2858600B2 JP 3209635 A JP3209635 A JP 3209635A JP 20963591 A JP20963591 A JP 20963591A JP 2858600 B2 JP2858600 B2 JP 2858600B2
Authority
JP
Japan
Prior art keywords
binder phase
volume
cbn
tool
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3209635A
Other languages
Japanese (ja)
Other versions
JPH0551267A (en
Inventor
頴彦 塚本
庸夫 江川
哲雄 市来崎
英雄 角田
福司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3209635A priority Critical patent/JP2858600B2/en
Publication of JPH0551267A publication Critical patent/JPH0551267A/en
Application granted granted Critical
Publication of JP2858600B2 publication Critical patent/JP2858600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、焼入鋼や超硬合金等の
高硬度材料或いは耐熱合金等の切削加工や塑性加工の際
に用いられる工具用焼結材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered material for a tool used for cutting or plastic working of a hard material such as hardened steel or cemented carbide, or a heat-resistant alloy.

【0002】[0002]

【従来の技術】焼入鋼或いはニッケル基耐熱合金やコバ
ルト基耐熱合金等の高硬度材料を加工する場合、一般に
はタングステン等の高融点金属の炭化物粉末を鉄やコバ
ルトやニッケル等の鉄系金属で焼結結合させた超硬合金
が利用されて来た。近年、上述した超硬合金が工具とし
てではなく、加工対象物として採用されつつあることに
加え、加工条件に対する厳しい要求に対応するため、よ
り高性能な工具として焼結ダイヤモンドや立方晶窒化硼
素(以下、CBNと記述する)焼結体等を用いたものが
開発されている。焼結ダイヤモンドは、ダイヤモンドの
粉粒を超硬合金を結合剤として高温高圧下で焼結したも
のであるが、炭素との親和力が強い鋼等の加工には根本
的に不向きである。この点、ダイヤモンドに次ぐ硬度の
CBN焼結体は鉄系金属との反応が少ないことから、ダ
イヤモンド以外のあらゆる加工対象物、特に焼入鋼や超
硬合金等の高硬度材料の他にニッケル基耐熱合金やコバ
ルト基耐熱合金等の加工に有効である。
2. Description of the Related Art When machining hardened steel or a high-hardness material such as a nickel-base heat-resistant alloy or a cobalt-base heat-resistant alloy, a carbide powder of a high melting point metal such as tungsten is generally mixed with an iron-based metal such as iron, cobalt or nickel. Sintered cemented carbide has been used. In recent years, in addition to the above-mentioned cemented carbide being used not as a tool but as an object to be processed, and in order to meet strict requirements for processing conditions, sintered diamond and cubic boron nitride ( A device using a sintered body or the like has been developed. Sintered diamond is obtained by sintering diamond particles at a high temperature and high pressure using a cemented carbide as a binder, but is fundamentally unsuitable for processing steel or the like having a strong affinity for carbon. In this regard, since the CBN sintered body having the second highest hardness after diamond has little reaction with iron-based metals, it is possible to use nickel-based materials in addition to high-hardness materials such as hardened steels and cemented carbides, in addition to all types of workpieces other than diamond. It is effective for processing heat-resistant alloys and cobalt-based heat-resistant alloys.

【0003】従来のCBN焼結体は、CBNの粉粒に結
合相となる炭化チタンや窒化チタン等のセラミックスを
単独で混ぜ、焼結性の改善のため金属成分を添加してこ
れらを高温高圧下で焼結したものがほとんどである。結
合相の材料としては、上記の他に硅素やジルコニウムの
炭化物或いは硅素やジルコニウムの窒化物、更にはアル
ミニウムとチタンとの金属間化合物やアルミニウムとジ
ルコニウムとの金属間化合物等が知られている。
In a conventional CBN sintered body, a ceramic such as titanium carbide or titanium nitride serving as a binder phase is independently mixed with CBN powder particles, and a metal component is added to improve sinterability. Most are sintered below. As the material of the binder phase, in addition to the above materials, carbides of silicon or zirconium, nitrides of silicon or zirconium, intermetallic compounds of aluminum and titanium, and intermetallic compounds of aluminum and zirconium are known.

【0004】[0004]

【発明が解決しようとする課題】従来のCBN焼結体を
用いた工具では、高温領域下で結合相の硬度低下が発生
するため、工具自体が高温となるような加工の際には、
結合相からのCBNの粉粒の脱落が起こり易く、耐摩耗
性の低下を招来するものが多い。又、このような工具を
長時間の自動運転を行う加工機械に組込む場合、突発的
な工具欠損が発生することは、加工機械等の損傷や設備
稼動率の低下等の点で絶対に避けるべきであるが、従来
のこの種のCBN焼結体は高い耐摩耗性を追求するあま
り、靱性が充分なものとは云えなかった。
In the case of a tool using a conventional CBN sintered body, the hardness of the binder phase decreases in a high-temperature region.
CBN powder particles are likely to fall off from the binder phase, often leading to a decrease in wear resistance. In addition, when such a tool is incorporated into a processing machine that performs automatic operation for a long time, the occurrence of sudden tool loss should be absolutely avoided in terms of damage to the processing machine and a decrease in equipment operation rate. However, this type of conventional CBN sintered body pursues high wear resistance, but cannot be said to have sufficient toughness.

【0005】本発明はこのような事情に鑑み、結合相の
CBN等の硬質粉粒の担持能力を向上させ、特に高温時
での耐摩耗性を改善した工具用焼結材料を提供すること
を目的とする。
The present invention has been made in view of the above circumstances and provides a sintered material for a tool which has an improved ability to support hard powder particles such as CBN as a binder phase, and particularly has improved wear resistance at high temperatures. Aim.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に種々検討を重ねた結果、結合相として、窒化チタンを
主成分とすると共に酸化アルミニウムに酸化ジルコニウ
ム、窒化アルミニウム及び炭化硅素の針状結晶を一定比
率で添加した混合粉粒を副成分としたものを用い、さら
に立方晶窒化硼素の粉粒に結合相成分と同一、あるいは
各結合相成分の金属元素の他の化合物の被膜を施すこと
により、結合相のCBN粉粒の担持能力が上昇し、耐摩
耗性、耐欠損性が向上することを知見した。また、結合
相成分と同一、あるいは各結合相成分の金属元素の他の
化合物の被膜を施すことにより、耐摩耗性、耐欠損性が
向上するという効果は、CBN粉粒の他、ダイヤモンド
粉粒などの硬質粉粒と、金属元素の窒化物、硼化物、炭
化物、及びこれらの複合物から選ばれた結合相とからな
る工具用焼結材料において発現することを知見した。本
発明はかかる知見に基づいてなされたものであり、本発
明に係る工具用焼結材料は、立方晶窒化硼素、ダイヤモ
ンドなどの硬質粉粒と、金属元素の窒化物、硼化物、炭
化物、及びこれらの複化物から選ばれた結合相とから
なる工具用焼結材料において、上記硬質粉粒に結合相成
分と同一、あるいは各結合相成分の金属元素の他の化合
物の被膜を施したことを特徴とし、また、立方晶窒化硼
素の粉粒40〜70体積%と、結合相の主成分となる窒
化チタン15〜45体積%と、結合相の副成分となる酸
化アルミニウム、酸化ジルコニウム、窒化アルミニウム
及び炭化硅素の針状結晶との混合粉粒15〜35体積%
とからなる組成を有し、且つ上記結合相の副成分の組成
が酸化アルミニウム50〜65体積%、酸化ジルコニウ
ム1〜5体積%、窒化アルミニウム20〜40体積%及
び炭化硅素の針状結晶5〜15体積%の比率となる工具
用焼結材料であって、立方晶窒化硼素の粉粒に結合相成
分と同一、あるいは各結合相成分の金属元素の他の化合
物の被膜を施したことを特徴とする。
As a result of various studies to achieve the above object, as a binder phase, a needle-like crystal of zirconium oxide, aluminum nitride and silicon carbide is mainly composed of titanium nitride and aluminum oxide. Of cubic boron nitride particles, and a coating of the same compound as the binder phase component or other compounds of the metal element of each binder phase component. It was found that by this, the carrying capacity of CBN powder particles in the binder phase was increased, and the abrasion resistance and fracture resistance were improved. The effect of improving abrasion resistance and chipping resistance by applying a coating of another compound of the same or the same metal element as each of the binding phase components can be achieved by using diamond particles in addition to CBN particles. And the like, and a sintered material for a tool composed of a binder phase selected from nitrides, borides, carbides, and composites of metal elements. The present invention has been made based on such findings, the sintered material for a tool according to the present invention, cubic boron nitride, hard particles such as diamond, nitride of metal element, boride, carbide, and in these tool sintered material consisting of bonded-phase and selected from Fukuka compound, it was subjected to coating of other compounds of metal elements in the binder phase component of the same or each binder phase component, in the hard granular And 40 to 70% by volume of cubic boron nitride powder, 15 to 45% by volume of titanium nitride as a main component of the binder phase, and aluminum oxide and zirconium oxide as subcomponents of the binder phase. 15-35% by volume of powder mixed with needle-like crystals of aluminum nitride and silicon carbide
And the composition of the auxiliary component of the binder phase is 50 to 65% by volume of aluminum oxide, 1 to 5% by volume of zirconium oxide, 20 to 40% by volume of aluminum nitride, and needle-like crystals of silicon carbide 5 to 5%. A sintered material for a tool having a ratio of 15% by volume, characterized in that cubic boron nitride particles are coated with a coating of the same as the binder phase component or other compounds of the metal element of each binder phase component. And

【0007】なお、本発明において、硬質粉粒に施す被
膜は、例えばCVD法で形成すればよい。また、CBN
粉粒に施す被膜は、特にTiNX (x=0.9〜1.1)の
組成が好ましい。
In the present invention, the coating applied to the hard particles may be formed by, for example, a CVD method. Also, CBN
The coating applied to the powder is particularly preferably a composition of TiN x (x = 0.9 to 1.1).

【0008】ここで、本発明を、従来のCBN焼結工具
と比較しつつ説明する。
Here, the present invention will be described in comparison with a conventional CBN sintered tool.

【0009】まず、従来のCBN焼結工具の摩耗状況を
図面を参照しながら説明する。図5(a),(b)は焼
入鋼を切削したときのCBN焼結工具の逃げ面及びすく
い面の摩耗状況を模式的に示すものである。両図に示す
ように、切削過程において、工具刃先部10のCBN粒
11が結合相12から脱落し、脱落したCBN粒11が
被削材13と逃げ面10aとの境界を通過する際に、逃
げ面10aに条痕aが残こされ、この条痕aが逃げ面摩
耗幅(VB )、すなわち耐摩耗性を決めていると考えら
れる。なお、図中、10bはすくい面を示す。そして、
このCBN粒11の脱落は、該CBN粒11を担持する
機能を有する刃先部の結合相12の被削材13に接して
いる部位が摩耗により後退し、外力(切削力、熱応力
等)がCBN粒11を担持する力を越えた段階で、CB
N粒11と結合相12との粒界での剥離、あるいは結合
相12の切損によりCBN粒が刃先部10から脱落する
と考えられる。また、このようなことから、CBN焼結
工具では、CBN粒は切刃として、また、結合相はその
切刃の担持体としての機能を有するものと考えられる。
First, the state of wear of a conventional CBN sintered tool will be described with reference to the drawings. FIGS. 5A and 5B schematically show how the flank and rake face of the CBN sintered tool are worn when cutting hardened steel. As shown in both figures, in the cutting process, when the CBN particles 11 of the tool tip 10 drop off from the bonding phase 12 and the dropped CBN particles 11 pass through the boundary between the work material 13 and the flank 10a, It is considered that a streak a is left on the flank 10a, and the streak a determines the flank wear width (V B ), that is, the wear resistance. In the figure, 10b indicates a rake face. And
The falling off of the CBN grains 11 is caused by abrasion of a portion of the cutting edge portion having a function of supporting the CBN grains 11 in contact with the work material 13 of the bonding phase 12, and external force (cutting force, thermal stress, etc.) is reduced. At the stage where the force for supporting the CBN particles 11 is exceeded, the CB
It is considered that the CBN particles fall off from the cutting edge portion 10 due to the separation between the N particles 11 and the binder phase 12 at the grain boundary or the breakage of the binder phase 12. Further, from such a fact, it is considered that in the CBN sintered tool, the CBN grains have a function as a cutting edge, and the binder phase has a function as a carrier of the cutting edge.

【0010】このような見地から、本発明による工具用
焼結材料でCBN焼結工具を作製した場合のCBN粒と
結合相との機能を考えてみる。まず、切刃としてのCB
N粒は、ダイヤモンドに次ぐ硬さを有し、且つダイヤモ
ンドの欠点とされる鉄族金属との反応性も低いので、高
い耐摩耗性を有することが期待でき、切刃として要求さ
れる機能を充分に満たしていると考えられる。
From such a viewpoint, the function of the CBN grains and the binder phase when a CBN sintered tool is manufactured from the sintered material for a tool according to the present invention will be considered. First, CB as a cutting blade
Since N grains have hardness next to diamond and have low reactivity with iron group metals, which are disadvantages of diamond, they can be expected to have high abrasion resistance. It is considered to be sufficient.

【0011】一方、結合相は、上述した摩耗機構から考
えると、次の4つの特性を有する必要があると考えられ
る。すなわち、結合相の耐摩耗性を高くして摩耗による
刃先の結合相の後退速度を低く抑えるために、 切削時切刃温度における硬度が高いこと、 切削時切刃温度における被削材(鋼,鉄族金属な
ど)との反応性が低いこと、 が要求される。また、CBN粒と結合相との粒界での剥
離による脱落が起こりにくくするために、 CBN粒との間で相互に拡散,反応し、強固に接着
すること、さらに、結合相が焼結体として健全であるた
めに、 焼結性が良好で(低い焼結温度で緻密化する)、強
度、靱性が高いこと、が要求される。
On the other hand, it is considered that the binder phase needs to have the following four characteristics in view of the wear mechanism described above. That is, in order to increase the wear resistance of the binder phase and to suppress the retreat speed of the binder phase at the cutting edge due to wear, the hardness at the cutting edge temperature during cutting is high, and the work material (steel, And low reactivity with iron group metals). Further, in order to make it difficult for the CBN particles and the binder phase to fall off due to the separation at the grain boundary, the CBN particles and the CBN particles diffuse and react with each other, and firmly adhere to each other. In order to be sound, it is required to have good sinterability (densify at low sintering temperature), and high strength and toughness.

【0012】したがって、このような各特性について本
発明に係る結合相を考察してみる。図1はCBN焼結工
具の各種結合相の硬度を示すものであるが、一般に周期
率表第4a,5a,6a族遷移金属の炭化物、硼化物、
窒化物の硬度が高い。本発明に用いる窒化チタン(以
下、TiNと表記する)はこれらに含まれて硬度が高
く、また、酸化アルミニウム(以下、アルミナ又はAl2
3 と表記する)は、切削時刃先温度における硬度が高
い値を示しているので、本発明における結合相は上述し
たの特性は満足すると考えられる。
Therefore, the binder phase according to the present invention will be considered for each of these characteristics. FIG. 1 shows the hardness of various binder phases of a CBN sintered tool. Generally, carbides, borides, and transition metals of Groups 4a, 5a, and 6a of the periodic table are used.
High hardness of nitride. Titanium nitride (hereinafter referred to as TiN) used in the present invention is contained therein and has a high hardness, and aluminum oxide (hereinafter referred to as alumina or Al 2
O 3 ) shows a high value of the hardness at the cutting edge temperature during cutting, and thus it is considered that the binder phase in the present invention satisfies the above characteristics.

【0013】図2は、各種結合相の切削時刃先温度にお
ける鋼に対する生成自由エネルギ(ΔGT °)を示す。
かかる生成自由エネルギを、鋼等との反応性の指標とす
ると、周期率表第4a,5a,6a族遷移金属の炭化
物、窒化物、すなわち本発明に用いるTiN、窒化アル
ミニウム(以下、AlNと表記する)並びに本発明に用
いるアルミナ、酸化ジルコニウム(以下、ZrO2 又は
ジルコニアと表記する)などの酸化物は反応性が低いも
のと推測され、本発明に用いる結合相は上述したの特
性を満足すると考えられる。
FIG. 2 shows the free energy of formation (ΔG T °) for steel at various cutting phases at the cutting edge temperature.
When such free energy of formation is used as an index of reactivity with steel and the like, carbides and nitrides of transition metals of Groups 4a, 5a and 6a of the periodic table, ie, TiN and aluminum nitride (hereinafter referred to as AlN) used in the present invention. Oxides such as alumina and zirconium oxide (hereinafter referred to as ZrO 2 or zirconia) used in the present invention are presumed to have low reactivity, and it is considered that the binder phase used in the present invention satisfies the characteristics described above. Conceivable.

【0014】また、結合相とCBN粒との反応性を、指
標として同様に生成自由エネルギを用いて評価した場
合、焼結温度(1400〜1800℃)で反応する可能
性があるのは、周期率表第4a,5a,6a族遷移金属
の炭化物、硼化物、窒化物の中でも、TiN、AlN、
窒化ニオブ(以下、NbNと表記する)の他、数種に限
られる。したがって、本発明は結合相の主成分としてT
iN副成分の一成分としてAlNを含むので、上述した
の特性も有すると考えられる。
When the reactivity between the binder phase and the CBN grains is similarly evaluated by using the free energy of formation as an index, the possibility of reacting at the sintering temperature (1400 to 1800 ° C.) is as follows. Among the carbides, borides and nitrides of the transition metals of Groups 4a, 5a and 6a, TiN, AlN,
In addition to niobium nitride (hereinafter referred to as NbN), it is limited to several types. Therefore, the present invention provides T as a main component of the binder phase.
Since AlN is included as one component of the iN subcomponent, it is considered that the above-described characteristics are also provided.

【0015】次に、焼結体の健全性に関する上述した
の特性を調べるため、TiNのみを結合相とするCBN
焼結工具を製作して切削試験を行った。製作したCBN
焼結工具は、粒径1〜3μmのCBN粒50体積%と、
粒径0.5〜2μmのTiN粉末50体積%とをボールミ
ルで混合し、後述する従来公知の超高圧発生装置を用い
て圧力50キロバール(以下、Kbと表記する)、焼結
温度1400〜1750℃、焼結時間0.5〜30分の条
件で超高圧焼結し、これを工具形状に刃付したものであ
る。これを切削試験〔被削材SUJ2(硬度HRC62以
上)、切削速度100m/min 、送り0.1min /rev 、
切込み0.1mm〕に供したところ、焼結温度、焼結時間等
の条件によらず、従来のCBN焼結工具の耐摩耗性、耐
欠損性には及ばなかった。また、かかるCBN焼結工具
の破断面を顕微鏡観察したところ、TiN粒界で破断し
ていることが観察された。
Next, in order to examine the above-mentioned properties relating to the soundness of the sintered body, CBN using only TiN as a binder phase was examined.
A cutting tool was manufactured and a cutting test was performed. Manufactured CBN
The sintering tool contains 50 volume% of CBN particles having a particle size of 1 to 3 μm,
50% by volume of TiN powder having a particle size of 0.5 to 2 μm is mixed by a ball mill, and the pressure is 50 kbar (hereinafter referred to as Kb) using a conventionally known ultra-high pressure generator described below, and the sintering temperature is 1400 to 1750. Ultra-high pressure sintering was carried out at a temperature of 0.5 ° C. and a sintering time of 0.5 to 30 minutes. Cutting test this [workpiece SUJ2 (hardness H RC 62 or higher), cutting speed 100 m / min, feed 0.1 min / rev,
When the depth of cut was 0.1 mm], the wear resistance and chipping resistance of the conventional CBN sintered tool were not improved irrespective of conditions such as the sintering temperature and the sintering time. When the fracture surface of the CBN sintered tool was observed with a microscope, it was observed that the fracture surface was broken at the TiN grain boundary.

【0016】本発明では焼結性が高く、且つ上述した特
性,も合せ持つアルミナをTiNに添加し、さらに
,の特性を持ち、焼結時に高い活性を有するAlN
を添加することにより、健全性の高い焼結体を得てい
る。また、アルミナに微量のジルコニアを添加すること
により、焼結性を向上させ、さらに炭化硅素の針状結晶
(以下、SiC針状結晶と表記する)を添加することに
より靱性を向上させている。
In the present invention, AlN having high sintering properties and having the above-mentioned properties is added to TiN.
, A highly sound sintered body is obtained. Further, sinterability is improved by adding a small amount of zirconia to alumina, and toughness is improved by adding needle-like crystals of silicon carbide (hereinafter referred to as SiC needle-like crystals).

【0017】さらに、結合相成分であるTiNはCBN
と直接には反応しにくいが、本発明の被膜を施すことに
より、CBN粒のTiN被膜と結合相成分であるTiN
の焼結が容易に行なえるため、大巾に焼結性が向上し、
の特性が満足されている。
Further, TiN as a binder component is CBN.
Although it is difficult to directly react with TiN film of the present invention, TiN film of CBN grains and TiN
Sintering can be easily performed, greatly improving the sinterability,
Characteristics are satisfied.

【0018】図3に本発明の工具用焼結材料の組織を模
式的に示し、図中1はCBN粉粒、2はTiN被膜、3
は結合相を示す。
FIG. 3 schematically shows the structure of the sintered material for a tool according to the present invention. In FIG. 3, 1 is a CBN powder, 2 is a TiN coating,
Indicates a binding phase.

【0019】CBNは工具用焼結材料としての主体をな
すものであり、これが40体積%未満ではCBN自体の
硬度を反映させることが困難となり、充分な耐摩耗性を
得られない。逆に、このCBNが90体積%を越える
と、焼結時にその一部が六方晶に相転位を起こして焼結
性が悪化するため、靱性の低下により微小なチッピング
や欠損が発生する。
CBN is a main component as a sintering material for tools, and if it is less than 40% by volume, it is difficult to reflect the hardness of CBN itself, and sufficient wear resistance cannot be obtained. Conversely, if the CBN exceeds 90% by volume, a part of the CBN undergoes a phase transition to a hexagonal crystal during sintering, and the sinterability deteriorates.

【0020】一方、結合相の主成分となるTiNは、高
融点、高硬度で、鋼との反応性が低いという特性を有
し、且つ硬度については通常の焼入鋼の精密切削条件で
の刃先温度において最も高い値を示す材料の1つであ
る。また、TiNは1000℃付近から急激な硬度低下
を示して焼結温度(1400℃)以上の高温域では軟質
化して流動し易い状態になるものと考えられる。したが
って、焼結時にはCBN粒間へTiNの流動が可能にな
り、焼結体の緻密化に効果的であることが推測できる。
さらに、TiNはCBN粒にTiNが被膜として施され
ているので良好な焼結性が期待でき結合相とCBN粒と
が強固に接着し、健全性が高く特性の良好な焼結体が得
られる。
On the other hand, TiN, which is the main component of the binder phase, has the characteristics of high melting point, high hardness, and low reactivity with steel. It is one of the materials showing the highest values at the cutting edge temperature. Also, it is considered that TiN shows a sharp decrease in hardness from around 1000 ° C., and becomes soft and easily flows in a high temperature range above the sintering temperature (1400 ° C.). Therefore, it can be assumed that TiN can flow between CBN grains during sintering, which is effective for densification of the sintered body.
Further, since TiN is formed by coating CBN grains with TiN, good sinterability can be expected, and the binder phase and the CBN grains are firmly adhered to each other, so that a sintered body having high soundness and good properties can be obtained. .

【0021】また、結合相の副成分であるアルミナは、
高融点、高硬度で、鋼との反応性が低い特性を有し、上
述した通り結合相の材料成分としてTiNと並ぶ優れた
特性を有するが、CBN粒との反応性が期待できない。
したがって、アルミナは結合相の主成分として使用する
場合にはCBN粒との反応性を改善するために金属成分
等の添加が必要となるが、本発明では、焼結時に高い活
性を有するAlNを添加することにより、焼結性を大幅
に改善している。これによりCBN焼結材料としての健
全性が向上し、工具材料として耐摩耗性、耐欠損性の高
い材料が提供できる。本発明においてアルミナとAlN
は、CBN粒とTiN粒とからなるCBN焼結材料の主
構成要素の隙間を満たすように添加、焼結されるもので
あり、TiN粒とTiN粒との粒間では両者を接着する
役割を果たす。
Alumina, which is a subcomponent of the binder phase,
It has high melting point, high hardness, and low reactivity with steel. As described above, it has excellent properties similar to TiN as a material component of the binder phase, but cannot be expected to have reactivity with CBN particles.
Therefore, when alumina is used as the main component of the binder phase, it is necessary to add a metal component or the like in order to improve the reactivity with CBN particles. In the present invention, AlN having high activity during sintering is used. Sinterability is greatly improved by the addition. Thereby, the soundness as a CBN sintered material is improved, and a material having high wear resistance and fracture resistance as a tool material can be provided. In the present invention, alumina and AlN
Is added and sintered so as to fill a gap between main components of a CBN sintered material composed of CBN grains and TiN grains, and has a role of bonding the TiN grains and the TiN grains between the grains. Fulfill.

【0022】また、アルミナのこのような役割から考え
て、アルミナ自体の焼結性についても良好であることが
不可欠であり、さらに靱性の向上が必要であるが、本発
明ではアルミナにジルコニア及び炭化硅素の針状結晶を
添加した組成を結合相の副成分とすることにより、その
焼結性及び靱性の向上を図っている。
Considering the role of alumina, it is essential that the sinterability of alumina itself be good, and it is necessary to further improve the toughness. However, in the present invention, zirconia and carbonized alumina are used in the present invention. The sinterability and toughness are improved by using a composition to which silicon needle crystals are added as a secondary component of the binder phase.

【0023】ここで副成分の組成について説明する。こ
れまでの説明に記したように、CBN焼結材料の結合相
はそれ自体も耐摩耗性の高い工具であることが必要であ
る。したがって組成を任意に選べるのではなく、その組
成成分が重要となってくる。そこで組成成分を変えた結
合相のみの工具材料を試作し、切削試験で耐摩耗性を評
価した。条件は切削速度170m/分,送り20μm/
主軸回転,切り込み20μm,被削材SUJ2(硬さH
RC62)で行った。
Here, the composition of the subcomponent will be described. As described in the above description, the binder phase of the CBN sintered material itself needs to be a tool having high wear resistance. Therefore, the composition cannot be arbitrarily selected, but its composition becomes important. Therefore, a tool material with only the binder phase in which the composition was changed was prototyped, and the wear resistance was evaluated by a cutting test. The conditions were a cutting speed of 170 m / min and a feed of 20 μm /
Spindle rotation, cut 20μm, work material SUJ2 (hardness H
RC 62).

【0024】まず成分をアルミナと窒化アルミニウムに
限定して組成成分を調べたところ、アルミナの体積%に
対する窒化アルミニウムの体積%が1/3以下ではアル
ミナのもろさが現われ逃げ面摩耗幅が70μm以上とな
り、また、同様に4/5以上では窒化アルミニウムの硬
度の低くさが現われ、逃げ面摩耗幅が70μm以上とな
ることがわかった。この検討から副成分のアルミナと窒
化アルミニウムは3:1〜5:4(体積%比)の範囲で
混合する必要があることがわかった。
First, the composition was examined by limiting the components to alumina and aluminum nitride. When the volume percentage of aluminum nitride relative to the volume percentage of alumina was 1/3 or less, the brittleness of alumina appeared and the flank wear width became 70 μm or more. Similarly, when the ratio is 4/5 or more, the hardness of aluminum nitride is low, and the flank wear width is 70 μm or more. From this study, it was found that it was necessary to mix alumina and aluminum nitride as auxiliary components in a range of 3: 1 to 5: 4 (volume ratio).

【0025】次に、上記適正な範囲に混合された2成分
系に対するSiC針状結晶の添加量についても、同様な
実験から5体積%未満ではその添加の効果が現れず、1
5体積%以上では焼結性が低下してかえって靱性の低下
を招くことが認められた。
Next, from the same experiment, if the amount of the needle-like crystals added to the binary system mixed in the above-mentioned appropriate range is less than 5% by volume, the effect of the addition does not appear, and
When the content is 5% by volume or more, it is recognized that the sinterability is reduced and the toughness is reduced.

【0026】さらに、上記2成分にSiC針状結晶を添
加した3成分系へのジルコニアの添加量を変化させその
影響を見た。試験の結果を図4に示すが、ジルコニアを
1体積%未満添加した場合にはその添加の効果が表われ
ず、一方、5体積%を越えて添加した場合には焼結性が
相対的に不良で、耐摩耗性が低下することが認められ
た。なお、ここでの耐摩耗性の評価は、前出と同じ条件
で行った。
Further, the effect of changing the amount of zirconia added to the ternary system in which SiC needle crystals were added to the above two components was examined. FIG. 4 shows the results of the test. When zirconia was added in less than 1% by volume, the effect of the addition was not exhibited. On the other hand, when zirconia was added in more than 5% by volume, the sinterability was relatively low. It was recognized that the abrasion resistance was deteriorated due to poor quality. The evaluation of the wear resistance was performed under the same conditions as described above.

【0027】次に、CBN粒及び、結合相の主成分、副
成分の組成(配合比率)について説明する。CBN粒と
結合相の主成分とを混合した際に生じる隙間に、副成分
(アルミナ50〜65体積%とジルコニア1〜5体積%
と、AlN20〜40体積%,SiC針状結晶5〜15
体積%の混合粉末)が充填され、且つその副成分が焼結
後にCBN粒及び結合相の主成分の隙間を充たすと共
に、副成分の焼結体が焼結体中で網目状の連結した構造
となるためには、副成分は理論的に15体積%以上の添
加が必要であると考えられる。
Next, the composition (mixing ratio) of the main components and subcomponents of the CBN particles and the binder phase will be described. In the gap generated when the CBN particles and the main component of the binder phase are mixed, the auxiliary components (alumina 50 to 65% by volume and zirconia 1 to 5% by volume)
And AlN 20 to 40% by volume, SiC needle-like crystals 5 to 15
% By volume) and the sub-components fill the gaps between the main components of the CBN grains and the binder phase after sintering, and the sub-component sintered bodies are connected in a network in the sintered body. It is considered that the addition of 15% by volume or more of the auxiliary component is theoretically necessary to achieve the above.

【0028】また、CBN粒と結合相主成分との配合比
率について考えると、上述したようにCBN粒の最小含
有量は40体積%が望ましく、結合相の副成分が最小量
(15体積%)のときに主成分の比率が最大となる。し
たがって、結合相主成分の配合比率の最大は45体積%
となる。一方、副成分と同様に結合相の主成分自体が網
目状の連結した構造とするためには、主成分も15体積
%以上添加する必要がある。
Considering the mixing ratio of the CBN particles and the main component of the binder phase, as described above, the minimum content of the CBN particles is desirably 40% by volume, and the subcomponent of the binder phase is the minimum (15% by volume). In the case of, the ratio of the main component is maximized. Therefore, the maximum mixing ratio of the binder phase main component is 45% by volume.
Becomes On the other hand, in order to form a structure in which the main component of the binder phase itself is connected in a network like the subcomponent, it is necessary to add the main component in an amount of 15% by volume or more.

【0029】さらに、結合相において副成分の添加量が
主成分の添加量を越えると、本来の耐摩耗性が損われる
ため、副成分の最大比率は35体積%となる。
Further, if the added amount of the sub-component in the binder phase exceeds the added amount of the main component, the original wear resistance is impaired, so that the maximum ratio of the sub-component is 35% by volume.

【0030】以上説明した本発明の工具用焼結材料は、
従来から公知の超高圧焼結装置を使用して製造できる。
すなわち、まず、CBN粉粒と結合相の主成分、副成分
とを所定の混合比率でボールミル等で混合して均一な混
合粉末とする。次いで、圧粉成形プレス等で混合粉末を
圧粉成形し、これをジルコニウムなどの高融点金属製の
容器内に充填する。その後、例えばニューセラミックス
(1988)、Vol.1,No.6,P43に記載の超高圧焼
結技術により、温度を1400〜1800℃、圧力を4
0〜60Kbとし、この圧力、温度で、0.5〜30分間
保持した後、冷却して圧力を除き、焼結体を製造する。
The sintered material for a tool according to the present invention described above comprises:
It can be manufactured using a conventionally known ultrahigh pressure sintering apparatus.
That is, first, the CBN powder and the main component and the subcomponent of the binder phase are mixed at a predetermined mixing ratio by a ball mill or the like to obtain a uniform mixed powder. Next, the mixed powder is compacted by a compacting press or the like, and this is filled in a container made of a high melting point metal such as zirconium. Thereafter, the temperature is set to 1400 to 1800 ° C. and the pressure is set to 4 by the ultra-high pressure sintering technique described in, for example, New Ceramics (1988), Vol.
After maintaining the pressure and temperature at 0 to 60 Kb for 0.5 to 30 minutes, the pressure is removed by cooling to produce a sintered body.

【0031】[0031]

【実施例】以下、本発明を実施例に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.

【0032】(実施例1)無触媒法で合成された1から
3マイクロメートル(以下、μmと表記する)の範囲の
粒径のCBNにCVD法でTiNの被膜を施した。処理
は原料ガスとしてTiCl4,N2 ,CH4 を用い、圧力
600torrで、温度910℃,2時間で行った。膜の厚
みは、板状の単結晶CBNへの成膜速度から0.1〜0.5
μmと考えられる。
(Example 1) A TiN film was formed on a CBN having a particle size in the range of 1 to 3 micrometers (hereinafter referred to as μm) synthesized by a non-catalytic method by a CVD method. The treatment was performed using TiCl 4 , N 2 , and CH 4 as source gases at a pressure of 600 torr and a temperature of 910 ° C. for 2 hours. The thickness of the film is 0.1 to 0.5 based on the deposition rate on the plate-like single crystal CBN.
μm.

【0033】次に被膜を施したCBN粒と結合相成分を
混合した。結合相成分は平均粒径が0.5〜1.5μmのT
iNと、平均粒径が0.3μmのアルミナとジルコニアと
AlN、及びSiC針状結晶との混合粉末(57:3:
30:10体積比)とからなり且つこれらの体積比を4
5:30:25(=CBN:TiN:Al23 /ZrO
2 ,AlN、及びSiC針状結晶)に調整した混合物
を、炭化タングステン(以下、WCと表記する)基超硬
合金で内張りした小形の遊星運動型ミル内に装入し、更
にこれらの混合を促進する目的でこれら粉粒の総体積の
35%に相当する量のメチルアルコールをミル内に加
え、蓋をしてこれを3時間混練した。そして、不活性ガ
ス雰囲気にてミルの蓋を取り、ミルを120℃に加熱し
てメチルアルコールを蒸発させ、混練された原料粉体の
乾燥を行った。一方、塩化ナトリウム(以下、これをN
aClと表記する)の粉粒を内径8ミリメートル、長さ
10ミリメートルの円筒状に加圧成形してなるNaCl
製の容器本体に、同様にして作成したNaCl製の下蓋
を一体的に取付け、これらの内面に厚さ20μmのジル
コニウム箔を張り付け、更にこの中に直径7.8ミリメー
トル、厚さ2ミリメートルのWC基超硬合金製の円板を
載置したものを用意しておく。
Next, the coated CBN particles and the binder phase component were mixed. The binder component has an average particle size of 0.5 to 1.5 μm.
A powder mixture of iN, alumina, zirconia, AlN having an average particle diameter of 0.3 μm, and needle-like SiC crystals (57: 3:
30:10 volume ratio) and these volume ratios are 4
5:30:25 (= CBN: TiN: Al 2 O 3 / ZrO
2, AlN, and the mixture was adjusted to SiC needles), tungsten carbide (hereinafter, was charged to the WC and denoted) compact planetary type mill lined with based cemented carbide, a further mixing of the For the purpose of accelerating, methyl alcohol in an amount corresponding to 35% of the total volume of the powder particles was added to the mill, and the mixture was covered and kneaded for 3 hours. Then, the lid of the mill was removed in an inert gas atmosphere, and the mill was heated to 120 ° C. to evaporate the methyl alcohol, and the kneaded raw material powder was dried. On the other hand, sodium chloride (hereinafter referred to as N
aCl) is press-molded into a cylindrical shape having an inner diameter of 8 mm and a length of 10 mm.
A lower lid made of NaCl prepared in the same manner is integrally attached to a container body made of aluminum, and a zirconium foil having a thickness of 20 μm is adhered to the inner surface thereof. A disk on which a disk made of a WC-based cemented carbide is placed is prepared.

【0034】そして、乾燥終了後の前記原料粉体をあら
かじめ粉末成形プレス等で6mmの厚みに圧粉成形し、こ
れを不活性ガス雰囲気にてこの容器本体内の前記円板上
に装入する。そして、更にこの上に前述したのと同一な
WC基超硬合金製の円板を載置し、又この上に厚さ20
μmのジルコニウム箔を重ねたのち、前述と同様にして
作成したNaCl製の上蓋を容器本体に嵌め込み、これ
ら容器本体と下蓋と上蓋とからなる容器内に原料粉末を
密封する。
After the drying is completed, the raw material powder is compacted in advance to a thickness of 6 mm by a powder compacting press or the like, and is charged on the disk in the container body in an inert gas atmosphere. . Then, a disk made of the same WC-based cemented carbide as described above is placed thereon, and a thickness of 20 mm is further placed thereon.
After stacking a zirconium foil having a thickness of μm, the upper lid made of NaCl prepared in the same manner as above is fitted into the container main body, and the raw material powder is sealed in a container composed of the container main body, the lower lid, and the upper lid.

【0035】次に、超高圧発生装置に上述した容器を取
付け、50Kbの圧力と1650℃の温度とを30分間
保持し、原料粉末を焼結させて両端にWC基超硬合金が
結合した円柱状の工具用焼結材料を得た。そして、この
工具用焼結材料を前記円板が結合した状態のまま切り出
してバイト用の切刃を仕上げ、これを予め用意しておい
た四角形のWC基超硬合金製チップに銀ろうを介して固
定し、すくい角0度、逃げ角5度、ノーズ曲率半径が1
ミリメートルの切削工具を作成した。
Next, the above-mentioned container was attached to the ultra-high pressure generator, the pressure of 50 Kb and the temperature of 1650 ° C. were maintained for 30 minutes, the raw material powder was sintered, and a WC-base cemented carbide was bonded to both ends. A columnar sintered material for a tool was obtained. Then, the sintered material for the tool is cut out in a state where the disc is bonded to finish a cutting edge for a cutting tool, and this is inserted into a square WC-based cemented carbide chip prepared in advance through a silver solder. Rake angle 0 °, clearance angle 5 °, nose radius of curvature 1
Millimeter cutting tools were created.

【0036】この切削工具を用い、ロックウエル硬さが
62の丸棒状をなす高炭素軸受鋼(SUJ2)に対して
切削速度が毎分170メートル、切込み量が20μm、
バイトの送り速度が主軸一回転当り20μmとなるよう
にして100メートルの長さに相当する距離だけ旋削し
た後、切刃の逃げ面の摩耗幅及びこの切刃を構成するC
BN焼結材料のビッカース硬さを、前記原料粉末を構成
する各粉粒の比率を変えて測定した。なお、この旋削加
工中には切削油を噴霧供給した。
Using this cutting tool, a cutting speed of 170 meters per minute, a cutting depth of 20 μm, and a round bar of high carbon bearing steel (SUJ2) having a Rockwell hardness of 62 were obtained.
After turning by a distance equivalent to a length of 100 meters so that the feed speed of the cutting tool is 20 μm per revolution of the spindle, the wear width of the flank of the cutting edge and the C
The Vickers hardness of the BN sintered material was measured by changing the ratio of each particle constituting the raw material powder. During this turning, cutting oil was sprayed and supplied.

【0037】これらの測定結果を表1に示すが、ちなみ
に窒化チタンに金属成分を添加した組成を結合相として
使用した市販のCBN焼結工具のビッカース硬さは25
00、切刃の逃げ面の摩耗幅は45μmであった。また
TiN被膜を施こさない、従来の焼結工具材料の特性を
比較のために示した。
The results of these measurements are shown in Table 1. The Vickers hardness of a commercially available CBN sintered tool using a composition obtained by adding a metal component to titanium nitride as a binder phase is 25.
00, the wear width of the flank of the cutting blade was 45 μm. The characteristics of the conventional sintered tool material without the TiN coating are shown for comparison.

【0038】[0038]

【表1】 [Table 1]

【0039】表1に示す結果から明らかなように、CB
NにTiN被膜を施した場合には焼結性が向上するため
か逃げ面摩耗幅が小さくなり、耐摩耗性が向上している
ことが確認できた。
As is clear from the results shown in Table 1, CB
It was confirmed that when a TiN film was applied to N, the flank wear width was reduced probably because the sinterability was improved, and the wear resistance was improved.

【0040】(実施例2)実施例1と同様な方法で粒径
1〜3μmのCBNにCVD法で炭化チタン(後TiC
と表記)の被膜を施こした。処理は原料ガスとしてTi
Cl4 ,CO2 ,CH4 を用い、圧力600torrで、温
度1025℃,2時間で行った。これを実施例1と同一
成分の結合相成分と混ぜ、超高圧焼結法で工具用焼結材
料とした。焼結条件は圧力55Kb,温度1750℃と
した。これを刃付して工具として用い、高炭素軸受鋼
(SUJ2,ロックウエル硬さ62)を被削材として切
削試験に供したところ、ほぼ実施例1と同じ結果が得ら
れた。これは結合相の主成分であるTiNとコーティン
グ被膜として施したTiCがともにTiの化合物であ
り、複合化合物であるTiCNを生成して結合したた
め、CBNと結合相の粒界が強化されたためと考えられ
る。
(Example 2) In the same manner as in Example 1, titanium carbide (after TiC) was deposited on CBN having a particle size of 1 to 3 μm by CVD.
(Indicated as “notation”). Processing is performed using Ti
This was carried out at a pressure of 600 torr and a temperature of 1025 ° C. for 2 hours using Cl 4 , CO 2 and CH 4 . This was mixed with the same binder phase component as in Example 1 to obtain a sintered material for a tool by an ultra-high pressure sintering method. The sintering conditions were a pressure of 55 Kb and a temperature of 1750 ° C. This was used as a tool with a blade, and subjected to a cutting test using high carbon bearing steel (SUJ2, Rockwell hardness 62) as a work material. As a result, almost the same results as in Example 1 were obtained. This is thought to be because TiN, which is the main component of the binder phase, and TiC, which is applied as the coating film, are both Ti compounds, and TiCN, which is a composite compound, was formed and bonded, so that the grain boundaries between CBN and the binder phase were strengthened. Can be

【0041】(実施例3)実施例1と同様な方法で粒径
4〜8μmのダイヤモンドにCVD法でTiNの被膜を
施した。CVD処理条件は実施例1と同一で行った。さ
らに実施例1と同じ結合相成分で超高圧焼結後切削工具
となし、切削試験を実施した。被削材は鋳鉄製丸棒(直
径60mm)で、切削速度毎分200m,切込み0.1mm,
送り0.1mm/主軸一回転で評価した。この結果、市販さ
れている金属系の結合相を持つダイヤモンド焼結工具に
比べ、同一切削距離を切削した後の被削材の面粗さが3
0%向上(従来面粗さ3.2μmであるのに対し、面粗さ
2.2μm)した。
Example 3 In the same manner as in Example 1, a diamond film having a particle size of 4 to 8 μm was coated with a TiN film by a CVD method. The CVD processing conditions were the same as in Example 1. Further, a cutting test was carried out using the same binder phase component as in Example 1 and a cutting tool after sintering under ultra-high pressure. The work material is cast iron round bar (diameter 60mm), cutting speed 200m / min, depth of cut 0.1mm,
The evaluation was made at a feed of 0.1 mm / one revolution of the spindle. As a result, compared with a commercially available diamond sintered tool having a metal-based bonding phase, the surface roughness of the work material after cutting the same cutting distance is 3 times.
0% improvement (compared to the conventional 3.2μm surface roughness,
2.2 μm).

【0042】[0042]

【発明の効果】本発明の工具用焼結材料は、CBN粉粒
などの硬質粉粒表面に例えばCVD法で、結合相の主成
分と同一のTiN等の被膜を施こしているので、CBN
粉粒と結合相との密着性が向上した。この結果焼結性が
向上し、より高い耐摩耗性を示した。またCBN粉粒な
どの硬質粉粒の被膜施工は、硬質粉粒表面の清浄度を高
めることに寄与していることが考えられ、この点からも
焼結性の改善が期待される。
According to the sintered material for a tool of the present invention, the same coating as the main component of the binder phase such as TiN is applied to the surface of hard particles such as CBN particles by, for example, the CVD method.
The adhesion between the powder and the binder phase was improved. As a result, sinterability was improved and higher wear resistance was exhibited. In addition, it is considered that the coating of hard particles such as CBN particles contributes to increase the cleanliness of the surface of the hard particles. From this viewpoint, improvement in sinterability is also expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】CBN焼結工具の結合相材料の硬度を示す説明
図である。
FIG. 1 is an explanatory diagram showing the hardness of a binder phase material of a CBN sintered tool.

【図2】CBN焼結工具の結合相材料の被削材との反応
性を示す説明図である。
FIG. 2 is an explanatory view showing the reactivity of a binder phase material of a CBN sintered tool with a work material.

【図3】本発明の工具用焼結材料の組成の模式図であ
る。
FIG. 3 is a schematic view of the composition of a sintered material for a tool according to the present invention.

【図4】アルミナへジルコニアを添加した場合の実験結
果を示す説明図である。
FIG. 4 is an explanatory diagram showing an experimental result when zirconia is added to alumina.

【図5】CBN焼結工具の摩耗を説明する模式図及びそ
のA部拡大図である。
FIG. 5 is a schematic diagram for explaining wear of the CBN sintered tool and an enlarged view of a portion A thereof.

【符号の説明】[Explanation of symbols]

1 CBN粉粒 2 TiN被膜 3 結合相 10 工具刃先部 10a 逃げ面 10b すくい面 11 CBN粒 12 結合相 13 被削材 REFERENCE SIGNS LIST 1 CBN powder 2 TiN coating 3 binder phase 10 tool edge 10 a flank 10 b rake face 11 CBN grain 12 binder phase 13 work material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 角田 英雄 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社 長崎研究所内 (72)発明者 山田 福司 東京都千代田区丸の内二丁目5番1号 三菱重工業株式会社内 (56)参考文献 特開 昭64−17836(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 35/52 - 35/58──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hideo Tsunoda 1-1, Akunouramachi, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Research Laboratory (72) Inventor Fukushi Yamada 2-5-1 Marunouchi, Chiyoda-ku, Tokyo (56) References JP-A-64-17836 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C04B 35/52-35/58

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 立方晶窒化硼素、ダイヤモンドなどの硬
質粉粒と、金属元素の窒化物、硼化物、炭化物、及びこ
れらの複化物から選ばれた結合相とからなる工具用焼
結材料において、上記硬質粉粒に結合相成分と同一、あ
るいは各結合相成分の金属元素の他の化合物の被膜を施
したことを特徴とする工具用焼結材料。
1. A cubic boron nitride, and a hard powder grains such diamond, nitrides of metal elements, borides, carbides, and sintered material tool comprising a binder phase selected from these Fukuka compounds 2. The sintered material for a tool according to claim 1, wherein the hard particles are coated with another compound of the same or the same metal component as the binder component.
【請求項2】 立方晶窒化硼素の粉粒40〜70体積%
と、結合相の主成分となる窒化チタン15〜45体積%
と、結合相の副成分となる酸化アルミニウム、酸化ジル
コニウム、窒化アルミニウム及び炭化硅素の針状結晶の
混合粉粒15〜35体積%とからなる組成を有し、且つ
上記結合相の副成分の組成が酸化アルミニウム50〜6
5体積%、酸化ジルコニウム1〜5体積%,窒化アルミ
ニウム20〜40体積%及び炭化硅素の針状結晶5〜1
5体積%の比率となる工具用焼結材料であって、立方晶
窒化硼素の粉粒に結合相成分と同一、あるいは各結合相
成分の金属元素の他の化合物の被膜を施したことを特徴
とする工具用焼結材料。
2. Cubic boron nitride powder particles of 40 to 70% by volume
And 15 to 45% by volume of titanium nitride as a main component of the binder phase
And 15 to 35% by volume of a mixed powder of acicular crystals of aluminum oxide, zirconium oxide, aluminum nitride and silicon carbide, which are subcomponents of the binder phase, and the composition of the subcomponent of the binder phase. Is aluminum oxide 50-6
5% by volume, 1 to 5% by volume of zirconium oxide, 20 to 40% by volume of aluminum nitride and needle-like crystals of silicon carbide 5-1
A sintered material for a tool having a ratio of 5% by volume, characterized in that cubic boron nitride particles are coated with a coating of the same as the binder phase component or of another compound of the metal element of each binder phase component. Sintered material for tools.
JP3209635A 1991-08-21 1991-08-21 Sintered materials for tools Expired - Lifetime JP2858600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3209635A JP2858600B2 (en) 1991-08-21 1991-08-21 Sintered materials for tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3209635A JP2858600B2 (en) 1991-08-21 1991-08-21 Sintered materials for tools

Publications (2)

Publication Number Publication Date
JPH0551267A JPH0551267A (en) 1993-03-02
JP2858600B2 true JP2858600B2 (en) 1999-02-17

Family

ID=16576059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3209635A Expired - Lifetime JP2858600B2 (en) 1991-08-21 1991-08-21 Sintered materials for tools

Country Status (1)

Country Link
JP (1) JP2858600B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008153A (en) * 1996-12-03 1999-12-28 Sumitomo Electric Industries, Ltd. High-pressure phase boron nitride base sinter
JP5126702B1 (en) * 2011-09-12 2013-01-23 三菱マテリアル株式会社 Cutting tool made of cubic boron nitride based sintered material
JP5305056B1 (en) * 2012-05-16 2013-10-02 三菱マテリアル株式会社 Cutting tool made of cubic boron nitride based sintered body
JP5988164B2 (en) * 2013-01-31 2016-09-07 三菱マテリアル株式会社 Cutting tool made of cubic boron nitride based sintered material
GB201913252D0 (en) * 2019-09-13 2019-10-30 Element Six Uk Ltd Sintered polycrystalline cubic boron nitride material

Also Published As

Publication number Publication date
JPH0551267A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
KR960008726B1 (en) Method for production of high-pressure phase sintered article of boron nitride for use in cutting tool and sintered article produced thereby
JP4945814B2 (en) Tough-coated hard powder and its sintered product
JP2013519614A (en) Carbide element, method of using the same and method of manufacturing the same
JP2858600B2 (en) Sintered materials for tools
JP2000044348A (en) High-hardness sintered compact for cutting working of cast iron
JP2971203B2 (en) Sintered materials for tools
JPWO2018074275A1 (en) Composite sintered body
JP2861486B2 (en) High hardness sintered cutting tool
JP2691048B2 (en) Sintered materials for tools
JPH0724606A (en) Surface compound cubic boron nitride group extra-high pressure sintered material made cutting tool with excellent chipping resistance
JP2007145667A (en) Cubic boron nitride sintered compact
JP2004026555A (en) Cubic boron nitride-containing sintered compact and method for producing the same
JP2861487B2 (en) High hardness sintered cutting tool
JP3606311B2 (en) Composite material containing ultra-hard particles
JPH03205364A (en) Sintered material for tool
JP2691049B2 (en) Sintered materials for tools
JPH06198504A (en) Cutting tool for high hardness sintered body
JPS6059085B2 (en) coated ceramic tools
JPS644989B2 (en)
JP2634236B2 (en) Sintered materials for tools
JPS6251911B2 (en)
JP2014188618A (en) Cutting tool and manufacturing method thereof
JPH02282443A (en) Tool sintered material
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JPH10226575A (en) High-pressure form of boron nitride sintered compact for cutting tool

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981020