JP2634236B2 - Sintered materials for tools - Google Patents

Sintered materials for tools

Info

Publication number
JP2634236B2
JP2634236B2 JP1100266A JP10026689A JP2634236B2 JP 2634236 B2 JP2634236 B2 JP 2634236B2 JP 1100266 A JP1100266 A JP 1100266A JP 10026689 A JP10026689 A JP 10026689A JP 2634236 B2 JP2634236 B2 JP 2634236B2
Authority
JP
Japan
Prior art keywords
volume
cbn
particles
sintered material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1100266A
Other languages
Japanese (ja)
Other versions
JPH02282444A (en
Inventor
頴彦 塚本
庸夫 江川
哲雄 市来崎
勇夫 平田
福司 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1100266A priority Critical patent/JP2634236B2/en
Publication of JPH02282444A publication Critical patent/JPH02282444A/en
Application granted granted Critical
Publication of JP2634236B2 publication Critical patent/JP2634236B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、焼入鋼や超硬合金等の高硬度材料或いは耐
熱合金等の切削加工や塑性加工の際に用いられる工具用
焼結材料に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a sintered material for a tool used in cutting or plastic working of a high hardness material such as hardened steel or cemented carbide, or a heat resistant alloy. About.

<従来の技術> 焼入鋼或いはニッケル基耐熱合金やコバルト基耐熱合
金等の高硬度材料を加工する場合、一般にはタングステ
ン等の高融点金属の炭化物粉末を鉄やコバルトやニッケ
ル等の鉄系金属で焼結結合させた超硬合金が利用されて
来た。
<Prior art> When machining hardened steel or a high-hardness material such as a nickel-base heat-resistant alloy or a cobalt-base heat-resistant alloy, a carbide powder of a high-melting point metal such as tungsten is generally mixed with an iron-based metal such as iron, cobalt or nickel. Sintered cemented carbide has been used.

近年、上述した超硬合金が工具としてではなく、加工
対象物として採用されつつあることに加え、加工条件に
対する厳しい要求に対応するため、より高性能な工具と
して焼結ダイヤモンドや立方晶窒化硼素(以下、CBNと
記述する)焼結体等を用いたものが開発されている。焼
結ダイヤモンドは、ダイヤモンドの粉粒を超硬合金を結
合剤として高温高圧下で焼結したものであるが、炭素と
の親和力が強い鋼等の加工には根本的に不向きである。
この点、ダイヤモンドに次ぐ硬度のCBN焼結体は鉄系金
属との反応が少ないことから、ダイヤモンド以外のあら
ゆる加工対象物、特に焼入鋼や超硬合金等の高硬度材料
の他にニッケル基耐熱合金やコバルト基耐熱合金等の加
工に有効である。
In recent years, in addition to the above-mentioned cemented carbide being used not as a tool but as an object to be processed, and in order to meet strict requirements for processing conditions, sintered diamond and cubic boron nitride ( A device using a sintered body or the like has been developed. Sintered diamond is obtained by sintering diamond particles at a high temperature and high pressure using a cemented carbide as a binder, but is fundamentally unsuitable for processing steel or the like having a strong affinity for carbon.
In this regard, the CBN sintered body, which has the second highest hardness after diamond, has little reaction with iron-based metals, and therefore, in addition to high-hardness materials such as hardened steel and cemented carbide, nickel-based It is effective for processing heat-resistant alloys and cobalt-based heat-resistant alloys.

従来のCBN焼結体は、CBNの粉粒に結合剤として炭化チ
タンや窒化チタン等のセラミックスを混ぜ、これらを高
温高圧下で焼結したものがほとんどである。結合剤とし
ては、上記の他に硅素やジルコニウムの炭化物或いは硅
素やジルコニウムの窒化物、更にはアルミニウムとチタ
ンとの金属間化合物やアルミニウムとジルコニウムとの
金属間化合物等が知られている。
Most conventional CBN sintered bodies are obtained by mixing ceramics such as titanium carbide and titanium nitride as a binder with CBN powder and sintering them under high temperature and high pressure. As the binder, in addition to the above, silicon or zirconium carbide, silicon or zirconium nitride, an intermetallic compound of aluminum and titanium, an intermetallic compound of aluminum and zirconium, and the like are known.

<発明が解決しようとする課題> 従来のCBN焼結体を用いた工具では、高温領域下で結
合相の硬度低下が発生するため、工具自体が高温となる
ような加工の際には、結合相からのCBNの粉粒の脱落が
起こり易く、耐摩耗性の低下を招来するものが多い。
又、このような工具を長時間の自動運転を行う加工機械
に組込む場合、突発的な工具欠損が発生することは、加
工機械等の損傷や設備稼動率の低下等の点で絶対に避け
るべきであるが、従来のこの種のCBN焼結体は高い硬度
を追求するあまり、靱性が充分なものとは云えなかっ
た。
<Problems to be Solved by the Invention> In the case of a tool using a conventional CBN sintered body, the hardness of the binder phase is reduced in a high-temperature region. The particles of CBN tend to fall off from the phase, which often leads to a decrease in wear resistance.
In addition, when such a tool is incorporated into a processing machine that performs automatic operation for a long time, the occurrence of sudden tool loss should be absolutely avoided in terms of damage to the processing machine and a decrease in equipment operation rate. However, this type of conventional CBN sintered body has not pursued high hardness but has sufficient toughness.

<課題を解決するための手段> 本発明者らは、セラミックスの中でも特に破壊靱性の
高い部分安定化ジルコニア(以下、PSZと記述する)に
着目すると共に酸化アルミニウム(アルミナ:以下、Al
2O3と記述する)が窒化チタンや硼化チタン等と同程度
の常温硬度を有し、しかも600から800℃の範囲の高温状
態における硬度がこれらよりも高い点に着目し、これら
PSZやAl2O3がCBNの結合剤として有効かどうか種々の実
験を行った。
<Means for Solving the Problems> The present inventors have paid attention to partially stabilized zirconia (hereinafter, referred to as PSZ) having particularly high fracture toughness among ceramics, and have also focused on aluminum oxide (alumina: hereinafter, Al).
2 O 3 ) has the same room-temperature hardness as titanium nitride and titanium boride, etc., and also focuses on the fact that the hardness in the high-temperature state in the range of 600 to 800 ° C. is higher than these.
Various experiments were conducted to determine whether PSZ and Al 2 O 3 were effective as binders for CBN.

本発明は、かかる実験結果をふまえてなされたもので
あり、第一番目の本発明による工具用焼結材料は、40か
ら90体積%のCBNの粉粒と、5から55体積%のPSZの粉粒
と、1から10体積%のアルミニウム(以下、Alと記述す
る)及びチタン(以下、Tiと記述する)のうちの少なく
とも一方の粉粒とを焼結してなるものである。
The present invention has been made based on the above experimental results, and the first sintered material for a tool according to the present invention has a particle size of 40 to 90% by volume of CBN and 5 to 55% by volume of PSZ. It is obtained by sintering powder and 1 to 10% by volume of at least one of aluminum (hereinafter referred to as Al) and titanium (hereinafter referred to as Ti).

ここで、PSZの安定化剤としては酸化イットリウムの
他に酸化カルシウム等を採用することも場合によっては
可能である。
Here, as the PSZ stabilizer, calcium oxide or the like may be employed in addition to yttrium oxide in some cases.

又、第二番目の本発明による工具用焼結材料は、40か
ら90体積%のCBNの粉粒と、5から55体積%のZrO2の粉
粒とAl2O3の粉粒であってこの混合物に占める前記ZrO2
の割合が10から30体積%のものと、1から10体積%のAl
及びTiのうちの少なくとも一方の粉粒とを焼結してなる
ものである。
The second sintered material for a tool according to the present invention is 40 to 90% by volume of CBN particles, 5 to 55% by volume of ZrO 2 particles and Al 2 O 3 particles. The ZrO 2 in this mixture
Of 10 to 30% by volume and 1 to 10% by volume of Al
And at least one of Ti and Ti.

この場合、CBNの粉粒と、ZrO2の粉粒とAl2O3の粉粒と
の混合物か或いはPSZの粉粒と、Al及びTiのうちの少な
くとも一方の粉粒とを均一に混合攪拌したのち、これを
高融点材料の容器に装入して熱間静水圧加圧装置(HI
P)等の超高圧発生装置により例えば40から60キロバー
ル(以下、Kbと記述する)の範囲で加圧しつつ1200から
1800℃の範囲で加熱し、この状態を0.5から30分程度保
持することによって、本発明の工具用焼結材料を得る。
In this case, a CBN powder, a mixture of ZrO 2 powder and Al 2 O 3 powder, or a PSZ powder and at least one of Al and Ti are uniformly mixed and stirred. After that, this is charged into a container of high melting point material and hot isostatic pressing device (HI
P) or other ultra-high pressure generator, for example, pressurizing in the range of 40 to 60 kbar (hereinafter referred to as Kb)
By heating in the range of 1800 ° C. and maintaining this state for about 0.5 to 30 minutes, the sintered material for a tool of the present invention is obtained.

<作用> CBNは工具用焼結材料としての主体をなすものであ
り、これが40体積%未満ではCBN自体の硬度を反映させ
ることが困難となり、充分な耐摩耗性を得られない。逆
に、このCBNが90体積%を越えると、焼結時にその一部
が六方晶に相転位を起こして焼結性が悪化するため、靱
性の低下により微小なチッピングや欠損が発生する。
<Operation> CBN is a main component as a sintered material for tools. If the content is less than 40% by volume, it is difficult to reflect the hardness of CBN itself, and sufficient wear resistance cannot be obtained. Conversely, if this CBN exceeds 90% by volume, a part of the CBN undergoes a phase transition to a hexagonal crystal during sintering, and the sinterability deteriorates.

一方、PSZやZrO2とAl2O3との混合物はCBNの結合剤と
しての特性を発揮するため、これらが5体積%未満では
工具用焼結材料中に占めるCBNの量が相対的に多くなり
過ぎ、焼結性が悪化して耐摩耗性や靱性の低下を招来す
る。逆に、このPSZや混合物が55体積%を越えると、CBN
の量が相対的に少なくなり過ぎてしまい、CBN自体の硬
度を工具用焼結材料に反映させることが困難となり、や
はり耐摩耗性の低下を招くこととなる。なお、一般的な
傾向としてAl2O3に対するZrO3の割合を多くするほど靱
性が向上し、逆にAl2O3の割合を多くするほど結合相の
硬度が高くなる。以上の兼ね合いから、Al2O3に対してZ
rO2を10から30体積%の割合に収めることが望ましい。
On the other hand, since PSZ or a mixture of ZrO 2 and Al 2 O 3 exhibits properties as a binder for CBN, if these are less than 5% by volume, the amount of CBN in the sintered material for tools is relatively large. Too much, the sinterability deteriorates, leading to a decrease in wear resistance and toughness. Conversely, if this PSZ or mixture exceeds 55% by volume, CBN
Becomes relatively too small, and it becomes difficult to reflect the hardness of CBN itself in the sintered material for tools, which also leads to a decrease in wear resistance. Incidentally, improved toughness as the proportion of ZrO 3 with respect for Al 2 O 3 general trend, the hardness of the more binding phase the proportion of Al 2 O 3 is increased conversely. From the above balance, Z against Al 2 O 3
It is desirable to keep rO 2 in a proportion of 10 to 30% by volume.

又、AlやTiはCBNの粒界に拡散して空隙のない緻密な
焼結組織を形成するため、工具用焼結材料の靱性を著し
く向上させる。この場合、これらが1体積%未満では充
分な靱性を得られない。逆に、これらが10体積%を越え
ると結合相の硬度を低下させるように働くため、耐摩耗
性が悪化してしまう。
Further, Al and Ti diffuse into the grain boundaries of CBN to form a dense sintered structure without voids, so that the toughness of the sintered material for tools is significantly improved. In this case, if these are less than 1% by volume, sufficient toughness cannot be obtained. On the other hand, when these contents exceed 10% by volume, they act to reduce the hardness of the binder phase, and thus the wear resistance deteriorates.

<実施例> 無触媒法で合成された1から3マイクロメートル(以
下、μmと記述する)の範囲の粒径のCBNと、酸化イッ
トリウムを3モル%添加して作成した平均粒径が0.3μ
mのPSZと、平均粒径が0.1μmのAl又はTi又はAl及びTi
とを炭化タングステン(以下、WCと記述する)基超硬合
金で内張りした小形の遊星運動型ミル内に装入し、更に
これらの混合を促進する目的でこれら粉粒の総体積の35
%に相当する量のメチルアルコールをミル内に加え、蓋
をしてこれらを3時間混練した。そして、不活性ガス雰
囲気にてミルの蓋を取り、ミルを120℃に加熱してメチ
ルアルコールを蒸発させ、混練された原料粉体の乾燥を
行った。
<Examples> CBN synthesized by a non-catalytic method and having a particle size in the range of 1 to 3 micrometers (hereinafter referred to as μm), and an average particle size prepared by adding 3 mol% of yttrium oxide to 0.3 μm.
m of PSZ and Al or Ti or Al and Ti having an average particle size of 0.1 μm.
Into a small planetary mill with tungsten carbide (hereinafter referred to as WC) based cemented carbide, and further promote the mixing of them with a total volume of 35% of these powders.
% Of methyl alcohol was added to the mill, covered and kneaded for 3 hours. Then, the lid of the mill was removed in an inert gas atmosphere, and the mill was heated to 120 ° C. to evaporate the methyl alcohol, and the kneaded raw material powder was dried.

一方、塩化ナトリウム(以下、これをNaClと記述す
る)粉粒を内径8ミリメートル,長さ10ミリメートルの
円筒状に加圧成形してなるNaCl製の容器本体に、同様に
して作成したNaCl製の下蓋を一体的に取付け、これらの
内面に厚さ20μmのジルコニウム箔を張り付け、更にこ
の中に直径7.8ミリメートル,厚さ2ミリメートルのWC
基超硬合金製の円板を載置したものを用意しておく。
On the other hand, a sodium chloride (hereinafter referred to as NaCl) powder granule is pressed into a cylindrical body having an inner diameter of 8 mm and a length of 10 mm. The lower lid is attached integrally, and a 20μm-thick zirconium foil is attached to the inner surface of the lower lid.
Prepare a plate on which a disc made of a base cemented carbide is placed.

そして、乾燥終了後の前記原料粉体を不活性ガス雰囲
気にてこの容器本体内の前記円板上に6ミリメートルの
厚みになるように装入して突棒で突き固め、更にこの上
に前述したのと同一なWC基超硬合金製の円板を載置し、
又この上に厚さ20μmのジルコニウム箔を重ねたのち、
前述と同様にして作成したNaCl製の上蓋を容器本体に嵌
め込み、これら容器本体と下蓋と上蓋とからなる容器内
に原料粉末を密封する。
Then, the raw material powder after completion of the drying is charged in the inert gas atmosphere onto the disk in the container body so as to have a thickness of 6 mm, and is compacted with a protruding rod. Place the same WC-based cemented carbide disk as
After stacking a 20μm thick zirconium foil on this,
The upper lid made of NaCl prepared in the same manner as above is fitted into the container main body, and the raw material powder is sealed in a container composed of the container main body, the lower lid, and the upper lid.

次に、超高圧発生装置に上述した容器を取付け、50Kb
の圧力と1650℃の温度とを30分間保持し、原料粉末を焼
結させて両端にWC基超硬合金が結合した円柱状の工具用
焼結材料を得た。そして、この工具用焼結材料を前記円
板が結合した状態のまま切り出してバイト用の切刃を仕
上げ、これを予め用意しておいた四角形のWC基超硬合金
製チップに銀ろうを介して固定し、すくい角0度,逃げ
角5度,ノーズ曲率半径が1ミリメートルのバイトを作
成した。
Next, the above-mentioned container was attached to the ultra-high pressure generator, and 50 Kb
The pressure was maintained at a temperature of 1650 ° C. for 30 minutes, and the raw material powder was sintered to obtain a cylindrical sintered material for a tool having a WC-based cemented carbide bonded to both ends. Then, the tool sintered material is cut out in a state where the discs are bonded together to finish a cutting edge for a cutting tool, and this is inserted into a square WC-based cemented carbide chip prepared in advance through a silver solder. And a rake angle of 0 °, a relief angle of 5 °, and a nose radius of curvature of 1 mm were prepared.

このバイトを用い、ロックウエル硬さが62の丸棒状を
なす高炭素軸受鋼(SUJ2)に対して切削速度が毎分120
メートル,切込み量が20μm,バイトの送り速度が主軸一
回転当り30μmとなるようにして100メートルの長さに
相当する距離だけ旋削した後、切刃の逃げ面の摩耗量及
びこの切刃を構成するCBN焼結材料のビッカース硬さ
を、前記原料粉末を構成する各粉粒の比率を変えて測定
した。なお、この旋削加工中には切削油を噴霧供給し
た。
Using this tool, a cutting speed of 120 per minute was applied to a high carbon bearing steel (SUJ2) in the form of a round bar with a Rockwell hardness of 62.
After turning by a distance equivalent to a length of 100 meters with a cutting depth of 20 μm and a cutting speed of 30 μm per revolution of the spindle, the amount of wear on the flank of the cutting edge and the cutting edge The Vickers hardness of the CBN sintered material to be measured was measured by changing the ratio of each particle constituting the raw material powder. During this turning, cutting oil was sprayed and supplied.

これらの測定結果を第1表に示すが、ちなみに窒化チ
タンを結合剤として使用した市販のCBN焼結材料を用い
た場合のビッカース硬さは2500,切刃の逃げ面の摩耗量
は40μmであった。
Table 1 shows the results of these measurements. Incidentally, when a commercially available CBN sintered material using titanium nitride as a binder was used, the Vickers hardness was 2500 and the flank wear of the cutting edge was 40 μm. Was.

この第1表に示す結果から明らかなように、CBNの粉
粒を65体積%含むもの(試料番号:1-13〜1-15)は、切
刃の逃げ面の摩耗量が36から37μmの範囲に収まり、良
好な耐摩耗性を有していることから、結合相の高靱化に
よる効果が現われていることを確認できた。又、CBNの
粉粒が40体積%未満のもの(試料番号:1−1)や90体積
%を越えるもの(試料番号:1-22)では、切刃に欠損を
発生しているが、CBNの粉粒が40から90体積%の範囲に
あるもの(試料番号:1−2〜1-21)では、切刃に欠損を
発生することなく旋削加工に供することができる。
As is clear from the results shown in Table 1, those containing 65% by volume of CBN powder (sample numbers: 1-13 to 1-15) have a wear amount of the flank of the cutting edge of 36 to 37 μm. Since it was within the range and had good wear resistance, it was confirmed that the effect of increasing the toughness of the binder phase appeared. If the CBN powder is less than 40% by volume (Sample No. 1-1) or more than 90% by volume (Sample No. 1-22), the cutting edge is chipped. In the case where the powder particles are in the range of 40 to 90% by volume (sample numbers: 1-2 to 1-21), they can be subjected to turning without causing any chipping on the cutting edge.

次に、第1表に記載のCBNの粉粒と、平均粒径がそれ
ぞれ0.3μmのZrO2の粉粒とAl2O3の粉粒とからなり且つ
これらの体積比を3:7(=ZrO2:Al2O3)に調整した混合
物と、第1表に記載のAl又はTi又はAl及びTiとから前述
と同様にしてCBN焼結材料を作成し、各粉粒の比率を変
えて切刃の逃げ面の摩耗量及びこのCBN焼結材料のビッ
カース硬さを測定した。
Next, the CBN particles shown in Table 1 were composed of ZrO 2 particles and Al 2 O 3 particles having an average particle diameter of 0.3 μm, respectively, and their volume ratio was 3: 7 (= ZrO 2 : Al 2 O 3 ) and a mixture adjusted to Al or Ti or Al and Ti shown in Table 1 to prepare a CBN sintered material in the same manner as described above, and changing the ratio of each powder particle The wear amount of the flank of the cutting edge and the Vickers hardness of this CBN sintered material were measured.

これらの測定結果を第2表に示す。 Table 2 shows the measurement results.

この第2表から明らかなように、CBNの粉粒を65体積
%含むもの(試料番号:2-13〜2-15)は、切刃の逃げ面
の摩耗量が34から35μmの範囲に収まり、高い耐摩耗性
を有していることから結合相の高靱化による効果が現わ
れていることを確認できた。又、CBNの粉粒が40体積%
未満のもの(試料番号:2−1)や90体積%を越えるもの
(試料番号:2-22)では、切刃に欠損を生じているが、C
BNの粉粒が40から90体積%の範囲にあるもの(試料番
号:2−2〜2-21)では、切刃に欠損を発生することなく
旋削加工に供することができる。
As is clear from Table 2, in the case of containing 65% by volume of CBN powder particles (sample numbers: 2-13 to 2-15), the wear amount of the flank of the cutting edge falls within the range of 34 to 35 μm. The high wear resistance confirmed that the effect of increasing the toughness of the binder phase appeared. Also, CBN powder is 40% by volume
Samples with less than (sample number: 2-1) or more than 90% by volume (sample number: 2-22) have chipped cutting edges,
In the case where the BN particles are in the range of 40 to 90% by volume (sample numbers: 2-2 to 2-21), the BN can be subjected to turning without causing any chipping.

<発明の効果> 本発明の工具用焼結材料によると、靱性の高い部分安
定化ジルコニアか或いは高温時での硬度が高いAl3O3
主体とする結合剤を用いたので、CBNの保持能力が従来
のものよりも向上し、耐摩耗性を向上させることができ
ると共にチッピングや欠損の少ない工具用焼結材料を提
供できる。
<Effect of the Invention> According to the sintered material for a tool of the present invention, since a binder mainly composed of partially stabilized zirconia having high toughness or Al 3 O 3 having high hardness at high temperature is used, CBN retention is achieved. It is possible to provide a sintered material for a tool whose capability is improved as compared with the conventional one, the wear resistance can be improved, and chipping and chipping are reduced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平田 勇夫 広島県広島市西区観音新町4丁目6番22 号 三菱重工業株式会社広島研究所内 (72)発明者 安田 福司 東京都千代田区丸の内2丁目5番1号 三菱重工業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor, Isao Hirata 4-6-22, Kannonshinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Mitsubishi Heavy Industries, Ltd. Hiroshima Laboratory (72) Inventor, Fukushi Yasuda 2-5-2, Marunouchi, Chiyoda-ku, Tokyo No. 1 Inside Mitsubishi Heavy Industries, Ltd.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】40から90体積%の立方晶窒化硼素の粉粒
と、5から55体積%の部分安定化ジルコニアの粉粒と、
1から10体積%のアルミニウム及びチタンのうちの少な
くとも一方の粉粒とを焼結してなる工具用焼結材料。
1 to 40% to 90% by volume of cubic boron nitride particles; 5 to 55% by volume of partially stabilized zirconia particles;
A sintered material for tools obtained by sintering 1 to 10% by volume of at least one of aluminum and titanium particles.
【請求項2】部分安定化ジルコニアの安定化剤が酸化イ
ットリウムである請求項(1)に記載した工具用焼結材
料。
2. The sintered material for a tool according to claim 1, wherein the stabilizer for partially stabilized zirconia is yttrium oxide.
【請求項3】40から90体積%の立方晶窒化硼素の粉粒
と、5から55体積%の酸化ジルコニウムの粉粒と酸化ア
ルミニウムの粉粒との混合物であってこの混合物に占め
る前記酸化ジルコニウムの割合が10から30体積%のもの
と、1から10体積%のアルミニウム及びチタンのうちの
少なくとも一方の粉粒とを焼結してなる工具用焼結材
料。
3. A mixture of 40 to 90% by volume of cubic boron nitride particles and 5 to 55% by volume of zirconium oxide particles and aluminum oxide particles, wherein the zirconium oxide occupies the mixture. Is a sintered material for a tool obtained by sintering 10 to 30% by volume of at least one of aluminum and titanium particles of 1 to 10% by volume.
JP1100266A 1989-04-21 1989-04-21 Sintered materials for tools Expired - Lifetime JP2634236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1100266A JP2634236B2 (en) 1989-04-21 1989-04-21 Sintered materials for tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1100266A JP2634236B2 (en) 1989-04-21 1989-04-21 Sintered materials for tools

Publications (2)

Publication Number Publication Date
JPH02282444A JPH02282444A (en) 1990-11-20
JP2634236B2 true JP2634236B2 (en) 1997-07-23

Family

ID=14269401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1100266A Expired - Lifetime JP2634236B2 (en) 1989-04-21 1989-04-21 Sintered materials for tools

Country Status (1)

Country Link
JP (1) JP2634236B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0823328D0 (en) 2008-12-22 2009-01-28 Element Six Production Pty Ltd Ultra hard/hard composite materials
EP2723698A1 (en) * 2011-06-21 2014-04-30 Diamond Innovations, Inc. Composite compacts formed of ceramics and low-volume cubic boron nitride and method of manufacture

Also Published As

Publication number Publication date
JPH02282444A (en) 1990-11-20

Similar Documents

Publication Publication Date Title
KR960008726B1 (en) Method for production of high-pressure phase sintered article of boron nitride for use in cutting tool and sintered article produced thereby
JP5732663B2 (en) Cubic boron nitride sintered tool
JP2006315898A (en) Cubic boron nitride sintered compact
JPH0694580B2 (en) Sintered body for high precision machining tools
KR100502585B1 (en) Sintering body having high hardness for cutting cast iron and The producing method the same
JP2523452B2 (en) High strength cubic boron nitride sintered body
JP2000044348A (en) High-hardness sintered compact for cutting working of cast iron
WO2005056495A1 (en) Cubic boron nitride sintered body and method for making the same
JPS627149B2 (en)
JP2634235B2 (en) Sintered materials for tools
JPS6315982B2 (en)
JP2686335B2 (en) Sintered materials for tools
JP2634236B2 (en) Sintered materials for tools
JP2691048B2 (en) Sintered materials for tools
JP2971203B2 (en) Sintered materials for tools
JP2858600B2 (en) Sintered materials for tools
CN111132952B (en) Ceramic sintered body, insert, cutting tool, and tool for friction stir welding
JP2001179507A (en) Cutting tool
JP2691049B2 (en) Sintered materials for tools
JP2626006B2 (en) Cutting tips made of cubic boron nitride-based ultra-high pressure sintered material capable of cutting difficult-to-cut materials
JP3146803B2 (en) Method for producing cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance
JPS6246510B2 (en)
JP7556765B2 (en) Cutting Tools
JP2900545B2 (en) Cutting tool whose cutting edge is made of cubic boron nitride based sintered body
JPS6143312B2 (en)