US20150065013A1 - Chemical mechanical polishing pad - Google Patents

Chemical mechanical polishing pad Download PDF

Info

Publication number
US20150065013A1
US20150065013A1 US14/014,468 US201314014468A US2015065013A1 US 20150065013 A1 US20150065013 A1 US 20150065013A1 US 201314014468 A US201314014468 A US 201314014468A US 2015065013 A1 US2015065013 A1 US 2015065013A1
Authority
US
United States
Prior art keywords
polishing
layer
chemical mechanical
polishing layer
curative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/014,468
Other languages
English (en)
Inventor
Michelle Jensen
Bainian Qian
Fengji Yeh
Marty W. Degroot
Mohammad T. Islam
Matthew Richard Van Hanehem
Darrell String
James Murnane
Jeffrey James Hendron
John G. Nowland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Electronic Materials CMP Holdings Inc
Dow Global Technologies LLC
Original Assignee
Rohm and Haas Electronic Materials CMP Holdings Inc
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm and Haas Electronic Materials CMP Holdings Inc, Dow Global Technologies LLC filed Critical Rohm and Haas Electronic Materials CMP Holdings Inc
Priority to US14/014,468 priority Critical patent/US20150065013A1/en
Priority to TW103128258A priority patent/TW201522406A/zh
Priority to DE102014012353.7A priority patent/DE102014012353A1/de
Priority to KR20140112165A priority patent/KR20150026903A/ko
Priority to FR1458104A priority patent/FR3009988A1/fr
Priority to CN201410437889.XA priority patent/CN104416452B/zh
Priority to JP2014174664A priority patent/JP2015047691A/ja
Publication of US20150065013A1 publication Critical patent/US20150065013A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/205Lapping pads for working plane surfaces provided with a window for inspecting the surface of the work being lapped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/22Lapping pads for working plane surfaces characterised by a multi-layered structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6685Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3802Low-molecular-weight compounds having heteroatoms other than oxygen having halogens
    • C08G18/3814Polyamines

Definitions

  • the present invention relates to chemical mechanical polishing pads and methods of making and using the same. More particularly, the present invention relates to a chemical mechanical polishing pad comprising a polishing layer; a rigid layer; and, a hot melt adhesive bonding the polishing layer to the rigid layer; wherein the polishing layer exhibits a specific gravity of greater than 0.6; a Shore D hardness of 60 to 90; an elongation to break of 100 to 300%; and, a unique combination of an initial hydrolytic stability and a sustained hydrolytic instability; and, wherein the polishing layer has a polishing surface adapted for polishing the substrate.
  • CMP chemical mechanical planarization
  • low k and ultra-low k dielectrics tend to have lower mechanical strength and poorer adhesion in comparison to conventional dielectrics, rendering planarization more difficult.
  • CMP-induced defectivity such as, scratching becomes a greater issue.
  • integrated circuits' decreasing film thickness requires improvements in defectivity while simultaneously providing acceptable topography to a wafer substrate—these topography requirements demand increasingly stringent planarity, dishing and erosion specifications.
  • Polyurethane polishing pads are the primary pad chemistry used for a variety of demanding precision polishing applications. Polyurethane polishing pads are effective for polishing silicon wafers, patterned wafers, flat panel displays and magnetic storage disks. In particular, polyurethane polishing pads provide the mechanical integrity and chemical resistance for most polishing operations used to fabricate integrated circuits. For example, polyurethane polishing pads have high strength for resisting tearing; abrasion resistance for avoiding wear problems during polishing; and stability for resisting attack by strong acidic and strong caustic polishing solutions.
  • Kulp discloses a polishing pad that includes a cast polyurethane polymeric material formed with an isocyanate-terminated reaction product formed from a prepolymer reaction of a prepolymer polyol and a polyfunctional isocyanate.
  • the isocyanate-terminated reaction product has 4.5 to 8.7 weight percent unreacted NCO; and the isocyanate-terminated reaction product is cured with a curative agent selected from the group comprising curative polyamines, curative polyols, curative alcoholamines and mixtures thereof.
  • the present invention provides a chemical mechanical polishing pad, comprising: a polishing layer having a polishing surface, a base surface and an average thickness, T P-avg , measured in a direction perpendicular to the polishing surface from the polishing surface to the base surface; wherein the polishing layer is a cast polyurethane, wherein the cast polyurethane is a reaction product of ingredients, comprising: (a) an isocyanate terminated prepolymer obtained by reaction of: (i) a polyfunctional isocyanate; and, (ii) a polyether based polyol; wherein the isocyanate terminated prepolymer has 8 to 9.5 weight percent unreacted NCO; (b) a curative agent, wherein the curative agent is selected from the group consisting of curative polyamines, curative polyols, curative alcoholamines and mixtures thereof; and, optionally, (c) a plurality of microelements; wherein the polishing layer exhibits a specific gravity of greater than
  • the present invention provides a chemical mechanical polishing pad, comprising: a polishing layer having a polishing surface, a base surface and an average thickness, T P-avg , measured in a direction perpendicular to the polishing surface from the polishing surface to the base surface; wherein the polishing layer is a cast polyurethane, wherein the cast polyurethane is a reaction product of ingredients, comprising: (a) an isocyanate terminated prepolymer obtained by reaction of (i) a polyfunctional isocyanate; and, (ii) a polyether based polyol; wherein the isocyanate terminated prepolymer has 8 to 9.5 weight percent unreacted NCO; (b) a curative agent, wherein the curative agent is selected from the group consisting of curative polyamines, curative polyols, curative alcoholamines and mixtures thereof; and, optionally, (c) a plurality of microelements; wherein the curative and the isocyanate terminated prepoly
  • the present invention provides a chemical mechanical polishing pad, comprising: a polishing layer having a polishing surface, a base surface and an average thickness, T P-avg , measured in a direction perpendicular to the polishing surface from the polishing surface to the base surface; wherein the polishing layer is a cast polyurethane, wherein the cast polyurethane is a reaction product of ingredients, comprising: (a) an isocyanate terminated prepolymer obtained by reaction of: (i) a polyfunctional isocyanate; and, (ii) a polyether based polyol; wherein the isocyanate terminated prepolymer has 8 to 9.5 weight percent unreacted NCO; (b) a curative agent, wherein the curative agent is selected from the group consisting of curative polyamines, curative polyols, curative alcoholamines and mixtures thereof; and, optionally, (c) a plurality of microelements; wherein the polishing layer exhibits a specific gravity of greater than
  • the present invention provides a chemical mechanical polishing pad, comprising: a polishing layer having a polishing surface, a base surface and an average thickness, T P-avg , measured in a direction perpendicular to the polishing surface from the polishing surface to the base surface; wherein the polishing layer is a cast polyurethane, wherein the cast polyurethane is a reaction product of ingredients, comprising: (a) an isocyanate terminated prepolymer obtained by reaction of: (i) a polyfunctional isocyanate; and, (ii) a polyether based polyol; wherein the isocyanate terminated prepolymer has >8.7 to 9 weight percent unreacted NCO; (b) a curative agent, wherein the curative agent is selected from the group consisting of curative polyamines, curative polyols, curative alcoholamines and mixtures thereat and, optionally, (c) a plurality of microelements; wherein the polishing layer exhibits a specific gravity of
  • the present invention provides a method of polishing a substrate, comprising: providing a substrate selected from at least one of a magnetic substrate, an optical substrate and a semiconductor substrate; providing a chemical mechanical polishing pad according to the present invention; creating dynamic contact between a polishing surface of the polishing layer and the substrate to polish a surface of the substrate; and, conditioning of the polishing surface with an abrasive conditioner.
  • FIG. 1 is a depiction of a perspective view of a chemical mechanical polishing pad of the present invention.
  • FIG. 2 is a depiction of a cross sectional, cut away, elevational view of a chemical mechanical polishing pad of the present invention.
  • FIG. 3 is a top plan view of a chemical mechanical polishing pad of the present invention.
  • FIG. 4 is a side perspective view of a polishing layer of the present invention.
  • FIG. 5 is a depiction of a cross sectional, cut away, elevational view of a chemical mechanical polishing pad of the present invention.
  • FIG. 6 is a elevational view of a plug in place window block of the present invention.
  • FIG. 7 is a depiction of a cross sectional, cut away, elevational view of a chemical mechanical polishing pad of the present invention with a plug in place window block.
  • FIG. 8 is a depiction of a cross sectional, cut away, elevational view of a chemical mechanical polishing pad of the present invention with a plug in place window block.
  • FIG. 9 is a depiction of a cross sectional, cut away, elevational view of a chemical mechanical polishing pad of the present invention with a plug in place window block.
  • FIG. 10 is a depiction of a cross sectional, cut away, elevational view of a chemical mechanical polishing pad of the present invention with an integral window.
  • average total thickness, T T-avg as used herein and in the appended claims in reference to a chemical mechanical polishing pad ( 10 ) having a polishing surface ( 14 ) means the average thickness, T T , of the chemical mechanical polishing pad measured in a direction normal to the polishing surface ( 14 ) from the polishing surface ( 14 ) to the bottom surface ( 27 ) of the rigid layer ( 25 ). (See FIGS. 1 , 2 , 5 and 7 - 10 ).
  • initial hydrolytic stability as used herein and in the appended claims in reference to a polishing layer means that a linear dimension of a sample of the polishing layer changes by ⁇ 1% following immersion in deionized water for 24 hours at 25° C., as measured according to the procedure set forth in the Examples.
  • extended hydrolytic stability as used herein and in the appended claims in reference to a polishing layer means that a liner dimension of a sample of the polishing layer changes by ⁇ 1.75% following immersion in deionized water for 7 days at 25° C., as measured according to the procedure set forth in the Examples.
  • sustained hydrolytic instability as used herein and in the appended claims in reference to a polishing layer means that a linear dimension of a sample of the polishing layer changes by ⁇ 1.75% following immersion in deionized water for 7 days at 25° C., as measured according to the procedure set forth in the Examples.
  • substantially circular cross section as used herein and in the appended claims in reference to a chemical mechanical polishing pad ( 10 ) means that the longest radius, r, of the cross section from the central axis ( 12 ) to the outer perimeter ( 15 ) of the polishing surface ( 14 ) of the polishing layer ( 20 ) is ⁇ 20% longer than the shortest radius, r, of the cross section from the central axis ( 12 ) to the outer perimeter ( 15 ) of the polishing surface ( 14 ). (See FIG. 1 ).
  • the chemical mechanical polishing pad ( 10 ) of the present invention is preferably adapted for rotation about a central axis ( 12 ). (See FIG. 1 ).
  • the polishing surface ( 14 ) of polishing layer ( 20 ) is in a plane ( 28 ) perpendicular to the central axis ( 12 ).
  • the chemical mechanical polishing pad ( 10 ) is preferably adapted for rotation in a plane ( 28 ) that is at an angle, ⁇ , of 85 to 95° to the central axis ( 12 ), preferably, of 90° to the central axis ( 12 ).
  • the polishing layer ( 20 ) has a polishing surface ( 14 ) that has a substantially circular cross section perpendicular to the central axis ( 12 ).
  • the radius, r, of the cross section of the polishing surface ( 14 ) perpendicular to the central axis ( 12 ) varies by ⁇ 20% for the cross section, more preferably by ⁇ 10% for the cross section.
  • the chemical mechanical polishing pad ( 10 ) of the present invention is specifically designed to facilitate the polishing of a substrate selected from at least one of a magnetic substrate, an optical substrate and a semiconductor substrate.
  • the chemical mechanical polishing pad ( 10 ) of the present invention is designed to facilitate the polishing of a semiconductor substrate. More preferably, the chemical mechanical polishing pad ( 10 ) of the present invention is designed to facilitate the polishing of exposed copper features on the surface of a semiconductor wafer substrate.
  • the chemical mechanical polishing pad ( 10 ) of the present invention comprises: a polishing layer ( 20 ) having a polishing surface ( 14 ), a base surface ( 17 ) and an average thickness, T P-avg , measured in a direction perpendicular to the polishing surface ( 14 ) from the polishing surface ( 14 ) to the base surface ( 17 ); a rigid layer ( 25 ) having a top surface ( 26 ) and a bottom surface ( 27 ); a hot melt adhesive ( 23 ) interposed between the base surface ( 17 ) of the polishing layer ( 20 ) and the top surface ( 26 ) of the rigid layer ( 25 ); wherein the hot melt adhesive ( 23 ) bonds the polishing layer ( 20 ) to the rigid layer ( 25 ); optionally, a pressure sensitive platen adhesive layer ( 70 ); wherein the pressure sensitive platen adhesive layer ( 70 ) is disposed on the bottom surface ( 27 ) of the rigid layer ( 25 ) (preferably, wherein the optional pressure sensitive platen adhesive layer facilitates mounting of the chemical
  • polishing layer ( 20 ) exhibits a sustained hydrolytic instability, wherein the linear dimension of the sample of the polishing layer changes by ⁇ 1.75% (preferably, 1.75 to 5%; more preferably, 1.75 to 3.5%; most preferably, 2 to 3%) following immersion in deionized water for seven days at 25° C. (as measured according to the method described in the Examples). (See FIGS. 1-10 ).
  • the polyfunctional isocyanate used in the formation of the polishing layer ( 20 ) is selected from the group consisting of an aliphatic polyfunctional isocyanate, an aromatic polyfunctional isocyanate and a mixture thereof.
  • the polyfunctional isocyanate used in the formation of the polishing layer ( 20 ) contains two reactive isocyanate groups (i.e., NCO).
  • the polyfunctional isocyanate used in the formation of the polishing layer ( 20 ) is a diisocyanate selected from the group consisting of 2,4-toluene diisocyanate; 2,6-toluene diisocyanate; 4,4′-diphenylmethane diisocyanate; naphthalene-1,5-diisocyanate; tolidine diisocyanate; para-phenylene diisocyanate; xylylene diisocyanate; isophorone diisocyanate; hexamethylene diisocyanate; 4,4′-dicyclohexylmethane diisocyanate; cyclohexanediisocyanate; and, mixtures thereof.
  • the polyfunctional isocyanate used in the formation of the polishing layer ( 20 ) is a toluene diisocyanate (preferably, a toluene diisocyanate selected from the group consisting of 2,4-toluene diisocyanate; 2,6-toluene diisocyanate and mixtures thereof).
  • the isocyanate terminated prepolymer used in the formation of the polishing layer ( 20 ) has a 8 to 9.5 wt % unreacted isocyanate (NCO) groups. More preferably, the isocyanate terminated prepolymer used in the formation of the polishing layer ( 20 ) has 8.65 to 9.05 wt % (most preferably >8.7 to 9 wt %) unreacted isocyanate (NCO) groups.
  • the polyether based polyol is a polypropylene glycol based polyol and has an unreacted isocyanate (NCO) concentration of 8 to 9.5 wt % (more preferably, 8.65 to 9.05 wt %; most preferably, >8.7 to 9 wt %).
  • NCO isocyanate
  • polypropylene glycol based isocyanate terminated urethane prepolymers examples include Imuthane® prepolymers (available from COIM USA, Inc., such as, PPT-80A, PPT-90A, PPT-95A, PPT-65D, PPT-75D); Adiprene® prepolymers (available from Chemtura, such as, LFG 963A, LFG 964A, LFG 740D); and, Andur® prepolymers (available from Anderson Development Company, such as, 8000APLF, 9500APLF, 6500DPLF, 750IDPLF).
  • the isocyanate terminated prepolymer used in the formation of the polishing layer ( 20 ) is a low free isocyanate terminated urethane prepolymer having less than 0.1 wt % free toluene diisocyanate (TDI) monomer content.
  • TDI free toluene diisocyanate
  • the curative agent used in the formation of the polishing layer ( 20 ) is selected from the group consisting of polyamines, curative polyols, curative alcoholamines and mixtures thereof. More preferably, the curative agent used in the formation of the polishing layer ( 20 ) is selected from polyols and polyamines. Still more preferably, the curative agent used in the formation of the polishing layer ( 20 ) is a difunctional curative selected from the group consisting of primary amines and secondary amines.
  • the difunctional curative is selected from the group consisting of diethyltoluenediamine (DETDA); 3,5-dimethylthio-2,4-toluenediamine and isomers thereof; 3,5-diethyltoluene-2,4-diamine and isomers thereof (e.g., 3,5-diethyltoluene-2,6-diamine); 4,4′-bis-(sec-butylamino)-diphenylmethane; 1,4-bis-(sec-butylamino)-benzene; 4,4′-methylene-bis-(2-chloroaniline); 4,4′-methylene-bis-(3-chloro-2,6-diethylaniline) (MCDEA); polytetramethyleneoxide-di-p-aminobenzoate; N,N′-dialkyldiamino diphenyl methane; p,p′-methylene dianiline (MDA); m-phenyl-
  • the stoichiometric ratio of the reactive hydrogen groups i.e., the sum of the amine (NH 2 ) groups and the hydroxyl (OH) groups
  • the unreacted isocyanate (NCO) groups in the isocyanate terminated prepolymer is 80 to ⁇ 95 percent (more preferably, 85 to ⁇ 95 percent; still more preferably, 87 to 94 percent; most preferably, 89 to 92 percent).
  • the polishing layer ( 20 ) optionally further comprises a plurality of microelements.
  • the plurality of microelements are uniformly dispersed throughout the polishing layer ( 20 ).
  • the plurality of microelements is selected from entrapped gas bubbles, hollow core polymeric materials, liquid filled hollow core polymeric materials, water soluble materials, an insoluble phase material (e.g., mineral oil) and a combination thereof. More preferably, the plurality of microelements is selected from entrapped gas bubbles and hollow core polymeric materials uniformly distributed throughout the polishing layer ( 20 ).
  • the plurality of microelements has a weight average diameter of less than 150 ⁇ m (more preferably of less than 50 ⁇ m; most preferably of 10 to 50 ⁇ m).
  • the plurality of microelements comprise polymeric microballoons with shell walls of either polyacrylonitrile or a polyacrylonitrile copolymer (e.g., Expancel® from Akzo Nobel).
  • the plurality of microelements are incorporated into the polishing layer ( 20 ) at 0 to 35 vol % porosity (more preferably 10 to 25 vol % porosity).
  • the polishing layer ( 20 ) can be provided in both porous and nonporous (i.e., unfilled) configurations.
  • the polishing layer ( 20 ) exhibits a specific gravity of greater than 0.6 as measured according to ASTM D1622. More preferably, the polishing layer ( 20 ) exhibits a specific gravity of 0.6 to 1.5 (still more preferably 0.7 to 1.2; most preferably 0.95 to 1.2) as measured according to ASTM D1622.
  • the polishing layer ( 20 ) exhibits a Shore D hardness of 60 to 90 as measured according to ASTM D2240. More preferably, the polishing layer ( 20 ) exhibits a Shore D hardness of >60 to 75 (more preferably, 61 to 75; most preferably, >65 to 70) as measured according to ASTM D2240.
  • the polishing layer ( 20 ) exhibits an elongation to break of 100 to 300% as measured according to ASTM D412.
  • the polishing layer ( 20 ) exhibits an elongation to break of 100 to 200% (still more preferably 125 to 175%; most preferably 150 to 160%) as measured according to ASTM D412.
  • the polishing layer ( 20 ) having a thickness, T P , suitable for use in a chemical mechanical polishing pad ( 10 ) for a given polishing operation.
  • the polishing layer ( 20 ) exhibits an average thickness, T P-avg , along an axis (A) perpendicular to a plane ( 28 ) of the polishing surface ( 14 ). More preferably, the average thickness, T P-avg , is 20 to 150 mils (more preferably 30 to 130 mils; most preferably 70 to 90 mils). (See FIGS. 2 , 5 and 7 - 10 ).
  • the polishing surface ( 14 ) of the polishing layer ( 20 ) is adapted for polishing a substrate selected from at least one of a magnetic substrate, an optical substrate and a semiconductor substrate (more preferably, a semiconductor substrate; still more preferably, a semiconductor wafer; most preferably, a semiconductor wafer having a surface with exposed copper features).
  • the polishing surface ( 14 ) of the polishing layer ( 20 ) exhibits at least one of macrotexture and microtexture to facilitate polishing the substrate.
  • the polishing surface ( 14 ) exhibits macrotexture, wherein the macrotexture is designed to do at least one of (i) alleviate at least one of hydroplaning; (ii) influence polishing medium flow; (iii) modify the stiffness of the polishing layer; (iv) reduce edge effects; and, (v) facilitate the transfer of polishing debris away from the area between the polishing surface ( 14 ) and the substrate being polished.
  • the macrotexture is designed to do at least one of (i) alleviate at least one of hydroplaning; (ii) influence polishing medium flow; (iii) modify the stiffness of the polishing layer; (iv) reduce edge effects; and, (v) facilitate the transfer of polishing debris away from the area between the polishing surface ( 14 ) and the substrate being polished.
  • the polishing surface ( 14 ) preferably exhibits macrotexture selected from at least one of perforations and grooves.
  • the perforations can extend from the polishing surface ( 14 ) part way or all of the way through the thickness of the polishing layer ( 20 ).
  • the grooves are arranged on the polishing surface ( 14 ) such that upon rotation of the pad ( 10 ) during polishing, at least one groove sweeps over the substrate.
  • the grooves are selected from curved grooves, linear grooves and combinations thereof.
  • the grooves exhibit a depth of ⁇ 10 mils (preferably, 10 to 120 mils).
  • the grooves form a groove pattern that comprises at least two grooves having a combination of a depth selected from ⁇ 10 mils, ⁇ 15 mils and 15 to 120 mils; a width selected from ⁇ 10 mils and 10 to 100 mils; and a pitch selected from ⁇ 30 mils, ⁇ 50 mils, 50 to 200 mils, 70 to 200 mils, and 90 to 200 mils.
  • the polishing layer ( 20 ) contains ⁇ 1 ppm abrasive particles incorporated therein.
  • the rigid layer ( 25 ) is made of a material selected from the group consisting of a polymer, a metal, a reinforced polymer and combinations thereof. More preferably, the rigid layer ( 25 ) is made of a polymer. Most preferably, the rigid layer ( 25 ) is made of a polymer selected from the group consisting of a polyester, a nylon, an epoxy, a fiberglass reinforced epoxy; and, a polycarbonate (more preferably, a polyester; still more preferably, a polyethylene terephthalate polyester; most preferably, a biaxially oriented polyethylene terephthalate polyester).
  • the rigid layer ( 25 ) has an average thickness, T R-avg , of >5 to 60 mils (more preferably, 6 to 15 mils; most preferably, 6 to 8 mils).
  • the top surface ( 26 ) and the bottom surface ( 27 ) of the rigid layer ( 25 ) are both ungrooved. More preferably, the top surface ( 26 ) and the bottom surface ( 27 ) are both smooth. Most preferably, the top surface ( 26 ) and the bottom surface ( 27 ) have a roughness, Ra, of 1 to 500 nm (preferably, 1 to 100 nm; more preferably, 10 to 50 nm; most preferably 20 to 40 nm) as determined using an optical profilometer.
  • Ra roughness
  • the top surface ( 26 ) of the rigid layer ( 25 ) is treated with an adhesion promoter to improve adhesion between the rigid layer ( 25 ) and the reactive hot melt adhesive ( 23 ).
  • an adhesion promoter to improve adhesion between the rigid layer ( 25 ) and the reactive hot melt adhesive ( 23 ).
  • One of ordinary skill in the art will know how to select an appropriate adhesion promoter given the material of construction of the rigid layer ( 25 ) and the composition of the hot melt adhesive ( 23 ).
  • the rigid layer ( 25 ) exhibits a Young's Modulus, measured according to ASTM D882-12, of ⁇ 100 MPa (more preferably, 1,000 to 10,000 MPa; still more preferably, 2,500 to 7,500 MPa; most preferably, 3,000 to 7,000 MPa).
  • the rigid layer ( 25 ) exhibits a void fraction of ⁇ 0.1 vol % (more preferably, ⁇ 0.01 vol %).
  • the rigid layer ( 25 ) is made of a biaxially oriented polyethylene terephthalate having an average thickness of 6 to 15 mils; and, a Young's Modulus, measured according to ASTM D882-12, of 2,500 to 7,500 MPa (most preferably, 3,000 to 7,000 MPa).
  • the hot melt adhesive ( 23 ) is a cured reactive hot melt adhesive. More preferably, the hot melt adhesive ( 23 ) is a cured reactive hot melt adhesive that exhibits a melting temperature in its uncured state of 50 to 150° C., preferably of 115 to 135° C. and exhibits a pot life of ⁇ 90 minutes after melting. Most preferably, the hot melt adhesive ( 23 ) in its uncured state comprises a polyurethane resin (e.g., Mor-MeltTM R5003 available from Rohm and Haas).
  • a polyurethane resin e.g., Mor-MeltTM R5003 available from Rohm and Haas.
  • the chemical mechanical polishing pad ( 10 ) is preferably adapted to be interfaced with a platen of a polishing machine.
  • the chemical mechanical polishing pad ( 10 ) is adapted to be affixed to the platen of a polishing machine.
  • the chemical mechanical polishing pad ( 10 ) can be affixed to the platen using at least one of a pressure sensitive adhesive and vacuum.
  • the chemical mechanical polishing pad ( 10 ) includes a pressure sensitive platen adhesive layer ( 70 ) applied to the bottom surface ( 27 ) of the rigid layer ( 25 ).
  • a pressure sensitive platen adhesive layer ( 70 ) applied to the bottom surface ( 27 ) of the rigid layer ( 25 ).
  • the chemical mechanical polishing pad ( 10 ) will also include a release liner ( 75 ) applied over the pressure sensitive platen adhesive layer ( 70 ), wherein the pressure sensitive platen adhesive layer ( 70 ) is interposed between the bottom surface ( 27 ) of the rigid layer ( 25 ) and the release liner ( 75 ). (See FIGS. 2 and 7 - 10 ).
  • An important step in substrate polishing operations is determining an endpoint to the process.
  • One popular in situ method for endpoint detection involves providing a polishing pad with a window, which is transparent to select wavelengths of light. During polishing, a light beam is directed through the window to the wafer surface, where it reflects and passes back through the window to a detector (e.g., a spectrophotometer). Based on the return signal, properties of the substrate surface (e.g., the thickness of films thereon) can be determined for endpoint detection.
  • the chemical mechanical polishing pad ( 10 ) of the present invention optionally further comprises an endpoint detection window ( 30 ).
  • the endpoint detection window is selected from an integral window ( 34 ) incorporated into the polishing layer ( 20 ); and, a plug in place window block ( 32 ) incorporated into the chemical mechanical polishing pad ( 10 ). (See FIGS. 1-10 ).
  • an integral window 34
  • a plug in place window block 32
  • the endpoint detection window is selected from an integral window ( 34 ) incorporated into the polishing layer ( 20 ); and, a plug in place window block ( 32 ) incorporated into the chemical mechanical polishing pad ( 10 ).
  • FIGS. 1-10 One of ordinary skill in the art will know to select an appropriate material of construction for the endpoint detection window for use in the intended polishing process.
  • the endpoint detection window used in the chemical mechanical polishing pad ( 10 ) of the present invention is an integral window ( 34 ) incorporated into the polishing layer ( 20 ).
  • the chemical mechanical polishing pad ( 10 ) containing the integral window ( 34 ) comprises: a polishing layer ( 20 ) having a polishing surface ( 14 ), a base surface ( 17 ) and an average thickness, T P-avg , measured in a direction perpendicular to the polishing surface ( 14 ) from the polishing surface ( 14 ) to the base surface ( 17 ); a rigid layer ( 25 ) having a top surface ( 26 ) and a bottom surface ( 27 ); a hot melt adhesive ( 23 ) interposed between the base surface ( 17 ) of the polishing layer ( 20 ) and the top surface ( 26 ) of the rigid layer ( 25 ); wherein the hot melt adhesive ( 23 ) bonds the polishing layer ( 20 ) to the rigid layer ( 25 ); a pressure sensitive platen adhesive ( 70 ); a release
  • the polishing layer ( 20 ) exhibits a sustained hydrolytic instability, wherein the linear dimension of the sample of the polishing layer changes by ⁇ 1.75% (preferably, 1.75 to 5%; more preferably, 1.75 to 3.5%; most preferably, 2 to 3%) following immersion in deionized water for seven days at 25° C. (as measured according to the method described in the Examples); wherein the polishing layer ( 20 ) has a polishing surface ( 14 ) adapted for polishing a substrate.
  • the integral window ( 34 ) preferably has a thickness, T W , measured along an axis, B, perpendicular to the plane ( 28 ) of the polishing surface ( 14 ). (See FIG. 10 ).
  • the integral window ( 34 ) has an average thickness, T W-avg , along an axis (B) perpendicular to the plane ( 28 ) of the polishing surface ( 25 ), wherein the average window thickness, T W-avg , is equal to the average thickness, T P-avg , of the polishing layer ( 20 ). (See FIG. 10 ).
  • the endpoint detection window used in the chemical mechanical polishing pad ( 10 ) of the present invention is a plug in place window block ( 32 ).
  • the chemical mechanical polishing pad ( 10 ) containing the plug in place window block ( 32 ) comprises: a polishing layer ( 20 ) having a polishing surface ( 14 ), a base surface ( 17 ) and an average thickness, T P-avg , measured in a direction perpendicular to the polishing surface ( 14 ) from the polishing surface ( 14 ) to the base surface ( 17 ); a rigid layer ( 25 ) having a top surface ( 26 ) and a bottom surface ( 27 ); a hot melt adhesive ( 23 ) interposed between the base surface ( 17 ) of the polishing layer ( 20 ) and the top surface ( 26 ) of the rigid layer ( 25 ); wherein the hot melt adhesive ( 23 ) bonds the polishing layer ( 20 ) to the rigid layer ( 25 ); a pressure sensitive platen adhesive ( 70 ); a release liner ( 75
  • polishing layer ( 20 ) exhibits a sustained hydrolytic instability, wherein the linear dimension of the sample of the polishing layer changes by ⁇ 1.75% (preferably, 1.75 to 5%; more preferably, 1.75 to 3.5%; most preferably, 2 to 3%) following immersion in deionized water for seven days at 25° C.
  • the polishing layer ( 20 ) has a polishing surface ( 14 ) adapted for polishing a substrate; wherein the chemical mechanical polishing pad ( 10 ) has a through opening ( 35 ) that extends through the chemical mechanical polishing pad ( 10 ) from the polishing surface ( 14 ) of the polishing layer ( 20 ) through to the bottom surface ( 27 ) of the rigid layer ( 25 ); wherein the plug in place window block ( 30 ) is disposed within the through opening ( 35 ); and, wherein the plug in place window block ( 30 ) is secured to the pressure sensitive platen adhesive ( 70 ).
  • the plug in place window block ( 30 ) has a thickness, T W , measured along an axis, B, perpendicular to the plane ( 28 ) of the polishing surface ( 14 ). (See FIGS. 5-7 ).
  • the plug in place window block ( 30 ) has an average window thickness, T W-avg , along an axis (B) perpendicular to the plane ( 28 ) of the polishing surface ( 25 ), wherein the average window thickness, T W-avg , is 5 mils to the average total thickness, T T-avg , of the chemical mechanical polishing pad ( 10 ). (See FIG. 7 ).
  • the plug in place window block ( 30 ) has an average window thickness, T W-avg , of 5 mils to ⁇ T T-avg . Still more preferably, wherein the plug in place window block ( 30 ) has an average window thickness, T W-avg , of 5 mils to 75 mils (yet still more preferably, 15 to 50 mils; most preferably 20 to 40 mils). (See FIGS. 5-7 ).
  • the endpoint detection window used in the chemical mechanical polishing pad ( 10 ) of the present invention is a plug in place window block ( 32 ).
  • the chemical mechanical polishing pad ( 10 ) containing the plug in place window block ( 32 ) comprises: a polishing layer ( 20 ) having a polishing surface ( 14 ), a base surface ( 17 ), an average thickness, T P-avg , measured in a direction perpendicular to the polishing surface ( 14 ) from the polishing surface ( 14 ) to the base surface ( 17 ), and a counterbore opening ( 40 ) that enlarges a through passage ( 35 ) that extends through the thickness, T P , of the polishing layer ( 20 ), wherein the counterbore opening ( 40 ) opens on the polishing surface ( 14 ) and forms a ledge ( 45 ) at an interface between the counterbore opening ( 40 ) and the through passage ( 35 ) at a depth, D O , along an axis, B, parallel with an
  • the ledge ( 45 ) is parallel with the polishing surface ( 14 ).
  • the counterbore opening defines a cylindrical volume with an axis that is parallel to axis (A).
  • the counterbore opening defines a non-cylindrical volume.
  • the plug in place window block ( 32 ) is disposed within the counterbore opening ( 40 ).
  • the plug in place window block ( 32 ) is disposed within the counterbore opening ( 40 ) and adhered to the polishing layer ( 20 ).
  • the plug in place window block ( 32 ) is adhered to the polishing layer ( 20 ) using at least one of ultrasonic welding and an adhesive.
  • the average depth of the counterbore opening, D O-avg , along an axis, B, parallel with an axis, A, and perpendicular to the plane ( 28 ) of the polishing surface ( 14 ) is 5 to 75 mils (preferably 10 to 60 mils; more preferably 15 to 50 mils; most preferably, 20 to 40 mils).
  • the average depth of the counterbore opening, D O-avg is ⁇ the average thickness, T W-avg , of the plug in place window block ( 32 ). (See FIGS. 6 and 8 ). More preferably, the average depth of the counterbore opening, D O-avg , satisfies the following expression
  • the average depth of the counterbore opening, D O-avg satisfies the following expression
  • the endpoint detection window used in the chemical mechanical polishing pad ( 10 ) of the present invention is a plug in place window block ( 32 ).
  • the chemical mechanical polishing pad ( 10 ) containing the plug in place window block ( 32 ) comprises: a polishing layer ( 20 ) having a polishing surface ( 14 ), a base surface ( 17 ), an average thickness, T P-avg , measured in a direction perpendicular to the polishing surface ( 14 ) from the polishing surface ( 14 ) to the base surface ( 17 ), and a polishing layer opening ( 37 ) that enlarges a through passage ( 35 ) that extends through the total thickness, T T , of the chemical mechanical polishing pad ( 10 ), wherein the polishing layer opening ( 37 ) opens on the polishing surface ( 14 ) and forms a shelf ( 55 ) on the top surface ( 26 ) of the rigid layer ( 25 ) at an interface between the polishing layer opening ( 37 ) and the through passage ( 35 ) at
  • the shelf ( 55 ) is parallel with the polishing surface ( 14 ).
  • the polishing layer opening ( 37 ) defines a cylindrical volume with an axis that is parallel to axis (A).
  • the polishing layer opening ( 37 ) defines a non-cylindrical volume.
  • the plug in place window block ( 32 ) is disposed within the polishing layer opening ( 37 ).
  • the plug in place window block ( 32 ) is disposed within the polishing layer opening ( 37 ) and adhered to the top surface ( 26 ) of the rigid layer ( 25 ).
  • the plug in place window block ( 32 ) is adhered to the top surface ( 26 ) of the rigid layer ( 25 ) using at least one of ultrasonic welding and an adhesive.
  • the average depth of the counterbore opening, D O-avg , along an axis, B, parallel with an axis, A, and perpendicular to the plane ( 28 ) of the polishing surface ( 14 ) is 5 to 75 mils (preferably 10 to 60 mils; more preferably 15 to 50 mils; most preferably, 20 to 40 mils).
  • the average depth of the counterbore opening, D O-avg is ⁇ the average thickness, T W-avg , of the plug in place window block ( 32 ). (See FIGS. 6 and 9 ). More preferably, the average depth of the counterbore opening, D O-avg , satisfies the following expression
  • the average depth of the counterbore opening, D O-avg satisfies the following expression
  • a cast polyurethane cake was prepared by the controlled mixing of (a) an isocyanate terminated prepolymer at 51° C. obtained by the reaction of a polyfunctional isocyanate (i.e., toluene diisocyanate) and a polyether based polyol (i.e., Adiprene® LFG740D commercially available from Chemtura Corporation); (b) a curative agent at 116° C. (i.e., 4,4′-methylene-bis-(2-chloroaniline)); and, (c) 0.3 wt % of a plurality of microelements (i.e., 551DE40d42 Expancel® microspheres commercially available from Akzo Nobel).
  • a polyfunctional isocyanate i.e., toluene diisocyanate
  • a polyether based polyol i.e., Adiprene® LFG740D commercially available from Chemtura Corporation
  • the ratio of the isocyanate terminated prepolymer and the curative agent was set such that the stoichiometry, as defined by the ratio of active hydrogen groups (i.e., the sum of the —OH groups and —NH 2 groups) in the curative agent to the unreacted isocyanate (NCO) groups in the isocyanate terminated prepolymer, was 91 percent.
  • the plurality of microelements was mixed into the isocyanate terminated prepolymer prior to the addition of the curative agent.
  • the isocyanate terminated prepolymer with the incorporated plurality of microelements and the curative agent were then mixed together using a high shear mix head.
  • the combination was dispensed over a period of 5 minutes into a 86.4 cm (34 inch) diameter circular mold to give a total pour thickness of approximately 8 cm (3 inches).
  • the dispensed combination was allowed to gel for 15 minutes before placing the mold in a curing oven.
  • the mold was then cured in the curing oven using the following cycle: 30 minutes ramp of the oven set point temperature from ambient temperature to 104° C., then hold for 15.5 hours with an oven set point temperature of 104° C., and then 2 hour ramp of the oven set point temperature from 104° C. down to 21° C.
  • the cured polyurethane cakes were then removed from the mold and skived (cut using a moving blade) at a temperature of 30 to 80° C. into multiple polishing layers having an average thickness, T P-avg , of 2.0 mm (80 mil). Skiving was initiated from the top of each cake.
  • the ungrooved, polishing layer material prepared according to Example 1 was analyzed to determine its physical properties as reported in T ABLE 1. Note that the specific gravity reported was determined relative to pure water according to ASTM D1622, the Shore D hardness reported was determined according to ASTM D2240.
  • the tensile properties of the polishing layer i.e., median tensile strength, median elongation to break, median modulus, toughness
  • the tensile properties of the polishing layer were measured according to ASTM D412 using an Alliance RT/5 mechanical tester available from MTS Systems Corporation as a crosshead speed of 50.8 cm/min. All testing was performed in a temperature and humidity controlled laboratory set at 23° C. and a relative humidity of 50%. All of the test samples were conditioned under the noted laboratory conditions for 5 days before performing the testing.
  • the reported median tensile strength (MPa) and median elongation to break (%) for the polishing layer material was determined from stress-strain curves of five replicate samples.
  • the storage modulus, G′, and loss modulus, G′′, of the polishing layer material was measured according to ASTM D5279-08 using a TA Instruments ARES Rheometer with torsion fixtures. Liquid nitrogen that was connected to the instrument was used for sub-ambient temperature control. The linear viscoelastic response of the samples was measured at a test frequency of 10 rad/sec (1.59 Hz) with a temperature ramp of 3° C./min from ⁇ 100° C. to 200° C. The test samples were stamped out of the polishing layer using a 47.5 mm ⁇ 7 mm die on an Indusco hydraulic swing arm cutting machine and then cut down to approximately 35 mm in length using scissors.
  • the ungrooved, polishing layer material prepared according to Example 1 was then analyzed to determine whether it exhibited an initial hydrolytic stability and a sustained hydrolytic instability.
  • Three commercially available polishing layer materials were also analyzed (i.e., IC1000TM polishing layer material; VisionPadTM 3100 polishing layer material and VisionPadTM polishing layer material all available from Rohm and Haas Electronic Materials CMP Inc.).
  • Commercial pad specifications for the commercial polishing layer materials are provided in T ABLE 2. Specifically, 1.5′′ ⁇ 1.5′′ samples of each of the 2 mm thick polishing layer materials were initially measured along both 1.5′′ dimensions (i.e., x and y dimension) using a calipers. The samples were then immersed in deionized water at 25° C. The samples were again measured along both the x and y dimension using calipers after 24 hours of immersion and seven days of immersion. The results of these measurements are provided in T ABLE 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Polyurethanes Or Polyureas (AREA)
US14/014,468 2013-08-30 2013-08-30 Chemical mechanical polishing pad Abandoned US20150065013A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/014,468 US20150065013A1 (en) 2013-08-30 2013-08-30 Chemical mechanical polishing pad
TW103128258A TW201522406A (zh) 2013-08-30 2014-08-18 化學機械硏磨墊
DE102014012353.7A DE102014012353A1 (de) 2013-08-30 2014-08-20 Chemisch-mechanisches polierkissen
KR20140112165A KR20150026903A (ko) 2013-08-30 2014-08-27 화학적 기계적 연마 패드
FR1458104A FR3009988A1 (fr) 2013-08-30 2014-08-29 Tampon de polissage chimique mecanique
CN201410437889.XA CN104416452B (zh) 2013-08-30 2014-08-29 化学机械抛光垫
JP2014174664A JP2015047691A (ja) 2013-08-30 2014-08-29 化学機械研磨パッド

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/014,468 US20150065013A1 (en) 2013-08-30 2013-08-30 Chemical mechanical polishing pad

Publications (1)

Publication Number Publication Date
US20150065013A1 true US20150065013A1 (en) 2015-03-05

Family

ID=52470533

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/014,468 Abandoned US20150065013A1 (en) 2013-08-30 2013-08-30 Chemical mechanical polishing pad

Country Status (7)

Country Link
US (1) US20150065013A1 (de)
JP (1) JP2015047691A (de)
KR (1) KR20150026903A (de)
CN (1) CN104416452B (de)
DE (1) DE102014012353A1 (de)
FR (1) FR3009988A1 (de)
TW (1) TW201522406A (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150273651A1 (en) * 2014-03-28 2015-10-01 Dow Global Technologies Llc Chemical mechanical polishing pad with endpoint detection window
KR20150123728A (ko) * 2014-04-25 2015-11-04 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스, 인코포레이티드 화학 기계적 연마 패드
KR20150124898A (ko) * 2014-04-29 2015-11-06 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스, 인코포레이티드 종점 검출 윈도우를 갖는 화학 기계적 연마 패드
US20180200864A1 (en) * 2017-01-19 2018-07-19 Iv Technologies Co., Ltd. Polishing pad and polishing method
US10464187B2 (en) * 2017-12-01 2019-11-05 Rohm And Haas Electronic Materials Cmp Holdings, Inc. High removal rate chemical mechanical polishing pads from amine initiated polyol containing curatives
CN115401603A (zh) * 2021-05-26 2022-11-29 Skc索密思株式会社 抛光垫粘接膜、包括其的抛光垫层叠体及晶圆的抛光方法
US11794308B2 (en) * 2013-11-04 2023-10-24 Applied Materials, Inc. Printed chemical mechanical polishing pad having particles therein
US20230390970A1 (en) * 2022-06-02 2023-12-07 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of making low specific gravity polishing pads

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101835090B1 (ko) * 2017-05-29 2018-03-06 에스케이씨 주식회사 다공성 폴리우레탄 연마패드 및 이를 사용하여 반도체 소자를 제조하는 방법
KR101945878B1 (ko) 2017-07-11 2019-02-11 에스케이씨 주식회사 연마층과 유사 경도를 갖는 윈도우를 포함하는 연마패드
TWI833018B (zh) * 2019-05-07 2024-02-21 美商Cmc材料有限責任公司 經基於槽生產之化學機械平坦化墊
KR102345784B1 (ko) * 2019-07-10 2022-01-03 에프엔에스테크 주식회사 웨이퍼 후면 연마용 고경도 연마패드
CN115502881A (zh) * 2021-06-23 2022-12-23 均豪精密工业股份有限公司 研磨装置
WO2023190428A1 (ja) * 2022-03-29 2023-10-05 富士紡ホールディングス株式会社 研磨パッド、研磨パッドの製造方法、及び光学材料又は半導体材料の表面を研磨する方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050171225A1 (en) * 2004-02-03 2005-08-04 Kulp Mary J. Polyurethane polishing pad
US20060089095A1 (en) * 2004-10-27 2006-04-27 Swisher Robert G Polyurethane urea polishing pad
US20080182492A1 (en) * 2007-01-29 2008-07-31 Crkvenac T Todd Chemical mechanical polishing pad
US20130084702A1 (en) * 2011-09-29 2013-04-04 Jia Xie Acrylate polyurethane chemical mechanical polishing layer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7101275B2 (en) * 2003-09-26 2006-09-05 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Resilient polishing pad for chemical mechanical polishing
US8083570B2 (en) * 2008-10-17 2011-12-27 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad having sealed window

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050171225A1 (en) * 2004-02-03 2005-08-04 Kulp Mary J. Polyurethane polishing pad
US20060089095A1 (en) * 2004-10-27 2006-04-27 Swisher Robert G Polyurethane urea polishing pad
US20080182492A1 (en) * 2007-01-29 2008-07-31 Crkvenac T Todd Chemical mechanical polishing pad
US20130084702A1 (en) * 2011-09-29 2013-04-04 Jia Xie Acrylate polyurethane chemical mechanical polishing layer

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11794308B2 (en) * 2013-11-04 2023-10-24 Applied Materials, Inc. Printed chemical mechanical polishing pad having particles therein
KR102390145B1 (ko) 2014-03-28 2022-04-25 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스, 인코포레이티드 종점 검출 윈도우를 갖는 화학 기계적 연마 패드
KR20150112855A (ko) * 2014-03-28 2015-10-07 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스, 인코포레이티드 종점 검출 윈도우를 갖는 화학 기계적 연마 패드
US9216489B2 (en) * 2014-03-28 2015-12-22 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad with endpoint detection window
US20150273651A1 (en) * 2014-03-28 2015-10-01 Dow Global Technologies Llc Chemical mechanical polishing pad with endpoint detection window
KR102412072B1 (ko) 2014-04-25 2022-06-23 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스, 인코포레이티드 화학 기계적 연마 패드
KR102458170B1 (ko) 2014-04-25 2022-10-25 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스, 인코포레이티드 화학 기계적 연마 패드
KR20220088835A (ko) * 2014-04-25 2022-06-28 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스, 인코포레이티드 화학 기계적 연마 패드
KR20150123728A (ko) * 2014-04-25 2015-11-04 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스, 인코포레이티드 화학 기계적 연마 패드
KR102409773B1 (ko) 2014-04-29 2022-06-16 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스, 인코포레이티드 종점 검출 윈도우를 갖는 화학 기계적 연마 패드
KR20150124898A (ko) * 2014-04-29 2015-11-06 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스, 인코포레이티드 종점 검출 윈도우를 갖는 화학 기계적 연마 패드
US10828745B2 (en) * 2017-01-19 2020-11-10 Iv Technologies Co., Ltd. Polishing pad and polishing method
US20180200864A1 (en) * 2017-01-19 2018-07-19 Iv Technologies Co., Ltd. Polishing pad and polishing method
US10464187B2 (en) * 2017-12-01 2019-11-05 Rohm And Haas Electronic Materials Cmp Holdings, Inc. High removal rate chemical mechanical polishing pads from amine initiated polyol containing curatives
CN115401603A (zh) * 2021-05-26 2022-11-29 Skc索密思株式会社 抛光垫粘接膜、包括其的抛光垫层叠体及晶圆的抛光方法
US20230390970A1 (en) * 2022-06-02 2023-12-07 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of making low specific gravity polishing pads

Also Published As

Publication number Publication date
KR20150026903A (ko) 2015-03-11
CN104416452B (zh) 2017-07-07
JP2015047691A (ja) 2015-03-16
FR3009988A1 (fr) 2015-03-06
CN104416452A (zh) 2015-03-18
TW201522406A (zh) 2015-06-16
DE102014012353A1 (de) 2015-03-05

Similar Documents

Publication Publication Date Title
US20150065013A1 (en) Chemical mechanical polishing pad
US9102034B2 (en) Method of chemical mechanical polishing a substrate
US9259820B2 (en) Chemical mechanical polishing pad with polishing layer and window
KR102449539B1 (ko) 컨디셔닝 내성을 갖는 화학적 기계적 연마 층 배합물
US7874894B2 (en) Polishing pad
US7927183B2 (en) Polishing pad
TWI475056B (zh) Grinding pad manufacturing method
US9238296B2 (en) Multilayer chemical mechanical polishing pad stack with soft and conditionable polishing layer
US9314898B2 (en) Polishing pad
US9064806B1 (en) Soft and conditionable chemical mechanical polishing pad with window
US9233451B2 (en) Soft and conditionable chemical mechanical polishing pad stack
KR20050034554A (ko) 연마 패드
TWI480942B (zh) Polishing pad
JP3452265B1 (ja) 研磨シート用高分子材料、研磨シート、及び研磨パッド
US9283649B2 (en) Tank and method for producing polishing pad using tank
JP4849587B2 (ja) 研磨パッドおよび半導体デバイスの製造方法
JP4890744B2 (ja) 研磨パッドおよび半導体デバイスの製造方法
WO2023182392A1 (ja) 研磨パッド及び研磨加工物の製造方法
WO2016052155A1 (ja) 研磨パッド
WO2022210264A1 (ja) 研磨パッド及び研磨加工物の製造方法
JP2022155532A (ja) 研磨パッド及び研磨加工物の製造方法
JP2022154128A (ja) 研磨パッド及び研磨加工物の製造方法
TWI450811B (zh) A storage tank and a polishing pad manufacturing method using the same
JP2009241205A (ja) 研磨パッド

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION