US20140366481A1 - Automated construction machinery and method - Google Patents

Automated construction machinery and method Download PDF

Info

Publication number
US20140366481A1
US20140366481A1 US14/473,996 US201414473996A US2014366481A1 US 20140366481 A1 US20140366481 A1 US 20140366481A1 US 201414473996 A US201414473996 A US 201414473996A US 2014366481 A1 US2014366481 A1 US 2014366481A1
Authority
US
United States
Prior art keywords
mortar
block
robotic arm
brick
platform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/473,996
Inventor
Richard Mark Benson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US14/473,996 priority Critical patent/US20140366481A1/en
Publication of US20140366481A1 publication Critical patent/US20140366481A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/14Conveying or assembling building elements
    • E04G21/16Tools or apparatus
    • E04G21/22Tools or apparatus for setting building elements with mortar, e.g. bricklaying machines
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F21/00Implements for finishing work on buildings
    • E04F21/02Implements for finishing work on buildings for applying plasticised masses to surfaces, e.g. plastering walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45086Brick laying, masonry robot

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manipulator (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

An automated block or brick construction apparatus is provided by adapting a base transport assembly with a specialized working platform for brick, block and mortar. The working platform houses at least one robotic arm to accurately position mortar and block or brick in place on a wall construction. The working platform is controlled by a 3-D stringless guidance system for positioning vertically, horizontally, and laterally. The robotic arms place and position a block or brick and stage the subsequent blocks or bricks for installation. A first robotic arm can apply mortar onto a wall while a second robotic arm places a concrete masonry unit accurately onto the mortar and also place blocks in position. Application and movement of mortar and blocks are controlled by a programmable central processing unit.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the benefit of co-pending U.S. patent application Ser. No. 13/493,997 filed Jun. 11, 2012, and expired Provisional Application Ser. No. 61/495,752 filed Jun. 10, 2011 which are both incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to automated construction machinery and improved methods for concrete and masonry block construction applications.
  • BACKGROUND OF THE INVENTION
  • Masonry construction methods are both labor and energy intensive while simultaneously requiring great precision for accuracy, efficiency and aesthetics. Furthermore, both worker and building safety concerns require high quality construction standards at all times. Many tools and techniques have been developed to improve various specific aspects of the industry, but have heretofore exhibited shortcomings or deficiencies in one or more of the foregoing areas.
  • For instance, US Application Publication 2003/0069668 A1 to Zurn discloses a combination asphalt/concrete surface repair machine. The machine is a direction-finding, wheeled, transportable vehicle, which is a self-regulating repair machine, controlled by a central computer. The machine is capable of being attached to and hauled by another faster vehicle (i.e., truck) if necessary. This machine is guided by a positioning device, which uses radar and laser technology to place the machine above each position of the road surface to be repaired. It uses a seismic or radar analyzer technology to determine road surface repair requirements by use of robotic modules within the machine.
  • Also, US Application Publication 2002/0040234336 A1 to Casters discloses a paving machine arranged to spread and level concrete along a path. The paving machine has a frame assembly, and at least one concrete pressing device carried by the frame assembly. The processing device includes at least two screed elements spanning the width of the frame assembly and which are mutually adjustable in height relative to the frame assembly. The paving machine further includes a control device that positions screed elements relative to the frame assembly. The machine is provided with a computer system with a monitor upon which one or more of the following parameter data can be visualized: the width adjustment of the paving machine; when a concrete path is produced having a roof-shaped profile, in other words, with a surface sloping from the middle towards both lateral edges, data related to the shape of the predetermined roof-shaped profile; the forward speed of the paving machine; the covered distance; the oscillation speed of applied vibration means for vibrating the concrete; the thickness of the concrete path; the visualization of alarm functions; and an indication as the dowel apparatus approaches the end of its travel course.
  • It will be recognized, however, that the above described paving machines would not provide the block-construction system described in detail herein below.
  • Neither of the published approaches, provide the safe, energy and man-power efficient and accurate construction apparatus and method disclosed in the subject application, wherein each of the foregoing objects and advantages mentioned above can be achieved. All patents and patent application publications cited herein are incorporated by reference.
  • SUMMARY OF THE INVENTION
  • An improved and automated concrete and masonry block construction apparatus is provided. Improved methods for block construction applications are also provided. As used herein, block construction generally refers to masonry blocks or bricks of rectangular shape (parallelepiped), but which may also be square, decorative or exhibit other functional or ornamental elements.
  • In one embodiment, a working platform is provided using the transport base of a conventional concrete paving machine which has been otherwise stripped of unnecessary paving attachments and accessories. The subject working platform, which is sometimes referred to as a moving platform, holds brick, block and mortar necessary for a construction project. The platform also houses one or more one robotic arms (RAs). The working platform is controlled by a three dimensional stringless guidance system, typically combining a laser and optic sighting system. One effective stringless guidance system is the Leica System described by Gomaco Corporation at http://www.gomaco.com/resources/leica.html) for positioning work objects vertically, horizontally and laterally. Gomaco Corporation also manufactures concrete paving equipment which can be retrofitted to provide the moving platform mentioned above.
  • Once the working platform is in proper position, the robotic arm accurately places a block or brick as required on a wall construction. In preferred embodiments, the subject system and apparatus eliminates the use and erection of scaffolding, thereby saving additional time, money and labor for many projects. Furthermore, the subject method minimizes safety concerns associated with such scaffolding.
  • Additional features of the subject system and apparatus include horizontal placement and vertical elevation of the working platform. Positioning of the working platform is accomplished by the 3-D stringless guidance system described above. In typical embodiments, a robotic arm will apply mortar onto a wall and the same or a second robotic arm will place a Concrete Masonry Unit (CMU) accurately onto the mortar in its precise position. Delivery, application and movement of mortar is controlled by a programmable central processing unit which is preferably on the movable platform along with space for a controlling operator. Delivery and application of the CMUs to and on the movable platform also may be controlled by the same central processing unit and operator. A central processing unit in the above description is meant to encompass a programmable computing device with input and output devices such as monitors, keyboards, manual control devices and overrides, as well as interfaces for necessary positioning devices such as a laser sighting device or global positioning system device.
  • Accordingly, objects of the invention include faster and more accurate installation of construction materials, with less labor costs, as well as a significant reduction or elimination of difficult and labor intensive aspects of masonry construction projects.
  • These improvements will be appreciated by building construction contractors, designers and engineering and masonry professionals.
  • The subject improved construction apparatus may be provided in accordance with the descriptions and drawings detailed below.
  • Other objects, features and advantages of the present invention will be apparent when the detailed descriptions of the preferred embodiments of the invention are considered with reference to the accompanying drawings, which should be construed in an illustrative and not limiting sense as follows.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a process diagram depicting the subject system.
  • FIG. 2 is an elevation view of a robotic arm placing a concrete masonry unit (CMU).
  • FIG. 3 is top plan view of a robotic arm placing a concrete masonry unit (CMU).
  • FIG. 4 is top perspective view of a robotic arm placing one in a series of concrete masonry units.
  • FIG. 5 is a perspective view of two robotic arms operating on multiple tiers of arrayed concrete masonry units.
  • FIG. 6 is a top plan schematic view of the apparatus of the subject invention.
  • FIG. 7 is a side elevation view of an embodiment of the subject invention.
  • FIG. 8 is side elevation view of an embodiment of the subject invention.
  • FIG. 9 is a perspective schematic view of another embodiment of the subject invention.
  • DETAILED DESCRIPTION OF THE PREFERED EMBODIMENTS
  • A masonry block construction apparatus comprising a transport assembly adapted for deployment at a construction project site; a working platform movably attached to the transport assembly; the working platform is configured for travel and adjustment along three independent axes for height adjustment along a vertical face of a construction project wall, horizontal adjustment along the length of the project wall and lateral adjustment of the platform as necessary toward or away from the face of the project wall. The apparatus further comprises a supply for concrete masonry units, each unit supplying a plurality of masonry blocks, and a supply for masonry mortar. The apparatus has at least one robotic arm, having a first configuration to adjustably apply masonry mortar at a desired construction location for engagement with a masonry block to be applied thereupon; a second robotic arm configuration, which may utilize the same or different robotic arm, the second configuration adapted to precisely and adjustably set a masonry block upon such applied mortar at a specified position and thereafter trim excess uncured mortar from the block and construction area. Further the apparatus has a sighting controller having a three dimensional stringless guidance system for vertical, horizontal and lateral positioning of work objects and mortar; a controller for delivery, application and movement of mortar, wherein the controller is a programmable central processing unit which is preferably on the movable platform along with space for a control operator; and storage and delivery modules configured for containment, positioning and application of the concrete masonry blocks to, upon and from the movable platform. These functions are typically controlled by the same central processing unit and operator.
  • In some embodiments, there will preferably be included a placement tray. This tray is placed at a stationary position which the robotic arm can recognize. The robotic arm picks up a block from the storage module such as a bin or cube and then supplies it to the placement tray and releases it. The tray is on a downward angle and also at either an angle to the right or left as may be desired to supply the block. The block slides on the tray to the lowest point, known precisely to the robotic mechanism. The arm can then pick the block up again at this known position for complete accuracy. The tray typically also has holes for granules (or “crumbs”) to fall out and a jet of air may be released to clear the tray.
  • For trimming, a diamond saw blade may be used to cut off excess block when needed. A 28 inch diameter blade is suitable in this application. The robotic arm will pick up a block from the tray and slide it though the saw blade to cut to size as necessary. (e.g. a 14 inch piece, or a 12 inch piece, etc.).
  • A mortar tube uses a high pressure hose coming from a mortar mixer to the construction apparatus via a mortar pump and the hose is hooked up to a robotic arm. At the end of the arm the hose is split into a “Y” shape. At the end of the Y are two nozzles which are opened when needed. These nozzles can be adjusted to allow more or less mortar flow. When opened, they release mortar onto blocks at head joints (vertical joints) and bed joints (horizontal joints) before the blocks are set.
  • Guard rails are attached to the platform where blocks are delivered onto the machine, usually via forklift. The rails are directly behind the robotic arm or arms. These rails are a guide, such that when a cube of block is landed on the machine it is landed in the same place every time and the robotic arm can find a block at the same place.
  • A string line is a physical or visual straight line used to set up the machine accurately and define a path for the machine to follow. It permits the machine to recognize its location in relation to wall being constructed.
  • The working platform will move laterally on the transport base, typically in eight inch increments as needed for exact placement of the blocks. It may also turn in a circular direction via a turntable as may be necessary or desired. This permits the robotic arms to work off the rear of the machine, or along the shorter side of the machine.
  • Preferably, adjustable legs (e.g. telescoping legs) will vertically extend the working platform above the transport assembly base. This will allow for a higher reach of robotic arms, facilitating the building of higher walls. Optionally, these legs can also be placed at different positions on and around machine. Other telescoping leg arrangements may be utilized, such as hydraulic or pneumatic systems and those using gear and teeth arrangements.
  • The machine transport base typically is powered by a diesel motor and moved along by tracks (crawler tracks). Wheels may be utilized in other embodiments. Most embodiments will have a work station for a worker to control operations. This person has control of both the programmable computer station and operation of machine.
  • Robotic arms are powered by electricity and air pumps. They are controlled by controllers and a programmable computer based upon input from visual and other sensors as well as manual input from a controlling operator. Accuracy to a tenth of a millimeter is typically expected.
  • FIG. 1 schematically depicts a process diagram showing a number of important features of the subject system 100 and the inter-relationships among them. A work platform or moving platform (MP) 110 having powered wheels or treads for motion along a masonry construction area, it may also be adjustable in height above the construction area. The moving platform is configured with a CMU block supply 120 in the form of hoppers, bins, pallets or the like. The blocks are typically stacked in orderly fashion but the apparatus can handle random blocks as well. The moving platform has a mortar supply 130, handling mortar from a mixer, hose 140 or other supply source. Mortar is applied 150 via hose and nozzle by one or more robotic arms 180 (e.g. RA1) and the same or a different robotic arm will precisely place a CMU in its intended position. Positioning of the mortar and CMU is a programmable controller using a central processing unit computer (CPU) 160 capable of controlling and adjusting movement and speed of the platform, robotic arm(s), height adjustments and the like. The CPU receives placement input from a laser guided optical sighting mechanism 170 and provides movement instructions to all or portions of the construction apparatus. Operator control overrides are also contemplated. In one embodiment, a single robotic arm can apply mortar, receive and place a CMU, trim excess mortar if necessary and then repeat the process. In other embodiments, additional robotic arms can sub-divide or duplicate the work in a series of steps. A further embodiment has a robotic arm with a trowel-like mechanism to trim and adjust the mortar 195.
  • FIGS. 2 and 3 depict robotic arm 3 placing and adjusting a concrete masonry unit (CMU) 5. Arm gripper 3 a is indicated as well.
  • In FIG. 4, mortar 18 is slathered to an appropriate depth upon the top of a course of concrete masonry units 5 (CMUs) prior to the subsequent placement of a second course of CMUs thereon. In this view, robotic arm 4 has mortar supply hose 17 indicated.
  • FIG. 5 depicts robotic arm 4 applying mortar 18 via hose and nozzle 17 upon lower course 15 of a wall construction, whereupon a second robotic arm 3 places CMU block 5 c upon mortar 18 applied upon CMU block 5 b.
  • In FIG. 6, depicted is moving platform 1 upon base 6 a having transport means 8 (wheels or tracks), CMU supply hopper 6, mortar supply hoppers and apparatus 9, 12, 17 and 19-20, robotic arms 3 and 4 operating upon blocks 5 and masonry wall 15.
  • FIG. 7 depicts an embodiment of the subject apparatus. Adjustable height platform 10, supported by adjustable legs or columns 7 and transport means 8. Seen in this view are robotic arms 3, 4 and 4 a. Also depicted are supply modules 6, 9, 14 and control modules 1, 2 and 11.
  • FIG. 8 depicts robotic arm 3 holding a CMU block via gripper 3 a for application of mortar 18 by robotic arm 4, prior to placement of the CMU by robotic arm 3 upon masonry wall 15. Individual blocks are indicated via reference 5.
  • FIG. 9 depicts an embodiment of a movement platform which may be used in combination with control and guidance apparatus, one or more robotic arms and the mortar and CMU supply systems in a masonry construction system.
  • In a preferred embodiment, a conventional Gomaco Corporation paving machine (for example, the Commander III, GT3200) is modified to eliminate its standard concrete paving attachments, such as molds and conveyor charging systems, etc. The modified machine setup provides a transport base assembly which will accept a working platform, robotic arms, block, mortar (and saw, if necessary) for utilization in the subject system. See for example, Gomaco Commander III and GT3200 product literature.
  • As a preferred embodiment of the subject apparatus, the system may be described referring particularly to FIG. 9 wherein reference 232 is a Computer Control System and Work Station for the Operator. This is the programmable computer that controls the machine and its operation. This is also a work station for the operator.
  • Reference no. 234 is the Engine (Power) System, typically a diesel engine that supplies all power for the operation of the machine.
  • Reference no. 205 is the Main Robotic Arm. This is the Robotic Arm (RA) that places the block or the brick onto the wall.
  • Reference no. 210 is the Mortar Dispensing Robotic Arm. This robotic arm dispenses mortar on bed (horizontal) and head (vertical) joints. It will also tool joints to a consistent, smooth, concave shape (using a jointer or other trowel-like accessories). It should be understood that a separate arm may not be necessary to perform the above described steps in sequence.
  • Optionally, a De-Cubing Robotic Arm may be used to take block or brick, one by one, off the cubes as they are delivered to the job site. It will place them at a holding platform. This arm also holds brick and block at a saw 252, to be cut if needed. Again, multiple arms are desirable but not always necessary.
  • Reference no. 240 is a Cube of Masonry Units. These are brick and block stacked into cubes by the manufacturer and delivered to job sites.
  • Reference nos. 225 indicates Vertical Telescoping Legs. These legs will telescope up or down as needed to reach different parts of the wall 201.
  • Reference nos. 220 and 221 indicate the Tracks for Movement of the machine. These are usually tractor-type tracks that move the machine through rough and muddy terrain. In other embodiments, wheels may be used.
  • Reference no. 260 is a Mortar Tank with Auger inside. This is a tank that holds the mortar for the brick and block. A typical volume for such tank would be 100 gallons. It has an auger as well as a water inlet. The auger keeps the mortar from stiffening and the water inlet allows added water to loosen mortar if necessary.
  • Reference nos. 232 are Rails which carry RA 205 and RA 210 horizontally. These rails allow the arms to move from side to side for more reach as needed. If necessary, vertical movement can be permitted.
  • A Water Tank may be used to hold water for the mortar tank as needed and also is used to clean the machine. The water is pressurized.
  • A holding platform for odd MU's (Half pieces, etc.) may be provided. This is another platform to hold odd shaped pieces such as factory halves.
  • Reference no. 250 is a saw for cutting Masonry Units. This is a stationary saw that will cut masonry units as needed. A robotic arm will hold a block to the saw blade as it is cut, then place in position for installation.
  • Reference nos. 201 and 202 refer to perpendicular walls constructed with the subject apparatus.
  • Reference no. 263 is a mortar pump and hose. This pump will transport mortar from the mortar tank to the nozzle at robotic arm 210.
  • Reference no. 262 is a mortar hose. This is the hose that mortar is pumped through to get to the nozzle at robotic arm # 4.
  • In other views, reference no. 18 is the mortar. Conventional masonry mortar is used for blocks or bricks.
  • Also utilized are a mortar hopper which holds mortar before water is added and mixed, a mixer for mixing the water and mortar with a door which may be a conventional container closure.
  • The subject apparatus may be provided in the following manner. Using the base of a Gomaco concrete paving machine, stripped of conventional attachments, attach a masonry construction working platform. The platform will hold brick, block and mortar. The platform also houses one or more robotic arm(s). The platform is controlled by a 3D stringless guidance system (Leica System) for positioning the apparatus and the CMUs vertically, horizontally, laterally etc. Once the platform is in a proper position, the robotic arm could accurately place block or brick in the wall. The machine will be capable of placing material within +/−1 mm, with less labor than is necessary today.
  • Wall, wall section or building dimensions are programmed into the computer, the computer calculates where the windows, doors and other fixtures will be located. If any CMU pieces need to be cut, it will provide the specifications. All block placement (and cuts if needed) will be calculated by the programmable computer.
  • There is a pause button for the operator to stop the machine when needed. The Leica 3D stringless guidance system will identify exactly where the platform is at all times and guide it to the next proper position. This process also will be controlled by the computer controller. When the computer has all the above information it directs the robotic arms to place the CMU's (accounting for height, distance, depth, pieces, etc).
  • In a typical embodiment, the CMU's are delivered to the job site in cubes on pallets. These are loaded on to the platform via forklift. A variety of robotic arms (RA) numbered RA1-RA5 are utilized.
  • RA2 will de-cube CMU's one at a time. It will place them on a shelf where RA3 will pick up a CMU. The mortar will be loaded on the platform via hose or grout hose into a cylindrical tank. Mortar can be tempered in a tank by an auger as needed. RA1 will dispense mortar on wall bed joint and then on head of CMU when CMU is picked up by RA3. RA3 will pick up a CMU off the holding platform that has been delivered by RA2. RA3 will tilt the CMU up at forty-five degrees so RA1 can apply a head joint. After the head joint is applied by RA1, RA3 will place it on wall at the correct location as directed by the computer (and verified by the Leica guidance system). If the next CMU needs to be cut, RA2 will place it at the saw and it will be cut to proper length. Saw operation is also controlled by computer. If no cut is needed, the previous step is repeated. When a section of wall is incomplete in area where RA's can reach, the platform will move horizontally or vertically and the operator will have the option to direct the machine as to which direction to proceed. It may be possible to complete the task with one RA. Multiple RAs may have different grippers. Typically, RA1 will have two nozzles at the end of the arm to allow mortar to be dispensed on head and bed of joints. RA2 and RA3 will have grippers to squeeze CMU's held for placement.
  • Example 1
  • A 200 feet by 400 feet rectangular building having control joints at 20 foot centers is constructed in the following manner.
  • 1) Building dimensions are programmed into a computer.
  • 2) A 3-D stringless guidance system (e.g. Leica system) is set and input offset points and bench marks are recorded.
  • 3) The subject construction apparatus is positioned and set-up with CMU's and mortar. A typical load for each may be 100 blocks or 500 bricks per cube (8 feet cubed). Typical blocks may be 8 in.×8 in.×16 in.
  • 4) To load the machine:
      • Mortar is mixed at a mixer and pumped into a tank that holds the prepared mortar. The tank has an auger and a water inlet to temper the mortar, keeping the mortar workable. A typical load of mortar may be 25 to 100 gallons
      • CMU's are loaded on machine by forklift at the designated place.
  • 5) The apparatus starts to lay the block. There will be one or more robotic arms to do this job.
      • One arm applies mortar to head and bed joints of a CMU as it is set.
      • Another arm will take a CMU from its preloaded cube and place it where a third arm can pick it up. This arm could also put block where a saw could cut it if necessary and then place it where the third arm can pick it up for placement.
      • A third arm can pick up the block, move it at a forty-five degree angle where another arm will place mortar on the head of the CMU, then the third arm will set the CMU into place on the wall.
  • 6) The programmable control computer controls all phases of the operation, including the movement of robotic arm(s) which places the CMU or brick, the Leica guidance system, which controls height, distance and depth placement, the building dimensions, windows, doors, cut block pieces, control joints, etc., and the masonry saw. However, at any time, an operator can stop operations via a pause button.
  • 7) The machine platform rises or lowers vertically as necessary. It will also move left to right horizontally as necessary. Vertical movement is facilitated by telescopic legs.
  • The invention now being fully described, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the invention set forth herein.

Claims (6)

1. A method of automating construction of a block wall comprising the steps:
engaging a work platform upon a moving platform (MP) having powered wheels or treads for motion along a masonry construction area, adjusting the height above a construction area, supplying a CMU block supply in the form of hoppers, bins, pallets or the like, wherein the CMUs are stacked in orderly or random fashion, providing a mortar supply, handling mortar from a mixer, hose or other supply source and applying mortar via hose and nozzle by one or more robotic arms, whereby the same or different robotic arm will precisely place a brick or block in its intended position, thereafter positioning of the mortar and brick or block with a programmable controller using a central processing unit computer (CPU) capable of controlling and adjusting movement and speed of the platform, robotic arm(s), and height adjustments.
2. The method of claim 1 wherein the CPU receives placement input from a laser guided optical sighting mechanism and provides movement instructions to all or portions of the construction apparatus.
3. The method of claim 1 wherein a control operator provides manual override controls.
4. The method of claim 1 wherein a single robotic arm applies mortar, receives and places a brick or block, trims excess mortar as necessary and then repeats the process.
5. The method of claim 1 wherein additional robotic arms duplicate work operations in a series of steps.
6. The method of claim 1 further comprising a trowel-like mechanism to trim and adjust the mortar.
US14/473,996 2011-06-10 2014-08-29 Automated construction machinery and method Abandoned US20140366481A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/473,996 US20140366481A1 (en) 2011-06-10 2014-08-29 Automated construction machinery and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161495752P 2011-06-10 2011-06-10
US13/493,997 US8825208B1 (en) 2011-06-10 2012-06-11 Automated construction machinery and method
US14/473,996 US20140366481A1 (en) 2011-06-10 2014-08-29 Automated construction machinery and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/493,997 Division US8825208B1 (en) 2011-06-10 2012-06-11 Automated construction machinery and method

Publications (1)

Publication Number Publication Date
US20140366481A1 true US20140366481A1 (en) 2014-12-18

Family

ID=51400075

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/493,997 Expired - Fee Related US8825208B1 (en) 2011-06-10 2012-06-11 Automated construction machinery and method
US14/473,996 Abandoned US20140366481A1 (en) 2011-06-10 2014-08-29 Automated construction machinery and method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/493,997 Expired - Fee Related US8825208B1 (en) 2011-06-10 2012-06-11 Automated construction machinery and method

Country Status (1)

Country Link
US (2) US8825208B1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145697A (en) * 2015-01-29 2016-08-12 Jfeスチール株式会社 Regular-shaped coke oven refractory stacking system and regular-shaped coke oven refractory stacking method
JP2017122178A (en) * 2016-01-07 2017-07-13 Jfeスチール株式会社 Shaped refractory stacking system, shaped refractory stacking method, and method for constructing coke furnace
JP2017125186A (en) * 2016-01-07 2017-07-20 Jfeスチール株式会社 Mortar coating method
WO2018009985A1 (en) * 2016-07-15 2018-01-18 Fastbrick Ip Pty Ltd Computer aided design for brick and block constructions and control software to control a machine to construct a building
JP2019023293A (en) * 2018-08-30 2019-02-14 Jfeスチール株式会社 A method for loading a stereotype refractory material of a coke oven
CN110158978A (en) * 2019-06-28 2019-08-23 杭州三丰装配式建筑科技有限公司 A kind of system and wall building method of automatically building a wall
CN112031367A (en) * 2020-09-06 2020-12-04 重庆万重山智能科技有限公司 Suction module and intelligent tile-sticking robot thereof
US10865578B2 (en) 2016-07-15 2020-12-15 Fastbrick Ip Pty Ltd Boom for material transport
US11401115B2 (en) 2017-10-11 2022-08-02 Fastbrick Ip Pty Ltd Machine for conveying objects and multi-bay carousel for use therewith
US11441899B2 (en) 2017-07-05 2022-09-13 Fastbrick Ip Pty Ltd Real time position and orientation tracker
US11656357B2 (en) 2017-08-17 2023-05-23 Fastbrick Ip Pty Ltd Laser tracker with improved roll angle measurement
US11958193B2 (en) 2017-08-17 2024-04-16 Fastbrick Ip Pty Ltd Communication system for an interaction system

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9200414B1 (en) * 2011-11-02 2015-12-01 Gomaco Corporation Stringless paving train method and apparatus
US9963836B1 (en) 2005-02-23 2018-05-08 Gomaco Corporation Method for operating paving train machines
US9869063B1 (en) 2011-11-02 2018-01-16 Gomaco Corporation Stringless paving train method and apparatus
CN104358417B (en) * 2014-10-28 2016-09-28 张道立 Build a wall and be automatically coated with mud balk making apparatus
NL1041729B1 (en) * 2016-02-19 2017-09-20 Lab3D Device for transporting and positioning cubic elements in a three-dimensional printer.
WO2018009978A1 (en) * 2016-07-15 2018-01-18 Fastbrick Ip Pty Ltd Adhesive applicator and object placing head incorporating the same
FR3054578B1 (en) * 2016-07-27 2021-12-24 Soletanche Freyssinet METHOD FOR REPAIRING A CIVIL ENGINEERING WORK
GB201712164D0 (en) * 2017-07-28 2017-09-13 Construction Automation Ltd Automated brick laying system and method of use thereof
CN107605167B (en) * 2017-10-19 2020-07-10 厦门华蔚物联网科技有限公司 Right-angle wall building method of brick-building robot
CN107740591B (en) * 2017-10-19 2020-07-07 厦门华蔚物联网科技有限公司 T-shaped wall building method of brick building robot
CN107654077B (en) * 2017-10-19 2020-04-03 厦门华蔚物联网科技有限公司 Masonry algorithm of brick-laying robot linear wall body considering mortar plasticity
TWI822729B (en) 2018-02-06 2023-11-21 美商即時機器人股份有限公司 Method and apparatus for motion planning of a robot storing a discretized environment on one or more processors and improved operation of same
JP7050286B2 (en) * 2018-02-27 2022-04-08 株式会社産業工学エンジニアリング Scaffolding assembly equipment and method
WO2019183141A1 (en) * 2018-03-21 2019-09-26 Realtime Robotics, Inc. Motion planning of a robot for various environments and tasks and improved operation of same
CN110644797B (en) * 2018-06-26 2021-09-03 厦门华蔚物联网科技有限公司 Brick laying clamp capable of realizing compaction of mortar between bricks and brick laying method thereof
CN108972866B (en) * 2018-08-22 2023-10-17 南京航空航天大学 Automatic production device for self-heat-preservation masonry wall sheets
EP3847323A4 (en) * 2018-09-04 2022-05-18 Fastbrick IP Pty Ltd Adhesive cartridge
US11124977B2 (en) * 2018-12-04 2021-09-21 The Chinese University Of Hong Kong System and method for constructing a brick structure with a cable-driven robot
CN115110785B (en) * 2021-03-17 2023-09-05 广东博智林机器人有限公司 Execution terminal and plastering and masonry robot
CZ2021241A3 (en) * 2021-05-20 2022-08-10 Wienerberger s.r.o. A building block, a wall assembled from it and handling it
CN114054728A (en) * 2021-10-21 2022-02-18 武汉钢铁集团耐火材料有限责任公司 Intelligent building system and method for steel ladle working lining refractory bricks
CN116441094B (en) * 2023-04-20 2023-12-29 云南途腾智能装备有限公司 Guniting mechanical arm for concrete wet spraying trolley

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3782047A (en) * 1970-09-17 1974-01-01 Monres Ltd Apparatus for positioning bricks
US4677734A (en) * 1983-10-07 1987-07-07 The Boeing Company Robotic wire harness assembly system
US20090038258A1 (en) * 2005-12-30 2009-02-12 Gold Wing Nominees Pty Ltd Automated brick laying system for constructing a building from a plurality of bricks

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1465068A (en) * 1973-09-20 1977-02-23 Laing & Son Ltd John Apparatus for the positioning of elements more particularly building elements
US5284000A (en) * 1992-11-30 1994-02-08 Redwall Engineering Corp. Automating bricklaying
US6370837B1 (en) * 1999-08-04 2002-04-16 Anthony B. Mcmahon System for laying masonry blocks
US8965571B2 (en) * 2010-08-12 2015-02-24 Construction Robotics, Llc Brick laying system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3782047A (en) * 1970-09-17 1974-01-01 Monres Ltd Apparatus for positioning bricks
US4677734A (en) * 1983-10-07 1987-07-07 The Boeing Company Robotic wire harness assembly system
US20090038258A1 (en) * 2005-12-30 2009-02-12 Gold Wing Nominees Pty Ltd Automated brick laying system for constructing a building from a plurality of bricks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Pritschow et al., "Technological aspects in the development of a mobile bricklaying robot," 1996, Elsevier, Automation in Construction 5, pp 3-13 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145697A (en) * 2015-01-29 2016-08-12 Jfeスチール株式会社 Regular-shaped coke oven refractory stacking system and regular-shaped coke oven refractory stacking method
JP2017122178A (en) * 2016-01-07 2017-07-13 Jfeスチール株式会社 Shaped refractory stacking system, shaped refractory stacking method, and method for constructing coke furnace
JP2017125186A (en) * 2016-01-07 2017-07-20 Jfeスチール株式会社 Mortar coating method
JP2019527310A (en) * 2016-07-15 2019-09-26 ファストブリック・アイピー・プロプライエタリー・リミテッド Brick / block laying machine built into the vehicle
US11842124B2 (en) 2016-07-15 2023-12-12 Fastbrick Ip Pty Ltd Dynamic compensation of a robot arm mounted on a flexible arm
US11687686B2 (en) 2016-07-15 2023-06-27 Fastbrick Ip Pty Ltd Brick/block laying machine incorporated in a vehicle
JP7061119B2 (en) 2016-07-15 2022-04-27 ファストブリック・アイピー・プロプライエタリー・リミテッド Brick / block laying machine built into the vehicle
US10635758B2 (en) 2016-07-15 2020-04-28 Fastbrick Ip Pty Ltd Brick/block laying machine incorporated in a vehicle
WO2018009985A1 (en) * 2016-07-15 2018-01-18 Fastbrick Ip Pty Ltd Computer aided design for brick and block constructions and control software to control a machine to construct a building
US10865578B2 (en) 2016-07-15 2020-12-15 Fastbrick Ip Pty Ltd Boom for material transport
US10876308B2 (en) 2016-07-15 2020-12-29 Fastbrick Ip Pty Ltd Boom for material transport
US11106836B2 (en) 2016-07-15 2021-08-31 Fastbrick Ip Pty Ltd Brick/block laying machine incorporated in a vehicle
US11299894B2 (en) 2016-07-15 2022-04-12 Fastbrick Ip Pty Ltd Boom for material transport
US11441899B2 (en) 2017-07-05 2022-09-13 Fastbrick Ip Pty Ltd Real time position and orientation tracker
US11656357B2 (en) 2017-08-17 2023-05-23 Fastbrick Ip Pty Ltd Laser tracker with improved roll angle measurement
US11958193B2 (en) 2017-08-17 2024-04-16 Fastbrick Ip Pty Ltd Communication system for an interaction system
US11401115B2 (en) 2017-10-11 2022-08-02 Fastbrick Ip Pty Ltd Machine for conveying objects and multi-bay carousel for use therewith
JP2019023293A (en) * 2018-08-30 2019-02-14 Jfeスチール株式会社 A method for loading a stereotype refractory material of a coke oven
CN110158978A (en) * 2019-06-28 2019-08-23 杭州三丰装配式建筑科技有限公司 A kind of system and wall building method of automatically building a wall
CN112031367A (en) * 2020-09-06 2020-12-04 重庆万重山智能科技有限公司 Suction module and intelligent tile-sticking robot thereof

Also Published As

Publication number Publication date
US8825208B1 (en) 2014-09-02

Similar Documents

Publication Publication Date Title
US8825208B1 (en) Automated construction machinery and method
CA3012505C (en) Automated brick laying system and method of use thereof
AU2019222886B2 (en) Brick/block laying machine incorporated in a vehicle
EP1711328B1 (en) Robotic system for automated construction
CN113226961B (en) Semi-automatic system for carrying and placing elongated objects
US20170254102A1 (en) Brick Laying System
CN103790367B (en) A kind of full-automatic erection equipment of external wall stone material
US7452196B2 (en) Automated plumbing, wiring, and reinforcement
CN203834904U (en) Full-automatic installing equipment for building external wall stones
EP3519651A2 (en) System for placing objects on a surface and method thereof
ES2726918B2 (en) ROBOT FOR REFORMS AND REHABILITATIONS.
US9388566B2 (en) Method of erecting a building with wooden panels
ES2564940T3 (en) Flush machine and method for leveling floor bases
CN107654078B (en) Movable wall building equipment for building block assembly type wall body
KR101068095B1 (en) Nailing machine grooving technique
KR20100002644A (en) Nailing machine
Kangari et al. Prototype robotics in construction industry
Bryson et al. Fully autonomous robot for paving operations
NL2026626B1 (en) Pointing device, method for pointing brickwork, and use of pointing device
RU2803337C1 (en) Robotic complex for laying aerated concrete
RU2754505C1 (en) Method for erecting structures from small-piece products, robotic arm and complex for its implementation
JP7295791B2 (en) Structure construction method, attachment, precast product, and construction machine
Maynard A Novel Approach for Road Construction Using an Automated Paving Robot
US20050260035A1 (en) Concrete finishing apparatus and method for finishing freshly poured or partially cured concrete
CN116950432A (en) Masonry method, masonry system and masonry robot

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION