US20140305158A1 - In-Chamber Condenser - Google Patents

In-Chamber Condenser Download PDF

Info

Publication number
US20140305158A1
US20140305158A1 US14/353,754 US201214353754A US2014305158A1 US 20140305158 A1 US20140305158 A1 US 20140305158A1 US 201214353754 A US201214353754 A US 201214353754A US 2014305158 A1 US2014305158 A1 US 2014305158A1
Authority
US
United States
Prior art keywords
refrigerant
outflow
side tank
inflow
refrigerant inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/353,754
Other languages
English (en)
Inventor
Shinji Kouno
Yusuke Iino
Yuuichi Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Assigned to SANDEN CORPORATION reassignment SANDEN CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IINO, YUSUKE, KOUNO, SHINJI, MATSUMOTO, YUUICHI
Publication of US20140305158A1 publication Critical patent/US20140305158A1/en
Assigned to SANDEN HOLDINGS CORPORATION reassignment SANDEN HOLDINGS CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SANDEN CORPORATION
Assigned to SANDEN HOLDINGS CORPORATION reassignment SANDEN HOLDINGS CORPORATION CORRECTIVE ASSIGNMENT TO CORRECT THE PROPERTY NUMBERS PREVIOUSLY RECORDED AT REEL: 038489 FRAME: 0677. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: SANDEN CORPORATION
Assigned to SANDEN HOLDINGS CORPORATION reassignment SANDEN HOLDINGS CORPORATION CORRECTIVE ASSIGNMENT TO CORRECT THE TYPOGRAPHICAL ERRORS IN PATENT NOS. 6129293, 7574813, 8238525, 8083454, D545888, D467946, D573242, D487173, AND REMOVE 8750534 PREVIOUSLY RECORDED ON REEL 047208 FRAME 0635. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME. Assignors: SANDEN CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05325Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/09Improving heat transfers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins

Definitions

  • the present invention relates to an interior condenser, and more particularly to an interior condenser accommodated in an HVAC unit of a vehicle air-conditioning heat pump system.
  • a heat exchanger used in a refrigerant circuit of a vehicle air-conditioning system, and including a heat exchange core composed of vertically-stacked tubes and fins, a refrigerant inflow/outflow-side tank where one end portions of the tubes are connected to a side portion, a refrigerant turn-side tank where the other end portions of the tubes are connected to a side portion, a partition wall that separates an inner portion of the refrigerant inflow/outflow-side tank into a refrigerant inflow chamber and a refrigerant outflow chamber, a refrigerant inlet tube connected to the refrigerant inflow/outflow-side tank to communicate with the refrigerant inflow chamber, and a refrigerant outlet tube connected to the refrigerant inflow/outflow-side tank to communicate with the refrigerant outflow chamber (for example, see Patent Document 1).
  • the core is composed of a forward-side core section in which a refrigerant performs heat exchange after passing through the refrigerant inflow/outflow-side tank from the refrigerant inlet tube, and a return-side core section in which the refrigerant performs heat exchange after passing through the forward-side core section and the refrigerant turn-side tank, and employs a so-called counter flow-type refrigerant horizontal flow in which the refrigerant flows in a horizontal direction sequentially from the forward-side core section to the return-side core section, thereby enabling effective heat exchange between air ventilating the core and the refrigerant.
  • Patent Document 1 Japanese Patent No. 4334311
  • the heat exchanger of the above conventional technique is accommodated in an HVAC (Heating Ventilation & Air Conditioning) unit of a vehicle air-conditioning heat pump system and used as an interior condenser whose so-called subcool degree S.C (deg) is increased, a refrigerant temperature can be effectively decreased in the core, and a liquid refrigerant can be increased. Accordingly, the liquid refrigerant can be reliably caused to flow into an expansion valve provided downstream of the condenser in the refrigerant circuit.
  • HVAC Heating Ventilation & Air Conditioning
  • the refrigerant outlet tube is connected above a lower end portion of the core, so that the liquid refrigerant may be accumulated in a tube located below the refrigerant outlet tube, or may flow back in the tube.
  • a refrigerant flow in the return-side core section is thereby deteriorated, resulting in an uneven refrigerant temperature distribution in a low-temperature region (subcool region) particularly near the refrigerant outlet tube in the return-side core section. Therefore, a temperature of air blown off from an air outlet of the vehicle air-conditioning system into a vehicle interior may differ, for example, between a driver-seat air outlet and a passenger-seat air outlet, and a blowoff air temperature in the HVAC unit may become uneven.
  • the refrigerant inlet tube is connected to the side portion of the refrigerant inflow/outflow-side tank at a misaligned position above the refrigerant outlet tube, so that a high temperature region (superheat region) near the refrigerant inlet tube having a relatively high temperature in the forward-side core section, and the low temperature region (subcool region) near the refrigerant outlet tube having a relatively low temperature in the return-side core section exist at a misaligned position without overlapping each other. Therefore, a temperature offset through heat exchange between sensible heat portions of the superheat region in the forward-side core section and the subcool region in the return-side core section is not smoothly performed. As a result, the unevenness in the refrigerant temperature distribution in the subcool region particularly near the refrigerant outlet tube in the return-side core section, and eventually, variation in the blowoff air temperature may be further increased.
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide an interior condenser capable of reducing variation in a blowoff air temperature at respective air outlets in an HVAC unit.
  • an interior condenser of the present invention is an interior condenser which is accommodated in an HVAC unit of a vehicle air-conditioning heat pump system, the interior condenser including: a heat exchange core that is composed of stacked tubes and fins; a refrigerant inflow/outflow-side tank to which one end portions of the tubes are connected; a refrigerant turn-side tank to which the other end portions of the tubes are connected; a partition wall that separates an inner portion of the refrigerant inflow/outflow-side tank into a refrigerant inflow chamber and a refrigerant outflow chamber; a refrigerant inlet tube that is connected to the refrigerant inflow/outflow-side tank to communicate with the refrigerant inflow chamber; and a refrigerant outlet tube that is connected to the refrigerant inflow/outflow-side tank to communicate with the refrigerant outflow chamber, wherein the refrigerant outlet tube is connected to the refrigerant in
  • the core is composed of a forward-side core section in which a refrigerant performs heat exchange after passing through the refrigerant inflow/outflow-side tank from the refrigerant inlet tube, and a return-side core section in which the refrigerant performs heat exchange after passing through the forward-side core section and the refrigerant turn-side tank, and the refrigerant inlet tube and the refrigerant outlet tube are connected to the refrigerant inflow/outflow-side tank at a point-symmetrical position with respect to the partition wall as a symmetrical axis, and at a position overlapping each other as viewed from a direction perpendicular to the partition wall.
  • the refrigerant inlet tube and the refrigerant outlet tube are connected to the refrigerant inflow/outflow-side tank at a line-symmetrical position with respect to the partition well as the symmetrical axis.
  • the refrigerant outlet tube is connected to the refrigerant inflow/outflow-side tank at a position below the core, the refrigerant flowing through the core can be sequentially guided to the refrigerant inflow/outflow-side tank and the refrigerant outlet tube by gravity, thereby preventing accumulation of a liquid refrigerant in a tube due to the tube being located below the refrigerant outlet tube, and backward flow of the liquid refrigerant in the tube.
  • the refrigerant can be caused to smoothly flow through all the tubes, thereby suppressing unevenness in a refrigerant temperature distribution in a subcool region particularly near the refrigerant outlet tube in the return-side core section, and eventually suppressing unevenness in a refrigerant temperature distribution in the entire core. Accordingly, variation in a blowoff air temperature at respective air outlets in the HVAC unit can be reduced.
  • the core can be formed such that a superheat region near the refrigerant inlet tube having a relatively high temperature in the forward-side core section, and the subcool region near the refrigerant outlet tube having a relatively low temperature in the return-side core section overlap each other in at least one portion.
  • the unevenness in the refrigerant temperature distribution in the entire core can be effectively suppressed by a temperature offset through heat exchange between sensible heat portions of the superheat region in the forward-side core section and the subcool region in the return-side core section.
  • the variation in the blowoff air temperature at the respective air outlets in the HVAC unit can be effectively reduced.
  • the core can be formed such that the superheat region and the subcool region completely overlap each other. Therefore, the unevenness in the refrigerant temperature distribution in the entire core can be more effectively suppressed by the temperature offset through the heat exchange between the sensible heat portions of the superheat region in the forward-side core section and the subcool region in the return-side core section. The variation in the blowoff air temperature at the respective air outlets in the HVAC unit can be more effectively reduced.
  • FIG. 1 is a front view illustrating a schematic configuration of a condenser according to one embodiment of the present invention.
  • FIG. 2 is a bottom view of the condenser in FIG. 1 as viewed from below.
  • FIG. 3 is a sectional view of the condenser in FIG. 1 in a direction of A-A.
  • FIG. 4 is a graph illustrating a maximum temperature difference ⁇ Tmax (° C.) of outlet air ventilating a conventional condenser and the condenser of the present embodiment in relation to an increase in a subcool degree S.C (deg).
  • FIG. 5 is a front view illustrating a schematic configuration of a condenser according to another embodiment of the present invention.
  • FIG. 6 is a bottom view of the condenser in FIG. 5 as viewed from below.
  • FIG. 7 is a side view of the condenser in FIG. 5 as viewed from a right side.
  • FIG. 8 is a sectional view of the condenser in FIG. 5 in a direction of B-B.
  • FIG. 1 is a front view schematically illustrating a schematic configuration of the condenser 1 .
  • FIG. 2 is a bottom view of the condenser 1 in FIG. 1 as viewed from below.
  • FIG. 3 is a sectional view of the condenser 1 in FIG. 1 in a direction of A-A.
  • the condenser 1 is an interior condenser that is incorporated in a refrigerant circuit constituting a heat pump cycle of an unillustrated vehicle air-conditioning heat pump system, and accommodated in an unillustrated HVAC (Heating Ventilation & Air Conditioning) unit of the vehicle air-conditioning heat pump system.
  • HVAC Heating Ventilation & Air Conditioning
  • a plurality of tubes 2 forming a refrigerant channel are arranged in a vertical direction, and a colligated fin (fin) 4 is bonded between the respective tubes 2 .
  • the fin 4 forms an air ventilation channel in the condenser 1 , thereby promoting heat exchange between a refrigerant flowing through the respective tubes 2 and outside air.
  • the tubes 2 and the fins 4 are alternately arrayed and stacked in the vertical direction, to form a heat exchange core 6 , the upper and lower end portions of which are covered with side plates 8 .
  • a refrigerant inflow/outflow-side tank 10 to which right end portions of the tubes 2 are connected, is arranged at a right end portion of the core 6
  • a refrigerant turn-side tank 12 to which left end portions of the tubes 2 are connected, is arranged et a left end portion of the core 6 .
  • an inner portion of the refrigerant inflow/outflow-side tank 10 is completely separated into a refrigerant inflow chamber 16 and a refrigerant outflow chamber 18 by a partition wall 14 that is extended in an array direction of the tubes 2 , i.e., a longitudinal direction of the refrigerant inflow/outflow-side tank 10 .
  • an inner portion of the refrigerant turn-side tank 12 is also separated into a refrigerant inflow chamber 24 and a refrigerant outflow chamber 26 by a partition wall 22 that is extended in the array direction of the tubes 2 , i.e., a longitudinal direction of the refrigerant turn-side tank 12 , and through which a plurality of communication holes 20 are pierced.
  • a refrigerant inlet tube 28 and a refrigerant outlet tube 30 are connected to a bottom end portion 10 a of the refrigerant inflow/outflow-side tank 10 .
  • the refrigerant inlet tube 28 communicates with the refrigerant inflow chamber 16
  • the refrigerant outlet tube 30 communicates with the refrigerant outflow chamber 18 .
  • the core 6 is composed of a forward-side core section 6 A into which the refrigerant flows after passing through the refrigerant inflow chamber 16 of the refrigerant inflow/outflow-side tank 10 from the refrigerant inlet tube 28 , and a return-side core section 6 B into which the refrigerant flows after passing through the refrigerant inflow chamber 24 , the communication holes 20 , and the refrigerant outflow chamber 26 of the refrigerant turn-side tank 12 from the forward-side core section 6 A.
  • the condenser 1 having the above configuration employs a so-called counter flow type in which the refrigerant flows in a horizontal direction sequentially from the forward-side core section 6 A to the return-side core section 6 B, thereby enabling effective heat exchange between air ventilating the core 6 and the refrigerant flowing through the core 6 .
  • the refrigerant inlet tube 28 and the refrigerant outlet tube 30 are connected to the bottom end portion 10 a of the refrigerant inflow/outflow-side tank 10 as described above, and the bottom end portion 10 a of the refrigerant inflow/outflow-side tank 10 is located below a bottommost tube 2 a out of the respective tubes 2 .
  • the refrigerant inlet tube 28 and the refrigerant outlet tube 30 are connected to the refrigerant inflow/outflow-side tank 10 at a position below the core 6 .
  • the refrigerant inlet tube 28 and the refrigerant outlet tube 30 are connected to the refrigerant inflow/outflow-side tank 10 at a line-symmetrical position with respect to the partition wall 14 as a symmetrical axis with distances d from the partition wall 14 to tube centers of the refrigerant inlet tube 28 and the refrigerant outlet tube 30 being almost the same.
  • an inner diameter Do of the refrigerant outlet tube 30 is set to an inner diameter Di of the refrigerant inlet tube 28 or more in advance.
  • the refrigerant outlet tube 30 is connected to the refrigerant inflow/outflow-side tank 10 at a position below the core 6 as described above, the refrigerant flowing through the core 6 can be sequentially guided to the refrigerant inflow/outflow-side tank 10 and the refrigerant outlet tube 30 by gravity thereby preventing accumulation of a liquid refrigerant in a tube 2 due to the tube 2 being located below the refrigerant outlet tube 30 , and backward flow of the id refrigerant in the tube 2 .
  • the refrigerant can be caused to smoothly flow through all the tubes 2 , thereby suppressing unevenness in a refrigerant temperature distribution in a low-temperature region (subcool region) particularly near the refrigerant outlet tube in the return-side core section, and eventually suppressing unevenness in a refrigerant temperature distribution in the entire core 6 . Accordingly, variation in a blowoff air temperature at respective air outlets such as a foot air outlet in the HVAC unit can be reduced.
  • the core 6 can be formed such that a high-temperature region (superheat region) near the refrigerant inlet tube 28 having a relatively high temperature in the forward-side core section 6 A, and the low-temperature region (subcool region) near the refrigerant outlet tube 30 having a relatively low temperature in the return-side core section 6 B completely overlap each other.
  • the unevenness in the refrigerant temperature distribution in the entire core 6 can be more effectively suppressed by a temperature offset through heat exchange between sensible heat portions of the superheat region in he forward-side core section 6 A and the subcool region in the return-side core section 6 B.
  • the variation in the blowoff air temperature at the respective air outlets in the HVAC unit can be more effectively reduced.
  • the inner diameter Do of the refrigerant outlet tube 30 is equal to or more than the inner diameter Di of the refrigerant inlet tube 28 , the refrigerant easily flows out of the refrigerant outlet tube 30 , so that the refrigerant can be caused to flow more smoothly in the tubes 2 . Therefore, the unevenness in the refrigerant temperature distribution in the entire core 6 can be more effectively suppressed, and the variation in the blowoff air temperature at the respective air outlets in the HVAC unit can be more effectively reduced.
  • a dashed line indicates a case of a conventional counter flow-type condenser having the core 6 in which the refrigerant vertically flows
  • a solid line indicates the case of the present embodiment.
  • a case in which the condenser 1 shown in FIG. 1 is used in a state rotated clockwise through 90° is assumed as the conventional condenser, whereby the refrigerant cannot be guided by use of gravity due to the arrangement position of the refrigerant outlet tube.
  • the refrigerant is accumulated or flows back around the refrigerant outlet tube in the return-side core section.
  • the maximum temperature difference ⁇ Tmax of the outlet air can be made lower by about 10° C. than that of the conventional condenser at any value of the sub-cool decree S. C. It is understood that the unevenness in the refrigerant temperature distribution in the entire core 6 can be effectively suppressed.
  • the present invention is not limited to the above embodiment as long as the refrigerant outlet tube 30 is connected to the refrigerant inflow/outflow-side tank 10 at a position below the core 6 .
  • FIG. 5 is a front view schematically illustrating a schematic configuration of a condenser 32 .
  • FIG. 6 is a bottom view of the condenser 32 in FIG. 5 as viewed from below.
  • FIG. 7 is a side view of the condenser 32 in FIG. 5 as viewed from a right side.
  • FIG. 8 is a sectional view of the condenser 32 in FIG. 5 in a direction of B-B.
  • the same components as those of FIG. 1 are assigned the same reference numerals, and description is omitted.
  • a refrigerant inflow/outflow-side tank 34 of the present embodiment has a larger longitudinal length than the refrigerant turn-side tank 12 , and a side portion 34 a of the refrigerant inflow/outflow-side tank 34 has a sufficient length to a lower side from the bottommost tube 2 a. Therefore, the refrigerant inlet tube 28 and the refrigerant outlet tube 30 are connected to a portion of the side portion 34 a of the refrigerant inflow/outflow-side tank 34 below the bottommost tube 2 a, that is, connected to the refrigerant inflow/outflow-side tank 34 at a position below the core 6 .
  • the refrigerant inlet tube 28 and the refrigerant outlet tube 30 are connected to the refrigerant inflow/outflow-side tank 34 at a line-symmetrical position with respect to the partition wall 14 as a symmetrical axis with distances d from the partition wall 14 to tube centers of the refrigerant inlet tube 28 and the refrigerant outlet tube 30 being almost the same.
  • An inner diameter Do of the refrigerant outlet tube 30 is set to an inner diameter Di of the refrigerant inlet tube 2 B or more in advance.
  • the refrigerant outlet tube 30 is connected to the refrigerant inflow/outflow-side tank 34 at a position below the core 6 as described above, the accumulation of the liquid refrigerant in the tube 2 , and the backward flow of the liquid refrigerant in the tube 2 can be prevented. Furthermore, the unevenness in the refrigerant temperature distribution in the entire core 6 can be suppressed by the temperature offset through the heat exchange between the sensible heat portions of the superheat region in the forward-side core section 6 A and the subcool region in the return-side core section 6 B, and the variation in the blowoff air temperature at the respective air outlets in the HVAC unit can be effectively reduced.
  • the refrigerant inlet tube 28 and the refrigerant outlet tube 30 are connected to the refrigerant inflow/outflow-side tank 34 at the line-symmetrical position with respect to the partition wall 14 as the symmetrical axis with the distances d from the partition wall 14 to the tube centers of the refrigerant inlet tube 28 and the refrigerant outlet tube 30 being almost the same.
  • the present invention is not limited thereto, and the refrigerant inlet tube 28 and the refrigerant outlet tube 30 may be connected to the refrigerant inflow/outflow-side tank 34 at a point-symmetrical position with respect to the partition wall 14 as the symmetrical axis, and at a position overlapping each other as viewed from a direction perpendicular to the partition wall 14 .
  • the core 6 can be formed such that the superheat region near the refrigerant inlet tube 28 having a relatively high temperature in the forward-side core section 6 A, and the subcool region near the refrigerant outlet tube 30 having a relatively low temperature in the return-side core section 6 B overlap each other in at least one portion. Therefore, the unevenness in the refrigerant temperature distribution in the entire core 6 can be more effectively suppressed by the temperature offset through the heat exchange between the sensible heat portions of the superheat region in the forward-side core section 6 A and the subcool region in the return-side core section 6 B. The variation in the blowoff air temperature at the respective air outlets in the HVAC unit can be effectively reduced.
  • the condenser is not limited to the forms of the condensers 1 and 32 .
  • the same effects as those described above can be of course obtained even in a counter flow-type condenser, such as the conventional condenser assumed in the description of FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Geometry (AREA)
US14/353,754 2011-11-07 2012-11-02 In-Chamber Condenser Abandoned US20140305158A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011243557A JP5913913B2 (ja) 2011-11-07 2011-11-07 室内側凝縮器
JP2011-243557 2011-11-07
PCT/JP2012/078490 WO2013069571A1 (ja) 2011-11-07 2012-11-02 室内側凝縮器

Publications (1)

Publication Number Publication Date
US20140305158A1 true US20140305158A1 (en) 2014-10-16

Family

ID=48289946

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/353,754 Abandoned US20140305158A1 (en) 2011-11-07 2012-11-02 In-Chamber Condenser

Country Status (4)

Country Link
US (1) US20140305158A1 (ja)
JP (1) JP5913913B2 (ja)
DE (1) DE112012004635T5 (ja)
WO (1) WO2013069571A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150276331A1 (en) * 2014-03-31 2015-10-01 Hamilton Sundstrand Corporation Outlet header of heat exchanger
US10066882B2 (en) 2014-02-27 2018-09-04 Hangzhou Sanhua Research Institute Co., Ltd. Connecting member and heat exchanger having the connecting member
WO2019183503A3 (en) * 2018-03-22 2020-04-30 Nelumbo Inc. Heat exchangers and methods of manufacture thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110595111B (zh) * 2019-06-28 2021-11-02 杭州三花微通道换热器有限公司 换热器和多制冷系统空调机组

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110220336A1 (en) * 2009-02-26 2011-09-15 Mitsubishi Heavy Industries, Ltd. Heat exchanger
WO2011136047A1 (ja) * 2010-04-28 2011-11-03 サンデン株式会社 車室内熱交換器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729419Y2 (ja) * 1989-05-01 1995-07-05 株式会社ゼクセル 熱交換器
JP3866905B2 (ja) * 2000-05-30 2007-01-10 松下電器産業株式会社 熱交換器および冷凍サイクル装置
ATE470120T1 (de) * 2005-03-18 2010-06-15 Behr Gmbh & Co Kg Wärmetauscher mit entlüfter
JP5154842B2 (ja) * 2007-06-12 2013-02-27 カルソニックカンセイ株式会社 熱交換器の継ぎ手構造
JP2010032145A (ja) * 2008-07-30 2010-02-12 Showa Denko Kk 熱交換器
JP5687937B2 (ja) * 2010-03-31 2015-03-25 モーディーン・マニュファクチャリング・カンパニーModine Manufacturing Company 熱交換器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110220336A1 (en) * 2009-02-26 2011-09-15 Mitsubishi Heavy Industries, Ltd. Heat exchanger
WO2011136047A1 (ja) * 2010-04-28 2011-11-03 サンデン株式会社 車室内熱交換器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10066882B2 (en) 2014-02-27 2018-09-04 Hangzhou Sanhua Research Institute Co., Ltd. Connecting member and heat exchanger having the connecting member
US20150276331A1 (en) * 2014-03-31 2015-10-01 Hamilton Sundstrand Corporation Outlet header of heat exchanger
US10995994B2 (en) * 2014-03-31 2021-05-04 Hamilton Sunstrand Corporation Outlet header of heat exchanger
WO2019183503A3 (en) * 2018-03-22 2020-04-30 Nelumbo Inc. Heat exchangers and methods of manufacture thereof

Also Published As

Publication number Publication date
DE112012004635T5 (de) 2014-08-28
JP2013100924A (ja) 2013-05-23
WO2013069571A1 (ja) 2013-05-16
JP5913913B2 (ja) 2016-04-27

Similar Documents

Publication Publication Date Title
US10670344B2 (en) Heat exchanger, air-conditioning apparatus, refrigeration cycle apparatus and method for manufacturing heat exchanger
EP2853843B1 (en) A refrigerant distributing device, and heat exchanger equipped with such a refrigerant distributing device
CN107816824B (zh) 热交换器
JP6310386B2 (ja) 熱交換器、当該熱交換器を備えたハウジングおよび空気調和回路
US10041710B2 (en) Heat exchanger and air conditioner
JP2014214903A5 (ja)
US20140305158A1 (en) In-Chamber Condenser
US10150350B2 (en) Vehicle heat exchanger
JP5890705B2 (ja) 熱交換器
EP3137836B1 (en) Improved heat exchanger
KR102491490B1 (ko) 열교환기
US20180003447A1 (en) Heat-exchange element suitable for a heat exchange between first and second fluids, an exchanger core including the heat-exchange element and a heat exchanger including the exchanger core
US20230108901A1 (en) Heat exchanger
JP5851846B2 (ja) 熱交換器及びその製造方法
CN115298507A (zh) 换热器
JP6537868B2 (ja) 熱交換器
KR102365553B1 (ko) 열교환기
JP2013185757A (ja) 冷媒分配器およびヒートポンプ装置
KR101186552B1 (ko) 열교환기
KR20170042138A (ko) 다열 열교환기
JP2015040641A (ja) エバポレータ
JP6486212B2 (ja) エバポレータおよびこれを用いた車両用空調装置
KR101673605B1 (ko) 공기조화기용 증발기
KR20120068441A (ko) 열교환기 및 그 제작방법
JP2020085268A (ja) 熱交換器

Legal Events

Date Code Title Description
AS Assignment

Owner name: SANDEN CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOUNO, SHINJI;IINO, YUSUKE;MATSUMOTO, YUUICHI;REEL/FRAME:032967/0117

Effective date: 20140313

AS Assignment

Owner name: SANDEN HOLDINGS CORPORATION, JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:SANDEN CORPORATION;REEL/FRAME:038489/0677

Effective date: 20150402

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SANDEN HOLDINGS CORPORATION, JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE PROPERTY NUMBERS PREVIOUSLY RECORDED AT REEL: 038489 FRAME: 0677. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:SANDEN CORPORATION;REEL/FRAME:047208/0635

Effective date: 20150402

AS Assignment

Owner name: SANDEN HOLDINGS CORPORATION, JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE TYPOGRAPHICAL ERRORS IN PATENT NOS. 6129293, 7574813, 8238525, 8083454, D545888, D467946, D573242, D487173, AND REMOVE 8750534 PREVIOUSLY RECORDED ON REEL 047208 FRAME 0635. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:SANDEN CORPORATION;REEL/FRAME:053545/0524

Effective date: 20150402