US20140192457A1 - Battery distribution unit - Google Patents

Battery distribution unit Download PDF

Info

Publication number
US20140192457A1
US20140192457A1 US13/803,703 US201313803703A US2014192457A1 US 20140192457 A1 US20140192457 A1 US 20140192457A1 US 201313803703 A US201313803703 A US 201313803703A US 2014192457 A1 US2014192457 A1 US 2014192457A1
Authority
US
United States
Prior art keywords
bdu
cross
strip
strip busbar
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/803,703
Other languages
English (en)
Inventor
Weiping Zhao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TE Connectivity Corp
Original Assignee
Tyco Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tyco Electronics Corp filed Critical Tyco Electronics Corp
Priority to US13/803,703 priority Critical patent/US20140192457A1/en
Assigned to TYCO ELECTRONICS CORPORATION reassignment TYCO ELECTRONICS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ZHAO, WEIPING
Priority to PCT/US2013/078223 priority patent/WO2014109922A1/en
Priority to DE112013006395.6T priority patent/DE112013006395T5/de
Priority to CN201380072672.7A priority patent/CN104995063B/zh
Priority to JP2015552657A priority patent/JP6272904B2/ja
Priority to KR1020157021590A priority patent/KR102146936B1/ko
Publication of US20140192457A1 publication Critical patent/US20140192457A1/en
Priority to US15/346,095 priority patent/US10153565B2/en
Assigned to TE CONNECTIVITY CORPORATION reassignment TE CONNECTIVITY CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: TYCO ELECTRONICS CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/023Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
    • B60R16/0238Electrical distribution centers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/0241Structural association of a fuse and another component or apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/03Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the relationship between the connecting locations
    • H01R11/09Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the relationship between the connecting locations the connecting locations being identical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R9/00Structural associations of a plurality of mutually-insulated electrical connecting elements, e.g. terminal strips or terminal blocks; Terminals or binding posts mounted upon a base or in a case; Bases therefor
    • H01R9/22Bases, e.g. strip, block, panel
    • H01R9/226Bases, e.g. strip, block, panel comprising a plurality of conductive flat strips providing connection between wires or components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/20Bus-bar or other wiring layouts, e.g. in cubicles, in switchyards
    • H02B1/207Cross-bar layouts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/0241Structural association of a fuse and another component or apparatus
    • H01H2085/025Structural association with a binding post of a storage battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/10Sockets for co-operation with pins or blades
    • H01R13/11Resilient sockets
    • H01R13/113Resilient sockets co-operating with pins or blades having a rectangular transverse section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/26Connectors or connections adapted for particular applications for vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R31/00Coupling parts supported only by co-operation with counterpart
    • H01R31/08Short-circuiting members for bridging contacts in a counterpart

Definitions

  • BDUs battery distribution units
  • Batteries such as those for electric vehicles or hybrid vehicles, typically include a plurality of cells grouped together as a battery pack.
  • the battery pack includes a battery distribution unit that manages the power capacity and functionality of the battery pack.
  • the battery distribution units are typically mounted inside a casing of the battery pack.
  • the BDU includes many electric devices such as at least one power relay, at least one pre-charge relay, at least one pre-charge resistor, at least one Y-capacitor, at least one fuse, a current sensor, and other electric devices.
  • BDUs use bolt/nut connections, increasing the number of components within the BDU housing and increasing the assembly time.
  • the size of the BDU is relatively large to accommodate the connections.
  • the large number of parts increases the cost of the BDU.
  • Other BDU designs utilize customized busbars, which are typically stamped and formed busbars having the busbar arranged horizontally with stamped blades formed 90° to extend vertically to mate with the devices.
  • Bolt/nut connections may be utilized with such busbars.
  • Other systems use box terminals that fit onto the blades.
  • Conventional 12V fuse-relay boxes having customized busbars typically arrange the busbars on multiple (e.g. four) different layers, which increases the overall cost and package size of the 12V fuse relay box.
  • the systems are complex and have many components.
  • Such systems have no design flexibility to adapt to different orientations, available spaces and shapes. Such systems are also difficult to integrate with other connectors or devices. Additionally, for the customized busbar, the blade position tolerance is very difficulty to control. Sometimes, it may be difficult to accommodate for the blade orientation of the devices. Cost is a major disadvantage of such systems.
  • a battery distribution unit for holding a first electronic device having a first blade terminal extending therefrom and a second electronic device having a second blade terminal extending therefrom.
  • the BDU includes a BDU housing, a strip busbar received in the BDU housing, and first and second cross terminals received in the BDU housing.
  • the first cross terminal receives the strip busbar at a first end thereof and is configured to receive the first blade terminal at a second end thereof.
  • the second cross terminal receives the strip busbar at a first end thereof and is configured to receive the second blade terminal at a second end thereof.
  • the strip busbar may include first and second broad sides extending a length of the strip busbar between first and second ends.
  • the strip busbar may have a top edge and a bottom edge extending between the first and second ends.
  • the strip busbar may have at least one bend along the length.
  • the strip busbar may have no bends along the length.
  • the strip busbar may include first and second broad sides extending a length of the strip busbar between first and second ends, and a top edge and a bottom edge extending between the first and second ends.
  • the first and second cross terminals may be mounted to either of the first or second edges at any positions along the length.
  • the first and second cross terminals may engage both the first and second broad sides at any positions along the length.
  • the strip busbar may be formed from a metal coil strip cut to length and bent into a predetermined shape to electrically connect the first and second blade terminals via the first and second cross terminals.
  • the strip busbar may have a rectangular cross section along an entire length thereof.
  • the first and second cross terminals have first ends and second ends.
  • the first ends of the first and second cross terminals may include L-shaped wall segments arranged in four quadrants with the wall segments defining a cross shaped cavity configured to receive the strip busbar oriented in one direction or in perpendicular orientations.
  • the second ends of first and second cross terminals may include L-shaped wall segments arranged in four quadrants with the wall segments defining a cross shaped cavity configured to receive the blade terminals of electric device in at least one orientation.
  • the first and second cross terminals may each include a crossed shaped cavity having a first cavity segment and a second cavity segment perpendicular to and intersecting the first cavity segment.
  • the first and second cross terminals may be coupled to the strip busbar at different orthogonal orientations by loading the strip busbar into the first cavity segment or into the second cavity segment of the corresponding first or second cross terminal
  • the first and second cross terminals may have open sides allowing the strip busbar to pass therethrough.
  • electrical take offs may be connected to the strip busbars along any segment thereof.
  • the electrical take offs may be open sided terminals coupled to the strip busbars along either the top edge or the bottom edge. Wires terminated to the electrical take offs may extend to other electrical components within the BDU or outside of the BDU.
  • the electrical take off may conduct power or may be used for voltage measuring.
  • blade contacts may be coupled to at least some of the blade terminals of the electronic devices. The blade contacts may be terminated to wires that are routed within the BDU and/or outside of the BDU.
  • the BDU housing may include a channel and chambers opened to a channel.
  • the strip busbar may be received in the channel and the first and second cross terminals may be received in corresponding chambers to mechanically and electrically connect to the strip busbar.
  • the BDU may include a second strip busbar and a third cross terminal The third cross terminal may receive the second strip busbar at a first end thereof and may receive a third blade terminal extending from the second electronic device such that both the first strip busbar and the second strip busbar are electrically connected to the second electronic device.
  • FIG. 1 illustrates a battery system having a battery distribution unit (BDU) formed in accordance with an exemplary embodiment.
  • BDU battery distribution unit
  • FIG. 2 is an exploded view of a battery distribution unit of the battery system formed in accordance with an exemplary embodiment.
  • FIG. 3 is a bottom perspective view of a cross terminals of the battery distribution unit formed in accordance with an exemplary embodiment.
  • FIG. 4 is a perspective view of the cross terminal shown in FIG. 3 .
  • FIG. 5 is a bottom perspective view of an electronic device of the battery distribution unit.
  • FIG. 6 illustrates electrical components of the battery distribution unit.
  • FIG. 7 is an enlarged view of a portion of the battery distribution unit.
  • FIG. 8 illustrates a portion of the battery distribution unit.
  • FIG. 9 illustrates a portion of the battery distribution unit.
  • FIG. 10 is a bottom perspective view of the battery distribution unit.
  • FIG. 1 illustrates a battery system 100 having a battery distribution unit (BDU) 106 formed in accordance with an exemplary embodiment.
  • the battery system 100 includes a battery pack 102 contained within an outer casing 104 .
  • the battery distribution unit (BDU) 106 is coupled to the battery pack 102 .
  • the battery pack 102 may be part of a high voltage energy storage system.
  • the battery pack 102 may be used in an automotive application, such as part of an electric vehicle or a hybrid electric vehicle.
  • the BDU 106 is used to manage the power capacity and functionality of the battery system 100 , such as by measuring current and regulating power distribution of the battery pack 102 .
  • the battery system 100 may have both a high current power circuit and a low current power circuit, both electrically connected to the battery pack 102 through the BDU 106 .
  • the BDU 106 may monitor and/or control the operation of the components of the battery system 100 .
  • the BDU 106 may measure or react to the battery health of the battery pack 102 .
  • the BDU 106 may measure or react to the battery status of the battery pack 102 .
  • the BDU 106 may monitor for or react to overvoltage and/or low voltage situation with the battery pack 102 .
  • the BDU 106 may react due to the temperature changing of the battery pack 102 .
  • the BDU 106 may manage charging functions of the battery pack 102 .
  • the BDU 106 may have external connections and/or connectors, such as for attaching power terminals to the BDU 106 and/or the battery pack 102 , for attaching sensors to the BDU 106 , for communicating data to/from the BDU 106 , and the like.
  • the BDU 106 may be contained within the outer casing 104 in other embodiments. Alternatively, the BDU 106 may be mounted directly to an exterior of the outer casing 104 .
  • the BDU 106 includes a BDU housing 108 and a cover 110 coupled to the BDU housing 108 for covering the components therein.
  • a positive battery terminal 112 and a negative battery terminal 114 may be accessible through the BDU housing 108 and/or cover 110 for external connection with the BDU 106 .
  • high voltage wires 116 and/or low voltage wires 118 may extend from the BDU 106 .
  • a sensor connector 120 is accessible through the BDU housing 108 and/or cover 110 for external connection with one or more sensors of the BDU 106 .
  • the battery system 100 may include a manual service disconnect (MSD) 122 for disconnecting the power circuit of the battery system 100 , such as for service.
  • the MSD 122 may be connected directly to the outer casing 104 .
  • the MSD may be connected directly to the BDU 106 .
  • the MSD 122 is used to disconnect or open the power circuit of the battery system 100 , such as during service or maintenance.
  • a disconnect plug of the MSD 122 may be disconnected and removed from a disconnect header of the MSD 122 .
  • the MSD 122 may include a high voltage interlock (HVIL) circuit to control the high current power circuit during opening and closing of the MSD 122 .
  • HVIL high voltage interlock
  • the battery pack 102 includes a plurality of battery cells 124 housed within the outer casing 104 .
  • the battery cells 124 may be any type of battery cells.
  • the battery cells 124 may be pouch battery cells or prismatic battery cells. Other types of battery cells may be used in alternative embodiments.
  • the battery cells 124 may be narrow plates arranged in a stacked configuration. Any number of battery cells 124 may be provided in the battery pack 102 .
  • Each of the battery cells 124 may be electrically connected to the BDU 106 through an appropriate electrical connection within the battery pack 102 .
  • FIG. 2 is an exploded view of the BDU 106 formed in accordance with an exemplary embodiment.
  • the BDU housing 108 is a two piece housing having an upper housing 130 and a lower housing 132 .
  • the upper housing 130 is configured to be coupled to the lower housing 132 .
  • the cover 110 is configured to be mounted to the upper housing 130 .
  • the lower housing 132 includes mounting flanges 134 for mounting the BDU 106 to the outer casing 104 (shown in FIG. 1 ), such as to an interior of the outer casing 104 or to an exterior of the outer casing 104 .
  • the BDU 106 may be mounted to the outer casing 104 such that the lower housing 132 is mounted to or is interior of the outer casing 104 and the upper housing 130 is facing out of the outer casing 104 .
  • the BDU 106 may be mounted to the outer casing 104 such that the upper housing 130 is interior of the outer casing 104 and the bottom of the lower housing 132 is facing out of the outer casing 104 .
  • the upper and lower housing 130 , 132 are manufactured from a dielectric material, such as a plastic material.
  • the upper housing 130 holds a plurality of electronic devices, generally shown at 136 .
  • the lower housing 132 holds a plurality of strip busbars 138 and cross terminals 140 used to electrically interconnect the electronic devices 136 .
  • the electronic devices 136 may be electrically connected to corresponding busbars 138 via corresponding cross terminals 140 .
  • the lower housing 132 may hold one or more electronic devices 136 .
  • the upper housing 130 may hold one or more strip busbars 138 and/or cross terminals 140 .
  • any type of electronic devices 136 may form part of the BDU 106 depending on the particular requirements of the battery system 100 (shown in FIG. 1 ).
  • the BDU 106 includes a pair of power relays 142 , 144 , a pre-charge relay 146 , a pre-charge resister 148 , a pair of fuses 150 , 152 , Y-capacitors 154 , 156 , a sensor 158 and the positive and negative battery terminals 112 , 114 .
  • Other types of electronic devices 136 may be used in alternative embodiments.
  • the positioning of the electronic devices 136 may have a layout designed to minimize the footprint of the BDU 106 .
  • the strip busbars 138 define electrical paths between corresponding electronic devices 136 .
  • the strip busbar 138 can be easily routed within the lower housing 132 between the corresponding electronic devices 136 .
  • the strip busbars 138 and cross terminals 140 allow convenient and simple connections between the strip busbars 138 and the electronic devices 136 .
  • the cross terminals 140 allow the electronic devices 136 to be quickly plugged in or unplugged from the BDU 106 .
  • the cross terminals 140 eliminate some or all wired connections to the electronic devices 136 , reducing assembly time of the BDU 106 .
  • the lower housing 132 includes a top 160 and a bottom 162 .
  • the lower housing 132 includes a plurality of channels 164 therein open at the top 160 and/or the bottom 162 .
  • the strip busbars 138 are loaded into corresponding channels 164 .
  • the channels 164 position and retain the strip busbars 138 and provide electrical isolation and prevent inadvertent touching of the strip busbars 138 .
  • the dielectric material of the housing 132 prevents shorting among conductive elements in the BDU 106 .
  • the channels 164 extend generally vertically within the lower housing 132 between the top 160 and the bottom 162 .
  • the strip busbars 138 are received in the channels 164 such that the strip busbars 138 extend generally vertically within the lower housing 132 between the top 160 and/or the bottom 162 .
  • each of the strip busbars 138 are arranged at the same horizontal level and received at the same depth in the lower housing 132 .
  • the strip busbars 138 are routed around each other but do not pass vertically above or below one another. Providing all of the strip busbars 138 at the same depth allows the lower housing 132 , and thus the BDU 106 , to have a low profile, saving valuable space in and around the battery system 100 and/or making the battery system 100 more compact. Not passing busbars above or below one another eliminates the need for providing adequate creepage distance between such busbars, which requires additional height for the lower housing 132 . The cost and package size are reduced by such an arrangement.
  • the lower housing 132 includes a plurality of chambers 166 open to corresponding channels 164 .
  • the chambers 166 are open at the top 160 and/or the bottom 162 .
  • the chambers 166 receive corresponding cross terminal 140 therein.
  • the chambers 166 may be sized and shaped to hold the cross terminals 140 therein, such as by a friction fit or by using locking features.
  • the chambers 166 may be sized and shaped to orient the cross terminals 140 relative to the lower housing 132 and the strip busbars 138 for termination thereto.
  • the cross terminals 140 may be plugged into the chambers 166 and terminated to the strip busbars 138 as the cross terminals 140 are plugged into the chambers 166 .
  • the cross terminals 140 are received in corresponding chambers 166 to mechanically and electrically connect to the corresponding strip busbars 138 .
  • the chambers 166 provide location, retention, alignment, orientation and mounting for the cross terminals 140 .
  • the chambers 166 provide insulation around the cross terminals 140 and provide electrical isolation and protection from inadvertent touching.
  • FIG. 3 is a bottom perspective view of one of the cross terminals 140 formed in accordance with an exemplary embodiment.
  • FIG. 4 is a perspective view of the cross terminal 140 shown in FIG. 3 .
  • the cross terminal 140 includes a stamped and formed body 200 formed into a cross-shape.
  • the cross terminal 140 includes a plurality of L-shaped wall segments 202 spaced from each other to define a cross-shaped cavity 204 .
  • four wall segments 202 are provided and arranged in four different quadrants. The wall segments 202 oppose each other across the cross-shaped cavity 204 .
  • the cross shaped cavity 204 is defined by a first cavity segment 206 and a second cavity segment 208 perpendicular to and intersecting the first cavity segment 206 .
  • the strip busbar 138 (shown in FIG. 2 ) is configured to be received in either of the first cavity segment 206 or the second cavity segment 208 .
  • the cross terminal 140 is configured to be coupled to the strip busbar 138 at different orthogonal orientations by loading the strip busbar 138 into the first cavity segment 206 or into the second cavity segment 208 .
  • the cross terminal 140 may thus be oriented at a zero degree position, a 90 degree position, a 180 degree position or a 270 degree position with respect to the strip busbar 138 .
  • the cross terminal 140 includes a plurality of protrusions 210 extending into the cross shape cavity 204 from the wall segments 202 .
  • the protrusions 210 are configured to engage the strip busbar 138 when the strip busbar 138 is loaded into the cross shaped cavity 204 .
  • the protrusions 210 are defined by semicircular bumps extending into the cross shaped cavity 204 from the wall segments 202 , however the protrusions 210 may have other shapes in alternative embodiments.
  • the protrusions may be deflectable beams stamped out of the wall segments 202 .
  • the cross terminal 140 includes open sides 212 , 214 , 216 , 218 extending between a first end 220 and a second end 222 of the cross terminal 140 .
  • the open sides 212 , 214 , 216 , 218 are open along at least a portion of the length of the cross terminal 140 between the first and second ends 220 , 222 .
  • Connecting segments 224 extend between corresponding wall segments 202 across the sides 212 , 214 , 216 , 218 .
  • the sides 212 , 214 , 216 , 218 may be closed at the location of the connecting segments 224 .
  • the connecting segments 224 may be approximately centrally located along the sides 212 , 216 such that the sides 212 , 216 are open at the first and second ends 220 , 222 .
  • the connecting segments 224 may extend to the second end 222 along the sides 214 , 218 , such that the sides 214 , 218 are only open proximate to the first end 220 and are closed proximate to the second end 222 .
  • the body 200 is stamped and formed such that an overlap segment 226 extends from one wall segment 202 , across the side 218 , and along the opposed wall segment 202 .
  • the overlap segment 226 holds the cross terminal 140 together.
  • one or more wall segments 202 may be secured to other wall segment(s), such as by laser welding the wall segments 202 together.
  • the cross terminal 140 is open at all four sides 212 , 214 , 216 , 218 at the first end 220 , while, at the second end 222 , only being open at two sides 212 , 216 and closed at the other two sides 214 , 218 .
  • the second end 222 of cross terminal 140 may be identical as the first end of cross terminal 140 , being open at all four sides 212 , 214 , 216 , 218 .
  • the first end 220 may be closed at any of the sides 212 , 214 , 216 , 218 , such as at the sides 214 , 218 in a similar manner as the second end 222 while the second end 222 of cross terminal 140 may be identical as the first end 220 of the cross terminal 140 , being open at all four sides 212 , 214 , 216 , 218 .
  • the first end 220 of cross terminal 140 may be identical as the second end of cross terminal 140 , being open at two sides 212 , 216 such that both the first and second ends 220 , 222 have two open sides and two closed sides
  • the ends 220 , 222 may have any number of open sides and closed sides depending on the particular application.
  • the first end 220 of the cross terminal 140 may be closed at all four sides, such as when at least one blade is branched out from the vertical strip bussbar 138 , while the second end 222 of the cross terminal 140 may have any number of open sides and closed sides.
  • the cross terminal 140 may include additional wall segments and additional cavity segments (e.g. 3 or more cavity segments) allowing additional mounting orientations of the cross terminal 140 relative to the strip busbar 138 and the electronic device 136 (e.g. parallel, perpendicular and transverse/non-parallel and non-perpendicular).
  • additional cavity segments e.g. 3 or more cavity segments
  • the cross shaped cavity in such embodiments would no longer be perpendicular cross-shaped but rather would have many crossing cavity segments.
  • FIG. 5 is a bottom perspective view of one of the electronic devices 136 .
  • the electronic device 136 includes a body 240 having a bottom 242 .
  • a plurality of blade terminals 244 extend from the bottom 242 .
  • the blade terminals 244 are configured to be terminated to corresponding cross terminals 140 (shown in FIGS. 3 and 4 ) or to other types of socket terminals.
  • the blade terminals 244 are planar and extend to a tip 246 .
  • the blade terminals 244 have opposing sides 248 extending between opposing edges 250 .
  • FIG. 6 illustrates electrical components of the BDU 106 (shown in FIG. 2 ) with the BDU housing 108 (shown in FIG. 2 ) removed for clarity.
  • FIG. 6 illustrates the strip busbars 138 electrically interconnecting corresponding electronic devices 136 in accordance with a particular powering scheme for the BDU 106 .
  • each strip busbar 138 is formed from a metal coil strip cut to length and bent into a predetermined shape to route between, and electrically connect to, corresponding electronic devices 136 via the cross terminals 140 .
  • the strip busbar 138 may have a rectangular cross-section along the entire length thereof.
  • the strip busbar 138 includes first and second broad sides 300 , 302 extending a length of the strip busbar 138 between first and second ends 304 , 306 .
  • the strip busbars 138 may have different lengths between the first and second ends 304 , 306 thereof.
  • the strip busbar 138 has a top edge 308 and a bottom edge 310 extending between the first and second ends 304 , 306 .
  • the strip busbars 138 may have any number of bends 312 between the first and second ends 304 , 306 .
  • the bends 312 may be 90 degree bends.
  • the bends 312 may be at other angles such that the segments on opposite sides of the bends 312 are non-perpendicular.
  • the strip busbars 138 are routed through the BDU 106 to electrically interconnect different electronic devices 136 or other components of the BDU 106 or battery system 100 (shown in FIG. 1 ).
  • the strip busbars 138 pass vertically below corresponding blade terminals 244 of the electronic devices 136 such that the cross terminals 140 may electrically connect the strip busbars 138 with the corresponding blade terminals 244 .
  • the strip busbars 138 may be parallel to the blade terminals 244 (e.g., having the broad sides 300 , 302 parallel to the sides 248 ), or alternatively, the strip busbars 138 may be oriented perpendicular to the blade terminals 244 (e.g., having the broad sides 300 , 302 perpendicular to the sides 248 ).
  • the crossed shaped cavities 204 of the cross terminals 140 allow the strip busbars 138 to pass through the cross terminals 140 at different orthogonal orientations (e.g., parallel or perpendicular) to the blade terminals 244 .
  • the second ends 222 of the cross terminals 140 are coupled to the corresponding blade terminals 244 while the first ends 220 of the cross terminals 140 receive corresponding strip busbars 138 . Because the second ends 222 have two open sides 212 , 216 , the cross terminals 140 are configured to be coupled to the blade terminals 244 in either a zero degree position or 180 degree position such that the blade terminals 244 are received in the first cavity segment 206 (shown in FIG. 3 ).
  • the edges 250 extend beyond the sides 212 , 216 of the cross terminals 140 .
  • the four open sides 212 , 214 , 216 , 218 (shown in FIG. 3 ) of the cross terminals 140 are capable of receiving the strip busbars 138 in either the first cavity segment 206 or the second cavity segment 208 (shown in FIG. 3 ).
  • the strip busbar 138 is parallel to the blade terminal 244 , the strip busbar 138 is received in the first cavity segment 206 .
  • the strip busbar 138 is perpendicular to the blade terminal 244 , the strip busbar 138 is received in the second cavity segment 208 .
  • the cross terminals 140 have greater position tolerance relative to the strip busbars 138 and/or the electronic devices 136 as compared to cross terminals 140 that have four closed sides at the first or second end thereof.
  • the design and the layout of the strip busbars 138 and electronic devices 136 within the BDU 106 may be easier using open sided cross terminals 140 .
  • the cross terminals 140 may be flipped 180° such that the first ends 220 are coupled to the blade terminals 244 and the second ends are coupled to the strip busbars 138 . Because the second ends 222 are only open along the two sides 214 , 218 , the cross terminal 140 may only be received in the first cavity segment 206 ; however the first end 220 may receive the blade terminal 244 in either the first cavity segment 206 or in the second cavity segment 208 such that the blade terminal 244 may be either parallel to the strip busbar 138 or perpendicular to the strip busbar 138 .
  • the cross terminals 140 electrically connect the strip busbars 138 and corresponding blade terminals 244 .
  • the strip busbars 138 may be electrically connected to other components in addition to one or more electronic devices 136 .
  • the strip busbars 138 may be connected to the positive or negative battery terminals 112 , 114 , the sensor connector of shunt type senor or passed through a Halls sensor 120 , the Y-capacitors 154 , 156 , electrical take offs 320 , or other components.
  • first wires 322 extending from the Y-capacitors 154 , 156 are directly connected to the corresponding strip busbars 138 , such as by soldering or welding the wires 322 to the strip busbars 138 .
  • Second wires extending from the Y-capacitors 154 , 156 are directly connected to external wires (not shown), such as by soldering or welding the wires to the external wires.
  • the first or second ends 304 , 306 of the strip busbars 138 may be folded over to define tabs 324 .
  • the tabs 324 may be directly connected to other electrical components, such as directly to battery cells 124 (shown in FIG. 1 ), directly to the MSD 122 if the MSD is located proximate to the lower housing 132 (shown in FIG. 2 ), or other components.
  • the tabs 324 may extend beyond the BDU housing 108 for termination to such other electrical components.
  • the tabs 324 may define the positive and negative battery terminals 112 , 114 as opposed to having separate battery terminals welded to the strip busbars 138 .
  • the electrical take offs 320 may be connected to the strip busbars 138 along any segment thereof.
  • the electrical take offs 320 may include open sided terminals attached to wires.
  • the open sided terminals are coupled to the strip busbars 138 along either the top edge 308 or the bottom edge 310 .
  • the wires terminated to the electrical take offs 320 may extend to other electrical components within the BDU 106 or outside of the BDU 106 .
  • the electrical take off 320 may conduct power or may be used for voltage measuring or other functions.
  • blade contacts 330 are coupled to at least some of the blade terminals 244 of the electronic devices 136 .
  • the blade contacts 330 may be terminated to wires 332 that are routed within the BDU 106 and/or outside of the BDU 106 .
  • the wires 332 may define one or more of the high voltage wires 116 (shown in FIG. 1 ) or the low voltage wires 118 (shown in FIG. 1 ) that are routed from the BDU 106 to other components of the battery system 100 .
  • FIG. 7 is an enlarge view of a portion of the BDU 106 .
  • FIG. 7 illustrates strip busbars 138 connecting the pre-charge relay 146 with the pre-charge resister 148 using corresponding cross terminals 140 .
  • FIG. 7 also illustrates the pre-charge relay 146 connected to the power relay 144 using corresponding cross terminals 140 .
  • Blade contacts 330 and corresponding wires 332 are connected to corresponding blade terminals 244 of the pre-charge relay 146 and power relay 144 . Such wires 332 may be connected to other electrical components of the BDU 106 .
  • FIG. 7 illustrates portions of other electronic devices 136 and strip busbars 138 .
  • FIG. 7 illustrates the pre-charge relay 146 with one of the strip busbars 138 oriented perpendicular to the corresponding terminal blade 244 and with another strip busbar 138 oriented parallel to the corresponding terminal blade 244 .
  • the second ends 222 of the cross terminals 140 receive the blade terminals 244 and the first ends 220 of the cross terminals 140 receive the strip busbars 138 .
  • the strip busbars 138 are flexible in design to allow routing schemes within the BDU 106 to reduce the overall size or footprint of the BDU 106 .
  • FIG. 8 illustrates a portion of the BDU 106 .
  • FIG. 8 shows the pre-charge resister 148 being electrically connected to the fuses 150 , 152 via corresponding cross terminals 140 .
  • the fuse 150 is electrically connected to another strip busbar 138 by a corresponding cross terminal 140 .
  • the fuse 152 is connected to a corresponding blade contact 330 , where the corresponding wire 332 may be electrically connected to another electrical component within the BDU 106 or exterior of the BDU 106 .
  • FIG. 8 illustrates a power take off 320 coupled to the top edge 308 of the strip busbar 138 .
  • the electrical take off 320 may be connected to another component, such as an accessory, a DC/DC inverter, a voltage sensor or another electrical component within the BDU 106 or exterior of the BDU 106 .
  • another component such as an accessory, a DC/DC inverter, a voltage sensor or another electrical component within the BDU 106 or exterior of the BDU 106 .
  • the high voltage wires 116 and/or the low voltage wires 118 exit from the side of BDU housing 108 .
  • the cross terminals 140 are connected to the strip busbar 138 along the top edge 308 of the strip busbar 138 .
  • the top edge 308 is received in the cross shaped cavity 204 of the cross terminals 140 .
  • FIG. 9 illustrates a portion of BDU 106 showing one of the strip busbars 138 electrically connected to the pre-charge resister 148 and the fuses 150 , 152 via the corresponding cross terminals 140 .
  • the cross terminals 140 are connected to the bottom edge 310 of the strip busbar 138 .
  • the fuses 150 , 152 are positioned below the strip busbar 138 .
  • the fuses 150 , 152 may be positioned below the bottom 162 (shown in FIG. 2 ) of the lower housing 132 (shown in FIG. 2 ), such as for access from an exterior of the BDU housing 108 (shown in FIG. 2 ).
  • FIG. 10 is a bottom perspective view of the BDU 106 in accordance with an alternative embodiment showing the bottom 162 of the BDU housing 108 .
  • the MSD 122 is illustrated connected to the bottom 162 of the BDU housing 108 .
  • the fuses 150 , 152 are located within the MSD 122 .
  • the fuses may not need additional wires connected thereto, which are routed from the BDU housing 108 .
  • the fuses 150 , 152 may be covered by the plug of the MSD 122 when the plug of the MSD 122 is coupled to the header of the MSD 122 . When the plug is removed, the fuses 150 , 152 are exposed for servicing and replacing.
  • the BDU 106 includes external connectors 340 along the bottom 162 for electrical connection to other mating connectors (not shown).
  • Cross terminals 140 are positioned within the external connectors 340 for connections to the mating connectors.
  • the cross terminals 140 are configured to be coupled to corresponding strip busbars 138 along the bottom edges 310 (both shown in FIG. 7 ) of the strip busbars 138 .
  • the cross terminals 140 are positioned to an exterior of the BDU 106 for mating with the mating connectors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
US13/803,703 2013-01-10 2013-03-14 Battery distribution unit Abandoned US20140192457A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/803,703 US20140192457A1 (en) 2013-01-10 2013-03-14 Battery distribution unit
PCT/US2013/078223 WO2014109922A1 (en) 2013-01-10 2013-12-30 Battery distribution unit
DE112013006395.6T DE112013006395T5 (de) 2013-01-10 2013-12-30 Batterieverteilereinheit
CN201380072672.7A CN104995063B (zh) 2013-01-10 2013-12-30 电池分配单元
JP2015552657A JP6272904B2 (ja) 2013-01-10 2013-12-30 バッテリ分配ユニット
KR1020157021590A KR102146936B1 (ko) 2013-01-10 2013-12-30 배터리 분배 유닛
US15/346,095 US10153565B2 (en) 2013-01-10 2016-11-08 Battery distribution unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361751118P 2013-01-10 2013-01-10
US13/803,703 US20140192457A1 (en) 2013-01-10 2013-03-14 Battery distribution unit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/346,095 Division US10153565B2 (en) 2013-01-10 2016-11-08 Battery distribution unit

Publications (1)

Publication Number Publication Date
US20140192457A1 true US20140192457A1 (en) 2014-07-10

Family

ID=51060774

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/803,703 Abandoned US20140192457A1 (en) 2013-01-10 2013-03-14 Battery distribution unit
US15/346,095 Active US10153565B2 (en) 2013-01-10 2016-11-08 Battery distribution unit

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/346,095 Active US10153565B2 (en) 2013-01-10 2016-11-08 Battery distribution unit

Country Status (6)

Country Link
US (2) US20140192457A1 (zh)
JP (1) JP6272904B2 (zh)
KR (1) KR102146936B1 (zh)
CN (1) CN104995063B (zh)
DE (1) DE112013006395T5 (zh)
WO (1) WO2014109922A1 (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130099765A1 (en) * 2011-10-21 2013-04-25 Cobasys, Llc Modular battery disconnect unit
CN105453376A (zh) * 2013-08-07 2016-03-30 罗伯特·博世有限公司 用于电池切断单元的预充电单元
US9450226B2 (en) 2014-12-15 2016-09-20 Delphi Technologies, Inc. Battery pack interconnection system
WO2017091485A1 (en) * 2015-11-23 2017-06-01 Te Connectivity Corporation Electrical module
KR20170100330A (ko) * 2016-02-25 2017-09-04 주식회사 엘지화학 서비스 플러그, 이러한 서비스 플러그를 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
US20180294448A1 (en) * 2015-10-02 2018-10-11 Tyco Electronics Japan G.K. Inter-Battery Connection Device and Inter-Battery Connection Device Assembly
CN109073686A (zh) * 2016-05-04 2018-12-21 赛峰电气与电源公司 母线电流传感器组件
US20190029134A1 (en) * 2017-07-24 2019-01-24 Te Connectivity Corporation Electrical device with nut retention slot
CN110277525A (zh) * 2019-07-24 2019-09-24 常州普莱德新能源电池科技有限公司 一种通用的经济兼容性bdu以及电池包
US10431931B2 (en) 2018-01-10 2019-10-01 Lear Corporation Electrical unit and assembly
CN110901417A (zh) * 2019-12-25 2020-03-24 东风汽车有限公司 一种电动汽车的电池配电装置及电池包
CN113043970A (zh) * 2021-03-30 2021-06-29 重庆长安汽车股份有限公司 一种整车负载管理系统
US20210383985A1 (en) * 2018-11-15 2021-12-09 Panasonic Intellectual Property Management Co., Ltd. Relay module
CN113823945A (zh) * 2020-06-19 2021-12-21 东电化电子(珠海)有限公司 电子装置
US20220029255A1 (en) * 2020-07-23 2022-01-27 Volvo Car Corporation Fuse box on a vehicle battery and method for mounting a fuse box on a vehicle battery
US20220185088A1 (en) * 2020-12-11 2022-06-16 Contemporary Amperex Technology Co., Limited Battery, power consumption apparatus, and method for producing battery
WO2022251547A1 (en) * 2021-05-27 2022-12-01 Stecewycz Joseph Automotive battery with integral electrical contact slots
EP4089711A4 (en) * 2020-01-15 2023-07-19 BYD Company Limited MULTIFUNCTIONAL FUSE

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6730033B2 (ja) * 2016-01-19 2020-07-29 マレリ株式会社 組電池
KR20170003870U (ko) * 2016-05-04 2017-11-15 엘에스산전 주식회사 전기자동차용 배터리 디스커넥티드 유닛
KR102194361B1 (ko) * 2017-12-06 2020-12-23 도요타 지도샤(주) 전기 기기와 그 제조 방법
CN108567378A (zh) * 2018-07-06 2018-09-25 小狗电器互联网科技(北京)股份有限公司 电池组端子结构及吸尘器
CN109786596A (zh) * 2018-12-06 2019-05-21 奇瑞新能源汽车技术有限公司 一种电动汽车的动力电池系统
DE102020101836A1 (de) 2020-01-27 2021-07-29 Lisa Dräxlmaier GmbH Fixiereinrichtung für elektrische kontaktpartner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5934929A (en) * 1994-07-15 1999-08-10 Sumitomo Wiring Systems, Ltd. Electrical connection box
US6447325B1 (en) * 1999-06-23 2002-09-10 Autonetworks Technologies, Ltd. Connection structure for electric wires
US7099155B2 (en) * 2003-02-14 2006-08-29 Autonetworks Technologies, Ltd. Distribution unit and electric connection box including the same
US7283366B2 (en) * 2004-04-19 2007-10-16 Autonetworks Technologies, Ltd. Electrical connection box
US20080180884A1 (en) * 2007-01-31 2008-07-31 Tyco Electronics Corporation Power distribution module using buss bar
US8913371B2 (en) * 2012-10-26 2014-12-16 Sumitomo Wiring Systems, Ltd. Automotive fuse and relay block assembly

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035911A (ja) * 1983-08-05 1985-02-23 古河電気工業株式会社 電気接続箱
JPH0750969B2 (ja) * 1988-05-31 1995-05-31 矢崎総業株式会社 電気接続箱
JPH027718U (zh) * 1988-06-24 1990-01-18
JPH02219413A (ja) * 1989-02-16 1990-09-03 Yazaki Corp 電気接続箱
JP2962160B2 (ja) * 1994-09-14 1999-10-12 住友電装株式会社 電気接続箱
JP3067572B2 (ja) * 1995-02-20 2000-07-17 住友電装株式会社 電気接続箱の接続構造
US6353190B1 (en) * 1998-10-09 2002-03-05 Sumitomo Wiring Systems, Ltd. Lattice-shaped circuit board
DE10340850A1 (de) * 2002-10-08 2004-04-22 Tyco Electronics Amp Gmbh Mechanisch stabilisierte Kontaktbuchse
DE10306979A1 (de) * 2003-02-19 2004-09-02 Delphi Technologies, Inc., Troy Elektrisches Anschlusselement mit zwei Buchsenabschnitten zur Aufnahme jeweils eines Flachsteckers
DE10351099B3 (de) * 2003-10-31 2005-08-25 Trw Automotive Electronics & Components Gmbh & Co. Kg Elektrischer Steckverbinder
JP2005312130A (ja) * 2004-04-19 2005-11-04 Auto Network Gijutsu Kenkyusho:Kk 電気接続箱
JP2008086070A (ja) * 2006-09-26 2008-04-10 Yazaki Corp 電気接続箱
DE102006062022B4 (de) * 2006-12-29 2022-05-25 Te Connectivity Germany Gmbh Elektrischer Kreuzkontakt
JP5892505B2 (ja) * 2011-06-30 2016-03-23 矢崎総業株式会社 板金部材、バスバ及びこのバスバを備えた電気接続箱

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5934929A (en) * 1994-07-15 1999-08-10 Sumitomo Wiring Systems, Ltd. Electrical connection box
US6447325B1 (en) * 1999-06-23 2002-09-10 Autonetworks Technologies, Ltd. Connection structure for electric wires
US7099155B2 (en) * 2003-02-14 2006-08-29 Autonetworks Technologies, Ltd. Distribution unit and electric connection box including the same
US7283366B2 (en) * 2004-04-19 2007-10-16 Autonetworks Technologies, Ltd. Electrical connection box
US20080180884A1 (en) * 2007-01-31 2008-07-31 Tyco Electronics Corporation Power distribution module using buss bar
US8913371B2 (en) * 2012-10-26 2014-12-16 Sumitomo Wiring Systems, Ltd. Automotive fuse and relay block assembly

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130099765A1 (en) * 2011-10-21 2013-04-25 Cobasys, Llc Modular battery disconnect unit
US9266434B2 (en) * 2011-10-21 2016-02-23 Robert Bosch Gmbh Modular battery disconnect unit
CN105453376A (zh) * 2013-08-07 2016-03-30 罗伯特·博世有限公司 用于电池切断单元的预充电单元
US20160190841A1 (en) * 2013-08-07 2016-06-30 Robert Bosch Gmbh Precharging unit for a battery interruption unit
US9450226B2 (en) 2014-12-15 2016-09-20 Delphi Technologies, Inc. Battery pack interconnection system
US10854860B2 (en) * 2015-10-02 2020-12-01 Tyco Electronics Japan G.K. Inter-battery connection device and inter-battery connection device assembly
US20180294448A1 (en) * 2015-10-02 2018-10-11 Tyco Electronics Japan G.K. Inter-Battery Connection Device and Inter-Battery Connection Device Assembly
WO2017091485A1 (en) * 2015-11-23 2017-06-01 Te Connectivity Corporation Electrical module
US10091902B2 (en) 2015-11-23 2018-10-02 Te Connectivity Corporation Electrical module for battery distribution assembly
KR102052672B1 (ko) 2016-02-25 2019-12-05 주식회사 엘지화학 서비스 플러그, 이러한 서비스 플러그를 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
KR20170100330A (ko) * 2016-02-25 2017-09-04 주식회사 엘지화학 서비스 플러그, 이러한 서비스 플러그를 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
US10782322B2 (en) * 2016-05-04 2020-09-22 Safran Electrical & Power Busbar current sensor assembly
CN109073686A (zh) * 2016-05-04 2018-12-21 赛峰电气与电源公司 母线电流传感器组件
US10299395B2 (en) * 2017-07-24 2019-05-21 TE Connnectivity Corporation Electrical device with nut retention slot
US20190029134A1 (en) * 2017-07-24 2019-01-24 Te Connectivity Corporation Electrical device with nut retention slot
US10431931B2 (en) 2018-01-10 2019-10-01 Lear Corporation Electrical unit and assembly
EP3882945A4 (en) * 2018-11-15 2022-04-06 Panasonic Intellectual Property Management Co., Ltd. RELAY MODULE
US20210383985A1 (en) * 2018-11-15 2021-12-09 Panasonic Intellectual Property Management Co., Ltd. Relay module
CN110277525A (zh) * 2019-07-24 2019-09-24 常州普莱德新能源电池科技有限公司 一种通用的经济兼容性bdu以及电池包
CN110901417A (zh) * 2019-12-25 2020-03-24 东风汽车有限公司 一种电动汽车的电池配电装置及电池包
EP4089711A4 (en) * 2020-01-15 2023-07-19 BYD Company Limited MULTIFUNCTIONAL FUSE
US11798768B2 (en) 2020-01-15 2023-10-24 Byd Company Limited Fusing device
CN113823945A (zh) * 2020-06-19 2021-12-21 东电化电子(珠海)有限公司 电子装置
US20220029255A1 (en) * 2020-07-23 2022-01-27 Volvo Car Corporation Fuse box on a vehicle battery and method for mounting a fuse box on a vehicle battery
US11881600B2 (en) * 2020-07-23 2024-01-23 Volvo Car Corporation Fuse box on a vehicle battery and method for mounting a fuse box on a vehicle battery
US20220185088A1 (en) * 2020-12-11 2022-06-16 Contemporary Amperex Technology Co., Limited Battery, power consumption apparatus, and method for producing battery
US11858332B2 (en) * 2020-12-11 2024-01-02 Contemporary Amperex Technology Co., Limited Battery, power consumption apparatus, and method for producing battery
CN113043970A (zh) * 2021-03-30 2021-06-29 重庆长安汽车股份有限公司 一种整车负载管理系统
WO2022251547A1 (en) * 2021-05-27 2022-12-01 Stecewycz Joseph Automotive battery with integral electrical contact slots

Also Published As

Publication number Publication date
CN104995063A (zh) 2015-10-21
US10153565B2 (en) 2018-12-11
DE112013006395T5 (de) 2015-10-08
JP6272904B2 (ja) 2018-01-31
CN104995063B (zh) 2017-02-22
WO2014109922A1 (en) 2014-07-17
US20170054230A1 (en) 2017-02-23
KR102146936B1 (ko) 2020-08-25
JP2016513333A (ja) 2016-05-12
KR20150106915A (ko) 2015-09-22

Similar Documents

Publication Publication Date Title
US10153565B2 (en) Battery distribution unit
KR102340898B1 (ko) 조립성이 향상된 버스바 프레임을 구비한 배터리 모듈
US8808031B2 (en) Battery connector system
US8580423B2 (en) Bus bar holder and battery pack including the same
US20140193990A1 (en) Manual service disconnects for battery systems
CN108701786B (zh) 蓄电装置
US10230081B2 (en) Voltage-protected producible motor vehicle battery
CN111149234A (zh) 电连接部件收纳壳体以及电池模块
US20190123522A1 (en) Electrical unit
CN112166530B (zh) 用于接线盒的插座端子
JP2014107161A (ja) バスバモジュール構造体
CN112092755B (zh) 一种电池切断装置及电池包系统
US11040623B2 (en) Manual service disconnect for battery system
US10069120B2 (en) Battery module
CN106328876B (zh) 棱柱形的蓄电池单池和蓄电池组
US11095003B2 (en) Energy storage apparatus
EP3267509A1 (en) Battery pack
CN220492117U (zh) 电池包及电动汽车
KR102666374B1 (ko) 배터리 시스템용 수동 서비스 분리 장치
JP2023072872A (ja) 蓄電設備

Legal Events

Date Code Title Description
AS Assignment

Owner name: TYCO ELECTRONICS CORPORATION, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZHAO, WEIPING;REEL/FRAME:029995/0631

Effective date: 20130313

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: TE CONNECTIVITY CORPORATION, PENNSYLVANIA

Free format text: CHANGE OF NAME;ASSIGNOR:TYCO ELECTRONICS CORPORATION;REEL/FRAME:041350/0085

Effective date: 20170101