US20140155715A1 - Wavelength switching for pulse oximetry - Google Patents

Wavelength switching for pulse oximetry Download PDF

Info

Publication number
US20140155715A1
US20140155715A1 US14/176,788 US201414176788A US2014155715A1 US 20140155715 A1 US20140155715 A1 US 20140155715A1 US 201414176788 A US201414176788 A US 201414176788A US 2014155715 A1 US2014155715 A1 US 2014155715A1
Authority
US
United States
Prior art keywords
emitter
pair
wavelength
light
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/176,788
Inventor
Bo Chen
Edward M. McKenna
Youzhi Li
Daniel Lisogurski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covidien LP filed Critical Covidien LP
Priority to US14/176,788 priority Critical patent/US20140155715A1/en
Publication of US20140155715A1 publication Critical patent/US20140155715A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor

Definitions

  • the present disclosure relates generally to medical devices and, more particularly, to sensors used for sensing physiological parameters of a patient.
  • doctors often desire to monitor certain physiological characteristics of their patients.
  • a wide variety of devices have been developed for monitoring many such physiological characteristics.
  • Such devices provide doctors and other healthcare personnel with the information they need to provide the best possible healthcare for their patients.
  • such monitoring devices have become an indispensable part of modern medicine.
  • Pulse oximetry may be used to measure various blood flow characteristics, such as the blood-oxygen saturation of hemoglobin (SpO 2 ) in arterial blood, the volume of individual blood pulsations supplying the tissue, and/or the rate of blood pulsations corresponding to each heartbeat of a patient.
  • SpO 2 blood-oxygen saturation of hemoglobin
  • the “pulse” in pulse oximetry refers to the time varying amount of arterial blood in the tissue during each cardiac cycle.
  • Pulse oximeters typically utilize a non-invasive sensor that transmits light through a patient's tissue and that photoelectrically detects the absorption and/or scattering of the transmitted light in such tissue.
  • One or more of the above physiological characteristics may then be calculated based upon the amount of light absorbed and/or scattered. More specifically, the light passed through the tissue is typically selected to be of one or more wavelengths that may be absorbed and/or scattered by the blood in an amount correlative to the amount of the blood constituent present in the blood. The amount of light absorbed and/or scattered may then be used to estimate the amount of blood constituent in the tissue using various algorithms. This determination may be performed in a monitor coupled to the sensor that receives the necessary data for the blood constituent calculation.
  • LEDs light emitting diodes
  • the LEDs and photodetector are housed in a reusable or disposable sensor which communicates with the pulse oximeter.
  • at least one of the two LEDs' primary wavelengths is typically chosen at some point in the electromagnetic spectrum where the absorption of oxyhemoglobin (HbO 2 ) differs from the absorption of reduced hemoglobin (Hb).
  • the second of the two LEDs' wavelength is typically at a different point in the spectrum where, additionally, the absorption differences between Hb and HbO 2 are different from those at the first wavelength.
  • the first LED is typically configured to emit light with a wavelength in the near red portion of the visible spectrum 660 nanometers ( nm) and the second LED is configured to emit light with a wavelength in the near infrared portion of the spectrum near 900 nm.
  • the near 660 nm-900nm wavelength pair has been selected because it provides for the best accuracy when SpO 2 is high (e.g., in the 85% and above range).
  • Some pulse oximeters replace the near 660 nm LED with an LED configured to emit light in the far red portion of the spectrum near 730 nm.
  • the near 730 nm-900 nm wavelength pair has been selected because it provides for the best accuracy when SpO 2 is low (e.g., in the range below 75%).
  • inaccuracies result from using a single wavelength pair.
  • the single pair of wavelengths can only properly account for a portion of the entire arterial oxygen saturation range.
  • the present techniques may provide for more accurate estimates of arterial oxygen saturation using pulse oximetry by switching between a wavelength spectrum of at least a first and a second light source so that the arterial oxygen saturation estimates at low, medium, and high arterial oxygen saturation values are more accurately measured.
  • the techniques disclosed herein may allow for an increased accuracy in measurement of arterial oxygen saturation across a wider range of saturation levels.
  • the techniques may be applicable to both reflectance and transmission pulse oximetry.
  • the disclosed techniques may be particularly useful for estimating arterial oxygen saturation of a fetus during labor where the saturation range of principal importance and interest is generally between 15% and 65%.
  • these techniques may be particularly useful for estimating arterial saturation of a cardiac patient who experiences significant shunting of venous blood into the arteries in their heart and whose saturation range of principle importance and interest is roughly between 50% and 80%.
  • the disclosed techniques may facilitate improved SpO 2 accuracy over all levels of arterial oxygen saturation and can be used on a host of different patient classes including fetuses, neonates, cardiac patients, children, and adults.
  • One embodiment includes a sensor with at least three LEDs which may be configured to emit light at wavelengths near 660 nm, near 730 nm, and near 900 nm, for example. It is to be understood that the LEDs will emit light at a wavelength range due to small defects in manufacture, environmental conditions, etc.
  • the wavelengths near 660 nm and 900 nm may be selected for calculations at higher arterial oxygen saturations and the wavelengths near 730 nm and 900 nm may be selected for calculations at lower arterial oxygen saturations.
  • the sensor's LED configuration may permit the use of two light emitter pairs, one pair set to emit light at near 660 nm and 900 nm and a second pair set to emit light at near 730 nm and 900 nm, where the same 900 nm LED may be used in each pair.
  • Light from the 730 nm-900 nm emitter pair may then be used to calculate the SpO 2 when the arterial oxygen saturation is low (e.g., below 75%) and light from the 660 nm-900 nm emitter pair may then be used to calculate the SpO 2 when the arterial oxygen saturation is high (e.g., greater than 84%).
  • transition region the region where the arterial oxygen saturation is greater than or equal to 75% and less than or equal to 84%, heretofore referred to as the “transition region.”
  • the transition region is so named because it is in the range in which the patient's SpO 2 value is transitioning from the high range to the low range or vice versa.
  • the calculation of the transition range SpO 2 when using two light emitter pairs may involve any of several techniques.
  • the system may arbitrate between the SpO 2 values calculated using the light from the two light emitter pairs and choose one to use in making the final SpO 2 calculation.
  • the system may calculate two SpO 2 values, one value corresponding to each one of the two light emitter pairs, and then calculate the average of the two SpO 2 values.
  • the system may use a table of weight factors and a weight-averaging equation to combine the SpO 2 values derived from the two light emitter pairs. It is to be noted that the weight factors may be linear or non-linear and may be derived from a lookup table or an equation.
  • the sensor cable may be connected to the monitor and the sensor may be configured to accept light drive signals from the monitor.
  • the sensor may use the light drive signals to select which LED(s) to turn on and which LED(s) to turn off
  • the sensor cable may contain a multiplexer.
  • the multiplexer may be configured to accept light drive signals from the monitor and to use the light drive signals to select which LED(s) to turn on and which LED(s) to turn off The use of a multiplexer may be advantageous because the multiplexer may allow the monitor to be connected to different types of sensors.
  • hardware and software components in both the sensor and the monitor may be primed as the SpO 2 measurement approaches the transition range so as to reduce a startup time of the components.
  • the priming allows for the components to more quickly acquire measurements as the arterial oxygen level enters into the transition region. Indeed, priming may allow for a much improved accuracy and quality of measurements in the transition region.
  • FIG. 1 depicts a diagram of an embodiment of a pulse oximetry system
  • FIG. 2 illustrates a chart of the absorption characteristics of oxyhemoglobin (HbO 2 ) and reduced hemoglobin (Hb) versus wavelength showing absorption in the red and infrared LED wavelengths;
  • FIG. 3A depicts a drawing of a sensor having three LEDs with a photodetector positioned to receive the LED signals in a transmission mode of operation;
  • FIG. 3B depicts a drawing of a sensor having three LEDs with a photodetector positioned to receive the LED signals in a reflectance mode of operation;
  • FIG. 4 illustrates a flow diagram of a method of selectively switching between at least two wavelengths, e.g., near 660 nm and near 730 nm, in a sensor, such as those illustrated in FIG. 1 , FIG. 2A and FIG. 2B ;
  • FIG. 5 illustrates a table showing an example of different weight factors and SpO 2 levels that may be utilized to calculate the SpO 2 for a transition range of operation such as those in FIG. 4 ;
  • FIG. 6 illustrates a flow diagram of another method of selectively switching between at least two wavelengths, e.g., near 660 nm and near 730 nm, in a sensor, such as those illustrated in FIG. 1 , FIG. 2A and FIG. 2B ;
  • FIG. 7 illustrates another table showing an example of different weight factors and SpO 2 levels that may be utilized to calculate the SpO 2 for a transition range of operation such as those in FIG. 6 ;
  • FIG. 8 depicts the block diagram of the monitor connected to the sensor of FIGS. 2A or 2B in accordance with an embodiment of the present disclosure
  • FIG. 9A depicts an example set of signals that may be received by the detector when a single light emitter pair is in use
  • FIG. 9B depicts an example set of signals that may be received by the detector when two light emitter pairs are in use, and;
  • FIG. 9C depicts another example set of signals that may be received by the detector when two light emitter pairs are in use.
  • At least three LEDs may be used so as to enable the measurement of SpO 2 through a broader spectrum of light. Such measurements may then be combined by using techniques described in more detail below to arrive at a more precise SpO 2 measurement.
  • the SpO 2 measurement may be considerably improved, particularly in arterial oxygen ranges (e.g., transition region) where the SpO 2 measurement may be transitioning from a low arterial oxygen range to a high arterial oxygen range, or vice versa.
  • one of the at least three LEDs may be driven in arterial oxygen ranges in close proximity to the transition range (e.g., within 5%) so as to aid in priming hardware and software components of a pulse oximeter system.
  • the priming enables the pulse oximeter to acquire data by using all three LEDs almost immediately when the arterial range enters the transition region. Such capability increases the accuracy of the SpO 2 measurement in the transition region.
  • all three of the LEDs may be used all of the time. In this example, using all the LEDs may thus further remove the time spent priming, and may also increase the amount of data used for deriving measurements of interest.
  • FIG. 1 depicts a medical device, such as a pulse oximeter system 10 .
  • the sensor 12 may be coupled to the monitor 14 via sensor cable 16 .
  • the monitor 14 may be any suitable pulse oximeter, such as those available from Nellcor Puritan Bennett, LLC.
  • monitor 14 may be coupled to a multi-parameter patient monitor 18 via a cable 20 connected to a sensor input port or via a cable 22 connected to a digital communication port, for example.
  • FIG. 2 depicts a chart of the absorption characteristics of oxyhemoglobin (HbO 2 ) and reduced hemoglobin (Hb).
  • Three wavelength ranges include the red wavelengths at approximately 620-700 nm; the far red wavelengths at approximately 690-770 nm; and the infrared wavelengths at approximately 860-940 nm.
  • Light within each one of the three wavelength ranges may be respectively emitted by a 660 nm emitter 24 , a 730 nm emitter 26 , and a 900 nm emitter 28 , for example.
  • a 660 nm emitter 24 emits a wavelength of light that has a relatively high Hb absorption coefficient but a relatively low HbO 2 absorption coefficient.
  • a 900 nm emitter 28 emits a wavelength of light that has different absorption coefficients for Hb and HbO 2 from the light emitted by the 660 nm emitter. This difference may be used to derive a SpO 2 measurement by analyzing the light emitted by a 660 nm emitter 24 and by a 900 nm emitter 28 . A second SpO 2 measurement may also be derived by analyzing the light emitted by a 730 nm 26 and by a 900 nm emitter 28 .
  • the SpO 2 measurement derived by using the light from a 660 nm-900 nm emitter pair may be utilized for arterial oxygen saturation ranges in a high range.
  • the SpO 2 measurement derived by using light from a 660 nm-900 nm emitter pair may become less accurate.
  • Better accuracy at the arterial oxygen saturation low range may be achieved by using a 730 nm emitter 26 instead of the 660 mm emitter 24 . Therefore, more precise estimates of arterial oxygen saturation using pulse oximetry may be achieved by switching between different emitters so that the wavelengths that result in the most accurate SpO 2 determination are emitted.
  • FIG. 3A the figure illustrates a transmission type sensor 12 A wherein light from the 660 nm emitter 24 A, light from the 730 nm emitter 26 A, and light from the 900 nm emitter 28 A passes through one side of a vascularized tissue to reach a detector 30 A on the other side of the tissue.
  • FIG. 3B depicts a reflectance type sensor 12 B wherein the 660 nm emitter 24 B, the 730 nm 26 B, the 900 nm emitter 28 B, and the detector 30 B are all positioned on the same side of the sensor 12 B so that the emitted light is reflected through the vascularized tissue underneath the emitters back into the detector 30 B.
  • Light from the 660 nm emitter 24 and the 900 nm emitter 28 may be selected to give more accurate estimates of arterial oxygen saturation in the high saturation range, for example.
  • Light from the 730 nm emitter 26 and the 900 nm emitter 28 may be selected to give more accurate estimates of arterial oxygen saturation in the low saturation range, for example.
  • light from the 660 nm emitter 24 and the 900 nm emitter 28 pair and light from the 730 nm emitter 26 and the 900 nm emitter 28 pair may be used to calculate the SpO 2 in the transition region where the arterial oxygen saturation is in a transition range (i.e., between the low and the high arterial saturation ranges).
  • the spacing of the emitters and the detectors of FIGS. 3A and 3B are for illustrative purposes and not to scale. Indeed, the same light path length for all emitter-detector pairs is usually preferred, and accordingly, the LEDs may be positioned in close proximity to each other.
  • a system start may begin by driving all of the emitters (e.g., 660 nm emitter 24 , 730 nm emitter 26 , and 900 nm emitter 28 ) (step 35 ).
  • the emitters e.g., 660 nm emitter 24 , 730 nm emitter 26 , and 900 nm emitter 28
  • a more accurate initial estimate of the arterial oxygen saturation may be arrived at by initializing the system with all three emitters 24 , 26 , and 28 .
  • all three emitters may be used to calculate the arterial oxygen saturation.
  • only two of the emitters may be used after system start (step 34 ).
  • the 660 nm-900 nm emitter pair or the 730 nm-900 nm emitter pair may be driven after system start (step 34 ) and used to measure the arterial oxygen saturation.
  • the previously calculated SpO 2 value is considered and a determination is made in step 36 to determine if the SpO 2 value is greater than 84%. If the SpO 2 value is greater than 84%, then only the 660 nm emitter 24 and the 900 nm 26 emitter are driven to emit light (step 38 ). The detector signals resulting from the use of the 660 nm emitter 24 and the 900 nm emitter 26 are then processed at step 40 to calculate the next SpO 2 value.
  • the 660 nm-900 nm emitter pair is selected to emit light when the previously calculated SpO 2 value is greater than 84% because when blood perfused tissue has a high arterial oxygen saturation value (e.g., greater than 84%), then the SpO 2 value may be more accurately calculated by using light with a wavelength near 660 nm and light with a wavelength near 900 nm.
  • step 42 determines if the SpO 2 value is less than 75 %. If the previously calculated SpO 2 value is less than 75%, then only the 730 nm emitter 26 and the 900 nm emitter 28 are driven to emit light (step 44 ). The detector 30 signals resulting from the use of the 730 nm emitter and the 900 nm emitter are then processed at step 46 to calculate the next SpO 2 value.
  • the 730 nm-900 nm emitter pair is selected when the previously calculated SpO 2 value is less than 75% because when blood perfused tissue has a low arterial oxygen saturation value (e.g., less than 75%), then the SpO 2 value may be more accurately measured by using light with a wavelength near 730 nm and light with a wavelength near 900 nm. It is to be understood that the values of 84% and 75% may be approximate. That is, in other embodiments, values slightly larger or smaller may be used, for example, values approximately near ⁇ 7% of the illustrated values.
  • the 660 nm emitter 24 , the 730 nm emitter 26 , and the 900 nm emitter 28 are driven to emit light (step 48 ).
  • One SpO 2 value is calculated in step 50 based on the detector 30 signals resulting from the use of the 660 nm emitter 24 and the 900 nm emitter 28
  • a second SpO 2 value is calculated in step 50 based on the detector 30 signals resulting from the use of the 730 nm emitter 26 and the 900 nm emitter 28 .
  • Both of the SpO 2 values calculated in step 50 are then processed in step 52 to arrive at the next SpO 2 value determination.
  • the SpO 2 value determined at step 52 is heretofore referred to as the “Transition SpO 2 Value”, because the value is inside the transition range where the arterial oxygen saturation is transitioning between high and low values (e.g., greater than or equal to 75% and less than or equal to 84%).
  • a SpO 2 value is in the transition range (e.g., when the arterial oxygen saturation is greater than or equal to 75% and less than or equal to 84%)
  • two SpO 2 values are calculated (see step 50 of FIG. 4 ).
  • One value is referred to as SpO2 660 and corresponds to the 660 nm-900 nm emitter pair
  • a second value is referred to as SpO2 730 and corresponds to the 730 nm-900 nm emitter pair.
  • a single transition SpO 2 value is determined based on these two calculations, and this determination may be made in any suitable manner. Additionally, a direct calculation may be made involving all three wavelengths, 660 nm, 730 nm, and 900 nm.
  • FIG. 5 depicts a table 54 of weight factors that may be used, for example, by the methodology described in FIG. 4 , to determine the transition SpO 2 value.
  • the SpO2 660 value associated with the 660 nm-900 nm emitter pair is first chosen from one of the cells in column 56 (SpO 2 Level) of table 54 and the associated WeightFactor 660 cell value in column 58 of table 54 is selected.
  • the SpO2 730 value associated with the 730 nm-900 nm emitter pair is also chosen from one of the cells in column 56 (SpO 2 Level) of table 54 and the associated WeightFactor 730 cell value in column 60 of table 54 is selected.
  • the following equation may then be used to arrive at the transition SpO 2 value:
  • the use of the example weight factor table 54 and the weight factor equation (1) may allow for increased accuracy in the transition range because more weight may be given to the SpO 2 value of the emitter pair that is closest to its most accurate usage range.
  • the SpO2 660 value derived from the use of the emitter pair 660 nm-900 nm may be given more weight when the last calculated SpO 2 value in the transition range is closer to 84%.
  • the SpO2 730 value derived from the use of the 730 nm-900 nm emitter pair may be given more weight when the last calculated SpO 2 value in the transition range is closer to 75%.
  • other weighing embodiments may be used, for example, logarithmic weighing, Gaussian weighing, and empirical weighing.
  • Logarithmic weighing would replace the weight factor values of table 54 and the weight factor equation with weight factors and a weight equation that may result more weight being given to the various SpO 2 values based on the logarithmic scale that was chosen.
  • Gaussian weighing would replace the weight factor values of table 54 and the weight factor equation with weight factors and a weight equation that may result in more weight be given to the SpO 2 values based on the Gaussian scale that was chosen.
  • Empirical weighing would replace the weight factor values of table 54 and the weight factor equation with weight factors and a weight equation derived from empirical studies of patient tissue. It is also to be noted that the table 54 could be replaced with an equation.
  • w 0.
  • w 1.0.
  • Other suitable equations may be used, including equations incorporating logarithmic and/or exponential functions.
  • the SpO2 660 value associated with the 660 nm-900 nm emitter pair, and the SpO2 730 value associated with the 730 nm-900 nm emitter pair may be averaged to determine the transition SpO 2 value.
  • the SpO2 660 value associated with the 660 nm-900 nm emitter pair, and the SpO2 730 value associated with the 730 nm-900 nm emitter pair may be arbitrated to determine the transition SpO 2 value.
  • the arbitration algorithm may, for example, select the value of either SpO2 660 or SpO2 730 as the final transition value, based on which one gives a higher or lower value, selecting SpO2 660 or SpO2 730 based on a lookup table, which is closest to the previous value, among others.
  • Arbitrating between the SpO2 660 and the SpO2 730 values may be advantageous because this technique may give preference to the SpO2 660 or to the SpO2 730 values based on certain arbitration decisions such as higher accuracy of one value at certain transition SpO 2 subranges. It is to be understood that certain embodiments, including the arbitration algorithm example, may include algorithms suitable for calculating a smooth transition band or curve when transitioning between using a different emitter pair or calculation. Smooth transitioning may eliminate fluctuations in the displayed measurement not corresponding to actual physical changes.
  • a flow diagram 62 shows a second embodiment of the switching methodology that may used to determine which emitters will be driven to emit light.
  • a priming technique is also used so as to enable the pulse oximeter to acquire data from all three LEDs almost immediately upon the arterial range entering the transition region.
  • the transition region in this embodiment may be a slightly broader transition region when compared to the transition region example described above with respect to FIGS. 4 and 5 .
  • a slightly broader transition region may improve the measurement quality by enabling an increase in measurements using all three LEDs. Indeed, such capabilities allow for increased accuracy, particularly in measuring arterial oxygen saturation in the transition region.
  • a system start may begin driving all of the emitters (e.g., 660 nm emitter 24 , 730 nm emitter 26 , and 900 nm emitter 28 ) (step 65 ).
  • the emitters e.g., 660 nm emitter 24 , 730 nm emitter 26 , and 900 nm emitter 28
  • a more accurate initial estimate of the arterial oxygen saturation may be arrived at by initializing the system with all three emitters 24 , 26 , and 28 (step 65 ).
  • all three emitter may be used to calculate the arterial oxygen saturation.
  • only two of the emitters may be used after system start (step 63 ).
  • the 660 nm-900 nm emitter pair or the 730 nm-900 nm emitter pair may be driven after system start (step 63 ) and used to measure the arterial oxygen saturation.
  • the previously calculated SpO 2 value is considered and a determination is made in step 66 to determine if the SpO 2 value is greater than 92%. If the SpO 2 value is greater than 92%, then only the 660 nm emitter 24 and the 900 nm 26 emitter are driven to emit light (step 67 ).
  • the detector signals resulting from the use of the 660 nm emitter 24 and the 900 nm emitter 26 are then processed at step 68 to calculate the next SpO 2 value.
  • the 660 nm-900 nm emitter pair is selected to emit light when the previously calculated SpO 2 value is greater than 92% because when blood perfused tissue has a high arterial oxygen saturation value (e.g., greater than 92%), then the SpO 2 value may be more accurately calculated by using light with a wavelength near 660 nm and light with a wavelength near 900 nm.
  • step 72 determines if the SpO 2 value is less than 68%. If the previously calculated SpO 2 value is less than 68%, then only the 730 nm emitter 26 and the 900 nm emitter 28 are driven to emit light (step 74 ). The detector 30 signals resulting from the use of the 730 nm emitter and the 900 nm emitter are then processed at step 76 to calculate the next SpO 2 value.
  • the 730 nm-900 nm emitter pair is selected when the previously calculated SpO 2 value is less than 68% because when blood perfused tissue has a low arterial oxygen saturation value (e.g., less than 68%), then the SpO 2 value may be more accurately measured by using light with a wavelength near 730 nm and light with a wavelength near 900 nm.
  • a range e.g., between equal to or greater than 89% and less than 92%) may be chosen because the range may be indicative of the movement of the arterial oxygen towards the transition region (e.g., between 71% and 89%). Accordingly, certain components of the pulse oximeter system 10 may be primed so as to more quickly capture measurements in the transition region.
  • the 660 nm emitter 24 , the 730 nm emitter 26 , and the 900 nm emitter 28 are driven (step 80 ).
  • the SpO 2 value is calculated in step 82 based on the detector 30 signals resulting from the use of the 660 nm emitter 24 and the 900 nm emitter 28 only.
  • the 730 nm emitter 26 is driven to aid in priming or settling of components of the pulse oximeter system 10 , such as emitter temperature and wavelength, filters, ensemble averagers, and so forth. Priming the components in advance aids in preventing start up delays when the signals from the 730 nm emitter 26 begin to contribute to the calculated SpO 2 value.
  • a range e.g., between equal to or greater than 68% and less than 71%) may be chosen because the range may also be indicative of the movement of the arterial oxygen towards the transition region (e.g., between 71% and 89%). If the previously calculated SpO 2 value is equal to or greater than 68% and less than 71%, then the 660 nm emitter 24 , the 730 nm emitter 26 , and the 900 nm emitter 28 are driven (step 86 ).
  • the SpO 2 value is calculated in step 88 based on the detector 30 signals resulting from the use of the 730 nm emitter 24 and the 900 nm emitter 28 only.
  • the 660 nm emitter 26 is driven to aid in reducing or eliminating any start up delays that may occur when the signals from the 660 nm emitter 24 begin to contribute to the calculated SpO 2 value.
  • the 660 nm emitter 24 , the 730 nm emitter 26 , and the 900 nm emitter 28 are driven at step 90 .
  • One SpO 2 value is calculated in step 92 based on the detector 30 signals resulting from the use of the 660 nm emitter 24 and the 900 nm emitter 28
  • a second SpO 2 value is calculated in step 92 based on the detector 30 signals resulting from the use of the 730 nm emitter 26 and the 900 nm emitter 28 .
  • Both of the SpO 2 values calculated in step 92 are then processed in step 94 to arrive at the next SpO 2 value determination.
  • the SpO 2 value determined at step 94 is referred to as the transition SpO 2 value, because the value is inside the transition range where the arterial oxygen saturation is transitioning between high and low values (e.g., greater than or equal to 71% and less than or equal to 89%).
  • SpO2 660 When a SpO 2 value is in the transition range (e.g., when the arterial oxygen saturation is greater than or equal to 71% and less than or equal to 89%), two SpO 2 values are calculated (see step 94 of FIG. 6 ).
  • One value is referred to as SpO2 660 and corresponds to the 660 nm-900 nm emitter pair, and a second value is referred to as SpO2 730 and corresponds to the 730 nm-900 nm emitter pair.
  • a single transition SpO 2 value is determined based on these two calculations, and this determination may be made in any suitable manner, such as described in further detail with respect to FIG. 7 .
  • FIG. 7 depicts a table 96 of weight factors that may be used, for example, by the methodology described above with respect to FIG. 6 , to determine the transition SpO 2 value.
  • the transition region is found between 71% and 89%. Such slightly broader transition region enables an increase in the number of measurements that use the three wavelengths, and may thus improve measurement accuracy. Indeed, in other embodiments, transition regions such as between 68% to 92%, and between 65% to 95% may be used.
  • table 96 may be replaced with an equation, such as an equation including logarithmic and/or exponential functions.
  • the weights may include logarithmic weights, Gaussian weights, and empirical weights.
  • the SpO2 660 value associated with the 660 nm-900 nm emitter pair is first chosen from one of the cells in column 98 (SpO 2 Level) of table 96 and the associated WeightFactor 660 cell value in column 100 of table 96 is selected.
  • the SpO2 730 value associated with the 730 nm-900 nm emitter pair is also chosen from one of the cells in column 98 (SpO 2 Level) of table 96 and the associated WeightFactor 730 cell value in column 102 of table 96 is selected.
  • the following equation may then be used to arrive at the transition SpO 2 value:
  • the use of the example weight factor table 96 and the weight factor equation (2) may allow for increased accuracy in the transition range because more weight may be given to the SpO 2 value of the emitter pair that is closest to its most accurate usage range.
  • the SpO2 660 value derived from the use of the emitter pair 660 nm-900 nm may be given more weight when the last calculated SpO 2 value in the transition range is closer to 89%.
  • the SpO2 730 value derived from the use of the 730 nm-900 nm emitter pair may be given more weight when the last calculated SpO 2 value in the transition range is closer to 71%.
  • other weighing embodiments may be used, for example, logarithmic weighing, Gaussian weighing, and empirical weighing, as mentioned above with respect to FIG. 6 .
  • Logarithmic weighing would replace the weight factor values of table 54 and the weight factor equation with weight factors and a weight equation that may result more weight being given to the various SpO 2 values based on the logarithmic scale that was chosen.
  • Gaussian weighing would replace the weight factor values of table 54 and the weight factor equation with weight factors and a weight equation that may result in more weight be given to the SpO 2 values based on the Gaussian scale that was chosen.
  • Empirical weighing would replace the weight factor values of table 54 and the weight factor equation with weight factors and a weight equation derived from empirical studies of patient tissue.
  • FIG. 8 depicts a block diagram of one embodiment of a pulse oximeter that may be configured to implement certain embodiments.
  • light drive circuitry 103 may drive all three of the emitters 24 , 26 , 28 directly.
  • light drive circuitry 103 is designed to drive only two emitters and a multiplexer 104 may be used.
  • multiplexer 104 may convert the control signals sent by the light drive circuitry 103 into a series of signals which may drive the three emitters 24 , 26 , 28 .
  • the multiplexer 104 may include three output lines 105 suitable for driving the three emitters 24 , 26 , and 29 .
  • the multiplexer 104 may include a control line 106 useful for selecting which emitter(s) are to be driven.
  • Light from emitters 24 , 26 , 28 passes into a patient's blood perfused tissue 106 and is detected by detector 30 .
  • the signals corresponding to the light detected by detector 30 may be passed through an amplifier 108 , a switch 110 , a post-switch amplifier 112 , a low band filter 114 , and an analog-to-digital converter 116 .
  • the digital data may then be stored in a queued serial module (QSM) 118 for later downloading to RAM 120 as QSM 118 fills up.
  • QSM queued serial module
  • a time processing unit (TPU) 124 may provide timing control signals to light drive circuitry 103 .
  • the sensor 12 may also contain an encoder 126 that may include encryption coding that prevents a disposable part of the sensor 12 from being recognized by a detector/decoder 130 that is not able to decode the encryption. In some embodiments, the encoder 126 and/or the detector/decoder 130 may not be present. Additionally or alternatively, a processor 132 may encode and/or decode processed sensor data before transmission of the data to the patient monitor 14 .
  • Nonvolatile memory 134 may store caregiver preferences, patient information, or various parameters such as a table of weight factors, discussed above with respect to FIGS. 5 and 7 , which may be used during the operation of the monitor 14 .
  • Software for performing the configuration of the monitor 14 and for carrying out the techniques described herein may also be stored on the nonvolatile memory 134 , or may be stored on the ROM 136 .
  • the data stored in nonvolatile memory 134 may be displayed by display 138 and manipulated through control inputs 140 .
  • a network interface card (NIC) 142 may use a network port 144 to enable communications between the patient monitor 14 and other devices.
  • NIC network interface card
  • the microprocessor 132 may calculate a physiological parameter of interest using various algorithms. These algorithms may utilize coefficients, which may be empirically determined, corresponding to, for example, the wavelengths of light used. In one embodiment microprocessor 132 may use certain algorithms that calculate the final SpO 2 value. In this embodiment the algorithms may contain the weight factor tables 54 of FIGS. 6 and 96 of FIG. 7 , and use weight factor equations (1) and (2) to calculate the oxygen saturation. In another embodiment, microprocessor 132 may use an averaging algorithm that averages various oxygen saturation values into a single oxygen saturation value.
  • microprocessor 132 may use an arbitration algorithm that arbitrates among various oxygen saturation values and return a single oxygen saturation value. Furthermore, any number of methods or algorithms may be used to determine, for example, a patient's pulse rate, oxygen saturation, and hemoglobin levels, among others.
  • the disclosed techniques may include detector signals that may correspond to certain wavelengths of light detected by the detector at particular points in time.
  • FIGS. 9A , 9 B, and 9 C depict an example set of detector signals that may be converted by the microprocessor into values corresponding to the detected wavelengths of light as well as to the point in time when the wavelengths of light were detected. More specifically, FIG. 9A depicts a detector signal that may be used by the microprocessor when only one emitter pair is being driven. In this example, the detector is detecting light emitted by the 660 nm-900 nm emitter pair. The 660 nm-900 nm pair may be used, for example, when the arterial oxygen saturation is in the high saturation range.
  • the first on signal (+V) 146 of FIG. 9A denotes that the detected light was emitted by the 660 nm emitter.
  • the first off signal (0V) 148 denotes that the 660 nm emitter was then turned off. It is to be understood that due to, for example, a slight leakage of ambient light, the off or “dark time” signal may be slightly larger than 0V.
  • the next on signal (+V) 146 denotes that the detected light was emitted by the 900 nm emitter.
  • the next off signal (0V) 148 denotes that the 900 nm emitter was turned off, and so on.
  • the microprocessor may properly account for the wavelength of light that was detected as well as for the time when the light was detected. The microprocessor may then properly calculate the SpO 2 value as well other physiologic measures from the detected light signals.
  • FIG. 9B shows an example of a detector signal that may be used by the microprocessor when two light emitter pairs are being driven.
  • the 660 nm-900 nm and the 730 nm-900 nm emitter pairs are both being driven to emit light.
  • Two light emitter pairs may be used, for example, when the arterial oxygen saturation is in the transition region.
  • the first on signal (+V) 146 of FIG. 9B shows that the detected light was emitted by the 660 nm emitter and that the 660 nm emitter was subsequently turned off (0V) 148 .
  • the next on signal (+V) 146 shows that the detected light was emitted by the 730 nm emitter and that the 730 nm emitter was subsequently turned off (0V) 148 .
  • the next on signal (+V) 146 shows that the detected light was emitted by the 900 nm emitter and that the 900 nm emitter was subsequently turned off (0V) 148 , and so on.
  • the microprocessor may properly account for the wavelengths of light detected when two emitter pairs are used (e.g., the 660 nm-900 nm and the 730 nm-900 nm emitter pairs). The microprocessor may then use this information to properly derive the SpO 2 value as well other physiologic measures from the detected light signals.
  • FIG. 9C shows another example of a detector signal that may be used by the microprocessor when two light emitter pairs are being driven.
  • the 660 nm-900 nm and the 730 nm-900 nm emitter pairs are also being driven to emit light.
  • Two light emitter pairs may be used, for example when the arterial oxygen saturation is in the transition region.
  • the first on signal (+V) 146 of FIG. 9C shows that the detected light was emitted by the 660 nm emitter and that the 660 nm emitter was subsequently turned off (0V) 148 .
  • the next on signal (+V) 146 shows that the detected light was emitted by the 900 nm emitter and that the 900 nm emitter was subsequently turned off (0V) 148 .
  • the next on signal (+V) 146 shows that the detected light was emitted by the 730 nm emitter and that the 730 nm emitter was subsequently turned off (0V) 148 , and so on.
  • the microprocessor may use the signal of FIG. 9C to properly account for the detected wavelengths of light when two emitter pairs are used (e.g., the 660 nm-900 nm and the 730 nm-900 nm emitter pairs). The microprocessor may then use this information to properly derive the SpO 2 value as well other physiologic measures from the detected light signals.
  • modulation examples of FIGS. 9A , 9 B, and 9 C may be modulated by using modulation techniques other than time division multiplexing (TDM).
  • modulation techniques other than time division multiplexing (TDM).
  • Other example techniques that may be used include Frequency Division Multiplexing (FDM), and/or spread spectrum/code division multiple access (CDMA) techniques.
  • FDM Frequency Division Multiplexing
  • CDMA spread spectrum/code division multiple access
  • the pulse oximeter system 10 may include a variety of modulation techniques useful for driving the emitters 24 , 26 , and 28 and observing the resultant light.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The present disclosure describes techniques that may provide more accurate estimates of arterial oxygen saturation using pulse oximetry by switching between a wavelength spectrum of at least a first and a second light source so that the arterial oxygen saturation estimates at low (e.g., in the range below 75%), medium (e.g., greater than or equal to 75% and less than or equal to 84%), and high (e.g., greater than 84% range) arterial oxygen saturation values are more accurately calculated. In one embodiment, light emitted from a near 660 nm and a near 900 nm emitter pair may be used when the arterial oxygen saturation range is high. In another embodiment, light emitted from a near 730 nm and a near 900 nm emitter pair may be used when the arterial oxygen saturation range is low. In yet another embodiment, light emitted from both a near 660 nm-900 nm emitter pair and light emitted from a near 730 nm-900 nm emitter pair may be used when the arterial oxygen saturation range is in the middle range. Priming techniques may also be used to reduce or eliminate start up delays of certain oximetry system components.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 12/888,226, filed Sep. 22, 2010, the disclosure of which is hereby incorporated by reference in its entirety.
  • BACKGROUND
  • This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
  • The present disclosure relates generally to medical devices and, more particularly, to sensors used for sensing physiological parameters of a patient. In the field of medicine, doctors often desire to monitor certain physiological characteristics of their patients. Accordingly, a wide variety of devices have been developed for monitoring many such physiological characteristics. Such devices provide doctors and other healthcare personnel with the information they need to provide the best possible healthcare for their patients. As a result, such monitoring devices have become an indispensable part of modern medicine.
  • One technique for monitoring certain physiological characteristics of a patient is commonly referred to as pulse oximetry, and the devices built based upon pulse oximetry techniques are commonly referred to as pulse oximeters. Pulse oximetry may be used to measure various blood flow characteristics, such as the blood-oxygen saturation of hemoglobin (SpO2) in arterial blood, the volume of individual blood pulsations supplying the tissue, and/or the rate of blood pulsations corresponding to each heartbeat of a patient. In fact, the “pulse” in pulse oximetry refers to the time varying amount of arterial blood in the tissue during each cardiac cycle.
  • Pulse oximeters typically utilize a non-invasive sensor that transmits light through a patient's tissue and that photoelectrically detects the absorption and/or scattering of the transmitted light in such tissue. One or more of the above physiological characteristics may then be calculated based upon the amount of light absorbed and/or scattered. More specifically, the light passed through the tissue is typically selected to be of one or more wavelengths that may be absorbed and/or scattered by the blood in an amount correlative to the amount of the blood constituent present in the blood. The amount of light absorbed and/or scattered may then be used to estimate the amount of blood constituent in the tissue using various algorithms. This determination may be performed in a monitor coupled to the sensor that receives the necessary data for the blood constituent calculation.
  • Conventional two wavelength pulse oximeters emit light from two light emitting diodes (LEDs) into a pulsatile tissue bed and collect the transmitted light with a photodiode positioned on an opposite surface (transmission pulse oximetry) or on an adjacent surface (reflectance pulse oximetry). The LEDs and photodetector are housed in a reusable or disposable sensor which communicates with the pulse oximeter. For estimating oxygen saturation, at least one of the two LEDs' primary wavelengths is typically chosen at some point in the electromagnetic spectrum where the absorption of oxyhemoglobin (HbO2) differs from the absorption of reduced hemoglobin (Hb). The second of the two LEDs' wavelength is typically at a different point in the spectrum where, additionally, the absorption differences between Hb and HbO2 are different from those at the first wavelength.
  • The first LED is typically configured to emit light with a wavelength in the near red portion of the visible spectrum 660 nanometers ( nm) and the second LED is configured to emit light with a wavelength in the near infrared portion of the spectrum near 900 nm. The near 660 nm-900nm wavelength pair has been selected because it provides for the best accuracy when SpO2 is high (e.g., in the 85% and above range). Some pulse oximeters replace the near 660 nm LED with an LED configured to emit light in the far red portion of the spectrum near 730 nm. The near 730 nm-900 nm wavelength pair has been selected because it provides for the best accuracy when SpO2 is low (e.g., in the range below 75%). Unfortunately, inaccuracies result from using a single wavelength pair. The single pair of wavelengths can only properly account for a portion of the entire arterial oxygen saturation range.
  • SUMMARY
  • Certain aspects commensurate in scope with the disclosed embodiments are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain embodiments and that these aspects are not intended to limit the scope of the disclosure. Indeed, the disclosure and/or claims may encompass a variety of aspects that may not be set forth below.
  • The present techniques may provide for more accurate estimates of arterial oxygen saturation using pulse oximetry by switching between a wavelength spectrum of at least a first and a second light source so that the arterial oxygen saturation estimates at low, medium, and high arterial oxygen saturation values are more accurately measured. Indeed, the techniques disclosed herein may allow for an increased accuracy in measurement of arterial oxygen saturation across a wider range of saturation levels. The techniques may be applicable to both reflectance and transmission pulse oximetry.
  • In a first example, the disclosed techniques may be particularly useful for estimating arterial oxygen saturation of a fetus during labor where the saturation range of principal importance and interest is generally between 15% and 65%. As another example, these techniques may be particularly useful for estimating arterial saturation of a cardiac patient who experiences significant shunting of venous blood into the arteries in their heart and whose saturation range of principle importance and interest is roughly between 50% and 80%. The disclosed techniques may facilitate improved SpO2 accuracy over all levels of arterial oxygen saturation and can be used on a host of different patient classes including fetuses, neonates, cardiac patients, children, and adults.
  • One embodiment includes a sensor with at least three LEDs which may be configured to emit light at wavelengths near 660 nm, near 730 nm, and near 900 nm, for example. It is to be understood that the LEDs will emit light at a wavelength range due to small defects in manufacture, environmental conditions, etc. The wavelengths near 660 nm and 900 nm may be selected for calculations at higher arterial oxygen saturations and the wavelengths near 730 nm and 900 nm may be selected for calculations at lower arterial oxygen saturations.
  • The sensor's LED configuration may permit the use of two light emitter pairs, one pair set to emit light at near 660 nm and 900 nm and a second pair set to emit light at near 730 nm and 900 nm, where the same 900 nm LED may be used in each pair. Light from the 730 nm-900 nm emitter pair may then be used to calculate the SpO2 when the arterial oxygen saturation is low (e.g., below 75%) and light from the 660 nm-900 nm emitter pair may then be used to calculate the SpO2 when the arterial oxygen saturation is high (e.g., greater than 84%). Further, light from both emitter pairs may be used to calculate the SpO2 in the region where the arterial oxygen saturation is greater than or equal to 75% and less than or equal to 84%, heretofore referred to as the “transition region.” The transition region is so named because it is in the range in which the patient's SpO2 value is transitioning from the high range to the low range or vice versa.
  • The calculation of the transition range SpO2 when using two light emitter pairs may involve any of several techniques. In one embodiment, the system may arbitrate between the SpO2 values calculated using the light from the two light emitter pairs and choose one to use in making the final SpO2 calculation. In another embodiment, the system may calculate two SpO2 values, one value corresponding to each one of the two light emitter pairs, and then calculate the average of the two SpO2 values. In yet another embodiment, the system may use a table of weight factors and a weight-averaging equation to combine the SpO2 values derived from the two light emitter pairs. It is to be noted that the weight factors may be linear or non-linear and may be derived from a lookup table or an equation.
  • In one embodiment, the sensor cable may be connected to the monitor and the sensor may be configured to accept light drive signals from the monitor. The sensor may use the light drive signals to select which LED(s) to turn on and which LED(s) to turn off In another embodiment, the sensor cable may contain a multiplexer. The multiplexer may be configured to accept light drive signals from the monitor and to use the light drive signals to select which LED(s) to turn on and which LED(s) to turn off The use of a multiplexer may be advantageous because the multiplexer may allow the monitor to be connected to different types of sensors.
  • In another embodiment, hardware and software components in both the sensor and the monitor may be primed as the SpO2 measurement approaches the transition range so as to reduce a startup time of the components. The priming allows for the components to more quickly acquire measurements as the arterial oxygen level enters into the transition region. Indeed, priming may allow for a much improved accuracy and quality of measurements in the transition region.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Advantages of the disclosed techniques may become apparent upon reading the following detailed description and upon reference to the drawings in which:
  • FIG. 1 depicts a diagram of an embodiment of a pulse oximetry system;
  • FIG. 2 illustrates a chart of the absorption characteristics of oxyhemoglobin (HbO2) and reduced hemoglobin (Hb) versus wavelength showing absorption in the red and infrared LED wavelengths;
  • FIG. 3A depicts a drawing of a sensor having three LEDs with a photodetector positioned to receive the LED signals in a transmission mode of operation;
  • FIG. 3B depicts a drawing of a sensor having three LEDs with a photodetector positioned to receive the LED signals in a reflectance mode of operation;
  • FIG. 4 illustrates a flow diagram of a method of selectively switching between at least two wavelengths, e.g., near 660 nm and near 730 nm, in a sensor, such as those illustrated in FIG. 1, FIG. 2A and FIG. 2B;
  • FIG. 5 illustrates a table showing an example of different weight factors and SpO2 levels that may be utilized to calculate the SpO2 for a transition range of operation such as those in FIG. 4;
  • FIG. 6 illustrates a flow diagram of another method of selectively switching between at least two wavelengths, e.g., near 660 nm and near 730 nm, in a sensor, such as those illustrated in FIG. 1, FIG. 2A and FIG. 2B;
  • FIG. 7 illustrates another table showing an example of different weight factors and SpO2 levels that may be utilized to calculate the SpO2 for a transition range of operation such as those in FIG. 6;
  • FIG. 8 depicts the block diagram of the monitor connected to the sensor of FIGS. 2A or 2B in accordance with an embodiment of the present disclosure;
  • FIG. 9A depicts an example set of signals that may be received by the detector when a single light emitter pair is in use;
  • FIG. 9B depicts an example set of signals that may be received by the detector when two light emitter pairs are in use, and;
  • FIG. 9C depicts another example set of signals that may be received by the detector when two light emitter pairs are in use.
  • DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS
  • One or more specific embodiments will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
  • In certain embodiments, at least three LEDs may be used so as to enable the measurement of SpO2 through a broader spectrum of light. Such measurements may then be combined by using techniques described in more detail below to arrive at a more precise SpO2 measurement. The SpO2 measurement may be considerably improved, particularly in arterial oxygen ranges (e.g., transition region) where the SpO2 measurement may be transitioning from a low arterial oxygen range to a high arterial oxygen range, or vice versa. In one example, one of the at least three LEDs may be driven in arterial oxygen ranges in close proximity to the transition range (e.g., within 5%) so as to aid in priming hardware and software components of a pulse oximeter system. The priming enables the pulse oximeter to acquire data by using all three LEDs almost immediately when the arterial range enters the transition region. Such capability increases the accuracy of the SpO2 measurement in the transition region. In another example, all three of the LEDs may be used all of the time. In this example, using all the LEDs may thus further remove the time spent priming, and may also increase the amount of data used for deriving measurements of interest.
  • FIG. 1 depicts a medical device, such as a pulse oximeter system 10. The sensor 12 may be coupled to the monitor 14 via sensor cable 16. The monitor 14 may be any suitable pulse oximeter, such as those available from Nellcor Puritan Bennett, LLC. Furthermore, to upgrade conventional operation provided by the monitor 14 to provide additional functions, monitor 14 may be coupled to a multi-parameter patient monitor 18 via a cable 20 connected to a sensor input port or via a cable 22 connected to a digital communication port, for example.
  • FIG. 2 depicts a chart of the absorption characteristics of oxyhemoglobin (HbO2) and reduced hemoglobin (Hb). Three wavelength ranges include the red wavelengths at approximately 620-700 nm; the far red wavelengths at approximately 690-770 nm; and the infrared wavelengths at approximately 860-940 nm. Light within each one of the three wavelength ranges may be respectively emitted by a 660 nm emitter 24, a 730 nm emitter 26, and a 900 nm emitter 28, for example. A 660 nm emitter 24 emits a wavelength of light that has a relatively high Hb absorption coefficient but a relatively low HbO2 absorption coefficient. A 900 nm emitter 28 emits a wavelength of light that has different absorption coefficients for Hb and HbO2 from the light emitted by the 660 nm emitter. This difference may be used to derive a SpO2 measurement by analyzing the light emitted by a 660 nm emitter 24 and by a 900 nm emitter 28. A second SpO2 measurement may also be derived by analyzing the light emitted by a 730 nm 26 and by a 900 nm emitter 28.
  • The SpO2 measurement derived by using the light from a 660 nm-900 nm emitter pair may be utilized for arterial oxygen saturation ranges in a high range. However, when arterial oxygen saturation is in a low range, the SpO2 measurement derived by using light from a 660 nm-900 nm emitter pair may become less accurate. Better accuracy at the arterial oxygen saturation low range may be achieved by using a 730 nm emitter 26 instead of the 660 mm emitter 24. Therefore, more precise estimates of arterial oxygen saturation using pulse oximetry may be achieved by switching between different emitters so that the wavelengths that result in the most accurate SpO2 determination are emitted.
  • Turning to FIG. 3A, the figure illustrates a transmission type sensor 12A wherein light from the 660 nm emitter 24A, light from the 730 nm emitter 26A, and light from the 900 nm emitter 28A passes through one side of a vascularized tissue to reach a detector 30A on the other side of the tissue. FIG. 3B depicts a reflectance type sensor 12B wherein the 660 nm emitter 24B, the 730 nm 26B, the 900 nm emitter 28B, and the detector 30B are all positioned on the same side of the sensor 12B so that the emitted light is reflected through the vascularized tissue underneath the emitters back into the detector 30B. Light from the 660 nm emitter 24 and the 900 nm emitter 28 may be selected to give more accurate estimates of arterial oxygen saturation in the high saturation range, for example. Light from the 730 nm emitter 26 and the 900 nm emitter 28 may be selected to give more accurate estimates of arterial oxygen saturation in the low saturation range, for example. Further, light from the 660 nm emitter 24 and the 900 nm emitter 28 pair and light from the 730 nm emitter 26 and the 900 nm emitter 28 pair may be used to calculate the SpO2 in the transition region where the arterial oxygen saturation is in a transition range (i.e., between the low and the high arterial saturation ranges). It should be noted that the spacing of the emitters and the detectors of FIGS. 3A and 3B are for illustrative purposes and not to scale. Indeed, the same light path length for all emitter-detector pairs is usually preferred, and accordingly, the LEDs may be positioned in close proximity to each other.
  • Turning to FIG. 4, flow diagram 32 shows one embodiment of the switching methodology that may used to determine which emitters will be driven to emit light. In the depicted example, a system start (step 34) may begin by driving all of the emitters (e.g., 660 nm emitter 24, 730 nm emitter 26, and 900 nm emitter 28) (step 35). In certain examples, a more accurate initial estimate of the arterial oxygen saturation may be arrived at by initializing the system with all three emitters 24, 26, and 28. In one example, all three emitters may be used to calculate the arterial oxygen saturation. In another example, only two of the emitters may be used after system start (step 34). For example, the 660 nm-900 nm emitter pair or the 730 nm-900 nm emitter pair may be driven after system start (step 34) and used to measure the arterial oxygen saturation.
  • The previously calculated SpO2 value is considered and a determination is made in step 36 to determine if the SpO2 value is greater than 84%. If the SpO2 value is greater than 84%, then only the 660 nm emitter 24 and the 900 nm 26 emitter are driven to emit light (step 38). The detector signals resulting from the use of the 660 nm emitter 24 and the 900 nm emitter 26 are then processed at step 40 to calculate the next SpO2 value. The 660 nm-900 nm emitter pair is selected to emit light when the previously calculated SpO2 value is greater than 84% because when blood perfused tissue has a high arterial oxygen saturation value (e.g., greater than 84%), then the SpO2 value may be more accurately calculated by using light with a wavelength near 660 nm and light with a wavelength near 900 nm.
  • If the previously calculated SpO2 value is not greater than 84%, then a determination is made at step 42 to determine if the SpO2 value is less than 75%. If the previously calculated SpO2 value is less than 75%, then only the 730 nm emitter 26 and the 900 nm emitter 28 are driven to emit light (step 44). The detector 30 signals resulting from the use of the 730 nm emitter and the 900 nm emitter are then processed at step 46 to calculate the next SpO2 value. The 730 nm-900 nm emitter pair is selected when the previously calculated SpO2 value is less than 75% because when blood perfused tissue has a low arterial oxygen saturation value (e.g., less than 75%), then the SpO2 value may be more accurately measured by using light with a wavelength near 730 nm and light with a wavelength near 900 nm. It is to be understood that the values of 84% and 75% may be approximate. That is, in other embodiments, values slightly larger or smaller may be used, for example, values approximately near ±7% of the illustrated values.
  • If the previously calculated SpO2 value is not greater than 84% and not less than 75%, then the 660 nm emitter 24, the 730 nm emitter 26, and the 900 nm emitter 28 are driven to emit light (step 48). One SpO2 value is calculated in step 50 based on the detector 30 signals resulting from the use of the 660 nm emitter 24 and the 900 nm emitter 28, and a second SpO2 value is calculated in step 50 based on the detector 30 signals resulting from the use of the 730 nm emitter 26 and the 900 nm emitter 28. Both of the SpO2 values calculated in step 50 are then processed in step 52 to arrive at the next SpO2 value determination. The SpO2 value determined at step 52 is heretofore referred to as the “Transition SpO2 Value”, because the value is inside the transition range where the arterial oxygen saturation is transitioning between high and low values (e.g., greater than or equal to 75% and less than or equal to 84%).
  • When a SpO2 value is in the transition range (e.g., when the arterial oxygen saturation is greater than or equal to 75% and less than or equal to 84%), two SpO2 values are calculated (see step 50 of FIG. 4). One value is referred to as SpO2660 and corresponds to the 660 nm-900 nm emitter pair, and a second value is referred to as SpO2730 and corresponds to the 730 nm-900 nm emitter pair. In this example flow diagram 32, a single transition SpO2 value is determined based on these two calculations, and this determination may be made in any suitable manner. Additionally, a direct calculation may be made involving all three wavelengths, 660 nm, 730 nm, and 900 nm.
  • In one example, FIG. 5 depicts a table 54 of weight factors that may be used, for example, by the methodology described in FIG. 4, to determine the transition SpO2 value. To determine the transition SpO2 value under this embodiment, the SpO2660 value associated with the 660 nm-900 nm emitter pair is first chosen from one of the cells in column 56 (SpO2 Level) of table 54 and the associated WeightFactor660 cell value in column 58 of table 54 is selected. The SpO2730 value associated with the 730 nm-900 nm emitter pair is also chosen from one of the cells in column 56 (SpO2 Level) of table 54 and the associated WeightFactor730 cell value in column 60 of table 54 is selected. The following equation may then be used to arrive at the transition SpO2 value:
  • Transition Sp O 2 = ( ( Sp O 2 660 × WeightFactor 660 10 ) + ( SpO 2 730 × WeightFactor 730 10 ) ) ( WeightFactor 660 + WeightFactor 730 10 ) ( 1 )
  • It is to be understood that other linear and/or non-linear equations and weight factors may be used. For example, another equation may have the WeightFactor660 and the WeightFactor7300 normalized between 0 and 1.0 instead of between 0 and 10.
  • The use of the example weight factor table 54 and the weight factor equation (1) may allow for increased accuracy in the transition range because more weight may be given to the SpO2 value of the emitter pair that is closest to its most accurate usage range. For example, the SpO2660 value derived from the use of the emitter pair 660 nm-900 nm may be given more weight when the last calculated SpO2 value in the transition range is closer to 84%. Similarly, the SpO2730 value derived from the use of the 730 nm-900 nm emitter pair may be given more weight when the last calculated SpO2 value in the transition range is closer to 75%. It is to be understood that other weighing embodiments may be used, for example, logarithmic weighing, Gaussian weighing, and empirical weighing.
  • Logarithmic weighing would replace the weight factor values of table 54 and the weight factor equation with weight factors and a weight equation that may result more weight being given to the various SpO2 values based on the logarithmic scale that was chosen. Gaussian weighing would replace the weight factor values of table 54 and the weight factor equation with weight factors and a weight equation that may result in more weight be given to the SpO2 values based on the Gaussian scale that was chosen. Empirical weighing would replace the weight factor values of table 54 and the weight factor equation with weight factors and a weight equation derived from empirical studies of patient tissue. It is also to be noted that the table 54 could be replaced with an equation. For example, an equation such as WeightFactor660=w=(SPO2Level−75)/10+0.05, and WeightFactor730=1−w when the SPO2 level is between 75% and 84% may be used. When the SPO2 level is less than 75%, w=0. When the SPO2 level is greater than 84%, w=1.0. Other suitable equations may be used, including equations incorporating logarithmic and/or exponential functions. In another embodiment, the SpO2660 value associated with the 660 nm-900 nm emitter pair, and the SpO2730 value associated with the 730 nm-900 nm emitter pair may be averaged to determine the transition SpO2 value.
  • In another example, the SpO2660 value associated with the 660 nm-900 nm emitter pair, and the SpO2730 value associated with the 730 nm-900 nm emitter pair may be arbitrated to determine the transition SpO2 value. The arbitration algorithm may, for example, select the value of either SpO2660 or SpO2730 as the final transition value, based on which one gives a higher or lower value, selecting SpO2660 or SpO2730 based on a lookup table, which is closest to the previous value, among others. Arbitrating between the SpO2660 and the SpO2730 values may be advantageous because this technique may give preference to the SpO2660 or to the SpO2730 values based on certain arbitration decisions such as higher accuracy of one value at certain transition SpO2 subranges. It is to be understood that certain embodiments, including the arbitration algorithm example, may include algorithms suitable for calculating a smooth transition band or curve when transitioning between using a different emitter pair or calculation. Smooth transitioning may eliminate fluctuations in the displayed measurement not corresponding to actual physical changes.
  • Turning to FIG. 6, a flow diagram 62 shows a second embodiment of the switching methodology that may used to determine which emitters will be driven to emit light. In his embodiment, a priming technique is also used so as to enable the pulse oximeter to acquire data from all three LEDs almost immediately upon the arterial range entering the transition region. Further, the transition region in this embodiment may be a slightly broader transition region when compared to the transition region example described above with respect to FIGS. 4 and 5. A slightly broader transition region may improve the measurement quality by enabling an increase in measurements using all three LEDs. Indeed, such capabilities allow for increased accuracy, particularly in measuring arterial oxygen saturation in the transition region.
  • In the depicted example, a system start (step 63) may begin driving all of the emitters (e.g., 660 nm emitter 24, 730 nm emitter 26, and 900 nm emitter 28) (step 65). In this example, a more accurate initial estimate of the arterial oxygen saturation may be arrived at by initializing the system with all three emitters 24, 26, and 28 (step 65). In one example, all three emitter may be used to calculate the arterial oxygen saturation. In another example, only two of the emitters may be used after system start (step 63). For example, the 660 nm-900 nm emitter pair or the 730 nm-900 nm emitter pair may be driven after system start (step 63) and used to measure the arterial oxygen saturation. The previously calculated SpO2 value is considered and a determination is made in step 66 to determine if the SpO2 value is greater than 92%. If the SpO2 value is greater than 92%, then only the 660 nm emitter 24 and the 900 nm 26 emitter are driven to emit light (step 67). The detector signals resulting from the use of the 660 nm emitter 24 and the 900 nm emitter 26 are then processed at step 68 to calculate the next SpO2 value. The 660 nm-900 nm emitter pair is selected to emit light when the previously calculated SpO2 value is greater than 92% because when blood perfused tissue has a high arterial oxygen saturation value (e.g., greater than 92%), then the SpO2 value may be more accurately calculated by using light with a wavelength near 660 nm and light with a wavelength near 900 nm.
  • If the previously calculated SpO2 value is not greater than 92%, then a determination is made at step 72 to determine if the SpO2 value is less than 68%. If the previously calculated SpO2 value is less than 68%, then only the 730 nm emitter 26 and the 900 nm emitter 28 are driven to emit light (step 74). The detector 30 signals resulting from the use of the 730 nm emitter and the 900 nm emitter are then processed at step 76 to calculate the next SpO2 value. The 730 nm-900 nm emitter pair is selected when the previously calculated SpO2 value is less than 68% because when blood perfused tissue has a low arterial oxygen saturation value (e.g., less than 68%), then the SpO2 value may be more accurately measured by using light with a wavelength near 730 nm and light with a wavelength near 900 nm.
  • If the previously calculated SpO2 value is not less than 68%, then a determination is made at step 78 to determine if the previously calculated SpO2 value is greater than 89% and equal to or less than 92%. Such a range (e.g., between equal to or greater than 89% and less than 92%) may be chosen because the range may be indicative of the movement of the arterial oxygen towards the transition region (e.g., between 71% and 89%). Accordingly, certain components of the pulse oximeter system 10 may be primed so as to more quickly capture measurements in the transition region. If the previously calculated SpO2 value is greater than 89% and equal to or less than 92%, then the 660 nm emitter 24, the 730 nm emitter 26, and the 900 nm emitter 28 are driven (step 80). However, the SpO2 value is calculated in step 82 based on the detector 30 signals resulting from the use of the 660 nm emitter 24 and the 900 nm emitter 28 only. The 730 nm emitter 26 is driven to aid in priming or settling of components of the pulse oximeter system 10, such as emitter temperature and wavelength, filters, ensemble averagers, and so forth. Priming the components in advance aids in preventing start up delays when the signals from the 730 nm emitter 26 begin to contribute to the calculated SpO2 value.
  • If the previously calculated SpO2 value is not greater than 89% and not equal to or less than 92%, then a determination is made at step 84 to determine if the previously calculated SpO2 value is equal to or greater than 68% and less than 71%. Such a range (e.g., between equal to or greater than 68% and less than 71%) may be chosen because the range may also be indicative of the movement of the arterial oxygen towards the transition region (e.g., between 71% and 89%). If the previously calculated SpO2 value is equal to or greater than 68% and less than 71%, then the 660 nm emitter 24, the 730 nm emitter 26, and the 900 nm emitter 28 are driven (step 86). However, the SpO2 value is calculated in step 88 based on the detector 30 signals resulting from the use of the 730 nm emitter 24 and the 900 nm emitter 28 only. The 660 nm emitter 26 is driven to aid in reducing or eliminating any start up delays that may occur when the signals from the 660 nm emitter 24 begin to contribute to the calculated SpO2 value.
  • If the previously calculated SpO2 value is not greater than or equal to 68% and not less than 71% (i.e., between 71% and 89%), then the 660 nm emitter 24, the 730 nm emitter 26, and the 900 nm emitter 28 are driven at step 90. One SpO2 value is calculated in step 92 based on the detector 30 signals resulting from the use of the 660 nm emitter 24 and the 900 nm emitter 28, and a second SpO2 value is calculated in step 92 based on the detector 30 signals resulting from the use of the 730 nm emitter 26 and the 900 nm emitter 28. Both of the SpO2 values calculated in step 92 are then processed in step 94 to arrive at the next SpO2 value determination. The SpO2 value determined at step 94 is referred to as the transition SpO2 value, because the value is inside the transition range where the arterial oxygen saturation is transitioning between high and low values (e.g., greater than or equal to 71% and less than or equal to 89%).
  • When a SpO2 value is in the transition range (e.g., when the arterial oxygen saturation is greater than or equal to 71% and less than or equal to 89%), two SpO2 values are calculated (see step 94 of FIG. 6). One value is referred to as SpO2660 and corresponds to the 660 nm-900 nm emitter pair, and a second value is referred to as SpO2730 and corresponds to the 730 nm-900 nm emitter pair. In this example flow diagram 62, a single transition SpO2 value is determined based on these two calculations, and this determination may be made in any suitable manner, such as described in further detail with respect to FIG. 7.
  • In one example, FIG. 7 depicts a table 96 of weight factors that may be used, for example, by the methodology described above with respect to FIG. 6, to determine the transition SpO2 value. In this embodiment, the transition region is found between 71% and 89%. Such slightly broader transition region enables an increase in the number of measurements that use the three wavelengths, and may thus improve measurement accuracy. Indeed, in other embodiments, transition regions such as between 68% to 92%, and between 65% to 95% may be used. As mentioned above with respect to FIG. 5, table 96 may be replaced with an equation, such as an equation including logarithmic and/or exponential functions. Further, the weights may include logarithmic weights, Gaussian weights, and empirical weights.
  • To determine the transition SpO2 value under this embodiment, the SpO2660 value associated with the 660 nm-900 nm emitter pair is first chosen from one of the cells in column 98 (SpO2 Level) of table 96 and the associated WeightFactor660 cell value in column 100 of table 96 is selected. The SpO2730 value associated with the 730 nm-900 nm emitter pair is also chosen from one of the cells in column 98 (SpO2 Level) of table 96 and the associated WeightFactor730 cell value in column 102 of table 96 is selected. The following equation may then be used to arrive at the transition SpO2 value:
  • Transition Sp O 2 = ( ( Sp O 2 660 × WeightFactor 660 ) + ( SpO 2 730 × WeightFactor 730 ) ) ( WeightFactor 660 + WeightFactor 730 ) ( 2 )
  • The use of the example weight factor table 96 and the weight factor equation (2) may allow for increased accuracy in the transition range because more weight may be given to the SpO2 value of the emitter pair that is closest to its most accurate usage range. For example, the SpO2660 value derived from the use of the emitter pair 660 nm-900 nm may be given more weight when the last calculated SpO2 value in the transition range is closer to 89%. Similarly, the SpO2730 value derived from the use of the 730 nm-900 nm emitter pair may be given more weight when the last calculated SpO2 value in the transition range is closer to 71%. It is to be understood that other weighing embodiments may be used, for example, logarithmic weighing, Gaussian weighing, and empirical weighing, as mentioned above with respect to FIG. 6.
  • Logarithmic weighing would replace the weight factor values of table 54 and the weight factor equation with weight factors and a weight equation that may result more weight being given to the various SpO2 values based on the logarithmic scale that was chosen. Gaussian weighing would replace the weight factor values of table 54 and the weight factor equation with weight factors and a weight equation that may result in more weight be given to the SpO2 values based on the Gaussian scale that was chosen. Empirical weighing would replace the weight factor values of table 54 and the weight factor equation with weight factors and a weight equation derived from empirical studies of patient tissue.
  • FIG. 8 depicts a block diagram of one embodiment of a pulse oximeter that may be configured to implement certain embodiments. In one embodiment, light drive circuitry 103 may drive all three of the emitters 24, 26, 28 directly. In another embodiment, light drive circuitry 103 is designed to drive only two emitters and a multiplexer 104 may be used. In this embodiment, multiplexer 104 may convert the control signals sent by the light drive circuitry 103 into a series of signals which may drive the three emitters 24, 26, 28. Accordingly, the multiplexer 104 may include three output lines 105 suitable for driving the three emitters 24, 26, and 29. Further, the multiplexer 104 may include a control line 106 useful for selecting which emitter(s) are to be driven. Light from emitters 24, 26, 28 passes into a patient's blood perfused tissue 106 and is detected by detector 30. The signals corresponding to the light detected by detector 30 may be passed through an amplifier 108, a switch 110, a post-switch amplifier 112, a low band filter 114, and an analog-to-digital converter 116. The digital data may then be stored in a queued serial module (QSM) 118 for later downloading to RAM 120 as QSM 118 fills up.
  • In one embodiment, also connected to a bus 122 may be a time processing unit (TPU) 124 that may provide timing control signals to light drive circuitry 103. The sensor 12 may also contain an encoder 126 that may include encryption coding that prevents a disposable part of the sensor 12 from being recognized by a detector/decoder 130 that is not able to decode the encryption. In some embodiments, the encoder 126 and/or the detector/decoder 130 may not be present. Additionally or alternatively, a processor 132 may encode and/or decode processed sensor data before transmission of the data to the patient monitor 14.
  • Nonvolatile memory 134 may store caregiver preferences, patient information, or various parameters such as a table of weight factors, discussed above with respect to FIGS. 5 and 7, which may be used during the operation of the monitor 14. Software for performing the configuration of the monitor 14 and for carrying out the techniques described herein may also be stored on the nonvolatile memory 134, or may be stored on the ROM 136. The data stored in nonvolatile memory 134 may be displayed by display 138 and manipulated through control inputs 140. A network interface card (NIC) 142 may use a network port 144 to enable communications between the patient monitor 14 and other devices.
  • In various embodiments, based at least in part upon the value of the received signals corresponding to the light detected by detector 30 as explained in further detail with respect to FIGS. 9A, 9B, 9C below, the microprocessor 132 may calculate a physiological parameter of interest using various algorithms. These algorithms may utilize coefficients, which may be empirically determined, corresponding to, for example, the wavelengths of light used. In one embodiment microprocessor 132 may use certain algorithms that calculate the final SpO2 value. In this embodiment the algorithms may contain the weight factor tables 54 of FIGS. 6 and 96 of FIG. 7, and use weight factor equations (1) and (2) to calculate the oxygen saturation. In another embodiment, microprocessor 132 may use an averaging algorithm that averages various oxygen saturation values into a single oxygen saturation value. In yet another embodiment microprocessor 132 may use an arbitration algorithm that arbitrates among various oxygen saturation values and return a single oxygen saturation value. Furthermore, any number of methods or algorithms may be used to determine, for example, a patient's pulse rate, oxygen saturation, and hemoglobin levels, among others.
  • As mentioned above with respect to FIG. 8, the disclosed techniques may include detector signals that may correspond to certain wavelengths of light detected by the detector at particular points in time. FIGS. 9A, 9B, and 9C depict an example set of detector signals that may be converted by the microprocessor into values corresponding to the detected wavelengths of light as well as to the point in time when the wavelengths of light were detected. More specifically, FIG. 9A depicts a detector signal that may be used by the microprocessor when only one emitter pair is being driven. In this example, the detector is detecting light emitted by the 660 nm-900 nm emitter pair. The 660 nm-900 nm pair may be used, for example, when the arterial oxygen saturation is in the high saturation range. The first on signal (+V) 146 of FIG. 9A denotes that the detected light was emitted by the 660 nm emitter. The first off signal (0V) 148 denotes that the 660 nm emitter was then turned off. It is to be understood that due to, for example, a slight leakage of ambient light, the off or “dark time” signal may be slightly larger than 0V. The next on signal (+V) 146 denotes that the detected light was emitted by the 900 nm emitter. The next off signal (0V) 148 denotes that the 900 nm emitter was turned off, and so on. Using the signal of FIG. 9A the microprocessor may properly account for the wavelength of light that was detected as well as for the time when the light was detected. The microprocessor may then properly calculate the SpO2 value as well other physiologic measures from the detected light signals.
  • FIG. 9B shows an example of a detector signal that may be used by the microprocessor when two light emitter pairs are being driven. In this example, the 660 nm-900 nm and the 730 nm-900 nm emitter pairs are both being driven to emit light. Two light emitter pairs may be used, for example, when the arterial oxygen saturation is in the transition region. The first on signal (+V) 146 of FIG. 9B shows that the detected light was emitted by the 660 nm emitter and that the 660 nm emitter was subsequently turned off (0V) 148. The next on signal (+V) 146 shows that the detected light was emitted by the 730 nm emitter and that the 730 nm emitter was subsequently turned off (0V) 148. The next on signal (+V) 146 shows that the detected light was emitted by the 900 nm emitter and that the 900 nm emitter was subsequently turned off (0V) 148, and so on. By using the signal of FIG. 9B the microprocessor may properly account for the wavelengths of light detected when two emitter pairs are used (e.g., the 660 nm-900 nm and the 730 nm-900 nm emitter pairs). The microprocessor may then use this information to properly derive the SpO2 value as well other physiologic measures from the detected light signals.
  • FIG. 9C shows another example of a detector signal that may be used by the microprocessor when two light emitter pairs are being driven. In this example, the 660 nm-900 nm and the 730 nm-900 nm emitter pairs are also being driven to emit light. Two light emitter pairs may be used, for example when the arterial oxygen saturation is in the transition region. The first on signal (+V) 146 of FIG. 9C shows that the detected light was emitted by the 660 nm emitter and that the 660 nm emitter was subsequently turned off (0V) 148. The next on signal (+V) 146 shows that the detected light was emitted by the 900 nm emitter and that the 900 nm emitter was subsequently turned off (0V) 148. The next on signal (+V) 146 shows that the detected light was emitted by the 730 nm emitter and that the 730 nm emitter was subsequently turned off (0V) 148, and so on. The microprocessor may use the signal of FIG. 9C to properly account for the detected wavelengths of light when two emitter pairs are used (e.g., the 660 nm-900 nm and the 730 nm-900 nm emitter pairs). The microprocessor may then use this information to properly derive the SpO2 value as well other physiologic measures from the detected light signals.
  • It is to be understood that the modulation examples of FIGS. 9A, 9B, and 9C, may be modulated by using modulation techniques other than time division multiplexing (TDM). Other example techniques that may be used include Frequency Division Multiplexing (FDM), and/or spread spectrum/code division multiple access (CDMA) techniques. Indeed, the pulse oximeter system 10 may include a variety of modulation techniques useful for driving the emitters 24, 26, and 28 and observing the resultant light.

Claims (20)

What is claimed is:
1. A sensor, comprising:
a first emitter configured to emit a first wavelength;
a second emitter configured to emit a second wavelength;
a third emitter configured to emit a third wavelength; and
a sensor cable configured to couple to an interface of a patient monitor, wherein the sensor cable is configured to receive light drive signals from the patient monitor;
wherein the sensor is configured to use the light drive signals received from the patient monitor to selectively activate at least two of the first emitter, the second emitter, or the third emitter.
2. The sensor of claim 1, wherein the sensor cable comprises a multiplexer, and wherein the multiplexer is configured to receive the light drive signals from the patient monitor and to use the light drive signals received from the patient monitor to selectively activate at least two of the first emitter, the second emitter, or the third emitter.
3. The sensor of claim 2, wherein the multiplexer is configured to convert the light drive signals received from the patient monitor into a series of signals to drive at least two of the first emitter, the second emitter, or the third emitter.
4. The sensor of claim 3, wherein the multiplexer is configured to receive a light drive signal configured to drive only two of the first emitter, the second emitter, or the third emitter, and wherein the multiplexer is configured to convert the light drive signal into a series of signals to drive the first emitter, the second emitter, and the third emitter.
5. The sensor of claim 2, wherein the multiplexer comprises a control line for selecting which emitters of the first emitter, the second emitter, and the third emitter to drive.
6. The sensor of claim 1, wherein the first and second wavelengths are configured to substantially optimize physiologic measurements in patients having high oxygen saturation levels.
7. The sensor of claim 6, wherein the first wavelength is between about 620 nanometers and about 700 nanometers, and the second wavelength is between about 860 nanometers and about 940 nanometers.
8. The sensor of claim 1, wherein the second and third wavelengths are configured to substantially optimize physiologic measurements in patients having low oxygen saturation levels.
9. The sensor of claim 8, wherein the second wavelength is about between about 690 nanometers and about 770 nanometers, and the third wavelength is between about 860 nanometers and about 940 nanometers.
10. A system, comprising:
a sensor comprising:
a first emitter pair configured to emit a first wavelength and a second wavelength;
a second emitter pair configured to emit the second wavelength and a third wavelength; and
a sensor cable operatively coupled to the first emitter pair and the second emitter pair; and
a patient monitor comprising:
an interface configured to couple to the sensor cable; and
drive circuitry configured to generate light drive signals;
wherein the sensor cable is configured to receive the light drive signals from the patient monitor, and wherein the sensor is configured to use the light drive signals received from the patient monitor to selectively activate at least one of the first emitter pair or the second emitter pair.
11. The system of claim 10, wherein the sensor cable comprises a multiplexer, and wherein the multiplexer is configured to receive the light drive signals from the patient monitor and to use the light drive signals received from the patient monitor to selectively activate at least one of the first emitter pair or the second emitter pair.
12. The system of claim 11, wherein the multiplexer is configured to convert the light drive signals received from the patient monitor into a series of signals to drive at least one of the first emitter pair or the second emitter pair.
13. The system of claim 12, wherein the light drive signals generated by the drive circuitry are configured to drive only one emitter pair, and wherein the multiplexer is configured to convert the light drive signals into a series of signals to drive the first emitter pair and the second emitter pair.
14. The system of claim 11, wherein the multiplexer comprises a control line for selecting which emitter pair of the first emitter pair and the second emitter pair to drive.
15. A method of manufacturing a sensor, comprising:
providing a first emitter pair configured to emit a first wavelength and a second wavelength;
providing a second emitter pair configured to emit the second wavelength and a third wavelength; and
coupling a sensor cable to the first emitter pair and the second emitter pair, wherein the sensor cable is configured to couple to an interface of a patient monitor and to receive light drive signals from the patient monitor; and
wherein the sensor is configured to use the light drive signals received from the patient monitor to selectively activate at least one of the first emitter pair or the second emitter pair.
16. The method of claim 15, comprising providing a multiplexer configured to receive the light drive signals from the patient monitor and to selectively activate at least one of the first emitter pair or the second emitter pair.
17. The method of claim 16, wherein the multiplexer is configured to convert the light drive signals received from the patient monitor into a series of signals to drive at least one of the first emitter pair or the second emitter pair.
18. The method of claim 16, comprising providing a control line for the multiplexer to select which emitter pair of the first emitter pair and the second emitter pair to drive.
19. The method of claim 15, wherein the first wavelength is between about 620 nanometers and about 700 nanometers, and the second wavelength is between about 860 nanometers and about 940 nanometers.
20. The method of claim 15, wherein the second wavelength is about between about 690 nanometers and about 770 nanometers, and the third wavelength is between about 860 nanometers and about 940 nanometers.
US14/176,788 2010-09-22 2014-02-10 Wavelength switching for pulse oximetry Abandoned US20140155715A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/176,788 US20140155715A1 (en) 2010-09-22 2014-02-10 Wavelength switching for pulse oximetry

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/888,226 US8649838B2 (en) 2010-09-22 2010-09-22 Wavelength switching for pulse oximetry
US14/176,788 US20140155715A1 (en) 2010-09-22 2014-02-10 Wavelength switching for pulse oximetry

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/888,226 Continuation US8649838B2 (en) 2010-09-22 2010-09-22 Wavelength switching for pulse oximetry

Publications (1)

Publication Number Publication Date
US20140155715A1 true US20140155715A1 (en) 2014-06-05

Family

ID=45818350

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/888,226 Active 2032-05-16 US8649838B2 (en) 2010-09-22 2010-09-22 Wavelength switching for pulse oximetry
US14/176,788 Abandoned US20140155715A1 (en) 2010-09-22 2014-02-10 Wavelength switching for pulse oximetry

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/888,226 Active 2032-05-16 US8649838B2 (en) 2010-09-22 2010-09-22 Wavelength switching for pulse oximetry

Country Status (1)

Country Link
US (2) US8649838B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160118509A1 (en) * 2014-10-28 2016-04-28 Silicon Laboratories Inc. Light Detector Using an On-Die Interference Filter
US9383989B1 (en) 2014-06-16 2016-07-05 Symantec Corporation Systems and methods for updating applications
CN106236060A (en) * 2015-06-04 2016-12-21 松下知识产权经营株式会社 Bioinformation detecting device
US9627424B2 (en) 2014-11-19 2017-04-18 Silicon Laboratories Inc. Photodiodes for ambient light sensing and proximity sensing
WO2022061262A1 (en) * 2020-09-21 2022-03-24 PAVmed Inc. Systems and methods for non-invasive solute measurement

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9282924B2 (en) 2011-03-31 2016-03-15 Covidien Lp Medical sensor with temperature control
US9161722B2 (en) 2011-09-07 2015-10-20 Covidien Lp Technique for remanufacturing a medical sensor
EP3181048A1 (en) 2012-12-31 2017-06-21 Omni MedSci, Inc. Near-infrared lasers for non-invasive monitoring of glucose, ketones, hba1c, and other blood constituents
WO2014105521A1 (en) 2012-12-31 2014-07-03 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for early detection of dental caries
US9993159B2 (en) 2012-12-31 2018-06-12 Omni Medsci, Inc. Near-infrared super-continuum lasers for early detection of breast and other cancers
WO2014143276A2 (en) 2012-12-31 2014-09-18 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications
US10660526B2 (en) 2012-12-31 2020-05-26 Omni Medsci, Inc. Near-infrared time-of-flight imaging using laser diodes with Bragg reflectors
US9907006B2 (en) 2013-06-03 2018-02-27 Avago Technologies General Ip (Singapore) Pte. Ltd. Cross radio access technology access with handoff and interference management using communication performance data
US9888422B2 (en) 2013-06-03 2018-02-06 Avago Technologies General Ip (Singapore) Pte. Ltd. System and method for adaptive access and handover configuration based on prior history in a multi-RAT environment
US9848808B2 (en) * 2013-07-18 2017-12-26 Cas Medical Systems, Inc. Method for spectrophotometric blood oxygenation monitoring
WO2015104158A1 (en) * 2014-01-07 2015-07-16 Opsolution Gmbh Device and method for determining a concentration in a sample
EP3315071A4 (en) * 2015-07-30 2018-07-04 Alps Electric Co., Ltd. Sensor module and biometric information display system
KR20180051196A (en) * 2016-11-08 2018-05-16 삼성전자주식회사 Spectrometer, apparatus and method for measuring bio-information
US10925525B2 (en) 2017-08-18 2021-02-23 Canon U.S.A., Inc. Combined pulse oximetry and diffusing wave spectroscopy system and control method therefor
JP2023109215A (en) * 2022-01-27 2023-08-08 パナソニックIpマネジメント株式会社 Light emitting device and sensing system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5782756A (en) * 1996-09-19 1998-07-21 Nellcor Puritan Bennett Incorporated Method and apparatus for in vivo blood constituent analysis
US20090234207A1 (en) * 2008-03-12 2009-09-17 General Electric Company Sensor interface
US20110077473A1 (en) * 2009-09-29 2011-03-31 Nellcor Puritan Bennett Llc Patient sensor intercommunication circuitry for a medical monitor

Family Cites Families (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4281645A (en) 1977-06-28 1981-08-04 Duke University, Inc. Method and apparatus for monitoring metabolism in body organs
IT1206462B (en) 1984-08-07 1989-04-27 Anic Spa MULTI-WAVE LENGTH PULSED LIGHT PHOTOMETER FOR NON-INVASIVE MONITORING.
US4890619A (en) 1986-04-15 1990-01-02 Hatschek Rudolf A System for the measurement of the content of a gas in blood, in particular the oxygen saturation of blood
JPS6323645A (en) 1986-05-27 1988-01-30 住友電気工業株式会社 Reflection heating type oxymeter
JPS63252239A (en) 1987-04-09 1988-10-19 Sumitomo Electric Ind Ltd Reflection type oxymeter
US4805623A (en) 1987-09-04 1989-02-21 Vander Corporation Spectrophotometric method for quantitatively determining the concentration of a dilute component in a light- or other radiation-scattering environment
US4854699A (en) 1987-11-02 1989-08-08 Nippon Colin Co., Ltd. Backscatter oximeter
US5361758A (en) 1988-06-09 1994-11-08 Cme Telemetrix Inc. Method and device for measuring concentration levels of blood constituents non-invasively
US5596986A (en) 1989-03-17 1997-01-28 Scico, Inc. Blood oximeter
DE3938759A1 (en) 1989-11-23 1991-05-29 Philips Patentverwaltung NON-INVASIVE OXIMETER ARRANGEMENT
US5239185A (en) 1990-06-22 1993-08-24 Hitachi, Ltd. Method and equipment for measuring absorptance of light scattering materials using plural wavelengths of light
MX9702434A (en) 1991-03-07 1998-05-31 Masimo Corp Signal processing apparatus.
EP0522674B1 (en) 1991-07-12 1998-11-11 Mark R. Robinson Oximeter for reliable clinical determination of blood oxygen saturation in a fetus
US5413100A (en) 1991-07-17 1995-05-09 Effets Biologiques Exercice Non-invasive method for the in vivo determination of the oxygen saturation rate of arterial blood, and device for carrying out the method
DE59202684D1 (en) 1991-08-12 1995-08-03 Avl Medical Instr Ag Device for measuring at least one gas saturation, in particular the oxygen saturation of blood.
US5204922A (en) 1991-10-22 1993-04-20 Puritan-Bennett Corporation Optical signal channel selector
US5385143A (en) 1992-02-06 1995-01-31 Nihon Kohden Corporation Apparatus for measuring predetermined data of living tissue
US5297548A (en) 1992-02-07 1994-03-29 Ohmeda Inc. Arterial blood monitoring probe
JP3310390B2 (en) 1993-06-10 2002-08-05 浜松ホトニクス株式会社 Method and apparatus for measuring concentration of light absorbing substance in scattering medium
JP3345481B2 (en) 1993-09-22 2002-11-18 興和株式会社 Pulse wave spectrometer
US5497769A (en) 1993-12-16 1996-03-12 I.S.S. (Usa) Inc. Photosensor with multiple light sources
US5632273A (en) 1994-02-04 1997-05-27 Hamamatsu Photonics K.K. Method and means for measurement of biochemical components
US5421329A (en) 1994-04-01 1995-06-06 Nellcor, Inc. Pulse oximeter sensor optimized for low saturation
US6662033B2 (en) 1994-04-01 2003-12-09 Nellcor Incorporated Pulse oximeter and sensor optimized for low saturation
US5524617A (en) 1995-03-14 1996-06-11 Nellcor, Incorporated Isolated layer pulse oximetry
US5774213A (en) 1995-04-21 1998-06-30 Trebino; Rick P. Techniques for measuring difference of an optical property at two wavelengths by modulating two sources to have opposite-phase components at a common frequency
US5758644A (en) 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
DE19609410C2 (en) 1996-03-04 2002-04-25 Biotronik Mess & Therapieg Device for determining blood oxygen saturation
JP3245042B2 (en) 1996-03-11 2002-01-07 沖電気工業株式会社 Tuning oscillation circuit
FI962448A (en) 1996-06-12 1997-12-13 Instrumentarium Oy Method, apparatus and sensor for the determination of fractional oxygen saturation
US6163715A (en) 1996-07-17 2000-12-19 Criticare Systems, Inc. Direct to digital oximeter and method for calculating oxygenation levels
US6018673A (en) 1996-10-10 2000-01-25 Nellcor Puritan Bennett Incorporated Motion compatible sensor for non-invasive optical blood analysis
US5817008A (en) 1996-10-31 1998-10-06 Spacelabs Medical, Inc. Conformal pulse oximetry sensor and monitor
US5842979A (en) 1997-02-14 1998-12-01 Ohmeda Inc. Method and apparatus for improved photoplethysmographic monitoring of oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin and methemoglobin
US6343223B1 (en) 1997-07-30 2002-01-29 Mallinckrodt Inc. Oximeter sensor with offset emitters and detector and heating device
GB2329015B (en) 1997-09-05 2002-02-13 Samsung Electronics Co Ltd Method and device for noninvasive measurement of concentrations of blood components
US5983122A (en) 1997-12-12 1999-11-09 Ohmeda Inc. Apparatus and method for improved photoplethysmographic monitoring of multiple hemoglobin species using emitters having optimized center wavelengths
JP2002501803A (en) 1998-02-05 2002-01-22 イン−ラインダイアグノスティックスコーポレイション Non-invasive blood component monitoring method and apparatus
JP3797454B2 (en) 1998-03-03 2006-07-19 富士写真フイルム株式会社 Brain oxygen saturation measuring device
US6078833A (en) 1998-03-25 2000-06-20 I.S.S. (Usa) Inc. Self referencing photosensor
US6064899A (en) 1998-04-23 2000-05-16 Nellcor Puritan Bennett Incorporated Fiber optic oximeter connector with element indicating wavelength shift
US7400918B2 (en) 1998-07-04 2008-07-15 Edwards Lifesciences Measurement of blood oxygen saturation
US6842635B1 (en) 1998-08-13 2005-01-11 Edwards Lifesciences Llc Optical device
EP1094745B1 (en) 1998-07-04 2010-05-19 Whitland Research Limited Non-invasive measurement of blood analytes
US6671526B1 (en) 1998-07-17 2003-12-30 Nihon Kohden Corporation Probe and apparatus for determining concentration of light-absorbing materials in living tissue
JP2000083933A (en) 1998-07-17 2000-03-28 Nippon Koden Corp Instrument for measuring concentration of light absorptive material in vital tissue
US6430513B1 (en) 1998-09-04 2002-08-06 Perkinelmer Instruments Llc Monitoring constituents of an animal organ using statistical correlation
US6438399B1 (en) 1999-02-16 2002-08-20 The Children's Hospital Of Philadelphia Multi-wavelength frequency domain near-infrared cerebral oximeter
IL129790A0 (en) 1999-03-09 2000-02-29 Orsense Ltd A device for enhancement of blood-related signals
US6675031B1 (en) 1999-04-14 2004-01-06 Mallinckrodt Inc. Method and circuit for indicating quality and accuracy of physiological measurements
US6213952B1 (en) 1999-09-28 2001-04-10 Orsense Ltd. Optical device for non-invasive measurement of blood related signals utilizing a finger holder
US6400971B1 (en) 1999-10-12 2002-06-04 Orsense Ltd. Optical device for non-invasive measurement of blood-related signals and a finger holder therefor
CA2290083A1 (en) 1999-11-19 2001-05-19 Linde Medical Sensors Ag. Device for the combined measurement of the arterial oxygen saturation and the transcutaneous co2 partial pressure of an ear lobe
JP2008194488A (en) 1999-11-30 2008-08-28 Nippon Koden Corp Apparatus for determining concentration of hemoglobin
US6594513B1 (en) 2000-01-12 2003-07-15 Paul D. Jobsis Method and apparatus for determining oxygen saturation of blood in body organs
WO2001054573A1 (en) 2000-01-28 2001-08-02 The General Hospital Corporation Fetal pulse oximetry
IL135077A0 (en) 2000-03-15 2001-05-20 Orsense Ltd A probe for use in non-invasive measurements of blood related parameters
WO2001084107A2 (en) 2000-05-02 2001-11-08 Cas Medical Systems, Inc. Method for non-invasive spectrophotometric blood oxygenation monitoring
US6597931B1 (en) 2000-09-18 2003-07-22 Photonify Technologies, Inc. System and method for absolute oxygen saturation
US6587703B2 (en) 2000-09-18 2003-07-01 Photonify Technologies, Inc. System and method for measuring absolute oxygen saturation
IL138884A (en) 2000-10-05 2006-07-05 Conmed Corp Pulse oximeter and a method of its operation
JP2002303576A (en) 2001-04-05 2002-10-18 Nippon Colin Co Ltd Oxygen saturation measuring device
KR100612827B1 (en) 2001-04-19 2006-08-14 삼성전자주식회사 Method and apparatus for noninvasively measuring hemoglobin concentration and oxygen saturation
JP2003194714A (en) 2001-12-28 2003-07-09 Omega Wave Kk Measuring apparatus for blood amount in living-body tissue
WO2003071939A1 (en) 2002-02-22 2003-09-04 Masimo Corporation Active pulse spectraphotometry
US6909912B2 (en) 2002-06-20 2005-06-21 University Of Florida Non-invasive perfusion monitor and system, specially configured oximeter probes, methods of using same, and covers for probes
AU2003254135B2 (en) 2002-07-26 2006-11-16 Cas Medical Systems, Inc. Method for spectrophotometric blood oxygenation monitoring
US7133711B2 (en) 2002-08-07 2006-11-07 Orsense, Ltd. Method and system for decomposition of multiple channel signals
JP3635331B2 (en) 2002-10-16 2005-04-06 独立行政法人情報通信研究機構 Substance measuring device
JP2004148069A (en) 2002-10-29 2004-05-27 Tse:Kk Reflection type detector for degree of blood oxygen saturation
JP2004148070A (en) 2002-10-29 2004-05-27 Tse:Kk Detector of a pluralty of components in blood
JP2004159810A (en) 2002-11-12 2004-06-10 Otax Co Ltd Arterial oxygen saturation measuring instrument
WO2004047631A2 (en) 2002-11-22 2004-06-10 Masimo Laboratories, Inc. Blood parameter measurement system
JP2004248820A (en) 2003-02-19 2004-09-09 Citizen Watch Co Ltd Blood analyzer
US7283242B2 (en) 2003-04-11 2007-10-16 Thornton Robert L Optical spectroscopy apparatus and method for measurement of analyte concentrations or other such species in a specimen employing a semiconductor laser-pumped, small-cavity fiber laser
KR100571811B1 (en) 2003-05-09 2006-04-17 삼성전자주식회사 Ear type measurement apparatus for bio signal
DE10321338A1 (en) 2003-05-13 2004-12-02 MCC Gesellschaft für Diagnosesysteme in Medizin und Technik mbH & Co. KG Method and device for determining blood components using the method of ratiometric absolute pulse spectroscopy
JP2005169020A (en) 2003-12-05 2005-06-30 Tse:Kk Apparatus for detecting saturation degree of blood oxygen
CN2691489Y (en) 2003-12-23 2005-04-13 武汉一海数字工程有限公司 Multiple wave-length near-infrared instrument for testing blood-oxygen content in brain tissue
JP4614047B2 (en) 2004-03-29 2011-01-19 日本光電工業株式会社 Blood light absorption substance concentration measuring device.
US20050228253A1 (en) 2004-04-07 2005-10-13 Nellcor Puritan Bennett Incorporated Photoplethysmography with a spatially homogenous multi-color source
US7343186B2 (en) 2004-07-07 2008-03-11 Masimo Laboratories, Inc. Multi-wavelength physiological monitor
JP2006075354A (en) 2004-09-09 2006-03-23 Chunichi Denshi Co Ltd Tissue oxygen saturation measuring device
US20070078311A1 (en) 2005-03-01 2007-04-05 Ammar Al-Ali Disposable multiple wavelength optical sensor
EP2286721B1 (en) 2005-03-01 2018-10-24 Masimo Laboratories, Inc. Physiological Parameter Confidence Measure
JP2006239267A (en) 2005-03-07 2006-09-14 Kyoto Univ Measuring apparatus and method for intracellular oxygen saturation
WO2006124696A1 (en) 2005-05-13 2006-11-23 Children's Hospital Medical Center Multi-wavelength spatial domain near infrared oximeter to detect cerebral hypoxia-ischemia
CN101232843A (en) 2005-09-13 2008-07-30 爱德华兹生命科学公司 Continuous spectroscopic measurement of total hemoglobin
EP1792564B1 (en) 2005-12-02 2010-11-24 General Electric Company A probe and a method for use with a probe
WO2007079347A2 (en) 2005-12-16 2007-07-12 Cas Medical Systems, Inc. Stabilized multi-wavelength laser system for non-invasive spectrophotometric monitoring
JP2007167183A (en) 2005-12-20 2007-07-05 Konica Minolta Sensing Inc Photoelectric pulse wave measuring device, probe for attaching to fingertip, and photoelectric pulse wave measuring method
WO2007097702A1 (en) 2006-02-21 2007-08-30 Lindberg Lars-Goeran Non-invasive monitoring of blood flow in deep tissue
JP4444228B2 (en) 2006-03-27 2010-03-31 日本電信電話株式会社 Component concentration measuring device
DE102007015173A1 (en) 2006-04-12 2007-10-31 Weinmann Geräte für Medizin GmbH & Co. KG Body fluid content e.g. hemoglobin concentration, determining method, involves generating and directing radiations of two different wave lengths on body tissue, and occasionally directing radiations of third wave length on tissue
US20070282178A1 (en) 2006-04-12 2007-12-06 Weinmann Gerate Fur Medizin Gmbh & Co. Kg Method and device for the identification of at least one substance of content of a body fluid
US20080004513A1 (en) 2006-06-30 2008-01-03 Walker Stephen D VCSEL Tissue Spectrometer
EP2073695A1 (en) 2006-09-26 2009-07-01 Woolsthorpe Technologies, LLC Method and apparatus for processing signals reflecting physiological characteristics
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
DE102006054556A1 (en) 2006-11-20 2008-05-21 Zimmer Medizinsysteme Gmbh Apparatus and method for non-invasive, optical detection of chemical and physical blood values and body constituents
EP1946697A1 (en) 2007-01-16 2008-07-23 CSEM Centre Suisse d'Electronique et de Microtechnique SA Recherche et Développement Device for monitoring arterial oxygen saturation
US8652060B2 (en) 2007-01-20 2014-02-18 Masimo Corporation Perfusion trend indicator
US20080208019A1 (en) 2007-02-22 2008-08-28 Jerusalem College Of Technology Modified Pulse Oximetry Technique For Measurement Of Oxygen Saturation In Arterial And Venous Blood
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
JP2007196001A (en) 2007-03-16 2007-08-09 Hitachi Medical Corp Optical measuring device for living body
JP5227525B2 (en) 2007-03-23 2013-07-03 株式会社日立製作所 Biological light measurement device
EP2139383B1 (en) 2007-03-27 2013-02-13 Masimo Laboratories, Inc. Multiple wavelength optical sensor
JP5049625B2 (en) 2007-03-27 2012-10-17 キヤノン株式会社 Structure manufacturing method and structure manufacturing apparatus using the same
AU2008247319B2 (en) 2007-05-02 2013-07-18 Sensitive Pty Ltd Non-invasive measurement of blood oxygen saturation
JP5212016B2 (en) 2008-10-28 2013-06-19 富士電機株式会社 Switching power supply control circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5782756A (en) * 1996-09-19 1998-07-21 Nellcor Puritan Bennett Incorporated Method and apparatus for in vivo blood constituent analysis
US20090234207A1 (en) * 2008-03-12 2009-09-17 General Electric Company Sensor interface
US20110077473A1 (en) * 2009-09-29 2011-03-31 Nellcor Puritan Bennett Llc Patient sensor intercommunication circuitry for a medical monitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9383989B1 (en) 2014-06-16 2016-07-05 Symantec Corporation Systems and methods for updating applications
US20160118509A1 (en) * 2014-10-28 2016-04-28 Silicon Laboratories Inc. Light Detector Using an On-Die Interference Filter
US9978887B2 (en) * 2014-10-28 2018-05-22 Silicon Laboratories Inc. Light detector using an on-die interference filter
US9627424B2 (en) 2014-11-19 2017-04-18 Silicon Laboratories Inc. Photodiodes for ambient light sensing and proximity sensing
CN106236060A (en) * 2015-06-04 2016-12-21 松下知识产权经营株式会社 Bioinformation detecting device
WO2022061262A1 (en) * 2020-09-21 2022-03-24 PAVmed Inc. Systems and methods for non-invasive solute measurement

Also Published As

Publication number Publication date
US8649838B2 (en) 2014-02-11
US20120071739A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
US8649838B2 (en) Wavelength switching for pulse oximetry
US11330996B2 (en) Patient monitor for determining microcirculation state
US9380969B2 (en) Systems and methods for varying a sampling rate of a signal
US8123695B2 (en) Method and apparatus for detection of venous pulsation
US8385995B2 (en) Physiological parameter tracking system
US6421549B1 (en) Adaptive calibration pulsed oximetry method and device
US9801584B2 (en) Method for detection of aberrant tissue spectra
US8109882B2 (en) System and method for venous pulsation detection using near infrared wavelengths
US8777867B2 (en) Detection of oximetry sensor sites based on waveform characteristics
US8588879B2 (en) Motion compensation in a sensor
US20090030296A1 (en) Predictive oximetry model and method
US20140187884A1 (en) Systems and methods for ensemble averaging in pulse oximetry
US20090171172A1 (en) Method and system for pulse gating
WO2009088799A1 (en) Method and apparatus for assessing contact of a sensor with arterialized tissue
US20120253147A1 (en) Calibration method and arrangement and sensor for non-invasively measuring blood characteristics of a subject
US8571621B2 (en) Minimax filtering for pulse oximetry

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION