JP5049625B2 - Structure manufacturing method and structure manufacturing apparatus using the same - Google Patents

Structure manufacturing method and structure manufacturing apparatus using the same Download PDF

Info

Publication number
JP5049625B2
JP5049625B2 JP2007081801A JP2007081801A JP5049625B2 JP 5049625 B2 JP5049625 B2 JP 5049625B2 JP 2007081801 A JP2007081801 A JP 2007081801A JP 2007081801 A JP2007081801 A JP 2007081801A JP 5049625 B2 JP5049625 B2 JP 5049625B2
Authority
JP
Japan
Prior art keywords
filter
aerosol
gas
aerosol generator
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007081801A
Other languages
Japanese (ja)
Other versions
JP2008240063A (en
Inventor
昭彦 小林
淳理 石倉
俊之 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007081801A priority Critical patent/JP5049625B2/en
Publication of JP2008240063A publication Critical patent/JP2008240063A/en
Application granted granted Critical
Publication of JP5049625B2 publication Critical patent/JP5049625B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Nozzles (AREA)

Description

本発明は、微粒子を含むエアロゾルを基板に吹き付け、微粒子材料を基板上に堆積することによって、構造物を形成する作製方法及び作製装置に関するものである。   The present invention relates to a manufacturing method and a manufacturing apparatus for forming a structure by spraying an aerosol containing fine particles onto a substrate and depositing a fine particle material on the substrate.

微粒子材料からなる膜或いは構造物の作製方法には、エアロゾルデポジション法と呼ばれる方法がある。これは、微粒子を含むエアロゾルをノズルから高速で基板に向けて噴射して基板に微粒子を衝突させ、その機械的衝撃力を利用して多結晶構造物を基板上に直接形成させる方法であり、特許文献1で開示されている。   As a method for manufacturing a film or structure made of a fine particle material, there is a method called an aerosol deposition method. This is a method in which aerosol containing fine particles is sprayed from a nozzle toward the substrate at high speed to collide the fine particles with the substrate, and a polycrystalline structure is directly formed on the substrate using the mechanical impact force. This is disclosed in Patent Document 1.

同文献で示されているように、エアロゾルデポジション法では、エアロゾル発生器を用いる。このエアロゾル発生器中に微粒子から成る粉体を収納し、そこへガスを注入する。すると微粒子がガス中に分散し、エアロゾルが発生する。そしてこのエアロゾルはエアロゾル発生器からノズル側に搬送され、ノズルから高速で基板に噴射される。   As shown in this document, the aerosol deposition method uses an aerosol generator. A powder composed of fine particles is stored in the aerosol generator, and gas is injected into the powder. Then, the fine particles are dispersed in the gas, and aerosol is generated. And this aerosol is conveyed to the nozzle side from an aerosol generator, and is sprayed to a board | substrate from a nozzle at high speed.

ノズルから噴射されるエアロゾル中の微粒子を基板に堆積し、粒子径が均一で緻密な膜を形成するためには、微粒子がセラミックから成る場合、特許文献2で開示されているように、エアロゾル発生器内に収納する粉体の最小単位である一次微粒子の平均粒径を0.05〜1μm程度の小粒径にし、その一次微粒子又はそれが少数集合した小さな凝集体を噴射する必要があるとされる。   In order to deposit fine particles in aerosol sprayed from a nozzle on a substrate and form a dense film with a uniform particle size, when fine particles are made of ceramic, as disclosed in Patent Document 2, aerosol generation When the average particle size of primary particles, which is the smallest unit of powder stored in the vessel, is set to a small particle size of about 0.05 to 1 μm, and it is necessary to inject the primary particles or small aggregates in which a small number of them are aggregated Is done.

すなわち、平均粒径以上の径を持つ大きな一次微粒子はもちろんのこと、小さな一次微粒子であってもこれらが多数集合し比較的大きな凝集体となってから噴射されると、基板に衝突しても、粒子径が均一で緻密な膜の形成に寄与しない。   That is, not only large primary particles having a diameter larger than the average particle diameter, but also small primary particles are aggregated and formed into a relatively large agglomerate. , The particle diameter is uniform and does not contribute to the formation of a dense film.

セラミック以外の微粒子においても同様に、微粒子が凝集することは望ましくない。   Similarly, in the case of fine particles other than ceramic, it is not desirable that the fine particles aggregate.

ところが、エアロゾル発生器に設置する微粒子から成る粉体の相当量は静電気等が影響し、エアロゾル発生器内に設置した当初から大きな凝集体になることが多い。   However, a considerable amount of the powder composed of fine particles placed in the aerosol generator is often affected by static electricity or the like, and often becomes a large agglomerate from the beginning of installation in the aerosol generator.

エアロゾル化開始当初、粉体内の一次微粒子又はその小さな凝集体がガスに分散されエアロゾル発生器から排出される。しかし、しばらく経過すると静電気等の影響によりエアロゾル発生器内には大きな凝集体が多くなる。この大きな凝集体はそのままガス中に分散してエアロゾル発生器から排出するか、その大きさゆえにガス中に分散されずエアロゾル発生器に残留する。   At the beginning of aerosolization, primary fine particles in the powder or small aggregates thereof are dispersed in the gas and discharged from the aerosol generator. However, after a while, large aggregates increase in the aerosol generator due to the influence of static electricity or the like. This large aggregate is dispersed in the gas as it is and discharged from the aerosol generator, or because of its size, it remains in the aerosol generator without being dispersed in the gas.

このような理由でエアロゾル化開始後しばらく経過すると、エアロゾルの発生効率低下する。更には膜の形成効率も低下する。   For this reason, the generation efficiency of the aerosol decreases after a while after the start of aerosolization. Furthermore, the film formation efficiency also decreases.

上記問題を解決するため、特許文献1ではエアロゾル発生器に収納した粉体内に存在する大きな凝集体を、一次微粒子又はその小さな凝集体に砕いてエアロゾル化させる手段について言及している。   In order to solve the above-mentioned problem, Patent Document 1 refers to a means for crushing large aggregates present in powder contained in an aerosol generator into primary fine particles or small aggregates for aerosolization.

この技術は、解砕片を粉体と混在させ、エアロゾル発生器に振動を付加することで、解砕片に運動を与える。すると、解砕片同士の衝突又は解砕片同士の回転摺動が起こり、解砕片同士の接触による粉体解砕効果が発生する。この結果、解砕片間の粉体内に存在する大きな凝集体を、粒子径が均一で緻密な膜の形成に寄与可能な一次微粒子又はその小さな凝集体に解砕することができる。   In this technique, the crushed pieces are mixed with powder, and vibrations are applied to the aerosol generator to give the crushed pieces a motion. Then, collision between the crushed pieces or rotational sliding between the crushed pieces occurs, and a powder crushing effect due to contact between the crushed pieces occurs. As a result, large aggregates present in the powder between the crushed pieces can be crushed into primary fine particles or small aggregates thereof that can contribute to the formation of a dense film having a uniform particle diameter.

また同文献において、エアロゾル発生器内にフィルタを設置する技術についても説明している。この技術は、微粒子から成る粉体が漏れない程度の細孔を有するフィルタ上に粉体を配置し、そのフィルタの下面側にエアロゾル発生器内へのガスの注入口を配置する構成である。この構成では、フィルタを通してガス気流を形成するので、粉体表面全面から緩やかに微粒子が巻き上がり、好適なエアロゾルを発生することができる。   The same document also describes a technique for installing a filter in an aerosol generator. In this technique, the powder is disposed on a filter having pores that do not allow the powder composed of fine particles to leak, and the gas inlet into the aerosol generator is disposed on the lower surface side of the filter. In this configuration, since a gas stream is formed through the filter, fine particles are gently rolled up from the entire surface of the powder, and a suitable aerosol can be generated.

また、発生したエアロゾルを分級して、ノズル側へ搬送する分級技術がある。これは発生したエアロゾルをノズルに搬送するべく排出される排出口に対してガスが流れる方向の上流近傍に、所定の大きさを有する微粒子のみを通過させる孔を有するフィルタを設ける。このフィルタによって、粒子径が均一な膜を形成するために必要な所定の大きさを有する微粒子のみをノズルに搬送することが可能となる。
特開2003−166076号公報 特開2001−152360号公報 特開2006−198577号公報
There is also a classification technique for classifying the generated aerosol and conveying it to the nozzle side. This is provided with a filter having a hole through which only fine particles having a predetermined size pass in the vicinity of the upstream in the direction in which the gas flows with respect to the outlet for discharging the generated aerosol to the nozzle. This filter makes it possible to transport only fine particles having a predetermined size necessary for forming a film having a uniform particle diameter to the nozzle.
Japanese Patent Laid-Open No. 2003-166076 JP 2001-152360 A JP 2006-198577 A

以上説明した従来技術である、解砕片を粉体と混在させて配置する技術と、エアロゾル発生器内にて粉体をフィルタ上に配置する技術を併用し、フィルタ上に解砕片と粉体を混在させて配置すれば各々の技術の効果を得ることが期待できるが、以下の課題が発生する。   The conventional technology described above, in which the crushed pieces are mixed with the powder and the technology in which the powder is placed on the filter in the aerosol generator, is used in combination, and the crushed pieces and the powder are placed on the filter. If mixed and arranged, it can be expected to obtain the effects of each technology, but the following problems occur.

図11は、微粒子から成る粉体9が漏れない程度の細孔を有するフィルタ11上に解砕片10を粉体と混在させて配置し、そのフィルタ11を介してエアロゾル発生器内へガス31bを注入する構成を示す図である。この状態において、解砕片10の一部はフィルタ11と接触している。   In FIG. 11, the crushed pieces 10 are mixed with powder on a filter 11 having pores that do not allow the fine powder 9 to leak, and the gas 31b is passed through the filter 11 into the aerosol generator. It is a figure which shows the structure to inject | pour. In this state, a part of the crushed piece 10 is in contact with the filter 11.

解砕片10はエアロゾル発生器に与える振動又はガス気流によってフィルタ11に接しながら矢印10a方向に回転する。   The crushed piece 10 rotates in the direction of the arrow 10a while being in contact with the filter 11 by vibration or gas flow applied to the aerosol generator.

すると、解砕片同士の接触による粉体解砕効果、及び解砕片10とフィルタ11の接触による粉体解砕効果が生じ、解砕片10とフィルタ11の間に介在している凝集体は解砕される。しかし、その一部はフィルタの孔である11aの中側へ押し込められてしまう。それが累積化すると凝集し凝集体9dのようにフィルタ11の下面側に押し出され、凝集体9eのようにフィルタ11の下側に落下する。   Then, the powder crushing effect by the contact between the crushed pieces and the powder crushing effect by the contact between the crushed pieces 10 and the filter 11 are generated, and the aggregates interposed between the crushed pieces 10 and the filter 11 are crushed. Is done. However, a part of it is pushed into the inside of the filter hole 11a. If it accumulates, it will aggregate and will be pushed out to the lower surface side of the filter 11 like the aggregate 9d, and will fall to the lower side of the filter 11 like the aggregate 9e.

フィルタ11の孔は微粒子の粉体が漏れない程度の細孔のため、この落下してしまった凝集体9eは、その大きさが小さくても下側からのガス気流31bによって再度フィルタ11の上面側へ戻ることはなく、フィルタ11の下面側に残留する。そして、フィルタ11から落下した凝集体9eはガス気流31bの気流範囲外に積層されていく。   Since the pores of the filter 11 are small enough to prevent fine particles from leaking, the agglomerate 9e that has fallen may be reduced by the gas flow 31b from the lower side again even if its size is small. It does not return to the side and remains on the lower surface side of the filter 11. And the aggregate 9e which fell from the filter 11 is laminated | stacked outside the air current range of the gas air current 31b.

上述の粉体がフィルタ下面側へ押し出される現象に関して、発明者は実験を行った。   The inventor conducted experiments on the phenomenon in which the above-mentioned powder is pushed out to the lower surface side of the filter.

エアロゾル発生器内に径が30μmの孔をもつフィルタを配置し、その上面側に平均粒径0.5μmのPZT(チタン酸ジルコン酸鉛)粉体11gと、解砕片として直径5mmのジルコニアボール80個を混在させ、乾燥空気ガスをフィルタ下面側から8L/分注入する。   A filter having a hole having a diameter of 30 μm is arranged in the aerosol generator, 11 g of PZT (lead zirconate titanate) powder having an average particle diameter of 0.5 μm on the upper surface side, and a zirconia ball 80 having a diameter of 5 mm as a crushed piece. The air is mixed, and dry air gas is injected at 8 L / min from the lower surface side of the filter.

このエアロゾル発生器に振動を加えながら、所定時間エアロゾルを発生させ、ノズル側に搬送するため発生器内から排出する実験を行った。   An experiment was conducted in which aerosol was generated for a predetermined period of time while vibration was applied to the aerosol generator and discharged from the generator for transport to the nozzle side.

その実験を計16回行った結果は、メッシュの下側に0.20g〜4.55g、平均2.20gの粉体が押し出され残留した。   As a result of performing the experiment 16 times in total, 0.20 g to 4.55 g of powder having an average of 2.20 g was extruded and remained on the lower side of the mesh.

つまり、11g投入した粉体の内の平均約20%、最大約41%がフィルタの下側に押し出された結果となった。これらは、解砕されておきながらもエアロゾル発生に寄与することができなかったことになる。   In other words, an average of about 20% and a maximum of about 41% of the 11 g of powder was pushed out to the lower side of the filter. These could not contribute to the generation of aerosol while being crushed.

以上で説明したように、微粒子からなる粉体が漏れない程度の細孔を有するフィルタ上に粉体を配置し、そのフィルタを介してエアロゾル発生器内へガスを注入する構成において、解砕片を粉体と混在させて配置すると、解砕片とフィルタの接触による粉体解砕効果によって、相当量の粉体がフィルタ下側面に押し出され、エアロゾル発生に寄与不可能となりエアロゾル発生効率が劣化するという課題が発生する。   As described above, in the configuration in which the powder is disposed on a filter having pores that do not allow the powder of fine particles to leak and the gas is injected into the aerosol generator through the filter, If mixed with powder, due to the powder crushing effect due to the contact between the crushed pieces and the filter, a considerable amount of powder is pushed out to the lower side of the filter, making it impossible to contribute to aerosol generation, and aerosol generation efficiency deteriorates. Issues arise.

〔発明の目的〕
本発明は上述した課題を解決し、エアロゾル発生器内に解砕片を粉体と混在させて配置する技術とエアロゾル発生器内にフィルタを有する技術を併用し、フィルタ上に解砕片と粉体を混在し配置させても、エアロゾルの発生効率が継続的に高い構造物の作製方法及び作製装置を提供することを目的とする。
(Object of invention)
The present invention solves the above-mentioned problems, and uses a technique for arranging the crushed pieces mixed with powder in the aerosol generator and a technique having a filter in the aerosol generator, and the crushed pieces and powder are placed on the filter. It is an object of the present invention to provide a manufacturing method and a manufacturing apparatus for a structure in which the generation efficiency of aerosol is continuously high even when they are mixed and arranged.

本発明は上記目的を達成するため、解砕片と、解砕片と接触しない第1のフィルタと、第1のフィルタに対してガスが流れる方向の下流側に設置され、解砕片を通過させず、前記第1のフィルタの孔よりも大きな孔で構成される第2のフィルタとを有したエアロゾル発生器内で、微粒子から成る粉体と解砕片を混在させて第2のフィルタに対してガスが流れる方向の下流側に配置し、第1のフィルタを介して粉体へガスを注入してエアロゾルを発生させ、エアロゾルを基板が設置された方へ搬送すべく排出することで上記課題を解決しようとするものである。   In order to achieve the above object, the present invention is installed on the downstream side in the direction of gas flow with respect to the crushed pieces, the first filter that does not contact the crushed pieces, and the first filter, and does not pass the crushed pieces, In an aerosol generator having a second filter composed of holes larger than the holes of the first filter, a powder made of fine particles and crushed pieces are mixed to cause gas to flow to the second filter. Let's solve the above problem by arranging the gas downstream of the flow direction, injecting gas into the powder through the first filter, generating aerosol, and discharging the aerosol to the side where the substrate is installed It is what.

本発明によれば、エアロゾルの発生効率が継続的に高い構造物の作製方法及び構造物の作製装置を提供することができる。   According to the present invention, it is possible to provide a structure manufacturing method and a structure manufacturing apparatus in which aerosol generation efficiency is continuously high.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1にエアロゾルデポジション法による構造物の作製方法及び構造物の作製装置の模式図を示す。   FIG. 1 shows a schematic diagram of a structure manufacturing method and a structure manufacturing apparatus by an aerosol deposition method.

同図に示すように、構造物の作製装置1は膜形成部2とエアロゾル発生部3を有し、エアロゾル発生部3内で、微粒子がガス中に分散されて発生したエアロゾルを膜形成部2に搬送するエアロゾル搬送管4によって1と2を接続した構成が基本となる。   As shown in the figure, the structure manufacturing apparatus 1 includes a film forming unit 2 and an aerosol generating unit 3, and in the aerosol generating unit 3, aerosol generated by dispersing fine particles in a gas is formed into the film forming unit 2. Basically, the configuration is such that 1 and 2 are connected to each other by an aerosol transport pipe 4 transported to the surface.

膜形成部2は真空ポンプ21で真空化される真空チャンバー20を有し、その真空チャンバー20内に導かれた搬送管4の先端部に配置されたノズル5が、エアロゾル発生器3からエアロゾル搬送管4によって搬送されたエアロゾル6を基板7bに噴射して膜7aを形成し、この基板7bと膜7aで構成される構造物7を作製する。尚、基板7bは通常ステージ8に固定されており、基板7bをX−Y方向8aに移動しながらその上に膜を形成する。   The film forming section 2 has a vacuum chamber 20 that is evacuated by a vacuum pump 21, and a nozzle 5 disposed at the tip of the transport pipe 4 led into the vacuum chamber 20 is transported from the aerosol generator 3 to the aerosol. The aerosol 6 conveyed by the tube 4 is sprayed onto the substrate 7b to form the film 7a, and the structure 7 composed of the substrate 7b and the film 7a is produced. The substrate 7b is normally fixed to the stage 8, and a film is formed thereon while moving the substrate 7b in the XY direction 8a.

また、エアロゾル発生部3はエアロゾル発生器30と、ガス搬送管31によってエアロゾル発生器30内にガスを注入するマスフローコントローラ32と、エアロゾル発生器30に機械的振動33aを加える振動付加手段33から構成されると共に、エアロゾル搬送管4の他端部がエアロゾル発生器30の上部に挿入されている。   The aerosol generator 3 includes an aerosol generator 30, a mass flow controller 32 for injecting gas into the aerosol generator 30 through a gas transport pipe 31, and vibration applying means 33 for applying mechanical vibration 33 a to the aerosol generator 30. At the same time, the other end of the aerosol carrying tube 4 is inserted into the upper portion of the aerosol generator 30.

エアロゾル発生部3においてエアロゾルが発生する過程は、エアロゾル発生器30内に微粒子から成る粉体9を収納する。そこへ、2枚のフィルタを介して乾燥空気ガス又は、ヘリウム、窒素などの不活性ガスを噴射し、粉体内に存在する一次微粒子又はその小さな凝集体を含むエアロゾルを発生させる。発生したエアロゾルはエアロゾル発生器からエアロゾル搬送管4へ排出される。   In the process of generating the aerosol in the aerosol generating unit 3, the powder 9 made of fine particles is stored in the aerosol generator 30. A dry air gas or an inert gas such as helium or nitrogen is jetted through two filters to generate an aerosol containing primary fine particles or small aggregates thereof present in the powder. The generated aerosol is discharged from the aerosol generator to the aerosol transport pipe 4.

本発明における微粒子には、セラミックや半導体の脆性材料、金属材料、これらの材料の混合物、セラミック微粒子にセラミックや金属や樹脂をコーティングしたものが挙げられる。また微粒子の形状は、略球状の物質や針状物質も含む。   Examples of the fine particles in the present invention include ceramic and semiconductor brittle materials, metal materials, mixtures of these materials, and ceramic fine particles coated with ceramic, metal, or resin. The shape of the fine particles also includes a substantially spherical substance and a needle-like substance.

図2は、本発明の実施例1としての、構造物作製装置におけるエアロゾル発生器30の模式図である。エアロゾル発生器30内には、第1のフィルタ11と第2のフィルタ12が配置され、微粒子からなる粉体9が複数個の解砕片10と混在して配置されている。これらの粉体9及び複数個の解砕片10は第2のフィルタ12に対してガスが流れる方向の下流側、つまり第2のフィルタ12上側に配置されており、解砕片10の一部は第2のフィルタ12と接する位置関係となっている。   FIG. 2 is a schematic diagram of an aerosol generator 30 in a structure manufacturing apparatus as Example 1 of the present invention. In the aerosol generator 30, the first filter 11 and the second filter 12 are arranged, and the powder 9 made of fine particles is mixed with a plurality of crushed pieces 10. These powder 9 and the plurality of crushed pieces 10 are arranged on the downstream side in the direction of gas flow with respect to the second filter 12, that is, on the upper side of the second filter 12, and a part of the crushed pieces 10 is the first. The positional relationship is in contact with the second filter 12.

このエアロゾル発生器中に注入されるガスは、ガス搬送管31からのガス気流31aがガス気流31bと方向を変更し、第1のフィルタ11の下側から第1のフィルタ11と第2のフィルタ12を介してエアロゾル発生器中に注入され、粉体9を噴き上げる。   The gas injected into the aerosol generator changes the direction of the gas airflow 31a from the gas transport pipe 31 with the gas airflow 31b, and the first filter 11 and the second filter from the lower side of the first filter 11. 12 is injected into the aerosol generator through 12 and the powder 9 is blown up.

このような構成のもと、エアロゾル発生器30に機械的振動33aを付加し、ガス気流31aを注入する。   Under such a configuration, the mechanical vibration 33a is added to the aerosol generator 30 and the gas stream 31a is injected.

すると、解砕片10は解砕片同士の接触による粉体解砕効果、及び解砕片10と第2のフィルタ12の接触による粉体解砕効果を発生させ、解砕片10間の粉体9内に存在する大きな凝集体を粒子径が均一で緻密な膜の形成に寄与可能である一次微粒子又はその小さな凝集体に解砕する。   Then, the crushed pieces 10 generate a powder pulverizing effect due to contact between the crushed pieces and a powder pulverizing effect due to contact between the crushed pieces 10 and the second filter 12. The large aggregates present are crushed into primary fine particles or small aggregates thereof that can contribute to the formation of a dense film having a uniform particle diameter.

尚、粉砕解砕効果はエアロゾル発生器内にガス気流が注入されただけでも生じるが、エアロゾル発生器に機械的振動を加えた方が、よりその効果を得ることができる。   Note that the pulverization / disintegration effect occurs even when a gas stream is injected into the aerosol generator, but the effect can be obtained more when mechanical vibration is applied to the aerosol generator.

ここで、図2のA部を拡大したものを図3に示す。   Here, FIG. 3 shows an enlarged view of part A of FIG.

第2のフィルタ12に対してガスが流れる方向の上流側、つまり第2のフィルタ12の下側に設置された第1のフィルタ11は、微粒子からなる粉体が漏れない程度の細孔を有するフィルタである。これは第2のフィルタ12を介して解砕片10と接することはない。粉体9は第1のフィルタ11で支持しているので、図中の第2のフィルタ12と第1のフィルタ11間にも粉体9が存在するが、解砕片10と第2のフィルタ12との接触にて解砕された粉体状態を分かりやすく図示する為、便宜上、同図ではフィルタ間に配されている粉体を9Aとして別のパターン状の図としている。   The first filter 11 installed on the upstream side in the gas flow direction with respect to the second filter 12, that is, on the lower side of the second filter 12, has pores that do not allow the powder of fine particles to leak. It is a filter. This does not contact the crushed piece 10 via the second filter 12. Since the powder 9 is supported by the first filter 11, the powder 9 exists between the second filter 12 and the first filter 11 in the figure, but the crushed pieces 10 and the second filter 12. In order to illustrate the state of the powder crushed by contact with the filter in an easy-to-understand manner, in FIG.

すると、図3に示すように解砕片10と第2のフィルタ12の間に介在している凝集体は解砕化される。しかし、その一部は第2のフィルタ12の孔である12aの中側へ押し込められて累積し、凝集体9bとなる。これは第2のフィルタ12の下面側に押し出され、凝集体9cのように第2のフィルタ12の下側に落下する。しかし、本実施の形態では第2のフィルタ12の下側に第1のフィルタ11が配されているので、凝集体9cはそれで支持され、第1のフィルタ11の下側へ落下することはない。そして、凝集体9cはガス気流31bによって第2のフィルタ12の孔12aを通過して上昇し、再度解砕片による解砕が可能になる。   Then, as shown in FIG. 3, the aggregates interposed between the crushed pieces 10 and the second filter 12 are crushed. However, a part thereof is pushed into the inside of 12a that is the hole of the second filter 12 and accumulates to become an aggregate 9b. This is pushed out to the lower surface side of the 2nd filter 12, and falls to the lower side of the 2nd filter 12 like the aggregate 9c. However, in the present embodiment, since the first filter 11 is disposed below the second filter 12, the aggregate 9c is supported by the first filter 11, and does not fall below the first filter 11. . The aggregate 9c passes through the hole 12a of the second filter 12 by the gas flow 31b and rises, so that it can be crushed again by the crushed pieces.

図2に示すように、このガス気流31bは粉体9を噴き上げて粉体中の一次微粒子又はその小さな凝集体をガス内に分散してエアロゾルを形成する。   As shown in FIG. 2, the gas stream 31b blows up the powder 9 to disperse primary fine particles or small aggregates thereof in the gas to form an aerosol.

形成されたエアロゾルは、矢印4aで示すようにエアロゾル搬送管4内へ搬送され、エアロゾル発生器30から排出される。排出されたエアロゾルはノズル5側に搬送され、ノズル5から高速で基板7b上に噴射され、膜7aを形成する。   The formed aerosol is transported into the aerosol transport pipe 4 as shown by an arrow 4 a and is discharged from the aerosol generator 30. The discharged aerosol is conveyed to the nozzle 5 side and is sprayed from the nozzle 5 onto the substrate 7b at a high speed to form a film 7a.

この基板7bと膜7aにより、構造物7が作製される。   The structure 7 is produced by the substrate 7b and the film 7a.

ここで、構造の詳細について述べる。   Here, the details of the structure will be described.

第1のフィルタ11はエアロゾル発生器内に収納した粉体を漏らさない程度の細孔を有するものでなければならない。   The first filter 11 must have pores that do not leak the powder stored in the aerosol generator.

一方、第2のフィルタ12には粉体を支持する役目はなく、第2のフィルタ12の孔は細孔にする必要がないので、ガス気流を通過しやすくするため大きな孔にしても良いが、以下の点について考慮しなければならない。   On the other hand, the second filter 12 has no role of supporting the powder, and the pores of the second filter 12 do not need to be pores. The following points must be considered.

図4に示すように、解砕片10が第1のフィルタ11と接触してしまうと、第1のフィルタ11と解砕片10との間に粉体解砕効果が発生し、フィルタ間に存在する粉体9Aの一部は第1のフィルタ11の孔11aの中側へ押し込められ累積し、凝集体9dとなりフィルタから落ちてしまう。   As shown in FIG. 4, when the crushed pieces 10 come into contact with the first filter 11, a powder crushing effect occurs between the first filter 11 and the crushed pieces 10, and exists between the filters. Part of the powder 9A is pushed into the hole 11a of the first filter 11 and accumulates to become an aggregate 9d, which falls from the filter.

したがって、第2のフィルタ12は解砕片10がフィルタ11に接しないように支えることが可能な大きさの孔で構成される必要性がある。   Therefore, the 2nd filter 12 needs to be comprised by the hole of the magnitude | size which can support so that the crushing piece 10 may not contact the filter 11. FIG.

また、第2のフィルタ12は、第1のフィルタ11上に支持された粉体がガス気流により再度第2のフィルタ12上へ戻れるように、第1のフィルタ11の孔よりは大きな孔で構成される必要性がある。   Further, the second filter 12 is configured with a hole larger than the hole of the first filter 11 so that the powder supported on the first filter 11 can be returned to the second filter 12 again by the gas flow. There is a need to be done.

それらの必要性を考慮した上で、解砕片10と第2のフィルタ12の接触による粉体解砕効果がより発揮できる最適孔径を選択すると良い。   In consideration of the necessity, it is preferable to select an optimum pore diameter that can more effectively exhibit the powder crushing effect due to the contact between the crushing piece 10 and the second filter 12.

また、図3で示すように解析片と接する第2のフィルタ12と接しない第1のフィルタ11は、密着させず、図4の説明にも記載したように少なくとも解砕片と第1のフィルタが接しない程度の幅、又はそれ以上の幅を有する隙間を設けて配置した方が良い。   Further, as shown in FIG. 3, the first filter 11 not in contact with the second filter 12 in contact with the analysis piece is not brought into close contact, and as described in the explanation of FIG. It is better to provide a gap having a width that does not contact or a width greater than that.

図5のフィルタ付近の拡大図に示すように、解砕片と第1のフィルタを接触させない上で、第1のフィルタと第2のフィルタの間に隙間を設けない場合でも、第2のフィルタから漏れた粉体を第1のフィルタで受け止め、ガス気流で再び第2のフィルタ上に戻してエアロゾル化に寄与させることが出来る。   As shown in the enlarged view of the vicinity of the filter in FIG. 5, even if no gap is provided between the first filter and the second filter without contacting the crushed pieces and the first filter, The leaked powder can be received by the first filter and returned to the second filter again with a gas stream to contribute to aerosolization.

しかし、フィルタを密着させてしまうと、解砕片10によって第2のフィルタ12の孔12aに押し込められた粉体9が、更なる上側からの押し付けによって孔から押し出される時に、続けて第1のフィルタ11の孔11aに押し込められ、第1のフィルタ11の下側に押し出されてしまう可能性もある。第2のフィルタ12と第1のフィルタ11の間にわずかでも隙間を設ければ、第1のフィルタ11の孔11aに押し込められず、隙間の横方向へ移動する可能性が高くなる。   However, if the filter is brought into close contact, when the powder 9 pushed into the hole 12a of the second filter 12 by the crushed piece 10 is pushed out from the hole by further pressing from above, the first filter continues. 11 may be pushed into the hole 11a and pushed out to the lower side of the first filter 11. If even a slight gap is provided between the second filter 12 and the first filter 11, it is not pushed into the hole 11a of the first filter 11, and the possibility of moving in the lateral direction of the gap increases.

上記のようなことを考慮した上でフィルタ等を設置する。   A filter or the like is installed in consideration of the above.

以上説明したように、本実施の形態によって、従来技術では第1のフィルタ11の下側で積層されてエアロゾル発生に寄与できなかったものが、エアロゾル発生に寄与可能となる。したがって、エアロゾル化開始以降もエアロゾルの発生効率が継続的に高くすることができる。   As described above, according to the present embodiment, what is stacked under the first filter 11 in the prior art and cannot contribute to the generation of aerosol can contribute to the generation of aerosol. Therefore, the aerosol generation efficiency can be continuously increased even after the start of aerosolization.

発明者は本実施の形態の効果を確認すべく、同形態を備えたエアロゾル発生器を用いて実験を行った。前述した〔背景技術〕での従来技術の説明と同様に、エアロゾル発生器内にフィルタとして径が1mmの孔のメッシュを持つ第2のフィルタを配置し、その上面側に平均粒径0.5μmのPZT(チタン酸ジルコン酸鉛)粉体11gと解砕片としての直径5mmのジルコニアボール80個を混在させた。そこへ径が30μmの第1のフィルタを通して乾燥空気ガスをメッシュ下面側から8L/分注入する。   In order to confirm the effect of this embodiment, the inventor conducted an experiment using an aerosol generator having the same form. Similar to the description of the prior art in [Background Art] described above, a second filter having a mesh of holes having a diameter of 1 mm is disposed as a filter in the aerosol generator, and an average particle size of 0.5 μm is disposed on the upper surface side thereof. 11 g of PZT (lead zirconate titanate) powder and 80 zirconia balls having a diameter of 5 mm as crushed pieces were mixed. Thereto, dry air gas is injected through the first filter having a diameter of 30 μm from the lower surface side of the mesh at 8 L / min.

この時、エアロゾル発生器に機械的振動を加えながら、所定時間エアロゾルを発生させ、発生したエアロゾルを基板に向けて噴射するノズル側に搬送すべく排出する実験を行った。その実験を計16回行った結果は、第2のフィルタの下側に0.009g〜0.034g、平均0.03gの粉体しか残留せず、従来技術の実験結果と比較すると、その残留量は1/100に減少するといった大きな効果を確認した。   At this time, an experiment was performed in which aerosol was generated for a predetermined time while mechanical vibration was applied to the aerosol generator, and the generated aerosol was discharged to be transported to the nozzle side for spraying toward the substrate. As a result of the experiment conducted 16 times in total, only 0.009 g to 0.034 g of powder and 0.03 g on average remained on the lower side of the second filter. The great effect of reducing the amount to 1/100 was confirmed.

図6は本発明の実施例2を示す。本実施の形態のエアロゾル発生器30は、ガス搬送管16の構成が実施例1と異なる。エアロゾル発生器内30において、エアロゾル搬送方向を上側とした時、ガス搬送管16はエアロゾル発生器30の上側面から、第2のフィルタ12と第1のフィルタ11を突き抜けて第1のフィルタ11の下側まで導かれている。そして、更にエアロゾル発生器30の底面と水平方向になるように導かれ、最終的に底面に沿ってガス気流31cを注入する構成である。この構成では、ガス気流31cはエアロゾル発生器内で渦巻状のエアロゾル気流を発生することができ、一次微粒子又はその小さな凝集体が効率よく巻き上がるため、エアロゾル発生効率がより高くなる。   FIG. 6 shows a second embodiment of the present invention. The aerosol generator 30 according to the present embodiment is different from the first embodiment in the configuration of the gas transport pipe 16. In the aerosol generator 30, when the aerosol transport direction is set to the upper side, the gas transport pipe 16 penetrates the second filter 12 and the first filter 11 from the upper side surface of the aerosol generator 30 and the first filter 11. It is led to the lower side. And it is guide | induced so that it may become horizontal with the bottom face of the aerosol generator 30, and it is the structure which inject | pours the gas flow 31c finally along a bottom face. In this configuration, the gas flow 31c can generate a spiral aerosol flow in the aerosol generator, and the primary fine particles or small aggregates thereof are efficiently wound up, so that the aerosol generation efficiency is higher.

図7は本発明の実施例3を示す。この形態のエアロゾル発生器30は、第1実施例の構造に加えて、第2のフィルタに対してガスが流れる方向の下流方向、つまり第2のフィルタの上側に第3のフィルタ13、第4のフィルタ14を有する。   FIG. 7 shows a third embodiment of the present invention. In addition to the structure of the first embodiment, the aerosol generator 30 of this configuration includes the third filter 13 and the fourth filter in the downstream direction in which the gas flows with respect to the second filter, that is, on the upper side of the second filter. The filter 14 is provided.

第3のフィルタ13は、所定の大きさを有する微粒子のみを通過させる孔で構成される。   The third filter 13 is configured with holes that allow only fine particles having a predetermined size to pass therethrough.

この所定の大きさを有する微粒子とは、微粒子がセラミックから成る場合、平均粒径が0.05〜1μmの一次微粒子又はそれが少数集合した小さな凝集体のことで、均一で緻密な膜を形成するのに適した粒子径を有するものである。
微粒子がセラミック以外から成る場合においても、その物質で膜を形成する際、粒子径(針状物の場合は長手方向の長さ)が均一な緻密な膜を形成するのに適した粒子径を有するものを、所定の大きさを有する微粒子と呼ぶ。
The fine particles having a predetermined size are primary fine particles having an average particle diameter of 0.05 to 1 μm or small aggregates in which a small number of them are aggregated when the fine particles are made of ceramic, and form a uniform and dense film. It has a particle size suitable for.
Even when the fine particles are made of a material other than ceramic, when forming a film with the material, the particle diameter suitable for forming a dense film with a uniform particle diameter (length in the longitudinal direction in the case of needles) is used. What is included is referred to as fine particles having a predetermined size.

一方、第4のフィルタ14は、第3のフィルタ13に対してガスが流れる方向の上流側に第3のフィルタとの間に隙間を設けて設置され、所定の大きさを有する微粒子は通過可能であり、解砕片は通過不可能な大きさの孔で構成される。   On the other hand, the fourth filter 14 is installed with a gap between the third filter 13 and the third filter 13 on the upstream side in the gas flow direction so that fine particles having a predetermined size can pass therethrough. The crushed pieces are composed of holes having a size that cannot pass through.

これらのフィルタは、大きな凝集体がエアロゾル発生器から排出されノズルの目詰まりを引き起こすことを防ぎ、粒子径が均一で緻密な膜を形成するのに適した大きさである所定の大きさを有する微粒子のみをエアロゾル発生器から排出させる。   These filters have a predetermined size that prevents large agglomerates from being discharged from the aerosol generator and causes nozzle clogging, and is suitable for forming a dense film with a uniform particle size. Only fine particles are discharged from the aerosol generator.

解砕片は、ガス気流によって第4のフィルタの方向へ巻き上げられる重量を持つ解砕片15と、巻き上げられない重量を持つ解砕片10の2種類の解砕片を混入させる。   The crushed pieces are mixed with two types of crushed pieces, a crushed piece 15 having a weight wound up in the direction of the fourth filter by the gas stream and a crushed piece 10 having a weight not rolled up.

この時も第1実施例と同様、第2のフィルタ12の孔は、解砕片10、15が第1のフィルタ11と接触しないように支えることが可能であると同時に、第1のフィルタの孔よりも大きくかつ解砕片10、15との解砕効果がより発揮できる大きさにする必要がある。   At this time, as in the first embodiment, the hole of the second filter 12 can support the crushed pieces 10 and 15 so as not to contact the first filter 11, and at the same time, the hole of the first filter. It is necessary to make the size larger than that of the crushed pieces 10 and 15 so that the pulverizing effect can be further exerted.

エアロゾル発生器中に注入されるガスは、ガス搬送管31からのガス気流31aがガス気流31bと方向を変更し、第1のフィルタ11の下側から第1のフィルタ11と第2のフィルタ12を通過し、エアロゾル発生器中に注入され粉体9を噴き上げてガス内に分散し、実施例1において示したようにエアロゾルを形成する。   As for the gas injected into the aerosol generator, the gas flow 31a from the gas transport pipe 31 changes direction with the gas flow 31b, and the first filter 11 and the second filter 12 from the lower side of the first filter 11 are used. And is injected into an aerosol generator, and the powder 9 is blown up and dispersed in the gas to form an aerosol as shown in Example 1.

このようにして形成されたエアロゾル中の微粒子は、ガス気流に乗り、第3及び第4のフィルタ方向へ送られる。同時に、軽い方の解砕片15もガス気流によって第3及び第4のフィルタ方向へ巻き上げられる。   The fine particles in the aerosol thus formed ride on the gas stream and are sent in the third and fourth filter directions. At the same time, the lighter crushed piece 15 is also wound up in the direction of the third and fourth filters by the gas stream.

詳細を図8に示す。   Details are shown in FIG.

ガス気流31aによって第4のフィルタ14側へ運ばれた微粒子の中には第2のフィルタ上で解砕され一次微粒子又はその小さな凝集体となったものの他にも解砕されていない凝集体や解砕されても所定の大きさまで解砕されなかった様々な大きさの凝集体が存在する。   Among the fine particles carried to the fourth filter 14 side by the gas stream 31a, there are aggregates that are not crushed in addition to those that are crushed on the second filter and become primary fine particles or small aggregates thereof. There are aggregates of various sizes that have not been crushed to a predetermined size even when crushed.

第2フィルタ12上で解砕され、一次微粒子又はその小さな凝集体となったものも含めて所定の大きさを有する微粒子9aはそのまま第4のフィルタ14を通過する。   Fine particles 9a having a predetermined size including those that have been crushed on the second filter 12 and have become primary fine particles or small aggregates thereof pass through the fourth filter 14 as they are.

第4のフィルタ14の孔よりも大きな凝集体9fはフィルタの通過を遮断され、第4のフィルタ14下面に付着する。   Aggregates 9f larger than the holes of the fourth filter 14 are blocked from passing through the filter and adhere to the lower surface of the fourth filter 14.

ここで、例えば第4のフィルタ14の孔と第3のフィルタ13の孔が同じ大きさである場合を考える。   Here, for example, consider a case where the hole of the fourth filter 14 and the hole of the third filter 13 have the same size.

第4のフィルタ14を通過した所定の大きさを有する微粒子9aは、そのまま第3のフィルタ13も通過する。若しくは、静電気により、第4のフィルタ14上面に付着する。これが積層化し、所定の大きさ以上の凝集体9hとなる場合もある。   The fine particles 9a having a predetermined size that have passed through the fourth filter 14 also pass through the third filter 13 as they are. Alternatively, it adheres to the upper surface of the fourth filter 14 due to static electricity. This may be laminated to form an aggregate 9h having a predetermined size or more.

そこへ解砕片がガス気流により吹き上がり、第3のフィルタ13に衝突すると、その振動で、第4のフィルタ14下面及び上面に付着していた凝集体は剥離する。   When the crushed pieces are blown up by the gas stream and collide with the third filter 13, the aggregates attached to the lower surface and the upper surface of the fourth filter 14 are peeled off by the vibration.

第4のフィルタ14下面から剥離した凝集体9fはそのまま落下し、再び解砕可能となる。   The aggregate 9f peeled from the lower surface of the fourth filter 14 falls as it is and can be crushed again.

また、第4のフィルタ14上面に積層化し、所定の大きさ以上の凝集体となり付着していた9hは剥離すると第3のフィルタ13で遮断され凝集体9gの様に下面に付着する。   Further, 9h which is laminated on the upper surface of the fourth filter 14 and becomes an aggregate having a predetermined size or larger is peeled off and is blocked by the third filter 13 and adhered to the lower surface like the aggregate 9g.

第3のフィルタ上面にも第3フィルタを通過した後の所定の大きさを有する微粒子9aが静電気により付着する。これが積層化し、所定の大きさ以上の凝集体9iとなる場合もある。   The fine particles 9a having a predetermined size after passing through the third filter also adhere to the upper surface of the third filter due to static electricity. This may be laminated to form an aggregate 9i having a predetermined size or larger.

本実施例では解砕片10は第4のフィルタ14のみに衝突し、この衝突の影響は、第4のフィルタ14のみに与えられ、第3のフィルタ13には与えられない構成となっている。   In the present embodiment, the crushed piece 10 collides only with the fourth filter 14, and the influence of this collision is given only to the fourth filter 14, and is not given to the third filter 13.

したがって第3のフィルタ13の上面に付着した大きな凝集体9iが剥離してエアロゾル発生器30から排出されることはない。   Therefore, the large aggregate 9 i attached to the upper surface of the third filter 13 is not peeled off and discharged from the aerosol generator 30.

また、第3のフィルタ13の下面側に付着している凝集体9gは上流側からのガス気流31aによって噴き上げられた所定の大きさを有する微粒子9a又は第4のフィルタ14の上面から剥離した凝集体9hの衝突によって、第1のフィルタ11から部分的に剥離する。   Aggregates 9g adhering to the lower surface side of the third filter 13 are fine particles 9a having a predetermined size ejected by the gas air flow 31a from the upstream side or aggregates separated from the upper surface of the fourth filter 14. Part of the first filter 11 is peeled off by the collision of the aggregate 9h.

両フィルタ間に存在する凝集体9g及び9hのうち、剥離後の大きさが所定の大きさになったものは第3のフィルタ13の孔を通過して発生器より排出される。又は第3のフィルタの孔と同じ大きさの孔を有する第4のフィルタを通過して落下する。   Among the aggregates 9g and 9h existing between the two filters, the one having a predetermined size after peeling passes through the hole of the third filter 13 and is discharged from the generator. Or it falls through the 4th filter which has a hole of the same size as the hole of the 3rd filter.

両フィルタ間に存在する凝集体9g及び9hのうち、剥離後の大きさが両フィルタの孔より大きいものは、フィルタ間で浮遊した状態となる。その間、両フィルタへの接触によってより所定の大きさの微粒子に変化する場合があり、第3のフィルタ13の孔を通過して発生器より排出される。又は第4のフィルタ14の孔を通過して落下する。   Among the aggregates 9g and 9h existing between the two filters, those having a size larger than the pores of both filters are in a floating state between the filters. In the meantime, there is a case where the fine particles of a predetermined size are changed by contact with both filters, and the fine particles pass through the holes of the third filter 13 and are discharged from the generator. Alternatively, it falls through the hole of the fourth filter 14.

尚、図3で示すように、第3のフィルタ13と第4のフィルタ14は密着させず、第4のフィルタ14が解砕片10と衝突した時の衝撃を第3のフィルタ13に与えない程度の幅を有した隙間を設けて設置する。   As shown in FIG. 3, the third filter 13 and the fourth filter 14 are not brought into close contact with each other, and the impact when the fourth filter 14 collides with the crushed pieces 10 is not given to the third filter 13. Install with a gap having a width of.

これらのフィルタ密着させた場合、第4のフィルタ14がガス気流31aにより巻き上げられた解砕片10と衝突すると、その影響をそのまま第3のフィルタ13へ与えてしまい、第3のフィルタ13の上面側に付着している大きな凝集体9iを剥離させてしまう。   When these filters are brought into close contact with each other, when the fourth filter 14 collides with the crushed piece 10 wound up by the gas air flow 31 a, the influence is given to the third filter 13 as it is, and the upper surface side of the third filter 13. The large aggregate 9i adhering to the surface is peeled off.

また、解砕片が通過しない範囲で第4のフィルタの孔を第3のフィルタの孔よりも大きくすると、フィルタから剥離しフィルタ間で浮遊した状態となる凝集体が、第2のフィルタを通過して落下し再度解砕されやすくなる。   Further, if the hole of the fourth filter is made larger than the hole of the third filter in a range where the crushed pieces do not pass, aggregates that are separated from the filter and float between the filters pass through the second filter. Fall and become easy to be crushed again.

以上説明したように本実施例3の構成によって、エアロゾル発生効率を継続的に高くするだけでなく、大きな凝集体を排出する可能性が低くなるため、ノズルの目詰まりを防ぐことができる。さらに、粒子径が均一なものを排出するため、均一な膜を形成する効率が高くなる。   As described above, the configuration of Example 3 not only continuously increases the aerosol generation efficiency, but also reduces the possibility of discharging large aggregates, so that nozzle clogging can be prevented. Furthermore, since particles having a uniform particle diameter are discharged, the efficiency of forming a uniform film is increased.

図9は本発明の実施例4を示す。この形態のエアロゾル発生器30は、実施例3の構造に対して、ガス気流を注入するガス搬送管の形態のみ変更したものである。   FIG. 9 shows a fourth embodiment of the present invention. The aerosol generator 30 in this form is obtained by changing only the form of the gas transport pipe for injecting the gas airflow from the structure of the third embodiment.

具体的には、第4のフィルタ14に対してガスが流れる方向の上流、つまり下面にガス搬送管17の注入口、第1のフィルタ11の下面にガス搬送管18の注入口を備えている。   Specifically, upstream of the fourth filter 14 in the gas flow direction, that is, an inlet of the gas carrier pipe 17 is provided on the lower surface, and an inlet of the gas carrier pipe 18 is provided on the lower surface of the first filter 11. .

エアロゾル発生器30の内部側面に沿ってガス搬送管17とガス搬送管18が水平に導かれ、更にエアロゾル発生器30の底面に対して水平にガス気流を注入する際、互いに反対方向にガスを導くと、ガス搬送管18によって第1のフィルタ11の下面から注入されたガス気流で発生する渦巻状のエアロゾル気流に対してガス搬送管17からの反対方向のガス気流をぶつけることになる。   When the gas transport pipe 17 and the gas transport pipe 18 are guided horizontally along the inner side surface of the aerosol generator 30 and the gas stream is injected horizontally with respect to the bottom surface of the aerosol generator 30, the gas flows in opposite directions. When guided, the gas flow in the opposite direction from the gas transfer pipe 17 is collided with the spiral aerosol flow generated by the gas flow injected from the lower surface of the first filter 11 by the gas transfer pipe 18.

この結果、エアロゾル発生器30の中心軸部近傍に一次微粒子又はその小さな凝集体を含むエアロゾルが集まり、それらを有効的にエアロゾル発生器30から排出し、基板上へ噴射することができる。   As a result, the aerosol containing the primary fine particles or small aggregates thereof gathers in the vicinity of the central axis portion of the aerosol generator 30 and can be effectively discharged from the aerosol generator 30 and injected onto the substrate.

図10は本発明の実施例5を示す。この構成は、実施例3と同様の効果を更に得ることができる。この形態のエアロゾル発生器30は、第1のフィルタ11に対してガスが流れる方向の上流、つまり下面からガス搬送管31にてガス気流31bが注入されて粉体のエアロゾル化を行う。   FIG. 10 shows a fifth embodiment of the present invention. This configuration can further obtain the same effect as in the third embodiment. The aerosol generator 30 in this form performs aerosolization of the powder by injecting the gas air flow 31b in the gas transport pipe 31 from the upstream, that is, the lower surface in the gas flow direction with respect to the first filter 11.

これと同時に、第2のフィルタ12と第4のフィルタ14間に導かれたガス搬送管19とガス搬送管20からの互いの反対方向へのガス注入によって、エアロゾル発生器30の中心軸部近傍に一次微粒子又はその小さな凝集体を含むエアロゾルが集まり、それらを有効的にエアロゾル発生器30から排出し、基板上へ噴射することができる。   At the same time, the vicinity of the central axis portion of the aerosol generator 30 by gas injection in the opposite directions from the gas transport pipe 19 and the gas transport pipe 20 led between the second filter 12 and the fourth filter 14. The aerosol containing the primary fine particles or the small aggregates thereof gathers, and can be effectively discharged from the aerosol generator 30 and injected onto the substrate.

エアロゾルデポジション法による構造物の作製装置の模式図Schematic diagram of an apparatus for producing structures by aerosol deposition method 実施例1のエアロゾル発生器を説明する図The figure explaining the aerosol generator of Example 1. FIG. 実施例1の効果を説明する図The figure explaining the effect of Example 1 実施例2の詳細を説明する図The figure explaining the detail of Example 2 実施例2の詳細を説明する図The figure explaining the detail of Example 2 実施例2のエアロゾル発生器を説明する図The figure explaining the aerosol generator of Example 2. FIG. 実施例3のエアロゾル発生器を説明する図The figure explaining the aerosol generator of Example 3. 実施例3の詳細を説明する図The figure explaining the detail of Example 3 実施例4のエアロゾル発生器を説明する図The figure explaining the aerosol generator of Example 4. 実施例5のエアロゾル発生器を説明する図The figure explaining the aerosol generator of Example 5. 従来技術の問題点を説明する図Diagram explaining the problems of the prior art

符号の説明Explanation of symbols

1 構造物の作製装置
2 膜形成部
3 エアロゾル発生部
4 エアロゾル搬送管
5 ノズル
6 搬送されたエアロゾル
7 構造物
7a 膜
7b 基板
8 ステージ
9 微粒子の粉体
9a 所定の大きさを有する微粒子
9b〜9i 凝集体
10、15 解砕片
11、第1のフィルタ
12、第2のフィルタ
13、第3のフィルタ
14、第4のフィルタ
16〜20、31 ガス搬送管
20 真空チャンバー
21 真空ポンプ
30 エアロゾル発生器
31a〜31c ガス気流
32 マスフローコントローラ
33 振動付加手段
DESCRIPTION OF SYMBOLS 1 Structure production apparatus 2 Film formation part 3 Aerosol generating part 4 Aerosol conveyance pipe 5 Nozzle 6 Conveyed aerosol 7 Structure 7a Film 7b Substrate 8 Stage 9 Fine particle powder 9a Fine particle 9b-9i having a predetermined size Aggregate 10, 15 Breaking piece 11, 1st filter 12, 2nd filter 13, 3rd filter 14, 4th filter 16-20, 31 Gas conveyance pipe 20 Vacuum chamber 21 Vacuum pump 30 Aerosol generator 31a ~ 31c Gas flow 32 Mass flow controller 33 Vibration adding means

Claims (8)

微粒子をガス中に分散したエアロゾルを基板へ噴射し、基板上に膜を形成するエアロゾルデポジション法による構造物の作製法において、解砕片と、該解砕片と接触しない第1のフィルタと、該第1のフィルタに対して前記ガスが流れる方向の下流側に設置され、前記解砕片を通過させず前記第1のフィルタの孔よりも大きな孔で構成される第2のフィルタと、を有したエアロゾル発生器内で、前記微粒子から成る粉体と前記解砕片を混在させて前記第2のフィルタに対して前記ガスが流れる方向の下流側に配置し、前記第1のフィルタを介して前記粉体へ前記ガスを注入してエアロゾルを発生させ、該エアロゾルを前記基板が設置された方へ搬送すべく排出することを特徴とする構造物の作製方法。   In a method for producing a structure by an aerosol deposition method in which an aerosol in which fine particles are dispersed in a gas is sprayed onto a substrate to form a film on the substrate, a crushed piece, a first filter that does not contact the crushed piece, A second filter that is installed on the downstream side of the first filter in the direction in which the gas flows, and does not pass through the crushed pieces, and is configured with a hole larger than the hole of the first filter. In an aerosol generator, the powder composed of the fine particles and the crushed pieces are mixed and disposed downstream of the second filter in the direction in which the gas flows, and the powder passes through the first filter. A method for producing a structure, wherein the gas is injected into a body to generate an aerosol, and the aerosol is discharged to be transported to a direction where the substrate is installed. 前記微粒子はセラミックから成ることを特徴とする請求項1に記載の構造物の作製方法。   The method for producing a structure according to claim 1, wherein the fine particles are made of ceramic. 前記エアロゾル発生器に、機械的振動を与えることを特徴とする請求項1又は2に記載の構造物の作製方法。   The method for producing a structure according to claim 1, wherein mechanical vibration is applied to the aerosol generator. 前記第1のフィルタと、前記第2のフィルタの間に隙間を設けたことを特徴とする請求項1から3のいずれかに記載の構造物の作製方法。   The method for manufacturing a structure according to claim 1, wherein a gap is provided between the first filter and the second filter. エアロゾル発生器内に噴射されたガスに微粒子が分散されることによって発生したエアロゾルを用いて構造物を作製する装置において、前記エアロゾル発生器は、その内部に第1のフィルタと第2のフィルタとを備えており、
前記第2のフィルタは、前記エアロゾル発生器の内部に前記微粒子からなる紛体と共に収納される解砕片と前記第1のフィルタとが接触しないように前記第1のフィルタの上側に設けられると共に、前記解砕片を通過させず、前記第1のフィルタの孔よりも大きな孔を有しており、
前記第1のフィルタの下側から前記エアロゾル発生器の内部に前記ガスが噴射されることを特徴とする構造物の作製装置。
An apparatus for making a structure with an aerosol particles in the aerosol generator injected gas within occurs by the Rukoto is dispersed minute, the aerosol generator includes a first filter therein second With a filter
The second filter is provided on the upper side of the first filter so that the pulverized piece housed together with the powder made of the fine particles inside the aerosol generator and the first filter do not come into contact with each other. Does not pass crushed pieces, has a hole larger than the hole of the first filter ,
An apparatus for producing a structure , wherein the gas is injected into the aerosol generator from below the first filter .
前記微粒子はセラミックから成ることを特徴とする請求項5に記載の構造物の作製装置。   6. The structure manufacturing apparatus according to claim 5, wherein the fine particles are made of ceramic. 前記エアロゾル発生器に、機械的振動を与える振動手段を有することを特徴とする請求項5又は6に記載の構造物の作製装置。   The apparatus for producing a structure according to claim 5 or 6, further comprising vibration means for applying mechanical vibration to the aerosol generator. 前記第1のフィルタと、前記第2のフィルタの間に隙間を設けたことを特徴とする請求項5から7のいずれかに記載の構造物の作製装置。   The structure manufacturing apparatus according to claim 5, wherein a gap is provided between the first filter and the second filter.
JP2007081801A 2007-03-27 2007-03-27 Structure manufacturing method and structure manufacturing apparatus using the same Expired - Fee Related JP5049625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081801A JP5049625B2 (en) 2007-03-27 2007-03-27 Structure manufacturing method and structure manufacturing apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081801A JP5049625B2 (en) 2007-03-27 2007-03-27 Structure manufacturing method and structure manufacturing apparatus using the same

Publications (2)

Publication Number Publication Date
JP2008240063A JP2008240063A (en) 2008-10-09
JP5049625B2 true JP5049625B2 (en) 2012-10-17

Family

ID=39911747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081801A Expired - Fee Related JP5049625B2 (en) 2007-03-27 2007-03-27 Structure manufacturing method and structure manufacturing apparatus using the same

Country Status (1)

Country Link
JP (1) JP5049625B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8311602B2 (en) 2005-08-08 2012-11-13 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US8311601B2 (en) 2009-06-30 2012-11-13 Nellcor Puritan Bennett Llc Reflectance and/or transmissive pulse oximeter
US8319401B2 (en) 2010-04-30 2012-11-27 Nellcor Puritan Bennett Llc Air movement energy harvesting with wireless sensors
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
US8352010B2 (en) 2005-09-30 2013-01-08 Covidien Lp Folding medical sensor and technique for using the same
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8352009B2 (en) 2005-09-30 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8364224B2 (en) 2008-03-31 2013-01-29 Covidien Lp System and method for facilitating sensor and monitor communication
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8417310B2 (en) 2009-08-10 2013-04-09 Covidien Lp Digital switching in multi-site sensor
US8417309B2 (en) 2008-09-30 2013-04-09 Covidien Lp Medical sensor
US8428675B2 (en) 2009-08-19 2013-04-23 Covidien Lp Nanofiber adhesives used in medical devices
US8428676B2 (en) 2010-03-31 2013-04-23 Covidien Lp Thermoelectric energy harvesting with wireless sensors
US8433383B2 (en) 2001-10-12 2013-04-30 Covidien Lp Stacked adhesive optical sensor
US8437826B2 (en) 2006-05-02 2013-05-07 Covidien Lp Clip-style medical sensor and technique for using the same
US8452366B2 (en) 2009-03-16 2013-05-28 Covidien Lp Medical monitoring device with flexible circuitry
US8452364B2 (en) 2007-12-28 2013-05-28 Covidien LLP System and method for attaching a sensor to a patient's skin
US8483790B2 (en) 2002-10-18 2013-07-09 Covidien Lp Non-adhesive oximeter sensor for sensitive skin
US8528185B2 (en) 2005-08-08 2013-09-10 Covidien Lp Bi-stable medical sensor and technique for using the same
US8577436B2 (en) 2006-08-22 2013-11-05 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US8600469B2 (en) 2005-09-29 2013-12-03 Covidien Lp Medical sensor and technique for using the same
US8634891B2 (en) 2009-05-20 2014-01-21 Covidien Lp Method and system for self regulation of sensor component contact pressure
US8649838B2 (en) 2010-09-22 2014-02-11 Covidien Lp Wavelength switching for pulse oximetry
US8649839B2 (en) 1996-10-10 2014-02-11 Covidien Lp Motion compatible sensor for non-invasive optical blood analysis
US8660626B2 (en) 2006-09-28 2014-02-25 Covidien Lp System and method for mitigating interference in pulse oximetry
US8781548B2 (en) 2009-03-31 2014-07-15 Covidien Lp Medical sensor with flexible components and technique for using the same
US8818473B2 (en) 2010-11-30 2014-08-26 Covidien Lp Organic light emitting diodes and photodetectors
US8874180B2 (en) 2010-02-28 2014-10-28 Covidien Lp Ambient electromagnetic energy harvesting with wireless sensors
US8897850B2 (en) 2007-12-31 2014-11-25 Covidien Lp Sensor with integrated living hinge and spring
US8965473B2 (en) 2005-09-29 2015-02-24 Covidien Lp Medical sensor for reducing motion artifacts and technique for using the same
US9078610B2 (en) 2010-02-22 2015-07-14 Covidien Lp Motion energy harvesting with wireless sensors

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101309960B1 (en) * 2010-12-28 2013-09-17 주식회사 포스코 Device for supplying aerosol
JP5928132B2 (en) * 2012-04-26 2016-06-01 富士通株式会社 Film forming apparatus and film forming method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53145267A (en) * 1977-05-20 1978-12-18 Toshiba Corp Pulverulent body feeder
JPH074557B2 (en) * 1990-10-23 1995-01-25 株式会社栗本鐵工所 Airflow grinding method using grinding media
JP2002035698A (en) * 2000-07-27 2002-02-05 Kubota Corp Wind power screen device and screen mesh structure
JP3809860B2 (en) * 2001-11-29 2006-08-16 独立行政法人産業技術総合研究所 Composite structure manufacturing method and composite structure manufacturing apparatus

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8649839B2 (en) 1996-10-10 2014-02-11 Covidien Lp Motion compatible sensor for non-invasive optical blood analysis
US8433383B2 (en) 2001-10-12 2013-04-30 Covidien Lp Stacked adhesive optical sensor
US8483790B2 (en) 2002-10-18 2013-07-09 Covidien Lp Non-adhesive oximeter sensor for sensitive skin
US8311602B2 (en) 2005-08-08 2012-11-13 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US8528185B2 (en) 2005-08-08 2013-09-10 Covidien Lp Bi-stable medical sensor and technique for using the same
US8965473B2 (en) 2005-09-29 2015-02-24 Covidien Lp Medical sensor for reducing motion artifacts and technique for using the same
US8600469B2 (en) 2005-09-29 2013-12-03 Covidien Lp Medical sensor and technique for using the same
US8352010B2 (en) 2005-09-30 2013-01-08 Covidien Lp Folding medical sensor and technique for using the same
US8352009B2 (en) 2005-09-30 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US8437826B2 (en) 2006-05-02 2013-05-07 Covidien Lp Clip-style medical sensor and technique for using the same
US8577436B2 (en) 2006-08-22 2013-11-05 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8660626B2 (en) 2006-09-28 2014-02-25 Covidien Lp System and method for mitigating interference in pulse oximetry
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US8452364B2 (en) 2007-12-28 2013-05-28 Covidien LLP System and method for attaching a sensor to a patient's skin
US8897850B2 (en) 2007-12-31 2014-11-25 Covidien Lp Sensor with integrated living hinge and spring
US8364224B2 (en) 2008-03-31 2013-01-29 Covidien Lp System and method for facilitating sensor and monitor communication
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8417309B2 (en) 2008-09-30 2013-04-09 Covidien Lp Medical sensor
US8452366B2 (en) 2009-03-16 2013-05-28 Covidien Lp Medical monitoring device with flexible circuitry
US8781548B2 (en) 2009-03-31 2014-07-15 Covidien Lp Medical sensor with flexible components and technique for using the same
US8634891B2 (en) 2009-05-20 2014-01-21 Covidien Lp Method and system for self regulation of sensor component contact pressure
US8311601B2 (en) 2009-06-30 2012-11-13 Nellcor Puritan Bennett Llc Reflectance and/or transmissive pulse oximeter
US8417310B2 (en) 2009-08-10 2013-04-09 Covidien Lp Digital switching in multi-site sensor
US8428675B2 (en) 2009-08-19 2013-04-23 Covidien Lp Nanofiber adhesives used in medical devices
US9078610B2 (en) 2010-02-22 2015-07-14 Covidien Lp Motion energy harvesting with wireless sensors
US8874180B2 (en) 2010-02-28 2014-10-28 Covidien Lp Ambient electromagnetic energy harvesting with wireless sensors
US8428676B2 (en) 2010-03-31 2013-04-23 Covidien Lp Thermoelectric energy harvesting with wireless sensors
US8319401B2 (en) 2010-04-30 2012-11-27 Nellcor Puritan Bennett Llc Air movement energy harvesting with wireless sensors
US8649838B2 (en) 2010-09-22 2014-02-11 Covidien Lp Wavelength switching for pulse oximetry
US8818473B2 (en) 2010-11-30 2014-08-26 Covidien Lp Organic light emitting diodes and photodetectors

Also Published As

Publication number Publication date
JP2008240063A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5049625B2 (en) Structure manufacturing method and structure manufacturing apparatus using the same
US9079209B2 (en) Apparatus for power coating
US20110104369A1 (en) Apparatus and method for continuous powder coating
US8936830B2 (en) Apparatus and method for continuous powder coating
US9433957B2 (en) Cold spray systems with in-situ powder manufacturing
JP2011054819A (en) Substrate processing apparatus and substrate processing method
JP2018059203A (en) Aerosol film forming apparatus and aerosol film forming method
CN113199776B (en) Nanoparticle aerosol jet printing method and device
JP2008045191A (en) Apparatus and method for depositing coating film
JP4802342B2 (en) Powder recovery method and apparatus, and film forming apparatus with powder recovery apparatus
JP5049626B2 (en) Structure manufacturing method and structure manufacturing apparatus
TWI579405B (en) Plasma deposition apparatus
JP6347189B2 (en) Membrane manufacturing apparatus and membrane manufacturing method
JP2003119573A (en) Apparatus for manufacturing composite structure
JP4590594B2 (en) Aerosol deposition system
JP2007217765A (en) Aerosol-generating device
JP2008285743A (en) Film formation system
WO2003002263A1 (en) Ultra-fine particulate generating device
JP4920912B2 (en) Film forming method and film forming apparatus
JP2006063375A (en) Method for manufacturing raw material to be sintered
JP3901623B2 (en) Deposition method
JP2008029977A (en) Aerosol discharge nozzle and coating-film forming device
JP2001259329A (en) Dust collection method using fluidized bed
JP2009161815A (en) Aerosol deposition apparatus, pole plate for electricity storage device, separator, and electricity storage device
JP2008101253A (en) Film deposition system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5049625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees