JP5049625B2 - Preparation device manufacturing method and structure using the same structure - Google Patents

Preparation device manufacturing method and structure using the same structure Download PDF

Info

Publication number
JP5049625B2
JP5049625B2 JP2007081801A JP2007081801A JP5049625B2 JP 5049625 B2 JP5049625 B2 JP 5049625B2 JP 2007081801 A JP2007081801 A JP 2007081801A JP 2007081801 A JP2007081801 A JP 2007081801A JP 5049625 B2 JP5049625 B2 JP 5049625B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
filter
aerosol
powder
gas
aerosol generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007081801A
Other languages
Japanese (ja)
Other versions
JP2008240063A (en )
Inventor
昭彦 小林
淳理 石倉
俊之 葛西
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Description

本発明は、微粒子を含むエアロゾルを基板に吹き付け、微粒子材料を基板上に堆積することによって、構造物を形成する作製方法及び作製装置に関するものである。 The present invention, spraying an aerosol containing fine particles to the substrate, by depositing the particulate material on the substrate, to a manufacturing method and a manufacturing apparatus for forming a structure.

微粒子材料からなる膜或いは構造物の作製方法には、エアロゾルデポジション法と呼ばれる方法がある。 The method of manufacturing film or structure comprised of a particulate material, there is a method called aerosol deposition method. これは、微粒子を含むエアロゾルをノズルから高速で基板に向けて噴射して基板に微粒子を衝突させ、その機械的衝撃力を利用して多結晶構造物を基板上に直接形成させる方法であり、特許文献1で開示されている。 This aerosol containing fine particles from the nozzle and ejected toward the substrate at a high speed to collide with fine particles to the substrate, the mechanical impact force by utilizing polycrystalline structure is a method of directly formed on the substrate, It disclosed in Patent Document 1.

同文献で示されているように、エアロゾルデポジション法では、エアロゾル発生器を用いる。 As shown in this document, in the aerosol deposition method, using an aerosol generator. このエアロゾル発生器中に微粒子から成る粉体を収納し、そこへガスを注入する。 During this aerosol generator housing a powder consisting of fine particles, there to injecting gas. すると微粒子がガス中に分散し、エアロゾルが発生する。 Then fine particles are dispersed in the gas, aerosol is generated. そしてこのエアロゾルはエアロゾル発生器からノズル側に搬送され、ノズルから高速で基板に噴射される。 And this aerosol is conveyed from an aerosol generator to the nozzle side, it is injected into the substrate from a nozzle at high speed.

ノズルから噴射されるエアロゾル中の微粒子を基板に堆積し、粒子径が均一で緻密な膜を形成するためには、微粒子がセラミックから成る場合、特許文献2で開示されているように、エアロゾル発生器内に収納する粉体の最小単位である一次微粒子の平均粒径を0.05〜1μm程度の小粒径にし、その一次微粒子又はそれが少数集合した小さな凝集体を噴射する必要があるとされる。 The fine particles in the aerosol ejected from the nozzle and deposited on the substrate, to form a uniform and dense film particle diameter, if the fine particles are made of ceramic, as disclosed in Patent Document 2, the aerosol generating the average particle diameter of primary particles is the minimum unit of the powder to be housed in the vessel and the small particle size of about 0.05 to 1 [mu] m, when the primary particles or it is necessary to inject a small agglomerates were small aggregate It is.

すなわち、平均粒径以上の径を持つ大きな一次微粒子はもちろんのこと、小さな一次微粒子であってもこれらが多数集合し比較的大きな凝集体となってから噴射されると、基板に衝突しても、粒子径が均一で緻密な膜の形成に寄与しない。 That is, large primary particles having a diameter on the average particle size or less, of course, when even small primary particles they are ejected from a number set to a relatively large aggregates, also collide with the substrate , it does not contribute to the formation of a uniform and dense film grain size.

セラミック以外の微粒子においても同様に、微粒子が凝集することは望ましくない。 Similarly in microparticles other than ceramic, that fine particles are aggregated is not desirable.

ところが、エアロゾル発生器に設置する微粒子から成る粉体の相当量は静電気等が影響し、エアロゾル発生器内に設置した当初から大きな凝集体になることが多い。 However, significant amounts of powder consisting of fine particles to be installed in the aerosol generator is affected static electricity or the like, is often the large aggregates from the beginning that was placed in an aerosol generator.

エアロゾル化開始当初、粉体内の一次微粒子又はその小さな凝集体がガスに分散されエアロゾル発生器から排出される。 Aerosolization beginning, the primary particles or small aggregates of powder body is discharged from the aerosol generator is dispersed in a gas. しかし、しばらく経過すると静電気等の影響によりエアロゾル発生器内には大きな凝集体が多くなる。 However, it is much larger aggregates in the aerosol generator under the influence of the static electricity or the like after a lapse of some time. この大きな凝集体はそのままガス中に分散してエアロゾル発生器から排出するか、その大きさゆえにガス中に分散されずエアロゾル発生器に残留する。 This large aggregates directly or discharged from the dispersion to an aerosol generator in the gas, remaining in the aerosol generator without being dispersed in its size because gas.

このような理由でエアロゾル化開始後しばらく経過すると、エアロゾルの発生効率低下する。 This is why some time elapses after the start of aerosolization, the reduced efficiency of generating aerosols. 更には膜の形成効率も低下する。 Furthermore also reduced formation efficiency of the membrane.

上記問題を解決するため、特許文献1ではエアロゾル発生器に収納した粉体内に存在する大きな凝集体を、一次微粒子又はその小さな凝集体に砕いてエアロゾル化させる手段について言及している。 To solve the above problems, large aggregates present in the powder body which is accommodated in the aerosol generator Patent Document 1 mentions the means for aerosolized crushed to primary particles or small aggregates.

この技術は、解砕片を粉体と混在させ、エアロゾル発生器に振動を付加することで、解砕片に運動を与える。 This technique, the solution debris are mixed with the powder, by adding a vibration to the aerosol generator to provide a motion to solution debris. すると、解砕片同士の衝突又は解砕片同士の回転摺動が起こり、解砕片同士の接触による粉体解砕効果が発生する。 Then, it occurs the rotational sliding of the collision or solutions debris together between solutions debris, powder crushing effect due to contact between the solution debris is generated. この結果、解砕片間の粉体内に存在する大きな凝集体を、粒子径が均一で緻密な膜の形成に寄与可能な一次微粒子又はその小さな凝集体に解砕することができる。 As a result, large aggregates present in the powder body between solutions debris can be disintegrated into primary particles or small agglomerates can be contribute to the formation of a dense film with a uniform particle size.

また同文献において、エアロゾル発生器内にフィルタを設置する技術についても説明している。 In the literature, also describes a technique for installing a filter in the aerosol generator. この技術は、微粒子から成る粉体が漏れない程度の細孔を有するフィルタ上に粉体を配置し、そのフィルタの下面側にエアロゾル発生器内へのガスの注入口を配置する構成である。 This technique, the powder was placed on a filter having a pore enough to powder consisting of fine particles does not leak, it is configured to place the inlet of gas into the aerosol generator in the lower surface of the filter. この構成では、フィルタを通してガス気流を形成するので、粉体表面全面から緩やかに微粒子が巻き上がり、好適なエアロゾルを発生することができる。 In this configuration, because it forms a gas flow through the filter, gradually increases wound microparticles from the powder over the entire surface, it is possible to generate a suitable aerosol.

また、発生したエアロゾルを分級して、ノズル側へ搬送する分級技術がある。 Further, by classifying the generated aerosol is classified techniques to convey to the nozzle side. これは発生したエアロゾルをノズルに搬送するべく排出される排出口に対してガスが流れる方向の上流近傍に、所定の大きさを有する微粒子のみを通過させる孔を有するフィルタを設ける。 This upstream vicinity of the direction in which the gas flows against the exhaust is discharged port so as to transport the generated aerosol to the nozzles, providing a filter having a pore for passing only particles having a predetermined size. このフィルタによって、粒子径が均一な膜を形成するために必要な所定の大きさを有する微粒子のみをノズルに搬送することが可能となる。 This filter makes it possible to convey only fine particles having a predetermined size required for the particle size to form a uniform film on the nozzle.
特開2003−166076号公報 JP 2003-166076 JP 特開2001−152360号公報 JP 2001-152360 JP 特開2006−198577号公報 JP 2006-198577 JP

以上説明した従来技術である、解砕片を粉体と混在させて配置する技術と、エアロゾル発生器内にて粉体をフィルタ上に配置する技術を併用し、フィルタ上に解砕片と粉体を混在させて配置すれば各々の技術の効果を得ることが期待できるが、以下の課題が発生する。 Is a prior art described above, the technique of placing the solution debris and mix with the powder, a combination of techniques to place the powder on the filter at the aerosol generator within the solution debris and powder on the filter Although be arranged mixedly can be expected to obtain the effect of each of the techniques, the following problem arises.

図11は、微粒子から成る粉体9が漏れない程度の細孔を有するフィルタ11上に解砕片10を粉体と混在させて配置し、そのフィルタ11を介してエアロゾル発生器内へガス31bを注入する構成を示す図である。 Figure 11 is a solution debris 10 on the filter 11 having pores to the extent that the powder 9 made of fine particles does not leak arranged mix with the powder, the gas 31b into aerosol generator in through the filter 11 it is a diagram illustrating a configuration for injecting. この状態において、解砕片10の一部はフィルタ11と接触している。 In this state, part of the solution debris 10 is in contact with the filter 11.

解砕片10はエアロゾル発生器に与える振動又はガス気流によってフィルタ11に接しながら矢印10a方向に回転する。 Solution debris 10 is rotated in the arrow 10a direction while in contact with the filter 11 by the vibration or gas stream provided to the aerosol generator.

すると、解砕片同士の接触による粉体解砕効果、及び解砕片10とフィルタ11の接触による粉体解砕効果が生じ、解砕片10とフィルタ11の間に介在している凝集体は解砕される。 Then, the powder disintegration effect by contact between solutions debris, and powder crushing effect due to contact of the solution debris 10 and the filter 11 occurs, aggregates interposed between solutions debris 10 and the filter 11 is crushed It is. しかし、その一部はフィルタの孔である11aの中側へ押し込められてしまう。 However, some of thus pushed to the middle side of 11a is a hole of the filter. それが累積化すると凝集し凝集体9dのようにフィルタ11の下面側に押し出され、凝集体9eのようにフィルタ11の下側に落下する。 It is pushed on the lower surface of the filter 11 as aggregates 9d aggregate the accumulated reduction, it falls below the filter 11 as aggregates 9e.

フィルタ11の孔は微粒子の粉体が漏れない程度の細孔のため、この落下してしまった凝集体9eは、その大きさが小さくても下側からのガス気流31bによって再度フィルタ11の上面側へ戻ることはなく、フィルタ11の下面側に残留する。 For holes of the filter 11 is of the degree of pores powder of fine particles does not leak, the dropped gone aggregates 9e is a top of the filter 11 again by the gas stream 31b from the lower side with a small in size not return to the side, remaining on the lower surface side of the filter 11. そして、フィルタ11から落下した凝集体9eはガス気流31bの気流範囲外に積層されていく。 The aggregate 9e dropped from the filter 11 is gradually laminated to the outside of the air flow range of the gas stream 31b.

上述の粉体がフィルタ下面側へ押し出される現象に関して、発明者は実験を行った。 Regard phenomenon above the powder is pushed out to the filter lower face side, the inventor conducted experiments.

エアロゾル発生器内に径が30μmの孔をもつフィルタを配置し、その上面側に平均粒径0.5μmのPZT(チタン酸ジルコン酸鉛)粉体11gと、解砕片として直径5mmのジルコニアボール80個を混在させ、乾燥空気ガスをフィルタ下面側から8L/分注入する。 Diameter within the aerosol generator is arranged a filter having a 30μm pore, and PZT (lead zirconate titanate) powder 11g having an average particle diameter of 0.5μm on the upper surface side, zirconia balls 80 having a diameter of 5mm as a solution debris pieces mix to 8L / min injection dry air gas from the filter bottom side.

このエアロゾル発生器に振動を加えながら、所定時間エアロゾルを発生させ、ノズル側に搬送するため発生器内から排出する実験を行った。 While applying vibration to the aerosol generator, to generate a predetermined time aerosol, an experiment was performed to discharge from the generator to convey to the nozzle side.

その実験を計16回行った結果は、メッシュの下側に0.20g〜4.55g、平均2.20gの粉体が押し出され残留した。 As a result of the experiment in total 16 times, 0.20G~4.55G below the mesh, powder having an average 2.20g has remained extruded.

つまり、11g投入した粉体の内の平均約20%、最大約41%がフィルタの下側に押し出された結果となった。 That was the result of an average of about 20% of the powder was 11g turned up about 41% is extruded on the lower side of the filter. これらは、解砕されておきながらもエアロゾル発生に寄与することができなかったことになる。 These, while previously been crushed so that could not contribute to the aerosol generation.

以上で説明したように、微粒子からなる粉体が漏れない程度の細孔を有するフィルタ上に粉体を配置し、そのフィルタを介してエアロゾル発生器内へガスを注入する構成において、解砕片を粉体と混在させて配置すると、解砕片とフィルタの接触による粉体解砕効果によって、相当量の粉体がフィルタ下側面に押し出され、エアロゾル発生に寄与不可能となりエアロゾル発生効率が劣化するという課題が発生する。 As described above, the powder was placed on a filter having a pore enough to powder consisting of fine particles does not leak, in a configuration for injecting the gas into the aerosol generator inside through the filter, the solution debris When arranging mix with the powder, the powder disintegration effect by contact of the solution debris filter, a considerable amount of the powder is pushed into the filter under side, that aerosol generation efficiency becomes impossible contribute to the aerosol generator is degraded problem arises.

〔発明の目的〕 [The purpose of the invention]
本発明は上述した課題を解決し、エアロゾル発生器内に解砕片を粉体と混在させて配置する技術とエアロゾル発生器内にフィルタを有する技術を併用し、フィルタ上に解砕片と粉体を混在し配置させても、エアロゾルの発生効率が継続的に高い構造物の作製方法及び作製装置を提供することを目的とする。 The present invention solves the problems described above, a solution debris into aerosol generator used in combination technique with a filter in the technology and the aerosol generator to place mix with the powder, the solution debris and powder on the filter It is mixed and arranged, and an object thereof is to provide a manufacturing method and manufacturing apparatus of the generation efficiency of aerosol continuously higher structure.

本発明は上記目的を達成するため、解砕片と、解砕片と接触しない第1のフィルタと、第1のフィルタに対してガスが流れる方向の下流側に設置され、解砕片を通過させず、前記第1のフィルタの孔よりも大きな孔で構成される第2のフィルタとを有したエアロゾル発生器内で、微粒子から成る粉体と解砕片を混在させて第2のフィルタに対してガスが流れる方向の下流側に配置し、第1のフィルタを介して粉体へガスを注入してエアロゾルを発生させ、エアロゾルを基板が設置された方へ搬送すべく排出することで上記課題を解決しようとするものである。 Since the present invention is to achieve the above object, a solution debris, a first filter which is not in contact with the solution debris, it is located downstream in the direction of gas flow to the first filter, without passing the solution debris, in said first aerosol generator and a second filter composed of larger pores than the pores of the filter, the gas to the second filter with mixed powder and solutions debris consisting of fine particles disposed downstream of the flow direction, by injecting gas into the powder through the first filter to generate an aerosol, to solve the above problems by discharging so as to transport towards the aerosol board is installed it is an.

本発明によれば、エアロゾルの発生効率が継続的に高い構造物の作製方法及び構造物の作製装置を提供することができる。 According to the present invention, it is possible to provide a manufacturing apparatus for manufacturing methods and structures of the generation efficiency of aerosol continuously higher structure.

以下、本発明の実施形態を図面に基づいて詳細に説明する。 It will be described in detail with reference to embodiments of the present invention with reference to the drawings.

図1にエアロゾルデポジション法による構造物の作製方法及び構造物の作製装置の模式図を示す。 Figure 1 shows a schematic view of a manufacturing apparatus for manufacturing methods and structures of the structure by the aerosol deposition method.

同図に示すように、構造物の作製装置1は膜形成部2とエアロゾル発生部3を有し、エアロゾル発生部3内で、微粒子がガス中に分散されて発生したエアロゾルを膜形成部2に搬送するエアロゾル搬送管4によって1と2を接続した構成が基本となる。 As shown in the figure, producing device 1 of the structure has a film forming section 2 and the aerosol generator 3, in the aerosol generation portion 3, aerosol film forming portion 2 which fine particles are generated is dispersed in the gas by aerosol delivery pipe 4 that conveys 1 and configured whereby a 2 is basically a.

膜形成部2は真空ポンプ21で真空化される真空チャンバー20を有し、その真空チャンバー20内に導かれた搬送管4の先端部に配置されたノズル5が、エアロゾル発生器3からエアロゾル搬送管4によって搬送されたエアロゾル6を基板7bに噴射して膜7aを形成し、この基板7bと膜7aで構成される構造物7を作製する。 Film forming unit 2 has a vacuum chamber 20 which is evacuated by a vacuum pump 21, a nozzle 5 disposed at the distal end of the transport pipe 4 led to the vacuum chamber 20, aerosol delivery from the aerosol generator 3 the film 7a is formed by injecting an aerosol 6 conveyed by the tube 4 to the substrate 7b, to produce a composed structure 7 in this substrate 7b and the film 7a. 尚、基板7bは通常ステージ8に固定されており、基板7bをX−Y方向8aに移動しながらその上に膜を形成する。 The substrate 7b is normally fixed to the stage 8, to form a film thereon while moving the substrate 7b onto the X-Y direction 8a.

また、エアロゾル発生部3はエアロゾル発生器30と、ガス搬送管31によってエアロゾル発生器30内にガスを注入するマスフローコントローラ32と、エアロゾル発生器30に機械的振動33aを加える振動付加手段33から構成されると共に、エアロゾル搬送管4の他端部がエアロゾル発生器30の上部に挿入されている。 Moreover, an aerosol generator 3 is an aerosol generator 30, configured from the vibration adding means 33 for adding the mass flow controller 32, the mechanical vibration 33a to the aerosol generator 30 for injecting a gas to the aerosol generator 30 by the gas transport pipe 31 with the other end of the aerosol delivery pipe 4 is inserted into the upper portion of the aerosol generator 30.

エアロゾル発生部3においてエアロゾルが発生する過程は、エアロゾル発生器30内に微粒子から成る粉体9を収納する。 Process the aerosol generated in the aerosol generation portion 3 houses the powder 9 made of fine particles in the aerosol generator 30. そこへ、2枚のフィルタを介して乾燥空気ガス又は、ヘリウム、窒素などの不活性ガスを噴射し、粉体内に存在する一次微粒子又はその小さな凝集体を含むエアロゾルを発生させる。 Thereto, through two filters dry air gas or helium, injecting an inert gas such as nitrogen, to generate an aerosol containing the primary particles or small aggregates are present in the powder body. 発生したエアロゾルはエアロゾル発生器からエアロゾル搬送管4へ排出される。 The generated aerosol is discharged from the aerosol generator into the aerosol carrier pipe 4.

本発明における微粒子には、セラミックや半導体の脆性材料、金属材料、これらの材料の混合物、セラミック微粒子にセラミックや金属や樹脂をコーティングしたものが挙げられる。 The fine particles in the present invention, brittle material ceramic or a semiconductor, a metal material, a mixture of these materials include those obtained by coating a ceramic or metal or resin in the ceramic particles. また微粒子の形状は、略球状の物質や針状物質も含む。 The shape of the fine particle may include substantially spherical material and needles.

図2は、本発明の実施例1としての、構造物作製装置におけるエアロゾル発生器30の模式図である。 2, as a first embodiment of the present invention, is a schematic view of an aerosol generator 30 in the structure manufacturing apparatus. エアロゾル発生器30内には、第1のフィルタ11と第2のフィルタ12が配置され、微粒子からなる粉体9が複数個の解砕片10と混在して配置されている。 The aerosol generator 30, the first filter 11 and second filter 12 is disposed, the powder 9 consisting of fine particles are arranged in a mixed manner a plurality of solutions debris 10. これらの粉体9及び複数個の解砕片10は第2のフィルタ12に対してガスが流れる方向の下流側、つまり第2のフィルタ12上側に配置されており、解砕片10の一部は第2のフィルタ12と接する位置関係となっている。 These powders 9 and a plurality of solutions debris 10 is disposed on the downstream side, i.e. the second filter 12 the upper direction of the gas flow to the second filter 12, a part of the solution debris 10 Part It has a positional relationship in contact with the second filter 12.

このエアロゾル発生器中に注入されるガスは、ガス搬送管31からのガス気流31aがガス気流31bと方向を変更し、第1のフィルタ11の下側から第1のフィルタ11と第2のフィルタ12を介してエアロゾル発生器中に注入され、粉体9を噴き上げる。 Gas injected into the aerosol generator gas stream 31a from the gas transport pipe 31 changes the gas flow 31b and direction, and the first filter 11 from the lower side of the first filter 11 and the second filter is injected into the aerosol generator through 12, Fukiageru powder 9.

このような構成のもと、エアロゾル発生器30に機械的振動33aを付加し、ガス気流31aを注入する。 Under such configuration, by adding a mechanical vibration 33a to the aerosol generator 30, injecting gas stream 31a.

すると、解砕片10は解砕片同士の接触による粉体解砕効果、及び解砕片10と第2のフィルタ12の接触による粉体解砕効果を発生させ、解砕片10間の粉体9内に存在する大きな凝集体を粒子径が均一で緻密な膜の形成に寄与可能である一次微粒子又はその小さな凝集体に解砕する。 Then, the solution debris 10 solution debris powder crushing effect contact between, and the solution debris 10 and caused the powder crushing effect due to contact of the second filter 12, into the powder 9 between solutions debris 10 particle size large aggregates present are disintegrated into primary particles or small agglomerates can be contributed to the formation of uniform and dense film.

尚、粉砕解砕効果はエアロゾル発生器内にガス気流が注入されただけでも生じるが、エアロゾル発生器に機械的振動を加えた方が、よりその効果を得ることができる。 Incidentally, milling crushing effect is caused alone gas stream is injected into the aerosol generator, it can be better to apply mechanical vibration to the aerosol generator, obtain a more effect.

ここで、図2のA部を拡大したものを図3に示す。 Here, FIG. 3 is an enlarged view of the A portion of Fig.

第2のフィルタ12に対してガスが流れる方向の上流側、つまり第2のフィルタ12の下側に設置された第1のフィルタ11は、微粒子からなる粉体が漏れない程度の細孔を有するフィルタである。 Upstream side in the direction in which the gas flows to the second filter 12, i.e. the first filter 11 installed on the lower side of the second filter 12 has pores to the extent that powder consisting of fine particles does not leak it is a filter. これは第2のフィルタ12を介して解砕片10と接することはない。 This is not in contact with solutions debris 10 via the second filter 12. 粉体9は第1のフィルタ11で支持しているので、図中の第2のフィルタ12と第1のフィルタ11間にも粉体9が存在するが、解砕片10と第2のフィルタ12との接触にて解砕された粉体状態を分かりやすく図示する為、便宜上、同図ではフィルタ間に配されている粉体を9Aとして別のパターン状の図としている。 Since the powder 9 is supported by the first filter 11, but the powder 9 is also present between the second filter 12 and the first filter 11 in FIG, a solution debris 10 second filter 12 for illustrating clarity the powder state of being disintegrated by contact with, for convenience, the same figure as a separate pattern of FIG powder that is disposed between the filter as 9A.

すると、図3に示すように解砕片10と第2のフィルタ12の間に介在している凝集体は解砕化される。 Then, aggregates are interposed between the solution debris 10, as shown in FIG. 3 of the second filter 12 is the solution 砕化. しかし、その一部は第2のフィルタ12の孔である12aの中側へ押し込められて累積し、凝集体9bとなる。 However, some of cumulative been pushed to the middle side of 12a is a hole of the second filter 12, the aggregate 9b. これは第2のフィルタ12の下面側に押し出され、凝集体9cのように第2のフィルタ12の下側に落下する。 It is pushed on the lower surface side of the second filter 12, it falls onto the bottom of the second filter 12 as aggregates 9c. しかし、本実施の形態では第2のフィルタ12の下側に第1のフィルタ11が配されているので、凝集体9cはそれで支持され、第1のフィルタ11の下側へ落下することはない。 However, since in this embodiment has the first filter 11 is disposed on the lower side of the second filter 12, aggregate 9c is supported by it, it does not fall to the lower side of the first filter 11 . そして、凝集体9cはガス気流31bによって第2のフィルタ12の孔12aを通過して上昇し、再度解砕片による解砕が可能になる。 The aggregate 9c rises through the hole 12a of the second filter 12 by the gas stream 31b, it is possible to disintegration by re solutions debris.

図2に示すように、このガス気流31bは粉体9を噴き上げて粉体中の一次微粒子又はその小さな凝集体をガス内に分散してエアロゾルを形成する。 As shown in FIG. 2, the gas stream 31b is a primary particle or a small aggregate of blown up the powder 9 in the powder dispersed in the gas to form an aerosol.

形成されたエアロゾルは、矢印4aで示すようにエアロゾル搬送管4内へ搬送され、エアロゾル発生器30から排出される。 Formed aerosol is conveyed to the aerosol delivery pipe 4 as indicated by the arrow 4a, and is discharged from an aerosol generator 30. 排出されたエアロゾルはノズル5側に搬送され、ノズル5から高速で基板7b上に噴射され、膜7aを形成する。 The discharged aerosol is conveyed to the nozzle 5 side, it is sprayed onto the substrate 7b from the nozzle 5 at high speed, to form a film 7a.

この基板7bと膜7aにより、構造物7が作製される。 The substrate 7b and the film 7a, the structure 7 is produced.

ここで、構造の詳細について述べる。 Here, we describe details of the structure.

第1のフィルタ11はエアロゾル発生器内に収納した粉体を漏らさない程度の細孔を有するものでなければならない。 The first filter 11 shall have pores that will not leak the powder housed in the aerosol generator.

一方、第2のフィルタ12には粉体を支持する役目はなく、第2のフィルタ12の孔は細孔にする必要がないので、ガス気流を通過しやすくするため大きな孔にしても良いが、以下の点について考慮しなければならない。 On the other hand, the second filter 12 is not responsible for supporting the powder, pores of the second filter 12 does not need to be in the pores, but may be large pores to easily pass through the gas stream , it must take into account the following points.

図4に示すように、解砕片10が第1のフィルタ11と接触してしまうと、第1のフィルタ11と解砕片10との間に粉体解砕効果が発生し、フィルタ間に存在する粉体9Aの一部は第1のフィルタ11の孔11aの中側へ押し込められ累積し、凝集体9dとなりフィルタから落ちてしまう。 As shown in FIG. 4, when the solution debris 10 resulting in contact with the first filter 11, the powder disintegration effect is generated between the solution debris 10 and the first filter 11, present between the filter some of the powder 9A is cumulative pushed to the middle side of the hole 11a of the first filter 11, it falls from the aggregate 9d next filter.

したがって、第2のフィルタ12は解砕片10がフィルタ11に接しないように支えることが可能な大きさの孔で構成される必要性がある。 Thus, the second filter 12, it is necessary constituted by pores of size that can be supported as solutions debris 10 is not in contact with the filter 11.

また、第2のフィルタ12は、第1のフィルタ11上に支持された粉体がガス気流により再度第2のフィルタ12上へ戻れるように、第1のフィルタ11の孔よりは大きな孔で構成される必要性がある。 The second filter 12, as a powder, which is supported on the first filter 11 return again to the second filter 12 on the gas flow consists of larger pores than the pores of the first filter 11 there is a need to be.

それらの必要性を考慮した上で、解砕片10と第2のフィルタ12の接触による粉体解砕効果がより発揮できる最適孔径を選択すると良い。 In consideration their needs, may powders crushing effect due to contact with the solution debris 10 of the second filter 12 selects the optimum pore size more can be exhibited.

また、図3で示すように解析片と接する第2のフィルタ12と接しない第1のフィルタ11は、密着させず、図4の説明にも記載したように少なくとも解砕片と第1のフィルタが接しない程度の幅、又はそれ以上の幅を有する隙間を設けて配置した方が良い。 The first filter 11 is not in contact with the second filter 12 in contact with the analysis piece as shown in Figure 3 is not brought into close contact, at least the solution debris of the first filter as described in the description of FIG. 4 not in contact with the extent of the width, or better to disposed with a gap having a more wide.

図5のフィルタ付近の拡大図に示すように、解砕片と第1のフィルタを接触させない上で、第1のフィルタと第2のフィルタの間に隙間を設けない場合でも、第2のフィルタから漏れた粉体を第1のフィルタで受け止め、ガス気流で再び第2のフィルタ上に戻してエアロゾル化に寄与させることが出来る。 As shown in the enlarged view in the vicinity of the filter in FIG. 5, on which nothing comes into contact with the solution debris and first filter, between the first and second filters even without a clearance, from the second filter leaking powder received by the first filter, it is possible to contribute to aerosolized back on again the second filter in the gas stream.

しかし、フィルタを密着させてしまうと、解砕片10によって第2のフィルタ12の孔12aに押し込められた粉体9が、更なる上側からの押し付けによって孔から押し出される時に、続けて第1のフィルタ11の孔11aに押し込められ、第1のフィルタ11の下側に押し出されてしまう可能性もある。 However, if it makes good contact with filter, powder 9, which is pressed into the hole 12a of the second filter 12 by the solution debris 10, when pushed out of the hole by pressing from a further upper, first followed filters pushed into 11 hole 11a, there is also a possibility that pushed below the first filter 11. 第2のフィルタ12と第1のフィルタ11の間にわずかでも隙間を設ければ、第1のフィルタ11の孔11aに押し込められず、隙間の横方向へ移動する可能性が高くなる。 By providing a gap even slightly between the second filter 12 and the first filter 11, without being pushed into the hole 11a of the first filter 11, may move laterally of the gap increases.

上記のようなことを考慮した上でフィルタ等を設置する。 Installing a filter or the like in consideration of the fact described above.

以上説明したように、本実施の形態によって、従来技術では第1のフィルタ11の下側で積層されてエアロゾル発生に寄与できなかったものが、エアロゾル発生に寄与可能となる。 As described above, according to the present embodiment, in the prior art that could not be contributed to the stacked aerosol generator under side of the first filter 11, thereby enabling contributing to the aerosol generator. したがって、エアロゾル化開始以降もエアロゾルの発生効率が継続的に高くすることができる。 Therefore, it is possible to aerosol generation efficiency even after start aerosolization increased continuously.

発明者は本実施の形態の効果を確認すべく、同形態を備えたエアロゾル発生器を用いて実験を行った。 Inventors in order to confirm the effect of the present embodiment, using an aerosol generator with the form. 前述した〔背景技術〕での従来技術の説明と同様に、エアロゾル発生器内にフィルタとして径が1mmの孔のメッシュを持つ第2のフィルタを配置し、その上面側に平均粒径0.5μmのPZT(チタン酸ジルコン酸鉛)粉体11gと解砕片としての直径5mmのジルコニアボール80個を混在させた。 As with the prior art described in the aforementioned Background of the Invention, the second filter size as the filter in the aerosol generator has a mesh 1mm holes arranged, an average particle diameter of 0.5μm on the upper surface side of PZT were mixed 80 zirconia balls having a diameter of 5mm as solutions debris and (lead zirconate titanate) powder 11g. そこへ径が30μmの第1のフィルタを通して乾燥空気ガスをメッシュ下面側から8L/分注入する。 Diameter thereto is 8L / min injecting dry air gas from a mesh bottom side through the first filter of 30 [mu] m.

この時、エアロゾル発生器に機械的振動を加えながら、所定時間エアロゾルを発生させ、発生したエアロゾルを基板に向けて噴射するノズル側に搬送すべく排出する実験を行った。 In this case, while applying the mechanical vibration to the aerosol generator, to generate a predetermined time aerosol, the generated aerosol experiment was conducted to discharge to be conveyed to the nozzle side for ejecting toward the substrate. その実験を計16回行った結果は、第2のフィルタの下側に0.009g〜0.034g、平均0.03gの粉体しか残留せず、従来技術の実験結果と比較すると、その残留量は1/100に減少するといった大きな効果を確認した。 As a result of the experiment in total 16 times, 0.009G~0.034G below the second filter, powder having an average 0.03g only without residual, when compared with the experimental results of the prior art, the residue the amount was confirmed to great effect, such as reduced to 1/100.

図6は本発明の実施例2を示す。 Figure 6 shows a second embodiment of the present invention. 本実施の形態のエアロゾル発生器30は、ガス搬送管16の構成が実施例1と異なる。 Aerosol generator 30 of the present embodiment, different configurations of the gas transport pipe 16 as in Example 1. エアロゾル発生器内30において、エアロゾル搬送方向を上側とした時、ガス搬送管16はエアロゾル発生器30の上側面から、第2のフィルタ12と第1のフィルタ11を突き抜けて第1のフィルタ11の下側まで導かれている。 In the aerosol generator 30, when the aerosol delivery direction and the upper, gas delivery tube 16 from the upper surface of the aerosol generator 30, the first filter 11 penetrates the second filter 12 the first filter 11 It is guided to the lower side. そして、更にエアロゾル発生器30の底面と水平方向になるように導かれ、最終的に底面に沿ってガス気流31cを注入する構成である。 Then, guided to become more bottom and horizontal direction of the aerosol generator 30, it is configured to inject the gas stream 31c finally along the bottom surface. この構成では、ガス気流31cはエアロゾル発生器内で渦巻状のエアロゾル気流を発生することができ、一次微粒子又はその小さな凝集体が効率よく巻き上がるため、エアロゾル発生効率がより高くなる。 In this configuration, gas flow 31c may generate a spiral aerosol stream in the aerosol generator, the primary particles or small aggregates for curl efficiently, aerosol generation efficiency becomes higher.

図7は本発明の実施例3を示す。 Figure 7 shows a third embodiment of the present invention. この形態のエアロゾル発生器30は、第1実施例の構造に加えて、第2のフィルタに対してガスが流れる方向の下流方向、つまり第2のフィルタの上側に第3のフィルタ13、第4のフィルタ14を有する。 This form aerosol generator 30, in addition to the structure of the first embodiment, the second direction downstream gas to flow to the filter, i.e. third on the upper side of the second filter of the filter 13, the fourth with a filter 14.

第3のフィルタ13は、所定の大きさを有する微粒子のみを通過させる孔で構成される。 The third filter 13 is composed of a hole for passing only particles having a predetermined size.

この所定の大きさを有する微粒子とは、微粒子がセラミックから成る場合、平均粒径が0.05〜1μmの一次微粒子又はそれが少数集合した小さな凝集体のことで、均一で緻密な膜を形成するのに適した粒子径を有するものである。 The fine particles having the predetermined size, if the fine particles are made of ceramic, the average particle diameter means a primary particle or small aggregates it has few sets of 0.05 to 1 [mu] m, forming a uniform and dense film those having a particle size suitable for.
微粒子がセラミック以外から成る場合においても、その物質で膜を形成する際、粒子径(針状物の場合は長手方向の長さ)が均一な緻密な膜を形成するのに適した粒子径を有するものを、所定の大きさを有する微粒子と呼ぶ。 Even when the fine particles are made of non-ceramic, when forming a film on that material, a particle size suitable for the particle size (length in the longitudinal direction in the case of needles) to form a uniform dense membrane those having, referred to as fine particles having a predetermined size.

一方、第4のフィルタ14は、第3のフィルタ13に対してガスが流れる方向の上流側に第3のフィルタとの間に隙間を設けて設置され、所定の大きさを有する微粒子は通過可能であり、解砕片は通過不可能な大きさの孔で構成される。 On the other hand, the fourth filter 14, the third filter 13 is disposed to provide a gap between the third filter on the upstream side of the direction of flow gas, fine particles having a predetermined size is able to pass through , and the solution debris consists of pores of not passing size.

これらのフィルタは、大きな凝集体がエアロゾル発生器から排出されノズルの目詰まりを引き起こすことを防ぎ、粒子径が均一で緻密な膜を形成するのに適した大きさである所定の大きさを有する微粒子のみをエアロゾル発生器から排出させる。 These filters are large aggregates is prevented to cause clogging of the nozzle is discharged from the aerosol generator, having a predetermined a size suitable for forming a uniform and dense film particle diameter of size only fine particles are discharged from the aerosol generator.

解砕片は、ガス気流によって第4のフィルタの方向へ巻き上げられる重量を持つ解砕片15と、巻き上げられない重量を持つ解砕片10の2種類の解砕片を混入させる。 Solution debris, the solution debris 15 that has a weight that is rolled up in the direction of the fourth filter by the gas stream, is mixed with two kinds of solutions debris solution debris 10 that has a weight that can not be rolled up.

この時も第1実施例と同様、第2のフィルタ12の孔は、解砕片10、15が第1のフィルタ11と接触しないように支えることが可能であると同時に、第1のフィルタの孔よりも大きくかつ解砕片10、15との解砕効果がより発揮できる大きさにする必要がある。 As with the case even if the first embodiment, the hole of the second filter 12, at the same time it is possible to support such that the solution debris 10,15 do not contact the first filter 11, holes of the first filter disintegration effect of the large and solutions debris 10 and 15 than it needs to be sized to be more exerted.

エアロゾル発生器中に注入されるガスは、ガス搬送管31からのガス気流31aがガス気流31bと方向を変更し、第1のフィルタ11の下側から第1のフィルタ11と第2のフィルタ12を通過し、エアロゾル発生器中に注入され粉体9を噴き上げてガス内に分散し、実施例1において示したようにエアロゾルを形成する。 Gas injected into the aerosol generator gas stream 31a from the gas transport pipe 31 changes the gas flow 31b and direction, from the lower side of the first filter 11 and the first filter 11 and the second filter 12 passes through, is injected into the aerosol generator blown up the powder 9 was dispersed in the gas, to form an aerosol, as shown in example 1.

このようにして形成されたエアロゾル中の微粒子は、ガス気流に乗り、第3及び第4のフィルタ方向へ送られる。 Fine particles in the aerosol which is formed in this way, take the gas stream is fed to the third and fourth filtering direction. 同時に、軽い方の解砕片15もガス気流によって第3及び第4のフィルタ方向へ巻き上げられる。 At the same time, it is wound by a lighter solution debris 15 also gas stream to the third and fourth filtering direction.

詳細を図8に示す。 The details shown in FIG. 8.

ガス気流31aによって第4のフィルタ14側へ運ばれた微粒子の中には第2のフィルタ上で解砕され一次微粒子又はその小さな凝集体となったものの他にも解砕されていない凝集体や解砕されても所定の大きさまで解砕されなかった様々な大きさの凝集体が存在する。 The gas stream 31a is in the fourth particles carried to the filter 14 side Ya second is disintegrated on the filter primary particles or small to another aggregate and become ones nor is it disintegrated aggregates is disintegrated aggregates of various sizes that were not disintegrated to a predetermined size are present even.

第2フィルタ12上で解砕され、一次微粒子又はその小さな凝集体となったものも含めて所定の大きさを有する微粒子9aはそのまま第4のフィルタ14を通過する。 Are crushed on the second filter 12, fine particles 9a have also included a predetermined size and was the primary particles or small aggregates that passes through the fourth filter 14.

第4のフィルタ14の孔よりも大きな凝集体9fはフィルタの通過を遮断され、第4のフィルタ14下面に付着する。 Large aggregates 9f than the pores of the fourth filter 14 is blocked the passage of the filter, it adheres to the fourth filter 14 lower surface.

ここで、例えば第4のフィルタ14の孔と第3のフィルタ13の孔が同じ大きさである場合を考える。 Here, consider the case for example holes of the fourth filter 14 holes and the third filter 13 are the same size.

第4のフィルタ14を通過した所定の大きさを有する微粒子9aは、そのまま第3のフィルタ13も通過する。 Fine particles 9a having a predetermined size which has passed through the fourth filter 14, also passes directly third filter 13. 若しくは、静電気により、第4のフィルタ14上面に付着する。 Or, by static electricity, adhere to the fourth filter 14 top surface. これが積層化し、所定の大きさ以上の凝集体9hとなる場合もある。 This is laminated, in some cases a predetermined magnitude or more aggregates 9h.

そこへ解砕片がガス気流により吹き上がり、第3のフィルタ13に衝突すると、その振動で、第4のフィルタ14下面及び上面に付着していた凝集体は剥離する。 To a solution debris therefrom racing by gas flow and collides with the third filter 13, in the vibration, the fourth filter 14 bottom and aggregates adhered to the upper surface is peeled off.

第4のフィルタ14下面から剥離した凝集体9fはそのまま落下し、再び解砕可能となる。 Aggregates 9f peeled from the fourth filter 14 the lower surface is directly drop, it becomes possible again crushed.

また、第4のフィルタ14上面に積層化し、所定の大きさ以上の凝集体となり付着していた9hは剥離すると第3のフィルタ13で遮断され凝集体9gの様に下面に付着する。 Also laminated to the fourth filter 14 top and 9h having adhered becomes a predetermined size or larger aggregates are blocked by the third filter 13 when peeled adhered to the lower surface as aggregates 9g.

第3のフィルタ上面にも第3フィルタを通過した後の所定の大きさを有する微粒子9aが静電気により付着する。 Fine particles 9a having a predetermined size after in the third filter top has passed through the third filter is adhered by static electricity. これが積層化し、所定の大きさ以上の凝集体9iとなる場合もある。 This is laminated, in some cases a predetermined magnitude or more aggregates 9i.

本実施例では解砕片10は第4のフィルタ14のみに衝突し、この衝突の影響は、第4のフィルタ14のみに与えられ、第3のフィルタ13には与えられない構成となっている。 Solution debris 10 in this embodiment impinges only on the fourth filter 14, the influence of the collision is given only to the fourth filter 14 has a structure which is not imparted to the third filter 13.

したがって第3のフィルタ13の上面に付着した大きな凝集体9iが剥離してエアロゾル発生器30から排出されることはない。 Therefore, no large agglomerates 9i adhered to the upper surface of the third filter 13 is discharged from the aerosol generator 30 is peeled off.

また、第3のフィルタ13の下面側に付着している凝集体9gは上流側からのガス気流31aによって噴き上げられた所定の大きさを有する微粒子9a又は第4のフィルタ14の上面から剥離した凝集体9hの衝突によって、第1のフィルタ11から部分的に剥離する。 Further, coagulation was peeled from the upper surface of the third aggregates 9g attached to the lower face side of the filter 13 particles 9a or the 4 having a predetermined size, which are blown up by the gas stream 31a from the upstream side of the filter 14 by collision Atsumaritai 9h, partially peeled from the first filter 11.

両フィルタ間に存在する凝集体9g及び9hのうち、剥離後の大きさが所定の大きさになったものは第3のフィルタ13の孔を通過して発生器より排出される。 Among aggregates 9g and 9h exists between the two filters, which size after peeling becomes a predetermined size is discharged from the generator through the bore of the third filter 13. 又は第3のフィルタの孔と同じ大きさの孔を有する第4のフィルタを通過して落下する。 Or through the fourth filter having a third filter holes the same size of the pores falling.

両フィルタ間に存在する凝集体9g及び9hのうち、剥離後の大きさが両フィルタの孔より大きいものは、フィルタ間で浮遊した状態となる。 Among aggregates 9g and 9h exists between the two filters, the size of the post-peeling larger than the pores of the filters is in a state of being suspended between filter. その間、両フィルタへの接触によってより所定の大きさの微粒子に変化する場合があり、第3のフィルタ13の孔を通過して発生器より排出される。 Meanwhile, it may vary more predetermined sizes of the particles by contact to both the filter and is discharged from the generator through the bore of the third filter 13. 又は第4のフィルタ14の孔を通過して落下する。 Or through the fourth hole of the filter 14 falls.

尚、図3で示すように、第3のフィルタ13と第4のフィルタ14は密着させず、第4のフィルタ14が解砕片10と衝突した時の衝撃を第3のフィルタ13に与えない程度の幅を有した隙間を設けて設置する。 Incidentally, as shown in Figure 3, the third filter 13 fourth filter 14 without contact, level that does not cause a shock when collided with the fourth filter 14 collapsed debris 10 to the third filter 13 placed in a gap having a width.

これらのフィルタ密着させた場合、第4のフィルタ14がガス気流31aにより巻き上げられた解砕片10と衝突すると、その影響をそのまま第3のフィルタ13へ与えてしまい、第3のフィルタ13の上面側に付着している大きな凝集体9iを剥離させてしまう。 If allowed to these filters adhesion, the fourth filter 14 collides with solutions debris 10 that has been wound up by the gas stream 31a, will give the effect as the third filter 13, the upper surface of the third filter 13 thus is peeled large aggregates 9i adhered to.

また、解砕片が通過しない範囲で第4のフィルタの孔を第3のフィルタの孔よりも大きくすると、フィルタから剥離しフィルタ間で浮遊した状態となる凝集体が、第2のフィルタを通過して落下し再度解砕されやすくなる。 Further, a fourth filter holes in the range where the solution debris does not pass when greater than the third filter pores, aggregates in a state of being suspended between detached from the filter filters, it passes through the second filter become easily be disintegrated again fall Te.

以上説明したように本実施例3の構成によって、エアロゾル発生効率を継続的に高くするだけでなく、大きな凝集体を排出する可能性が低くなるため、ノズルの目詰まりを防ぐことができる。 Or the configuration of the third embodiment as described, not only to increase the aerosol generating efficiency continuously, since the possibility of discharging large aggregates decreases, it is possible to prevent clogging of the nozzle. さらに、粒子径が均一なものを排出するため、均一な膜を形成する効率が高くなる。 Further, for discharging those particle size uniform, the efficiency of forming a uniform film becomes high.

図9は本発明の実施例4を示す。 Figure 9 shows a fourth embodiment of the present invention. この形態のエアロゾル発生器30は、実施例3の構造に対して、ガス気流を注入するガス搬送管の形態のみ変更したものである。 Aerosol generator 30 of this embodiment, to the structure of the third embodiment is a modification only form of gas delivery tube for injecting the gas stream.

具体的には、第4のフィルタ14に対してガスが流れる方向の上流、つまり下面にガス搬送管17の注入口、第1のフィルタ11の下面にガス搬送管18の注入口を備えている。 Specifically, comprises an upstream direction of gas flow, i.e. the inlet of the gas transport pipe 17 to the lower surface, the inlet of the gas transport pipe 18 to the lower surface of the first filter 11 with respect to the fourth filter 14 .

エアロゾル発生器30の内部側面に沿ってガス搬送管17とガス搬送管18が水平に導かれ、更にエアロゾル発生器30の底面に対して水平にガス気流を注入する際、互いに反対方向にガスを導くと、ガス搬送管18によって第1のフィルタ11の下面から注入されたガス気流で発生する渦巻状のエアロゾル気流に対してガス搬送管17からの反対方向のガス気流をぶつけることになる。 When along the interior side of the aerosol generator 30 gas transport pipe 17 and the gas transport pipe 18 is guided horizontally, further injecting horizontally gas stream with respect to the bottom surface of the aerosol generator 30, the gas in opposite directions directing the, it would hit the opposite direction of the gas stream from the gas delivery tube 17 relative to the spiral aerosol air flow generated by the gas flow injected from the lower surface of the first filter 11 by the gas transport pipe 18.

この結果、エアロゾル発生器30の中心軸部近傍に一次微粒子又はその小さな凝集体を含むエアロゾルが集まり、それらを有効的にエアロゾル発生器30から排出し、基板上へ噴射することができる。 As a result, it is possible to aerosol collection containing primary particles or small agglomerates in the vicinity of the central axis of the aerosol generator 30, and discharged them from effectively aerosol generator 30, it is injected onto the substrate.

図10は本発明の実施例5を示す。 Figure 10 shows a fifth embodiment of the present invention. この構成は、実施例3と同様の効果を更に得ることができる。 This configuration can further obtain the same effects as in Example 3. この形態のエアロゾル発生器30は、第1のフィルタ11に対してガスが流れる方向の上流、つまり下面からガス搬送管31にてガス気流31bが注入されて粉体のエアロゾル化を行う。 This form aerosol generator 30 of the upstream direction of gas flow, that is, the gas stream 31b is injected by a gas conveying pipe 31 from the lower surface performs aerosolization of the powder to the first filter 11.

これと同時に、第2のフィルタ12と第4のフィルタ14間に導かれたガス搬送管19とガス搬送管20からの互いの反対方向へのガス注入によって、エアロゾル発生器30の中心軸部近傍に一次微粒子又はその小さな凝集体を含むエアロゾルが集まり、それらを有効的にエアロゾル発生器30から排出し、基板上へ噴射することができる。 At the same time, the gas injection in the opposite direction to each other from the second filter 12 and fourth gas transport pipe 19 is guided between the filter 14 and the gas transport pipe 20, near the central axis of the aerosol generator 30 the aerosol collection containing primary particles or small aggregates discharged them from effectively aerosol generator 30 can be injected onto the substrate.

エアロゾルデポジション法による構造物の作製装置の模式図 Schematic diagram of a manufacturing apparatus of a structure by the aerosol deposition method 実施例1のエアロゾル発生器を説明する図 Diagram for explaining the aerosol generator of Example 1 実施例1の効果を説明する図 Diagram for explaining the effect of Example 1 実施例2の詳細を説明する図 Diagram for explaining the details of Example 2 実施例2の詳細を説明する図 Diagram for explaining the details of Example 2 実施例2のエアロゾル発生器を説明する図 Diagram for explaining the aerosol generator of Example 2 実施例3のエアロゾル発生器を説明する図 Diagram for explaining the aerosol generator of Example 3 実施例3の詳細を説明する図 Diagram for explaining the details of Example 3 実施例4のエアロゾル発生器を説明する図 Diagram for explaining the aerosol generator of Example 4 実施例5のエアロゾル発生器を説明する図 Diagram for explaining the aerosol generator of Example 5 従来技術の問題点を説明する図 Diagram for explaining the problems of the prior art

符号の説明 DESCRIPTION OF SYMBOLS

1 構造物の作製装置 2 膜形成部 3 エアロゾル発生部 4 エアロゾル搬送管 5 ノズル 6 搬送されたエアロゾル 7 構造物 7a 膜 7b 基板 8 ステージ 9 微粒子の粉体 9a 所定の大きさを有する微粒子 9b〜9i 凝集体 10、15 解砕片 11、第1のフィルタ 12、第2のフィルタ 13、第3のフィルタ 14、第4のフィルタ 16〜20、31 ガス搬送管 20 真空チャンバー 21 真空ポンプ 30 エアロゾル発生器 31a〜31c ガス気流 32 マスフローコントローラ 33 振動付加手段 Particulate 9b~9i having manufacturing apparatus 2 film forming unit 3 aerosol generator 4 aerosol carrier pipe 5 nozzle 6 conveyed aerosol 7 structure 7a film 7b substrate 8 stage 9 powder 9a predetermined sizes of the particles of 1 structure It aggregates 10,15 solution debris 11, the first filter 12, second filter 13, third filter 14, fourth filter 16~20,31 gas delivery tube 20 a vacuum chamber 21 a vacuum pump 30 aerosol generator 31a ~31c gas stream 32 mass flow controller 33 vibration adding means

Claims (8)

  1. 微粒子をガス中に分散したエアロゾルを基板へ噴射し、基板上に膜を形成するエアロゾルデポジション法による構造物の作製法において、解砕片と、該解砕片と接触しない第1のフィルタと、該第1のフィルタに対して前記ガスが流れる方向の下流側に設置され、前記解砕片を通過させず前記第1のフィルタの孔よりも大きな孔で構成される第2のフィルタと、を有したエアロゾル発生器内で、前記微粒子から成る粉体と前記解砕片を混在させて前記第2のフィルタに対して前記ガスが流れる方向の下流側に配置し、前記第1のフィルタを介して前記粉体へ前記ガスを注入してエアロゾルを発生させ、該エアロゾルを前記基板が設置された方へ搬送すべく排出することを特徴とする構造物の作製方法。 Fine particles jetted aerosol dispersed in the gas to the substrate, the manufacturing method of the structure according to the aerosol deposition method for forming a film on a substrate, and the solution debris, a first filter that is not in contact with 該解 debris, the It is located downstream of the direction in which the gas flows to the first filter, having a second filter composed of larger pores than the pores of the first filter without passing through the solution debris in an aerosol generator, wherein a mix of powder and the solution debris consisting of fine particles disposed on the downstream side in the direction in which the gas flows to the second filter, the powder through the first filter by injecting the gas into the body to generate an aerosol, a manufacturing method of the structure, characterized in that the discharge in order to convey the aerosol toward the substrate is placed.
  2. 前記微粒子はセラミックから成ることを特徴とする請求項1に記載の構造物の作製方法。 Manufacturing method of the fine structure of claim 1, characterized in that it consists of ceramic.
  3. 前記エアロゾル発生器に、機械的振動を与えることを特徴とする請求項1又は2に記載の構造物の作製方法。 The method for manufacturing a structure according to claim 1 or 2, characterized in that the aerosol generator to provide a mechanical vibration.
  4. 前記第1のフィルタと、前記第2のフィルタの間に隙間を設けたことを特徴とする請求項1から3のいずれかに記載の構造物の作製方法。 Wherein a first filter, a method for manufacturing a structure according to any one of claims 1 to 3, characterized in that a gap is provided between the second filter.
  5. エアロゾル発生器内に噴射されたガスに微粒子が分散されることによって発生したエアロゾルを用いて構造物を作製する装置において、前記エアロゾル発生器は、 その内部に第1のフィルタと第2のフィルタとを備えており、 An apparatus for making a structure with an aerosol particles in the aerosol generator injected gas within occurs by the Rukoto is dispersed minute, the aerosol generator includes a first filter therein second and a filter,
    前記第2のフィルタは、前記エアロゾル発生器の内部に前記微粒子からなる紛体と共に収納される解砕片と前記第1のフィルタとが接触しないように前記第1のフィルタの上側に設けられると共に、前記解砕片を通過させず、前記第1のフィルタの孔よりも大きな孔を有しており、 It said second filter is provided in an upper side of the aerosol generator inside powder the first filter so as accommodated are solutions debris and the first filter is not in contact with consisting of the fine particles of the without passing the solution debris has large pores than the pores of the first filter,
    前記第1のフィルタの下側から前記エアロゾル発生器の内部に前記ガスが噴射されることを特徴とする構造物の作製装置。 The apparatus for producing structures, wherein said that the gas is injected from the lower side of the first filter within said aerosol generator.
  6. 前記微粒子はセラミックから成ることを特徴とする請求項5に記載の構造物の作製装置。 The apparatus for producing the fine particles structure according to claim 5, characterized in that it consists of ceramic.
  7. 前記エアロゾル発生器に、機械的振動を与える振動手段を有することを特徴とする請求項5又は6に記載の構造物の作製装置。 Wherein the aerosol generator, manufacturing device of a structure according to claim 5 or 6, characterized in that it comprises a vibrating means for applying mechanical vibrations.
  8. 前記第1のフィルタと、前記第2のフィルタの間に隙間を設けたことを特徴とする請求項5から7のいずれかに記載の構造物の作製装置。 Wherein the first filter, producing device of a structure according to any one of 7 to claim 5, characterized in that a gap is provided between the second filter.
JP2007081801A 2007-03-27 2007-03-27 Preparation device manufacturing method and structure using the same structure Active JP5049625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081801A JP5049625B2 (en) 2007-03-27 2007-03-27 Preparation device manufacturing method and structure using the same structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081801A JP5049625B2 (en) 2007-03-27 2007-03-27 Preparation device manufacturing method and structure using the same structure

Publications (2)

Publication Number Publication Date
JP2008240063A true JP2008240063A (en) 2008-10-09
JP5049625B2 true JP5049625B2 (en) 2012-10-17

Family

ID=39911747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081801A Active JP5049625B2 (en) 2007-03-27 2007-03-27 Preparation device manufacturing method and structure using the same structure

Country Status (1)

Country Link
JP (1) JP5049625B2 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7647084B2 (en) 2005-08-08 2010-01-12 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7650177B2 (en) 2005-09-29 2010-01-19 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US7657295B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7657296B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Unitary medical sensor assembly and technique for using the same
US7676253B2 (en) 2005-09-29 2010-03-09 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7680522B2 (en) 2006-09-29 2010-03-16 Nellcor Puritan Bennett Llc Method and apparatus for detecting misapplied sensors
US7796403B2 (en) 2006-09-28 2010-09-14 Nellcor Puritan Bennett Llc Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US7869849B2 (en) 2006-09-26 2011-01-11 Nellcor Puritan Bennett Llc Opaque, electrically nonconductive region on a medical sensor
US7880884B2 (en) 2008-06-30 2011-02-01 Nellcor Puritan Bennett Llc System and method for coating and shielding electronic sensor components
US7881762B2 (en) 2005-09-30 2011-02-01 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US7887345B2 (en) 2008-06-30 2011-02-15 Nellcor Puritan Bennett Llc Single use connector for pulse oximetry sensors
US7890153B2 (en) 2006-09-28 2011-02-15 Nellcor Puritan Bennett Llc System and method for mitigating interference in pulse oximetry
US7894869B2 (en) 2007-03-09 2011-02-22 Nellcor Puritan Bennett Llc Multiple configuration medical sensor and technique for using the same
US7899510B2 (en) 2005-09-29 2011-03-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8071935B2 (en) 2008-06-30 2011-12-06 Nellcor Puritan Bennett Llc Optical detector with an overmolded faraday shield
US8145288B2 (en) 2006-08-22 2012-03-27 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8175671B2 (en) 2006-09-22 2012-05-08 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8190224B2 (en) 2006-09-22 2012-05-29 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8199007B2 (en) 2007-12-31 2012-06-12 Nellcor Puritan Bennett Llc Flex circuit snap track for a biometric sensor
US8260391B2 (en) 2005-09-12 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US8311601B2 (en) 2009-06-30 2012-11-13 Nellcor Puritan Bennett Llc Reflectance and/or transmissive pulse oximeter
US8319401B2 (en) 2010-04-30 2012-11-27 Nellcor Puritan Bennett Llc Air movement energy harvesting with wireless sensors
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
US8352010B2 (en) 2005-09-30 2013-01-08 Covidien Lp Folding medical sensor and technique for using the same
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8352009B2 (en) 2005-09-30 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8364224B2 (en) 2008-03-31 2013-01-29 Covidien Lp System and method for facilitating sensor and monitor communication
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8417309B2 (en) 2008-09-30 2013-04-09 Covidien Lp Medical sensor
US8417310B2 (en) 2009-08-10 2013-04-09 Covidien Lp Digital switching in multi-site sensor
US8428675B2 (en) 2009-08-19 2013-04-23 Covidien Lp Nanofiber adhesives used in medical devices
US8433383B2 (en) 2001-10-12 2013-04-30 Covidien Lp Stacked adhesive optical sensor
US8452364B2 (en) 2007-12-28 2013-05-28 Covidien LLP System and method for attaching a sensor to a patient's skin
US8452366B2 (en) 2009-03-16 2013-05-28 Covidien Lp Medical monitoring device with flexible circuitry
US8483790B2 (en) 2002-10-18 2013-07-09 Covidien Lp Non-adhesive oximeter sensor for sensitive skin
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US8634891B2 (en) 2009-05-20 2014-01-21 Covidien Lp Method and system for self regulation of sensor component contact pressure
US8649839B2 (en) 1996-10-10 2014-02-11 Covidien Lp Motion compatible sensor for non-invasive optical blood analysis
US8649838B2 (en) 2010-09-22 2014-02-11 Covidien Lp Wavelength switching for pulse oximetry
US8781548B2 (en) 2009-03-31 2014-07-15 Covidien Lp Medical sensor with flexible components and technique for using the same
US8818473B2 (en) 2010-11-30 2014-08-26 Covidien Lp Organic light emitting diodes and photodetectors
US8897850B2 (en) 2007-12-31 2014-11-25 Covidien Lp Sensor with integrated living hinge and spring
US9078610B2 (en) 2010-02-22 2015-07-14 Covidien Lp Motion energy harvesting with wireless sensors

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101309960B1 (en) * 2010-12-28 2013-09-17 주식회사 포스코 Device for supplying aerosol
JP5928132B2 (en) * 2012-04-26 2016-06-01 富士通株式会社 Film forming apparatus and a film forming method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53145267A (en) * 1977-05-20 1978-12-18 Toshiba Corp Pulverulent body feeder
JPH074557B2 (en) * 1990-10-23 1995-01-25 株式会社栗本鐵工所 Airflow crushing methods using grinding media
JP2002035698A (en) * 2000-07-27 2002-02-05 Kubota Corp Wind power screen device and screen mesh structure
JP3809860B2 (en) * 2001-11-29 2006-08-16 東陶機器株式会社 Composite structure manufacturing method and composite structure manufacturing apparatus

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8649839B2 (en) 1996-10-10 2014-02-11 Covidien Lp Motion compatible sensor for non-invasive optical blood analysis
US8433383B2 (en) 2001-10-12 2013-04-30 Covidien Lp Stacked adhesive optical sensor
US8483790B2 (en) 2002-10-18 2013-07-09 Covidien Lp Non-adhesive oximeter sensor for sensitive skin
US8528185B2 (en) 2005-08-08 2013-09-10 Covidien Lp Bi-stable medical sensor and technique for using the same
US7657296B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Unitary medical sensor assembly and technique for using the same
US7647084B2 (en) 2005-08-08 2010-01-12 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7657294B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US7684843B2 (en) 2005-08-08 2010-03-23 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7693559B2 (en) 2005-08-08 2010-04-06 Nellcor Puritan Bennett Llc Medical sensor having a deformable region and technique for using the same
US7657295B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7738937B2 (en) 2005-08-08 2010-06-15 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8311602B2 (en) 2005-08-08 2012-11-13 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US8260391B2 (en) 2005-09-12 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US8600469B2 (en) 2005-09-29 2013-12-03 Covidien Lp Medical sensor and technique for using the same
US7869850B2 (en) 2005-09-29 2011-01-11 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US8965473B2 (en) 2005-09-29 2015-02-24 Covidien Lp Medical sensor for reducing motion artifacts and technique for using the same
US7676253B2 (en) 2005-09-29 2010-03-09 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7650177B2 (en) 2005-09-29 2010-01-19 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US7729736B2 (en) 2005-09-29 2010-06-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7899510B2 (en) 2005-09-29 2011-03-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7904130B2 (en) 2005-09-29 2011-03-08 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8060171B2 (en) 2005-09-29 2011-11-15 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US8352009B2 (en) 2005-09-30 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US7881762B2 (en) 2005-09-30 2011-02-01 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US8352010B2 (en) 2005-09-30 2013-01-08 Covidien Lp Folding medical sensor and technique for using the same
US8437826B2 (en) 2006-05-02 2013-05-07 Covidien Lp Clip-style medical sensor and technique for using the same
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8145288B2 (en) 2006-08-22 2012-03-27 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8577436B2 (en) 2006-08-22 2013-11-05 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8190224B2 (en) 2006-09-22 2012-05-29 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8190225B2 (en) 2006-09-22 2012-05-29 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8175671B2 (en) 2006-09-22 2012-05-08 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8195264B2 (en) 2006-09-22 2012-06-05 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US7869849B2 (en) 2006-09-26 2011-01-11 Nellcor Puritan Bennett Llc Opaque, electrically nonconductive region on a medical sensor
US7890153B2 (en) 2006-09-28 2011-02-15 Nellcor Puritan Bennett Llc System and method for mitigating interference in pulse oximetry
US7796403B2 (en) 2006-09-28 2010-09-14 Nellcor Puritan Bennett Llc Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
US8660626B2 (en) 2006-09-28 2014-02-25 Covidien Lp System and method for mitigating interference in pulse oximetry
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US7680522B2 (en) 2006-09-29 2010-03-16 Nellcor Puritan Bennett Llc Method and apparatus for detecting misapplied sensors
US7894869B2 (en) 2007-03-09 2011-02-22 Nellcor Puritan Bennett Llc Multiple configuration medical sensor and technique for using the same
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8577434B2 (en) 2007-12-27 2013-11-05 Covidien Lp Coaxial LED light sources
US8452364B2 (en) 2007-12-28 2013-05-28 Covidien LLP System and method for attaching a sensor to a patient's skin
US8897850B2 (en) 2007-12-31 2014-11-25 Covidien Lp Sensor with integrated living hinge and spring
US8199007B2 (en) 2007-12-31 2012-06-12 Nellcor Puritan Bennett Llc Flex circuit snap track for a biometric sensor
US8364224B2 (en) 2008-03-31 2013-01-29 Covidien Lp System and method for facilitating sensor and monitor communication
US8071935B2 (en) 2008-06-30 2011-12-06 Nellcor Puritan Bennett Llc Optical detector with an overmolded faraday shield
US7880884B2 (en) 2008-06-30 2011-02-01 Nellcor Puritan Bennett Llc System and method for coating and shielding electronic sensor components
US7887345B2 (en) 2008-06-30 2011-02-15 Nellcor Puritan Bennett Llc Single use connector for pulse oximetry sensors
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8417309B2 (en) 2008-09-30 2013-04-09 Covidien Lp Medical sensor
US8452366B2 (en) 2009-03-16 2013-05-28 Covidien Lp Medical monitoring device with flexible circuitry
US8781548B2 (en) 2009-03-31 2014-07-15 Covidien Lp Medical sensor with flexible components and technique for using the same
US8634891B2 (en) 2009-05-20 2014-01-21 Covidien Lp Method and system for self regulation of sensor component contact pressure
US8311601B2 (en) 2009-06-30 2012-11-13 Nellcor Puritan Bennett Llc Reflectance and/or transmissive pulse oximeter
US8417310B2 (en) 2009-08-10 2013-04-09 Covidien Lp Digital switching in multi-site sensor
US8428675B2 (en) 2009-08-19 2013-04-23 Covidien Lp Nanofiber adhesives used in medical devices
US9078610B2 (en) 2010-02-22 2015-07-14 Covidien Lp Motion energy harvesting with wireless sensors
US8319401B2 (en) 2010-04-30 2012-11-27 Nellcor Puritan Bennett Llc Air movement energy harvesting with wireless sensors
US8649838B2 (en) 2010-09-22 2014-02-11 Covidien Lp Wavelength switching for pulse oximetry
US8818473B2 (en) 2010-11-30 2014-08-26 Covidien Lp Organic light emitting diodes and photodetectors

Also Published As

Publication number Publication date Type
JP2008240063A (en) 2008-10-09 application

Similar Documents

Publication Publication Date Title
US6623796B1 (en) Method of producing a coating using a kinetic spray process with large particles and nozzles for the same
US20090224066A1 (en) Ultrasonic atomizing nozzle methods for the food industry
US7244466B2 (en) Kinetic spray nozzle design for small spot coatings and narrow width structures
US20030190413A1 (en) Method of maintaining a non-obstructed interior opening in kinetic spray nozzles
US5435945A (en) Method and apparatus for generating sulphur seed particles for sulphur granule production
JPH08158033A (en) Production of fine-structure thick film material and device therefor
US20060121187A1 (en) Vacuum cold spray process
US20060038044A1 (en) Replaceable throat insert for a kinetic spray nozzle
US20110104369A1 (en) Apparatus and method for continuous powder coating
US5711489A (en) Electrostatic powder coating method and apparatus
US20050214474A1 (en) Kinetic spray nozzle system design
US20040058065A1 (en) Spray system with combined kinetic spray and thermal spray ability
JP2002292266A (en) Fluidized bed granulation drier facilitating flow of object to be treated
US20050040260A1 (en) Coaxial low pressure injection method and a gas collimator for a kinetic spray nozzle
JP2000202220A (en) Double-layered structural honeycomb filter and its production
JP2003119575A (en) Method and apparatus for forming composite structure
US6040004A (en) Method and apparatus for fabricating a particle-coated substrate, and such substrate
JPH1133386A (en) Method and apparatus for batchwise granulation-coating
JPH10267806A (en) Ultrasonic atomizing device
US20120156969A1 (en) Abrasive jet systems, including abrasive jet systems utilizing fluid repelling materials, and associated methods
JP2006198577A (en) Classification method of finely divided particle and film forming method
JPH07313941A (en) Separating and removing apparatus and method for fine powder granule of polymer pellet
JP2003275630A (en) Film formation device and method of forming film
KR101363021B1 (en) Spray nozzle
US20110070365A1 (en) Method for manufacturing film-formed body

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3