JP2008045191A - Apparatus and method for depositing coating film - Google Patents

Apparatus and method for depositing coating film Download PDF

Info

Publication number
JP2008045191A
JP2008045191A JP2006224261A JP2006224261A JP2008045191A JP 2008045191 A JP2008045191 A JP 2008045191A JP 2006224261 A JP2006224261 A JP 2006224261A JP 2006224261 A JP2006224261 A JP 2006224261A JP 2008045191 A JP2008045191 A JP 2008045191A
Authority
JP
Japan
Prior art keywords
aerosol
fine particles
film
base material
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006224261A
Other languages
Japanese (ja)
Inventor
Akinari Ohira
晃也 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006224261A priority Critical patent/JP2008045191A/en
Publication of JP2008045191A publication Critical patent/JP2008045191A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating film depositing apparatus capable of crushing coarse coagulated powder or the like forming a factor of impairing the film growth by the etching effect or the like in the AD method, and easily increasing the rate of generation of primary particles, and having excellent film deposition rate and film deposition efficiency, and a coating film depositing method using the apparatus. <P>SOLUTION: The coating film depositing apparatus comprises an aerosol generation device 9 for forming aerosol by diffusing particles of ceramic or the like in a gas, a vacuum chamber 3, and an aerosol jet nozzle 2 arranged in the vacuum chamber 3, and performs the film deposition by jetting aerosol onto a base material 5 from the aerosol jet nozzle 2 by the aerosol deposition method. Aerosol is jetted from the aerosol jet nozzle 2 at the angle of ejection symmetric to the perpendicular to the base material 5, and particles are collided with each other before collision with the base material 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、エアロゾルデポジション法(以下、AD法と記す)において、エアロゾル噴射ノズルより噴射されたエアロゾル中の微粒子同士を衝突させた後、基材に衝突させてセラミックス被膜を形成する被膜形成装置および該装置を用いる被膜形成方法に関する。   The present invention relates to an aerosol deposition method (hereinafter referred to as AD method) in which fine particles in an aerosol ejected from an aerosol ejection nozzle collide with each other and then collide with a substrate to form a ceramic coating. And a film forming method using the apparatus.

基板上の膜の形成方法として、微粒子ビーム堆積法あるいはAD法と呼ばれる脆性材料の膜や構造物の形成方法がある。AD法は、脆性材料の微粒子を含むエアロゾルをノズルから基板に向けて噴射し、基板に微粒子を衝突させて、その機械的衝撃力を利用して脆性材料の多結晶構造物を基板上にダイレクトに形成する方法である。
成膜効率を向上させるには、一次粒子のみを基材に衝突させることが好ましい。一次粒子の割合を増やす手法として、被膜形成装置に分級装置を組み込み一次粒子の含有比率の高いエアロゾルをエアロゾル噴射ノズルから噴射する方法が知られている(例えば、特許文献1参照)。また、被膜形成装置に分級装置と、解砕装置とを組み込み、一次粒子の含有比率の高いエアロゾルをエアロゾル噴射ノズルから噴射する方法が知られている(例えば、特許文献2参照)。
As a method for forming a film on a substrate, there is a method for forming a film or structure of a brittle material called a fine particle beam deposition method or an AD method. In the AD method, an aerosol containing fine particles of a brittle material is sprayed from a nozzle toward the substrate, the fine particles collide with the substrate, and the polycrystalline structure of the brittle material is directly applied to the substrate using the mechanical impact force. It is the method of forming.
In order to improve the film forming efficiency, it is preferable that only the primary particles collide with the substrate. As a method for increasing the ratio of primary particles, a method is known in which a classification device is incorporated in a film forming apparatus and aerosol with a high content ratio of primary particles is injected from an aerosol injection nozzle (see, for example, Patent Document 1). Further, there is known a method in which a classification device and a crushing device are incorporated in a film forming apparatus, and an aerosol having a high primary particle content ratio is injected from an aerosol injection nozzle (for example, see Patent Document 2).

しかしながら、これらの方法では装置が大掛かりになる欠点があった。また、このような装置を用いても噴射ノズルを通過する際、再凝集する可能性があった。
すなわち、従来のAD法におけるノズル先端部形状の一例を図3を参照して説明する。図3に示すように、ノズル12は、矩形形状の吐出開口部12aを有し、該開口部12aから微粒子を含むエアロゾルを噴射する。エアロゾル中の微粒子は急激に流路が狭くなる吐出開口部12aを通過する際、激しく粒子間接触して容易に再凝集してXYテーブル4上に取り付けられた基材5に噴射される。噴射された粗大なセラミックス凝集粉は凝集粉同士がほとんど衝突することなく基材5に衝突する。基材に衝突した粗大なセラミックス凝集粉はエッチング効果等により膜成長を阻害する要因となり堆積物や構造物の密度が上がらず、機械的強度が小さくなるため、基材5上に形成される被膜5aや構造物の均一性が損なわれる等の問題がある。
特開平11−21677号公報 特開2001−181859号公報
However, these methods have a drawback that the apparatus becomes large. In addition, even when such an apparatus is used, there is a possibility of re-aggregation when passing through the injection nozzle.
That is, an example of the nozzle tip shape in the conventional AD method will be described with reference to FIG. As shown in FIG. 3, the nozzle 12 has a rectangular discharge opening 12a, and injects aerosol containing fine particles from the opening 12a. When the fine particles in the aerosol pass through the discharge opening 12a where the flow path is suddenly narrowed, they are violently contacted between the particles and easily re-aggregated and sprayed onto the base material 5 mounted on the XY table 4. The ejected coarse ceramic aggregate powder collides with the substrate 5 with almost no collision between the aggregate powders. Coarse ceramic agglomerated powder that has collided with the base material becomes a factor that hinders film growth due to an etching effect or the like, and the density of deposits and structures does not increase and the mechanical strength decreases. There is a problem that the uniformity of 5a and the structure is impaired.
Japanese Patent Laid-Open No. 11-21677 JP 2001-181859 A

本発明はこのような問題に対処するためになされたものであり、AD法においてエッチング効果等により膜成長を阻害する要因となる粗大な凝集粉等を解砕し、一次粒子の発生割合を容易に増やすことができ、成膜速度および成膜効率に優れる被膜形成装置および該装置を用いる被膜形成方法を提供することを目的とする。   The present invention has been made in order to cope with such problems. In the AD method, coarse agglomerated powder, which becomes a factor that hinders film growth due to an etching effect or the like, is crushed and the generation ratio of primary particles is easily achieved. An object of the present invention is to provide a film forming apparatus excellent in film forming speed and film forming efficiency and a film forming method using the apparatus.

本発明の被膜形成装置は、微粒子をガス中に分散させてエアロゾルとするエアロゾル発生装置と、真空チャンバーと、該真空チャンバー内に配設されたエアロゾル噴射ノズルとを備え、AD法により上記エアロゾル噴射ノズルからエアロゾルを基材上に噴射し衝突させて成膜を行なう被膜形成装置であって、上記エアロゾル噴射ノズルは、該噴射ノズルの吐出開口部から噴射された微粒子が基材に衝突する前に、該微粒子同士を衝突させることができるノズルであることを特徴とする。   The coating film forming apparatus of the present invention comprises an aerosol generator for dispersing fine particles in a gas to form an aerosol, a vacuum chamber, and an aerosol injection nozzle disposed in the vacuum chamber. An apparatus for forming a film that forms a film by spraying an aerosol onto a base material from a nozzle and colliding with the aerosol spray nozzle before the fine particles sprayed from the discharge opening of the spray nozzle collide with the base material The nozzle is capable of causing the fine particles to collide with each other.

上記微粒子はセラミックス微粒子であり、平均粒子径が 0.1μm 〜 2μm であることを特徴とする。また、上記セラミックス微粒子は、アルミナ微粒子であることを特徴とする。
また、上記ガスは、アルゴン、窒素またはヘリウムを含む不活性ガスであることを特徴とする。
The fine particles are ceramic fine particles having an average particle size of 0.1 μm to 2 μm. The ceramic fine particles are alumina fine particles.
The gas is an inert gas containing argon, nitrogen, or helium.

本発明の被膜形成方法は、微粒子をガス中に分散させてエアロゾルを形成するエアロゾル形成工程と、上記エアロゾルを真空チャンバー内でエアロゾル噴射ノズルから基材上に噴射し衝突させて成膜を行なう成膜工程とを備えてなる、AD法による被膜形成方法であって、上記成膜工程は、エアロゾル噴射ノズルから噴射された微粒子同士を衝突させた後、基材に衝突させる工程であることを特徴とする。   The film forming method of the present invention comprises an aerosol forming step in which fine particles are dispersed in a gas to form an aerosol, and a film is formed by injecting and colliding the aerosol from an aerosol injection nozzle onto a substrate in a vacuum chamber. A film forming method by an AD method comprising a film process, wherein the film forming process is a process of colliding fine particles ejected from an aerosol spray nozzle with each other and then colliding with a substrate. And

本発明の被膜形成装置は、微粒子をガス中に分散させてエアロゾルとするエアロゾル発生装置と、真空チャンバーと、該真空チャンバー内に配設されたエアロゾル噴射ノズルとを備え、このエアロゾル噴射ノズルは、該噴射ノズルの吐出開口部から噴射された微粒子が基材に衝突する前に、該微粒子同士を衝突させることができるノズルであるので、微粒子同士の衝突により凝集粉が解砕され、解砕された微粒子が基材に衝突するため、基材上での被膜の均一性に優れ、成膜速度や成膜効率も向上する。   The film forming apparatus of the present invention includes an aerosol generating device in which fine particles are dispersed in a gas to form an aerosol, a vacuum chamber, and an aerosol injection nozzle disposed in the vacuum chamber. Since the fine particles injected from the discharge opening of the injection nozzle can collide with the fine particles before colliding with the base material, the agglomerated powder is crushed and broken by the collision of the fine particles. Since the fine particles collide with the base material, the uniformity of the coating on the base material is excellent, and the film forming speed and film forming efficiency are improved.

本発明の被膜形成方法は、その成膜工程がエアロゾル噴射ノズルから噴射された微粒子同士を衝突させた後、基材に衝突させる工程であるので、微粒子同士の衝突により凝集粉が解砕され、凝集粉の比率が減少した微粒子が基材に衝突するため、基材上での被膜の均一性に優れ、成膜速度や成膜効率も向上する。   In the film forming method of the present invention, the film formation step is a step of causing the fine particles injected from the aerosol injection nozzle to collide with each other and then colliding with the base material. Since the fine particles having a reduced ratio of the agglomerated powder collide with the base material, the uniformity of the coating on the base material is excellent, and the film forming speed and film forming efficiency are improved.

本発明においてAD法は、セラミックス等の微粒子をガス中に分散させたエアロゾルを基材に向けてエアロゾル噴射ノズルより噴射し、エアロゾルをこの基材表面に高速で衝突させ、微粒子の構成材料からなる被膜を基材上に形成させる方法である。一般にセラミックス微粒子は、静置保管中の粒子間堆積やエアロゾル形成時の粒子間衝突により一部凝集して二次粒子となりセラミックス凝集粉を形成しやすい。このセラミックス凝集粉等の粗大なセラミックス微粒子を含むエアロゾルはセラミックス被膜の成膜性や緻密性を阻害する。
よって、本発明の被膜形成装置および該装置を用いる被膜形成方法では、エアロゾル噴射ノズルから基材に対してエアロゾルを噴射させ、基材との衝突前に微粒子を相互に衝突させることで凝集粉を解砕し、被膜特性の向上や、成膜速度および成膜効率の向上を図っている。エアロゾル中の一次粒子等の微細なセラミックス微粒子は、衝突により粉砕し、清浄な新生表面を形成し、低温接合を生じさせるので、室温で微粒子同士の接合を実現できる。
In the present invention, the AD method comprises an aerosol in which fine particles such as ceramics are dispersed in a gas, sprayed from an aerosol spray nozzle toward a base material, and the aerosol collides with the surface of the base material at a high speed, and consists of a constituent material of the fine particles. This is a method of forming a film on a substrate. In general, ceramic fine particles are likely to partially aggregate to form secondary particles due to interparticle deposition during stationary storage or collision between particles during aerosol formation, and easily form ceramic aggregated powder. The aerosol containing coarse ceramic fine particles such as ceramic aggregate powder inhibits the film formability and denseness of the ceramic coating.
Therefore, in the film forming apparatus of the present invention and the film forming method using the apparatus, the aerosol is sprayed onto the base material from the aerosol spray nozzle, and the fine particles collide with each other before the collision with the base material. It is crushed to improve the film characteristics and to improve the film forming speed and film forming efficiency. Fine ceramic fine particles such as primary particles in the aerosol are pulverized by collision to form a clean new surface and cause low-temperature bonding. Therefore, bonding between the fine particles can be realized at room temperature.

本発明の一実施例に係る被膜形成装置の構成例を図4に基づいて説明する。図4は基材表面に被膜を形成する場合の被膜形成装置の構成を示す図である。
図4に示すように、AD法による被膜形成装置1は、エアロゾル発生装置9と、真空チャンバー3とを有する。真空チャンバー3内には、セラミックス被膜形成対象である基材5と、エアロゾル噴射ノズル2とが配設されている。真空ポンプ8によって真空チャンバー3は減圧下に保たれる。微粒子フィルター7は、真空ポンプ8へのセラミックス微粒子の混入を防止するために設けられている。
セラミックス微粒子はエアロゾル発生装置9において、ガス供給設備6から供給される搬送ガスと混合され、エアロゾルを形成する。搬送ガスの流れと真空ポンプ8の吸引とによりエアロゾルは真空チャンバー3内のエアロゾル噴射ノズル2に供給される。このエアロゾル噴射ノズル2に供給されるエアロゾル中には、セラミックス微粒子と、セラミックス微粒子の一部が凝集し、二次粒子化した凝集粉とが含まれる。
エアロゾルのエアロゾル噴射ノズル2への供給速度は、ガス供給設備6からの搬送ガスの供給圧力および真空チャンバー3内の減圧度によって調整される。エアロゾルの搬送ガスとしては、不活性ガスを使用する。使用可能な不活性ガスとしては、アルゴン、窒素、ヘリウム等が挙げられる。
A configuration example of a film forming apparatus according to an embodiment of the present invention will be described with reference to FIG. FIG. 4 is a diagram showing a configuration of a film forming apparatus when a film is formed on the substrate surface.
As shown in FIG. 4, the film forming apparatus 1 based on the AD method includes an aerosol generator 9 and a vacuum chamber 3. In the vacuum chamber 3, a base material 5 on which a ceramic film is to be formed and an aerosol injection nozzle 2 are disposed. The vacuum chamber 3 is kept under reduced pressure by the vacuum pump 8. The particulate filter 7 is provided in order to prevent ceramic particulates from being mixed into the vacuum pump 8.
The ceramic fine particles are mixed with the carrier gas supplied from the gas supply facility 6 in the aerosol generator 9 to form an aerosol. The aerosol is supplied to the aerosol injection nozzle 2 in the vacuum chamber 3 by the flow of the carrier gas and the suction of the vacuum pump 8. The aerosol supplied to the aerosol injection nozzle 2 includes ceramic fine particles and agglomerated powder in which a part of the ceramic fine particles are aggregated to form secondary particles.
The supply speed of the aerosol to the aerosol injection nozzle 2 is adjusted by the supply pressure of the carrier gas from the gas supply facility 6 and the degree of pressure reduction in the vacuum chamber 3. An inert gas is used as the aerosol carrier gas. Usable inert gases include argon, nitrogen, helium and the like.

エアロゾルは図中B部分にてエアロゾル噴射ノズル2から噴射され、基材5上に到達する前に、エアロゾル中の微粒子同士が衝突して、凝集粉が解砕された状態で基材5上に衝突しセラミックス被膜が形成される。エアロゾル噴射ノズル2の詳細については、図1および図2を用いて後述する。
基材5は、真空チャンバー3内において、XYテーブル4上に固定され軸方向に移動させられる(図中A)。
なお、以上の構成において、エアロゾル噴射ノズル2以外のエアロゾル発生装置等については、AD法において通常使用される任意の装置・部品等を利用できる。
The aerosol is injected from the aerosol injection nozzle 2 at a portion B in the figure, and before reaching the base material 5, the fine particles in the aerosol collide with each other and the aggregated powder is crushed on the base material 5 Colliding to form a ceramic coating. Details of the aerosol injection nozzle 2 will be described later with reference to FIGS. 1 and 2.
The substrate 5 is fixed on the XY table 4 and moved in the axial direction in the vacuum chamber 3 (A in the figure).
In the above-described configuration, any device / part or the like normally used in the AD method can be used for the aerosol generator other than the aerosol injection nozzle 2.

図1は本発明に係る一実施例として図4のB部分の詳細を示す図である。図1に示すようにエアロゾル噴射ノズル2bおよび2cは、それぞれ吐出開口部2dおよび2eから、基材5に対する垂線に対称となる噴射角度αでエアロゾルを基材5に向けて噴射する。噴射角度αで噴射されたエアロゾル中の微粒子はXYテーブル4に取り付けられた基材5との衝突前に相互に衝突し、微粒子中の凝集粉は解砕され、一次粒子等の微細なセラミックス微粒子も、衝突により粉砕し、清浄な新生表面を形成して、基材5に衝突して被膜5bが形成される。
なおセラミックス微粒子の衝突位置C点は、エアロゾル噴射ノズル2bおよび2cのそれぞれの吐出開口部2dおよび2eの中心から吐出されるセラミックス微粒子の衝突位置を示す。
FIG. 1 is a diagram showing details of a portion B of FIG. 4 as an embodiment according to the present invention. As shown in FIG. 1, the aerosol injection nozzles 2 b and 2 c inject the aerosol toward the base material 5 from the discharge openings 2 d and 2 e, respectively, at an injection angle α that is symmetric with respect to the perpendicular to the base material 5. The fine particles in the aerosol injected at the injection angle α collide with each other before the collision with the base material 5 attached to the XY table 4, the aggregated powder in the fine particles is crushed, and fine ceramic fine particles such as primary particles. Also, it is pulverized by collision to form a clean new surface, and collides with the substrate 5 to form the coating 5b.
The ceramic particle collision position C indicates the collision position of the ceramic fine particles discharged from the centers of the discharge openings 2d and 2e of the aerosol injection nozzles 2b and 2c, respectively.

図2は本発明に係る他の実施例として図4のB部分の詳細を示す図である。図2に示すようにエアロゾル噴射ノズル2fは、吐出開口部2gから、基材5に対する垂線に対称となる噴射角度βでエアロゾルを基材5に向けて噴射する。噴射角度βで噴射されたエアロゾル中の微粒子はXYテーブル4に取り付けられた基材5との衝突前に相互に衝突し、微粒子中の凝集粉は解砕され、一次粒子等の微細なセラミックス微粒子も、衝突により粉砕し、清浄な新生表面を形成して、基材5に衝突して被膜5cが形成される。
なおセラミックス微粒子の衝突位置D点は、エアロゾル噴射ノズル2fの環状の吐出開口部2gの幅の中心から吐出されるセラミックス微粒子の衝突位置を示す。
FIG. 2 is a diagram showing details of a portion B of FIG. 4 as another embodiment according to the present invention. As shown in FIG. 2, the aerosol injection nozzle 2 f injects the aerosol toward the substrate 5 from the discharge opening 2 g at an injection angle β that is symmetric with respect to the perpendicular to the substrate 5. The fine particles in the aerosol injected at the injection angle β collide with each other before the collision with the base material 5 attached to the XY table 4, the aggregated powder in the fine particles is crushed, and fine ceramic fine particles such as primary particles. Also, it is pulverized by collision to form a clean new surface, and collides with the substrate 5 to form a coating 5c.
The ceramic particle collision position D indicates the collision position of ceramic fine particles discharged from the center of the width of the annular discharge opening 2g of the aerosol injection nozzle 2f.

図1および図2において、エアロゾル噴射ノズルの吐出開口部から噴射されたセラミックス微粒子が基材5に到達する前に、該セラミックス微粒子同士が衝突する状態を、エアロゾルの噴射角度を用いて模式的に説明したが、エアロゾル噴射ノズルの個数やエアロゾル噴射ノズルの吐出開口部は、エアロゾル噴射ノズルの吐出開口部から噴射されるセラミックス微粒子が基材に到達する前に、セラミックス微粒子同士が衝突できる状態であれば、上記実施例に限定されることはない。例えば、エアロゾル噴射ノズルは3個以上でも使用することができ、吐出開口部の形状も星型、多角形等の複雑な形状とすることができる。
なお、複雑形状の場合、光造形法を用いて紫外線硬化型樹脂でノズルを製造することもできる。
In FIG. 1 and FIG. 2, the state in which the ceramic fine particles injected from the discharge opening of the aerosol injection nozzle collide with each other before reaching the substrate 5 is schematically shown by using the aerosol injection angle. As described above, the number of aerosol injection nozzles and the discharge opening of the aerosol injection nozzle should be in a state where the ceramic fine particles can collide with each other before the ceramic fine particles injected from the discharge opening of the aerosol injection nozzle reach the substrate. For example, the present invention is not limited to the above embodiment. For example, three or more aerosol injection nozzles can be used, and the shape of the discharge opening can be a complicated shape such as a star or polygon.
In addition, in the case of a complicated shape, a nozzle can also be manufactured with an ultraviolet curable resin using an optical modeling method.

本発明の被膜形成装置において使用できる微粒子としては被膜形成可能なものであればよく、主にセラミックス微粒子が挙げられる。セラミックス微粒子としては、例えば、アルミナ、ジルコニア、チタニア等の酸化物、炭化ケイ素、窒化ケイ素等の微粒子が挙げられる。これらの中で、それぞれのセラミックスの高純度グレードにおいて、真比重が小さい方がエアロゾル化しやすいことから、アルミナ微粒子が好ましい。
セラミックス微粒子以外でも、シリコン、ゲルマニウムなどのへき開性の強い脆性材料の微粒子を使用することも可能である。
The fine particles that can be used in the film forming apparatus of the present invention may be any fine particles that can form a film, and mainly include ceramic fine particles. Examples of the ceramic fine particles include oxides such as alumina, zirconia, and titania, and fine particles such as silicon carbide and silicon nitride. Among these, alumina fine particles are preferred because the higher the specific gravity of each ceramic, the easier it is to aerosolize when the true specific gravity is smaller.
In addition to ceramic fine particles, fine particles of brittle materials with strong cleavage, such as silicon and germanium, can also be used.

本発明において使用する微粒子の平均粒子径は、0.1μm〜2μm であることが好ましい。0.1μm 未満では凝集しやすくエアロゾル化は困難であり、2μm をこえるとAD法での膜形成はできない(膜成長しない)。なお、本発明において平均粒子径は日機装株式会社製:レーザー式粒度分析計マイクロトラックMT3000によって測定した値である。
また、被膜形成を良好に行なうため、基材への衝突時に微粒子が容易に粉砕するように、ボールミル、ジェットミル等の粉砕機を用いて微粒子にクラックを予め形成しておくことが好ましい。
The average particle size of the fine particles used in the present invention is preferably 0.1 μm to 2 μm. If it is less than 0.1 μm, it is easy to agglomerate and aerosolization is difficult, and if it exceeds 2 μm, film formation by AD method cannot be performed (film growth does not occur). In the present invention, the average particle diameter is a value measured by Nikkiso Co., Ltd .: Laser type particle size analyzer Microtrac MT3000.
Further, in order to satisfactorily form a film, it is preferable to previously form cracks in the fine particles using a pulverizer such as a ball mill or a jet mill so that the fine particles are easily pulverized upon collision with the substrate.

本発明の被膜形成方法を、図4に示す被膜形成装置に基づいて説明する。
エアロゾルの形成工程として、エアロゾル発生装置9にセラミックス微粒子を投入し、真空ポンプ8を起動して真空チャンバー3およびエアロゾル発生装置9を減圧する。ガス供給設備6からエアロゾル発生装置9に搬送ガスを供給して、セラミックス微粒子と搬送ガスとからなるエアロゾルを形成する。
The film forming method of the present invention will be described based on the film forming apparatus shown in FIG.
As an aerosol forming step, ceramic fine particles are charged into the aerosol generator 9 and the vacuum pump 8 is activated to decompress the vacuum chamber 3 and the aerosol generator 9. A carrier gas is supplied from the gas supply facility 6 to the aerosol generator 9 to form an aerosol composed of ceramic fine particles and a carrier gas.

成膜工程として、真空チャンバー3内において、基材5を位置決め用XYテーブル4に取り付け、水平方向に移動させつつ(図中A)、エアロゾルを図中B部分にてエアロゾル噴射ノズル2から、基材5に対して噴射させ、基材5上に到達する前にエアロゾル中のセラミックス微粒子を衝突させて凝集粉を解砕させた状態で基材5上に衝突させセラミックス被膜を形成させる。被膜形成は、基材の用途に応じて被膜厚さが所定の膜厚となるまで行なう。基材に対して噴射させるエアロゾル噴射ノズル2の詳細については、図1および図2を用いて以下に説明する。   As a film forming process, the base material 5 is attached to the positioning XY table 4 in the vacuum chamber 3 and moved in the horizontal direction (A in the figure), while the aerosol is moved from the aerosol injection nozzle 2 at the portion B in the figure. It sprays with respect to the material 5, and before it reaches | attains on the base material 5, it collides with the base material 5 in the state which collided the ceramic fine particle in aerosol and crushed the aggregated powder, and forms a ceramic film. The film formation is performed until the film thickness reaches a predetermined film thickness depending on the use of the substrate. The details of the aerosol spray nozzle 2 that is sprayed onto the substrate will be described below with reference to FIGS. 1 and 2.

本発明の一実施例として図1に示すようにエアロゾル噴射ノズル2bおよび2cの、それぞれ吐出開口部2dおよび2eから、基材5に対する垂線に対称となる噴射角度αでエアロゾルを基材5に向けて噴射させ、XYテーブル4に取り付けられた基材5との衝突前に微粒子を衝突させることで、微粒子中の凝集粉が解砕され、かつ一次粒子等の微細なセラミックス微粒子も、衝突により粉砕し、清浄な新生表面を形成するので、基材5に衝突して形成される被膜5bの成膜効率を向上させることができる。   As an embodiment of the present invention, as shown in FIG. 1, the aerosol is directed toward the substrate 5 at an injection angle α that is symmetrical to the perpendicular to the substrate 5 from the discharge openings 2 d and 2 e of the aerosol injection nozzles 2 b and 2 c, respectively. By spraying and colliding the fine particles before colliding with the base material 5 attached to the XY table 4, the agglomerated powder in the fine particles is crushed and fine ceramic fine particles such as primary particles are also crushed by the collision. And since the clean new surface is formed, the film-forming efficiency of the coating 5b formed by colliding with the base material 5 can be improved.

本発明の他の実施例として図2に示すようにエアロゾル噴射ノズル2fの吐出開口部2gから、基材5に対する垂線に対称となる噴射角度βでエアロゾルを基材5に向けて噴射させ、XYテーブル4に取り付けられた基材5との衝突前に微粒子を衝突させることで、微粒子中の凝集粉が解砕され、かつ一次粒子等の微細なセラミックス微粒子も、衝突により粉砕し、清浄な新生表面を形成するので、基材5に衝突して形成される被膜5cの成膜効率を向上させることができる。   As another embodiment of the present invention, as shown in FIG. 2, the aerosol is sprayed from the discharge opening 2g of the aerosol spray nozzle 2f toward the base material 5 at a spray angle β that is symmetrical to the perpendicular to the base material 5, and XY By colliding the fine particles before colliding with the base material 5 attached to the table 4, the agglomerated powder in the fine particles is crushed, and fine ceramic fine particles such as primary particles are also pulverized by the collision to produce a clean new life. Since the surface is formed, the film formation efficiency of the coating 5c formed by colliding with the base material 5 can be improved.

図4に示す被膜形成装置1および図1に示すエアロゾル噴射ノズルを用い、基材5(SUJ2製、30 mm×30 mm×2 mm (鏡面仕上げ))に表面にアルミナ微粒子からなる被膜をAD法により形成した。エアロゾル噴射ノズル2としては、吐出開口部2aサイズ 10 mm× 1 mm 、噴射角度 30 度(図1参照)を用いた。
AD法は、真空チャンバー3内において 100 Pa 以下の減圧下で、固定したエアロゾル噴射ノズル2の吐出開口部2aからアルミナ微粒子を含むエアロゾルを、基材5に向けて噴射して被膜形成を行なった。基材5は 10 mm/分の速度でストローク 15 mm で往復動させて 10 分間成膜した。
アルミナ微粒子は、住友化学社製:AKP−50を用い、平均粒子径 0.16μm で、10 Pa 以下の減圧下、加熱乾燥処理して使用した。なお、搬送ガスには窒素を用い、粒子速度は搬送ガス流量で制御した。
Using the coating film forming apparatus 1 shown in FIG. 4 and the aerosol injection nozzle shown in FIG. 1, a coating made of alumina fine particles is applied to the substrate 5 (SUJ2, made 30 mm × 30 mm × 2 mm (mirror finish)) by the AD method. Formed by. As the aerosol injection nozzle 2, a discharge opening 2a size of 10 mm × 1 mm and an injection angle of 30 degrees (see FIG. 1) were used.
In the AD method, a coating was formed by spraying an aerosol containing alumina fine particles toward the substrate 5 from the discharge opening 2a of the fixed aerosol spray nozzle 2 under a reduced pressure of 100 Pa or less in the vacuum chamber 3. . The base material 5 was reciprocated at a stroke of 15 mm at a speed of 10 mm / min to form a film for 10 minutes.
The alumina fine particles used were AKP-50 manufactured by Sumitomo Chemical Co., Ltd., having an average particle size of 0.16 μm and heat-dried under reduced pressure of 10 Pa or less. Nitrogen was used as the carrier gas, and the particle velocity was controlled by the carrier gas flow rate.

成膜した基材をエタノール溶液で超音波洗浄後、断面観察したところ緻密かつ透明で滑らかな表面を有するαアルミナ被膜5bが 4μm の厚さで形成していた。   When the formed substrate was ultrasonically washed with an ethanol solution and observed in cross section, an α-alumina coating 5b having a dense, transparent and smooth surface was formed with a thickness of 4 μm.

本発明の被膜形成装置は、緻密で均一な被膜を効率よく形成可能であるので、各種産業部品等へのセラミックス被膜形成等に好適に利用できる。   Since the film forming apparatus of the present invention can efficiently form a dense and uniform film, it can be suitably used for forming a ceramic film on various industrial parts.

本発明に係る一実施例として図4のB部分の詳細を示す図である。It is a figure which shows the detail of the B section of FIG. 4 as one Example which concerns on this invention. 本発明に係る他の実施例として図4のB部分の詳細を示す図である。It is a figure which shows the detail of the B section of FIG. 4 as another Example which concerns on this invention. 従来のエアロゾル噴射ノズルによる被膜形成を示す図である。It is a figure which shows the film formation by the conventional aerosol injection nozzle. 本発明の被膜形成装置の一実施例を示す図である。It is a figure which shows one Example of the film formation apparatus of this invention.

符号の説明Explanation of symbols

1 被膜形成装置
2 エアロゾル噴射ノズル
2a 吐出開口部
3 真空チャンバー
4 XYテーブル
5 基材
6 ガス供給設備
7 微粒子フィルター
8 真空ポンプ
9 エアロゾル発生装置
DESCRIPTION OF SYMBOLS 1 Coating film formation apparatus 2 Aerosol injection nozzle 2a Discharge opening 3 Vacuum chamber 4 XY table 5 Base material 6 Gas supply equipment 7 Fine particle filter 8 Vacuum pump 9 Aerosol generator

Claims (5)

微粒子をガス中に分散させてエアロゾルとするエアロゾル発生装置と、真空チャンバーと、該真空チャンバー内に配設されたエアロゾル噴射ノズルとを備え、エアロゾルデポジション法により前記エアロゾル噴射ノズルからエアロゾルを基材上に噴射し衝突させて成膜を行なう被膜形成装置であって、
前記エアロゾル噴射ノズルは、該噴射ノズルの吐出開口部から噴射された微粒子が基材に衝突する前に、該微粒子同士を衝突させることができるノズルであることを特徴とする被膜形成装置。
An aerosol generator for dispersing fine particles in a gas to form an aerosol, a vacuum chamber, and an aerosol injection nozzle disposed in the vacuum chamber, and the aerosol is formed from the aerosol injection nozzle as a base A film forming apparatus that forms a film by being jetted onto and colliding with the film,
The aerosol forming nozzle is a film forming apparatus characterized in that the fine particles injected from the discharge opening of the injection nozzle can collide with the fine particles before colliding with the base material.
前記微粒子はセラミックス微粒子であり、平均粒子径が 0.1μm 〜 2μm であることを特徴とする請求項1記載の被膜形成装置。   2. The film forming apparatus according to claim 1, wherein the fine particles are ceramic fine particles having an average particle diameter of 0.1 to 2 [mu] m. 前記セラミックス微粒子は、アルミナ微粒子であることを特徴とする請求項2記載の被膜形成装置。   The film forming apparatus according to claim 2, wherein the ceramic fine particles are alumina fine particles. 前記ガスは、アルゴン、窒素またはヘリウムを含む不活性ガスであることを特徴とする請求項1、請求項2または請求項3記載の被膜形成装置。   The film forming apparatus according to claim 1, wherein the gas is an inert gas containing argon, nitrogen, or helium. 微粒子をガス中に分散させてエアロゾルを形成するエアロゾル形成工程と、前記エアロゾルを真空チャンバー内でエアロゾル噴射ノズルから基材上に噴射し衝突させて成膜を行なう成膜工程とを備えてなる、エアロゾルデポジション法による被膜形成方法であって、
前記成膜工程は、エアロゾル噴射ノズルから噴射された微粒子同士を衝突させた後、基材に衝突させる工程であることを特徴とする被膜形成方法。
An aerosol forming step in which fine particles are dispersed in a gas to form an aerosol; and a film forming step in which the aerosol is sprayed onto a substrate from an aerosol spray nozzle in a vacuum chamber to collide with the substrate. A method of forming a film by an aerosol deposition method,
The film forming step is a step of colliding fine particles ejected from an aerosol spray nozzle with each other and then colliding with a base material.
JP2006224261A 2006-08-21 2006-08-21 Apparatus and method for depositing coating film Pending JP2008045191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006224261A JP2008045191A (en) 2006-08-21 2006-08-21 Apparatus and method for depositing coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006224261A JP2008045191A (en) 2006-08-21 2006-08-21 Apparatus and method for depositing coating film

Publications (1)

Publication Number Publication Date
JP2008045191A true JP2008045191A (en) 2008-02-28

Family

ID=39179214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006224261A Pending JP2008045191A (en) 2006-08-21 2006-08-21 Apparatus and method for depositing coating film

Country Status (1)

Country Link
JP (1) JP2008045191A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010011113A2 (en) * 2008-07-25 2010-01-28 주식회사 코미코 Ceramic coating with plasma resistance
KR100974435B1 (en) * 2008-03-24 2010-08-05 한국기계연구원 A Things having A Chemical resistance ceramics film
CN105452529A (en) * 2013-08-22 2016-03-30 高美科株式会社 Aerosol coating method and plasma-resistant member formed thereby
EP3078436A1 (en) 2015-04-10 2016-10-12 Cartier International AG Method for manufacturing a clock component
CN107051822A (en) * 2017-06-12 2017-08-18 山东大学 Injection apparatus based on double piezo-activators
CN114554863A (en) * 2019-11-08 2022-05-27 雀巢产品有限公司 Apparatus for deposition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974435B1 (en) * 2008-03-24 2010-08-05 한국기계연구원 A Things having A Chemical resistance ceramics film
WO2010011113A2 (en) * 2008-07-25 2010-01-28 주식회사 코미코 Ceramic coating with plasma resistance
WO2010011113A3 (en) * 2008-07-25 2010-05-06 주식회사 코미코 Ceramic coating with plasma resistance
KR100966132B1 (en) 2008-07-25 2010-06-25 주식회사 코미코 Plasma-Resistant Ceramic Coated Substrate
CN105452529A (en) * 2013-08-22 2016-03-30 高美科株式会社 Aerosol coating method and plasma-resistant member formed thereby
CN105452529B (en) * 2013-08-22 2018-09-14 高美科株式会社 The anti-plasma member that aerosol application method and this method are formed
EP3078436A1 (en) 2015-04-10 2016-10-12 Cartier International AG Method for manufacturing a clock component
CN107051822A (en) * 2017-06-12 2017-08-18 山东大学 Injection apparatus based on double piezo-activators
CN107051822B (en) * 2017-06-12 2022-07-12 山东大学 Injection device based on dual piezoelectric actuators
CN114554863A (en) * 2019-11-08 2022-05-27 雀巢产品有限公司 Apparatus for deposition

Similar Documents

Publication Publication Date Title
JP2008045191A (en) Apparatus and method for depositing coating film
US20090293675A1 (en) Method and apparatus of producing nanoparticles using nebulized droplet
JP2005095886A (en) Cold spray nozzle, cold spray film, and production method therefor
JP2018059203A (en) Aerosol film forming apparatus and aerosol film forming method
KR20100011576A (en) Plasma-resistant ceramic coated substrate
KR20040067608A (en) Metal powder and the manufacturing method
JP2019532185A (en) Low melting point metal or alloy powder atomization manufacturing process
JP2004269956A (en) Apparatus for producing metallic powder, and method for producing metallic powder using the apparatus
US20190203330A1 (en) Thermal spraying material
JP2008202117A (en) Nozzle for film deposition system, and film deposition system
JP6347189B2 (en) Membrane manufacturing apparatus and membrane manufacturing method
JP2008110293A (en) Aerosol discharge nozzle and filming device
JP2010133019A (en) Structure formation apparatus
JP2008029977A (en) Aerosol discharge nozzle and coating-film forming device
JP2008111154A (en) Method for forming coating film
JP4590594B2 (en) Aerosol deposition system
KR100988175B1 (en) Apparatus For Forming Ceramic Coated Layer
JP2008291285A (en) Coating film forming apparatus
JP6715310B2 (en) Film forming apparatus and film forming method
JP2007254826A (en) Apparatus and method for depositing coating film
JP2008007804A (en) Film-forming apparatus and film-forming method using the apparatus
JP2008069399A (en) Film deposition method
JP4075745B2 (en) Composite structure manufacturing equipment
JP2007063582A (en) Film-forming method and film-forming apparatus
JP2008001968A (en) Fine particle aggregate crushing device and film formation apparatus