JP2008007804A - Film-forming apparatus and film-forming method using the apparatus - Google Patents

Film-forming apparatus and film-forming method using the apparatus Download PDF

Info

Publication number
JP2008007804A
JP2008007804A JP2006176770A JP2006176770A JP2008007804A JP 2008007804 A JP2008007804 A JP 2008007804A JP 2006176770 A JP2006176770 A JP 2006176770A JP 2006176770 A JP2006176770 A JP 2006176770A JP 2008007804 A JP2008007804 A JP 2008007804A
Authority
JP
Japan
Prior art keywords
aerosol
film
substrate
ceramic
curved surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006176770A
Other languages
Japanese (ja)
Inventor
Tatsuo Nakajima
達雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006176770A priority Critical patent/JP2008007804A/en
Publication of JP2008007804A publication Critical patent/JP2008007804A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Nozzles (AREA)
  • Coating Apparatus (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film-forming apparatus and method, capable of uniformly forming a dense ceramic film on a surface of a substrate, particularly on an outer circumferential curved surface of the substrate such as a bearing periphery part, by the AD method. <P>SOLUTION: The film-forming apparatus 1 is equipped with an aerosol-generating device 11, a vacuum chamber 2, a mask 6 which is arranged inside the vacuum chamber 2 and has an aperture in a prescribed manner relative to the substrate 7 serving as a film formation target, a rotary member 5 that has a circumferential curved surface and rotates in the circumference direction, and an aerosol injection nozzle 12. An aerosol is injected by the aerosol injection nozzle 12 and made to undergo primary collision against the circumferential curved surface of the rotary member 5, and ceramic particulates in the aerosol rebounding from the circumferential curved surface of the rotary member 5 are made to undergo secondary collision against the surface of the substrate 7 via the mask 6 to form the ceramic film. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、基材の表面、特に軸受外周部等の基材の円周曲面に、エアロゾルデポジション(以下、ADと記す)法により被膜を形成するための被膜形成装置および該装置を用いる被膜形成方法に関する。   The present invention relates to a film forming apparatus for forming a film on the surface of a substrate, particularly a circumferential curved surface of the substrate such as a bearing outer peripheral portion, by an aerosol deposition (hereinafter referred to as AD) method, and a film using the device. It relates to a forming method.

常温下で緻密なセラミックス被膜等を形成する方法として、セラミックスなどの脆性材料からなる超微粒子を不活性ガスでエアロゾル化し、微小なノズルから高速で吐出させ基板上に噴射・衝突させて成膜させるAD法が知られている(特許文献1参照)。
この方法では、円筒面などの外周曲面に対しては、曲面の法線を入射方向とするエアロゾル噴射や一定速度でノズル移動を行なう必要があること等から成膜が困難であった。この改善に、例えば軸受外輪のような円筒状ワークを回転させながら成膜する方法も考えられるが、微小なノズルからの微粒子の吐出速度は、搬送ガスの流速・チャンバー圧力とノズル内部の差圧およびノズル形状で決まってしまうため非常に狭い範囲の速度制御しかできず、成膜速度を向上させるための条件決定は非常に困難であった。
As a method of forming a dense ceramic film at room temperature, ultrafine particles made of brittle materials such as ceramics are aerosolized with an inert gas, ejected from a small nozzle at high speed, and sprayed and collided onto a substrate to form a film. The AD method is known (see Patent Document 1).
In this method, it is difficult to form a film on an outer peripheral curved surface such as a cylindrical surface because it is necessary to perform aerosol injection with the normal of the curved surface as an incident direction or nozzle movement at a constant speed. For this improvement, for example, a method of forming a film while rotating a cylindrical workpiece such as a bearing outer ring may be considered. However, the discharge speed of fine particles from a minute nozzle is determined by the flow rate of the carrier gas, the chamber pressure, and the differential pressure inside the nozzle. In addition, since it is determined by the nozzle shape, only a very narrow speed control can be performed, and it is very difficult to determine conditions for improving the film forming speed.

また、ナノメートルオーダーの極薄の超微粒子膜を形成することができ、また、材料微粒子の表面を新しい活性なものにして、強固な微粒子間接合の微粒子薄膜を形成することができ、さらに、超微粒子薄膜の各種の層構成をとることを可能にするため、減圧された成膜チャンバー内に反射面と基板とを配置し、材料微粒子をエアロゾル化して反射面に衝突させてから基板上に付着させる技術が知られている(特許文献2参照)。
しかしこの方法では、反射面から反射された微粒子の速度は反射面以上の速度にならず、またマスクを介さないために、微粒子の飛翔速度は揃わず、成膜後の膜の均一性が不足するという問題がある。
特許第3348154号公報 特開2002−45735号公報
In addition, an ultra-thin ultra-fine particle film on the order of nanometers can be formed, and the surface of the material fine particles can be made new and active to form a fine particle thin film with strong inter-particle bonding. In order to make it possible to take various layer configurations of the ultrafine particle thin film, the reflective surface and the substrate are placed in a decompressed film forming chamber, the material fine particles are aerosolized and collide with the reflective surface, and then on the substrate. The technique of making it adhere is known (refer patent document 2).
However, with this method, the speed of the fine particles reflected from the reflecting surface does not exceed that of the reflecting surface, and since the mask does not pass through, the flying speed of the fine particles is not uniform and the uniformity of the film after film formation is insufficient. There is a problem of doing.
Japanese Patent No. 3348154 JP 2002-45735 A

本発明はこのような問題に対処するためになされたもので、AD法において緻密なセラミックス被膜を、基材の表面、特に軸受外周部等の基材の円周曲面上に均一に形成できる被膜形成装置および該装置を用いる被膜形成方法を提供することを目的とする。   The present invention has been made in order to cope with such a problem, and is a film capable of uniformly forming a dense ceramic film on the surface of the substrate, particularly on the circumferential curved surface of the substrate such as the outer peripheral portion of the bearing in the AD method. It is an object to provide a forming apparatus and a film forming method using the apparatus.

本発明の被膜形成装置は、セラミックス微粒子をガス中に分散させてエアロゾルとするエアロゾル発生装置と、真空チャンバーとを備えてなり、該真空チャンバー内に、被膜形成対象である基材に対し所定の開口部を有するマスクと、円周曲面を有し円周方向に回転する回転部材と、該回転部材に向けて上記エアロゾルを噴射するエアロゾル噴射ノズルとを有する被膜形成装置であって、該被膜形成装置は、上記エアロゾルを上記エアロゾル噴射ノズルより噴射させ、上記回転部材の円周曲面に一次衝突させ、該回転部材の円周曲面から反射したエアロゾル中のセラミックス微粒子を、上記基材の表面に上記マスクを介して二次衝突させてセラミックス被膜を形成することを特徴とする。
上記セラミックス被膜が形成される基材の表面が円周曲面であり、該基材を円周方向に回転または軸方向に移動させながら上記セラミックス被膜を形成し、上記軸方向の移動は、位置決め用XYテーブルを用いてなされ、上記円周方向の回転は、上記位置決め用XYテーブル上に設置された対象物回転用モータを用いてなされることを特徴とする。
上記原料セラミックス微粒子は、脆性材料でありかつ微粒子粒径で 0.01〜2μm であることを特徴とする。
上記ガスは、アルゴン、窒素またはヘリウムを含む不活性ガスであることを特徴とする。
The coating film forming apparatus of the present invention comprises an aerosol generating apparatus in which ceramic fine particles are dispersed in a gas to form an aerosol, and a vacuum chamber, and a predetermined amount of a substrate on which a film is to be formed is provided in the vacuum chamber. A film forming apparatus comprising: a mask having an opening; a rotating member having a circumferential curved surface and rotating in a circumferential direction; and an aerosol injection nozzle for injecting the aerosol toward the rotating member. The apparatus injects the aerosol from the aerosol injection nozzle, primarily collides with the circumferential curved surface of the rotating member, and reflects the ceramic fine particles in the aerosol reflected from the circumferential curved surface of the rotating member on the surface of the substrate. A ceramic film is formed by secondary collision through a mask.
The surface of the substrate on which the ceramic coating is formed is a circumferentially curved surface, and the ceramic coating is formed while the substrate is rotated in the circumferential direction or moved in the axial direction. An XY table is used, and the rotation in the circumferential direction is performed using an object rotating motor installed on the positioning XY table.
The raw ceramic fine particles are brittle materials and have a fine particle diameter of 0.01 to 2 μm.
The gas is an inert gas containing argon, nitrogen, or helium.

本発明の被膜形成方法はセラミックス微粒子をガス中に分散させたエアロゾルを、真空チャンバー内でエアロゾル噴射ノズルから基材上に噴射し衝突させて成膜を行なうエアロゾルデポジション法による被膜形成方法であって、上記被膜形成装置を用い、上記エアロゾルを上記エアロゾル噴射ノズルより噴射させ、上記回転部材の円周曲面に一次衝突させ、該回転部材の円周曲面から反射したエアロゾル中のセラミックス微粒子を、上記基材の表面にマスクを介して二次衝突させてセラミックス被膜を形成することを特徴とする。   The coating film forming method of the present invention is a coating film forming method by an aerosol deposition method in which an aerosol in which ceramic fine particles are dispersed in a gas is sprayed onto a substrate from an aerosol spray nozzle and collided in a vacuum chamber. Then, using the coating film forming apparatus, the aerosol is sprayed from the aerosol spray nozzle, primarily collides with the circumferential curved surface of the rotating member, and the ceramic fine particles in the aerosol reflected from the circumferential curved surface of the rotating member are A ceramic coating is formed by secondary collision with the surface of the substrate through a mask.

本発明の被膜形成装置は、回転部材の円周方向の周速(角速度 ω×半径 r )を変えることができるので、回転部材に衝突したエアロゾルの一次衝突速度に対して、衝突位置で反射するエアロゾルの反射速度すなわち基材へのエアロゾルの二次衝突速度を制御することが可能となり、特に反射速度を加速した二次衝突速度が得られる。
また、セラミックス微粒子をマスクを介して基材の表面に二次衝突させることで、飛翔速度と飛翔方向との揃ったセラミックス微粒子のみで成膜することができ、成膜状態が安定化する。
さらに、円周方向に回転する回転部材にセラミックスなどの脆性材料からなる微粒子を一次衝突させることで、エアロゾル中の凝集状態の微粒子塊を解砕できるので、微粒子塊のないセラミックス微粒子を基材に二次衝突させることができ成膜効率が向上する。
これらの結果、本発明の被膜形成装置は成膜効率に優れ、基材の表面に均一にセラミックス被膜を形成できる。また、セラミックス被膜が形成される基材の表面が、成膜困難な円周曲面であっても、該基材を円周方向に回転または軸方向に移動させながら上記装置を用いてセラミックス被膜を形成することで、該基材の円周曲面に均一に効率よくセラミックス被膜を形成できる。
Since the coating film forming apparatus of the present invention can change the circumferential speed (angular velocity ω × radius r) of the rotating member, it reflects at the collision position with respect to the primary collision velocity of the aerosol colliding with the rotating member. It is possible to control the aerosol reflection speed, that is, the secondary collision speed of the aerosol to the substrate, and in particular, a secondary collision speed obtained by accelerating the reflection speed can be obtained.
Further, by causing the ceramic fine particles to secondarily collide with the surface of the substrate through the mask, it is possible to form the film only with the ceramic fine particles having the same flying speed and flying direction, and the film forming state is stabilized.
In addition, the fine particles made of brittle materials such as ceramics are primarily collided with a rotating member that rotates in the circumferential direction, so that the aggregated fine particle mass in the aerosol can be crushed. Secondary collision can be performed, and the film formation efficiency is improved.
As a result, the film forming apparatus of the present invention is excellent in film forming efficiency and can form a ceramic film uniformly on the surface of the substrate. Even if the surface of the substrate on which the ceramic coating is formed is a circumferential curved surface that is difficult to form, the ceramic coating is applied using the above apparatus while rotating the substrate in the circumferential direction or moving in the axial direction. By forming, a ceramic film can be uniformly and efficiently formed on the circumferential curved surface of the substrate.

本発明の被膜形成方法は、上記被膜形成装置を用いてエアロゾル噴射ノズルより噴射させたエアロゾルをいったん回転部材に一次衝突させ、セラミックス微粒子塊を解砕させた上で、回転部材から反射させたエアロゾル中のセラミックス微粒子の速度と方向を制御して基材の表面に二次衝突させるので、軸受外周部等の基材の表面上に均一にセラミックス被膜を形成することができ、成膜効率を向上させることができる。   The coating film forming method of the present invention is such that the aerosol sprayed from the aerosol spray nozzle using the above-described coating film forming apparatus is first collided with the rotating member to crush the ceramic fine particle lump, and then the aerosol is reflected from the rotating member. Controls the speed and direction of the ceramic fine particles inside to cause secondary collision with the surface of the base material, so that a ceramic film can be uniformly formed on the surface of the base material such as the outer periphery of the bearing, improving film formation efficiency. Can be made.

本発明の一実施例に係る被膜形成装置の構成例を図1に基づいて説明する。図1は被膜形成装置の一例を示す図であり、基材として軸受外輪の外周曲面に被膜を形成する場合の構成を示す図である。
図1に示すように、AD法による被膜形成装置1は、エアロゾル発生装置11と、真空チャンバー2とを有する。内部にセラミックス微粒子を有するエアロゾル発生装置11は外部にガス供給設備10を備え、ガス供給設備10から供給される搬送ガスによってセラミックス微粒子と搬送ガスとからなるエアロゾルが形成され、搬送ガスの流れと真空ポンプ14の吸引とによりエアロゾルは真空チャンバー2内のエアロゾル噴射ノズル12に供給される。
エアロゾルの搬送ガスとしては、不活性ガスを使用する。使用可能な不活性ガスとしては、アルゴン、窒素、ヘリウム等が挙げられる。
A configuration example of a film forming apparatus according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a diagram showing an example of a film forming apparatus, and is a diagram showing a configuration in which a film is formed on the outer peripheral curved surface of a bearing outer ring as a base material.
As shown in FIG. 1, a film forming apparatus 1 using an AD method includes an aerosol generating device 11 and a vacuum chamber 2. The aerosol generating apparatus 11 having ceramic fine particles therein includes a gas supply facility 10 outside, and an aerosol composed of ceramic fine particles and a carrier gas is formed by the carrier gas supplied from the gas supply facility 10, and the flow of the carrier gas and the vacuum The aerosol is supplied to the aerosol injection nozzle 12 in the vacuum chamber 2 by the suction of the pump 14.
An inert gas is used as the aerosol carrier gas. Usable inert gases include argon, nitrogen, helium and the like.

真空チャンバー2内には、セラミックス被膜形成対象であり円周曲面を有する基材7と、エアロゾル噴射ノズル12と、円周曲面を有し円周方向(図中A)に回転する回転部材5と、基材7に対し所定の開口部を有するマスク6とが配設されている。基材7は、位置決め用XYテーブル8に連設する対象物回転用モータ9に取り付けられている。エアロゾル噴射ノズル12はノズル先端から、セラミックス微粒子を含むエアロゾルを噴射して回転部材5に一次衝突させるためのものである。
真空チャンバー2外には真空ポンプ14が設けられ、真空ポンプ14によりエアロゾル発生装置11および真空チャンバー2は減圧に保たれる。微粒子フィルター13は真空ポンプ14へのセラミックス微粒子の侵入防止のために設けられている。
回転部材の材質としては、セラミックス微粒子の衝突により損傷しにくい材料であれば特に限定されないが、望ましくは異物混入防止の意味からセラミックス微粒子と同種材料もしくはセラミックス微粒子より硬いセラミックス材料がよい。またその形状は、矩形形状ノズル開口部の長辺より大きな厚みを持つ円盤状である。
In the vacuum chamber 2, a base material 7 that is a ceramic film formation target and has a circumferential curved surface, an aerosol injection nozzle 12, a rotating member 5 that has a circumferential curved surface and rotates in the circumferential direction (A in the figure), A mask 6 having a predetermined opening with respect to the substrate 7 is disposed. The base material 7 is attached to an object rotation motor 9 that is connected to the positioning XY table 8. The aerosol injection nozzle 12 is for injecting an aerosol containing ceramic fine particles from the tip of the nozzle to cause a primary collision with the rotating member 5.
A vacuum pump 14 is provided outside the vacuum chamber 2, and the aerosol generator 11 and the vacuum chamber 2 are kept under reduced pressure by the vacuum pump 14. The particulate filter 13 is provided to prevent the ceramic particulates from entering the vacuum pump 14.
The material of the rotating member is not particularly limited as long as it is a material that is not easily damaged by the collision of the ceramic fine particles. Preferably, a ceramic material that is the same kind as the ceramic fine particles or harder than the ceramic fine particles is preferable from the viewpoint of preventing foreign matter contamination. Further, the shape is a disc shape having a thickness larger than the long side of the rectangular nozzle opening.

本発明の被膜形成装置におけるセラミックス微粒子の噴射・衝突の詳細について図2を用いて説明する。図2は図1のC部分の拡大図である。
図2に示すようにエアロゾル噴射ノズル12から噴射されるエアロゾル中のセラミックスの入射微粒子3は回転部材5の円周曲面の衝突位置Dに、衝突位置Dと回転部材の外周円中心Oとを結ぶ直線DOに対する入射角と速度とを有して衝突する。入射微粒子3はこの衝突時に、微粒子塊が解砕される。解砕された入射微粒子3は、回転部材を回転させない場合では、直線DOに対する入射角に対応する反射角と速度とを有する反射微粒子4aとして反跳するが、本発明では円周方向(図中A)に回転する回転部材5の周速によって衝突位置における接線方向4bに反射方向をずらされるとともに加速された飛翔方向と速度とを有する飛翔微粒子4として基材7に向かって進行する。
飛翔微粒子4はマスク6によってさえぎられるが、基材7の外周円中心に向かってマスク6の開口部6aを通過できるマスク処理微粒子4cのみが基材7に衝突することができる。このマスク処理微粒子4cは基材7の外周円中心に向かって所定の速度を有して基材7に衝突するので、均一なセラミックス被膜を効率よく形成することができる。
Details of the injection and collision of the ceramic fine particles in the film forming apparatus of the present invention will be described with reference to FIG. FIG. 2 is an enlarged view of a portion C in FIG.
As shown in FIG. 2, the ceramic fine particles 3 in the aerosol sprayed from the aerosol spray nozzle 12 connect the collision position D and the outer circumferential center O of the rotating member to the collision position D of the circumferential curved surface of the rotating member 5. Colliding with an angle of incidence and velocity with respect to the straight line DO. The incident fine particles 3 are crushed at the time of the collision. The crushed incident fine particles 3 recoil as reflected fine particles 4a having a reflection angle and a velocity corresponding to the incident angle with respect to the straight line DO when the rotating member is not rotated. The reflection direction is shifted in the tangential direction 4b at the collision position by the peripheral speed of the rotating member 5 rotating in A), and the flying fine particles 4 having the accelerated flying direction and velocity travel toward the base material 7.
The flying fine particles 4 are blocked by the mask 6, but only the mask processing fine particles 4 c that can pass through the opening 6 a of the mask 6 toward the center of the outer circumference of the base material 7 can collide with the base material 7. Since the masked fine particles 4c collide with the base material 7 at a predetermined speed toward the center of the outer circumference of the base material 7, a uniform ceramic film can be efficiently formed.

また、入射微粒子3の一次衝突時の速度や回転部材5の回転速度、マスク6の開口部6a形状等により基材7に衝突するマスク処理微粒子4cの大きさや速度が制御される。開口部6aを有するマスク6を介することでマスク処理微粒子4cは基材7の外円周曲面に対し垂直に二次衝突するので効率よく成膜する。
マスクは、微粒子ビーム中の速度分布による余分な微粒子飛行成分が遮蔽できるものであれば材質を制限されない。好ましくは損傷しにくい金属もしくは有機系および無機系の板が採用できる。またマスクは、面積でその開口部の 1000 倍以上(例えば開口部が 1 mm×10 mm=10 mm2 であれば、10 cm2 以上)程度あればよく、その開口部6aは微粒子ビームを発生させるノズル断面形状(矩形状)に対応した形状としてもよい。
マスクの設置位置は、例えば回転部材との一次衝突位置Dと基材外周円中心(O')とを結ぶ直線DO'に対し開口部6aが垂直になるように設置され、基材に対する設置距離は基材からの反射微粒子がマスク裏面で再反射され基板に再入射しても成膜に影響を与えないような距離とすることが望ましい。
マスクの開口部6aを介してマスク処理微粒子4cが基材7へ垂直に衝突する。この衝突時において、基材7は対象物回転用モータ9により回転(図中B)させられ、位置決め用XYテーブル8により軸方向に移動させられ、基材7の外円周曲面上に所定の膜厚セラミックス被膜が形成される。なお、位置決め用XYテーブル8の軸方向への移動および対象物回転用モータ9の回転は個別に行なっても同時に行なってもよい。
Further, the size and speed of the masked fine particles 4c that collide with the base material 7 are controlled by the speed at the time of primary collision of the incident fine particles 3, the rotational speed of the rotating member 5, the shape of the opening 6a of the mask 6, and the like. By passing through the mask 6 having the opening 6a, the mask-treated fine particles 4c collide perpendicularly with the outer circumferential curved surface of the substrate 7 so that the film is efficiently formed.
The material of the mask is not limited as long as an extra fine particle flight component due to the velocity distribution in the fine particle beam can be shielded. Preferably, metal or organic and inorganic plates that are not easily damaged can be employed. In addition, the mask may be about 1000 times as large as the opening (for example, if the opening is 1 mm × 10 mm = 10 mm 2 , 10 cm 2 or more), and the opening 6a generates a particle beam. It is good also as a shape corresponding to the nozzle cross-sectional shape (rectangular shape) to make.
The installation position of the mask is, for example, installed such that the opening 6a is perpendicular to a straight line DO ′ that connects the primary collision position D with the rotating member and the center of the outer circumference of the substrate (O ′), and the installation distance to the substrate. It is desirable that the distance be such that even if the reflective fine particles from the substrate are re-reflected on the back surface of the mask and re-enter the substrate, the film formation is not affected.
The mask processing fine particles 4c collide perpendicularly with the substrate 7 through the opening 6a of the mask. At the time of this collision, the base material 7 is rotated (B in the figure) by the object rotating motor 9 and is moved in the axial direction by the positioning XY table 8, and a predetermined surface is formed on the outer circumferential curved surface of the base material 7. A film thickness ceramic coating is formed. The movement of the positioning XY table 8 in the axial direction and the rotation of the object rotating motor 9 may be performed individually or simultaneously.

本発明においてセラミックス被膜を形成するためのエアロゾル原料となるセラミックス微粒子としては、被膜形成可能なものであればよく、任意のセラミックス微粒子を使用できる。例えば、アルミナ、ジルコニア、チタニア等の酸化物、炭化ケイ素、窒化ケイ素等の微粒子が挙げられる。
本発明に用いることができるセラミックス微粒子の平均粒子径は、0.01μm〜2μm である。0.01μm 未満では凝集しやすくエアロゾル化は困難であり、2μm をこえるとAD法での膜形成はできない(膜成長しない)。なお、本発明において平均粒子径は日機装株式会社製:レーザー式粒度分析計マイクロトラックMT3000によって測定した値である。
また、被膜形成対象となる基材としては、各種産業機械に用いられる耐熱耐摩耗性、耐久性、耐食・耐絶縁性等の要求される各種部材、例えば軸受を構成する部材、特に円周曲面を有する部材等が挙げられる。
In the present invention, the ceramic fine particles used as the aerosol raw material for forming the ceramic film may be any fine particles that can form a film, and any ceramic fine particles can be used. Examples thereof include oxides such as alumina, zirconia, and titania, and fine particles such as silicon carbide and silicon nitride.
The average particle size of the ceramic fine particles that can be used in the present invention is 0.01 μm to 2 μm. If it is less than 0.01 μm, it is easy to agglomerate and it is difficult to form an aerosol. In the present invention, the average particle diameter is a value measured by Nikkiso Co., Ltd .: Laser type particle size analyzer Microtrac MT3000.
In addition, as the base material to be coated, various members required for heat and abrasion resistance, durability, corrosion resistance and insulation resistance used in various industrial machines, for example, members constituting a bearing, particularly circumferential curved surfaces The member etc. which have are mentioned.

本発明の被膜形成方法について図1および図2に基づいて説明する。本発明の被膜形成方法は上述の被膜形成装置を用い、AD法を利用して基材に対し被膜を形成する方法である。
基材7を、位置決め用XYテーブル8に連設する対象物回転用モータ9に取り付け、セラミックス微粒子の所定量をエアロゾル発生装置11に投入し、真空ポンプ14を起動しエアロゾル発生装置11および真空チャンバー2内を所定の減圧にする。ガス供給設備10から搬送ガスをエアロゾル発生装置11に供給し、セラミックス微粒子と搬送ガスとからなるエアロゾルを発生させ、搬送ガスの流れおよび真空ポンプ14の吸引とによって真空チャンバー2に供給し、エアロゾル噴射ノズル12からエアロゾルを噴射させ回転部材5の円周曲面に衝突させる(図1参照)。
The film forming method of the present invention will be described with reference to FIGS. The film forming method of the present invention is a method of forming a film on a substrate using the above-described film forming apparatus and utilizing the AD method.
The base material 7 is attached to an object rotating motor 9 connected to the positioning XY table 8, a predetermined amount of ceramic fine particles is put into the aerosol generator 11, the vacuum pump 14 is activated, and the aerosol generator 11 and the vacuum chamber The inside of 2 is set to a predetermined reduced pressure. A carrier gas is supplied from the gas supply facility 10 to the aerosol generator 11 to generate an aerosol composed of ceramic fine particles and a carrier gas, which is supplied to the vacuum chamber 2 by the carrier gas flow and the suction of the vacuum pump 14, and aerosol injection. Aerosol is ejected from the nozzle 12 to collide with the circumferential curved surface of the rotating member 5 (see FIG. 1).

エアロゾル噴射ノズル12からエアロゾルを噴射させ、所定の回転数で円周方向(図中A)に回転している回転部材5の円周曲面の衝突位置Dに、衝突位置Dと回転部材の外周円中心Oとを結ぶ直線DOに対する所定の入射角と速度とを持たせて入射微粒子3を一次衝突させ、微粒子塊を解砕させる。
解砕された微粒子を、円周方向(図中A)に回転する回転部材5の周速によって衝突位置Dにおける接線方向4bに反射方向をずらすとともに加速させた飛翔方向と速度とを持たせた飛翔微粒子4として基材7に向かって進行させる。進行する飛翔微粒子4をマスク6によってさえぎり、基材7に対して所定の飛翔方向と速度とを有しマスク6の開口部6aを通過できるマスク処理微粒子4cのみを基材7に衝突させる(図2参照)。
The aerosol is injected from the aerosol injection nozzle 12 and the collision position D and the outer circumference of the rotating member are brought into the collision position D of the circumferential curved surface of the rotating member 5 rotating in the circumferential direction (A in the figure) at a predetermined rotational speed. The incident fine particles 3 are primarily collided with a predetermined incident angle and velocity with respect to the straight line DO connecting the center O to break up the fine particle lump.
The pulverized fine particles are given a flying direction and a velocity that are accelerated while shifting the reflection direction in the tangential direction 4b at the collision position D by the peripheral speed of the rotating member 5 rotating in the circumferential direction (A in the figure). It advances toward the base material 7 as the flying fine particles 4. The traveling flying fine particles 4 are blocked by the mask 6, and only the mask processing fine particles 4c having a predetermined flying direction and speed with respect to the base material 7 and passing through the opening 6a of the mask 6 are caused to collide with the base material 7 (FIG. 2).

基材7を対象物回転用モータ9により回転(図中B)させ、位置決め用XYテーブル8により軸方向に移動させながら、マスク処理微粒子4cを基材7の外周円中心に向かって所定の速度を持たせて基材7に衝突させることにより、均一なセラミックス被膜を基材7の外円周曲面上に効率よく形成させることができる。   The substrate 7 is rotated by the object rotating motor 9 (B in the figure) and moved in the axial direction by the positioning XY table 8 while moving the mask processing fine particles 4c toward the center of the outer circumference of the substrate 7 at a predetermined speed. The uniform ceramic coating can be efficiently formed on the outer circumferential curved surface of the substrate 7 by causing the substrate 7 to collide with the substrate 7.

実施例
図1に示す被膜形成装置1を用い、基材7として軸受外輪(SUJ2製:外径 35 mm×内径 27 mm×幅 15 mm )を、位置決め用XYテーブル8に連設する対象物回転用モータ9に取り付け、エアロゾル発生装置11にアルミナ微粒子(大明化学工業社製:タイミクロンTM-DAR、平均粒子径 0.16μm )100 g を仕込み、真空ポンプ14を起動して、エアロゾル搬送ガスとして、ヘリウムガス(太陽日酸社製 純ヘリウムG1)をエアロゾル発生装置11に導入した。減圧条件は数 Torr とした。
エアロゾル発生装置11にてアルミナ微粒子と搬送ガスとからなるエアロゾルを発生させ、これを搬送ガスの流れと真空ポンプ14の吸引とにより真空チャンバー2に供給して、エアロゾル噴射ノズル12(開口部 10 mm×1 mm )からエアロゾルを噴射させ、周速 50 m/sec で回転する円盤状回転部材5(アルミナ製、回転数 1910 rpm 、外径 200 mm ×幅 25 mm )の円周曲面に一次衝突させ、エアロゾル中のセラミックス微粒子塊を解砕させるとともに衝突位置における入射角度と回転部材5の回転速度とによって、衝突位置から反跳するセラミックス微粒子ビームの反射方向と反射速度とを制御して、矩形状開口部6a(矩形形状 11 mm×1.5 mm:微粒子ビーム面に対応)を有するマスク6を介して、軸受外輪の外周曲面に二次衝突させセラミックス被膜を形成した。軸受外輪を取り付けた対象物回転用モータ9(回転数は 10 rpm )と、これに連接する位置決め用XYテーブル8(軸方向移動速度 5 mm/min )とによって軸受外輪の外周曲面にアルミナ被膜を形成した。
Example Rotation of an object using a coating film forming apparatus 1 shown in FIG. 1 in which a bearing outer ring (manufactured by SUJ2: outer diameter 35 mm × inner diameter 27 mm × width 15 mm) as a base material 7 is connected to a positioning XY table 8 Attached to the motor 9 and charged with 100 g of alumina fine particles (Taimicron TM-DAR, average particle size 0.16 μm) by the aerosol generator 11, the vacuum pump 14 was started, and the aerosol carrier gas was Helium gas (pure helium G1 manufactured by Taiyo Nippon Sanso Co., Ltd.) was introduced into the aerosol generator 11. The decompression condition was several Torr.
The aerosol generator 11 generates an aerosol composed of alumina fine particles and a carrier gas, which is supplied to the vacuum chamber 2 by the carrier gas flow and the suction of the vacuum pump 14, and the aerosol injection nozzle 12 (opening 10 mm). X1 mm) is sprayed from aerosol and collides with the circular curved surface of a disk-shaped rotating member 5 (alumina, rotating at 1910 rpm, outer diameter 200 mm x width 25 mm) rotating at a peripheral speed of 50 m / sec. The ceramic fine particle lump in the aerosol is crushed and the reflection direction and the reflection speed of the ceramic fine particle beam recoiling from the collision position are controlled by the incident angle at the collision position and the rotation speed of the rotating member 5 to form a rectangular shape. A ceramic coating is formed by secondarily colliding with the outer peripheral curved surface of the bearing outer ring through a mask 6 having an opening 6a (rectangular shape 11 mm × 1.5 mm: corresponding to the particle beam surface). Made. An alumina coating is applied to the outer peripheral curved surface of the bearing outer ring by the object rotating motor 9 (rotation speed is 10 rpm) with the bearing outer ring and the positioning XY table 8 (axial moving speed 5 mm / min) connected to the motor. Formed.

成膜した軸受外輪の外周曲面をエタノール溶液で超音波洗浄後、断面観察したところ緻密、かつ、均一透明で滑らかな表面を有するαアルミナ被膜が 6μm の厚さで形成していた。   The outer peripheral curved surface of the formed bearing outer ring was ultrasonically cleaned with an ethanol solution and cross-sectioned. As a result, an α-alumina coating having a dense, uniform, transparent and smooth surface was formed with a thickness of 6 μm.

本発明の被膜形成装置および該装置を利用した被膜形成方法は、AD法において緻密なセラミックス被膜を、基材の表面、特に軸受外周部等の基材の外円周曲面上に均一に形成できるので、各種産業部品等へのセラミックス被膜形成に好適に利用できる。   The film forming apparatus of the present invention and the film forming method using the apparatus can uniformly form a dense ceramic film on the surface of the base material, particularly on the outer circumferential surface of the base material such as the outer periphery of the bearing in the AD method. Therefore, it can be suitably used for forming a ceramic film on various industrial parts.

本発明の被膜形成装置の一実施例を示す図である。It is a figure which shows one Example of the film formation apparatus of this invention. 図1のC部分の拡大図である。It is an enlarged view of the C section of FIG.

符号の説明Explanation of symbols

1 被膜形成装置
2 真空チャンバー
3 入射微粒子
4 飛翔微粒子
4a 反射微粒子
4b 接線方向
4c マスク処理微粒子
5 回転部材
6 マスク
7 基材
8 XYテーブル
9 回転モータ
10 ガス供給設備
11 エアロゾル発生装置
12 エアロゾル噴射ノズル
13 微粒子フィルター
14 真空ポンプ
DESCRIPTION OF SYMBOLS 1 Coating film formation apparatus 2 Vacuum chamber 3 Incident fine particle 4 Flying fine particle 4a Reflective fine particle 4b Tangential direction 4c Mask processing fine particle 5 Rotating member 6 Mask 7 Base material 8 XY table 9 Rotating motor 10 Gas supply equipment 11 Aerosol generator 12 Aerosol injection nozzle 13 Particulate filter 14 Vacuum pump

Claims (5)

セラミックス微粒子をガス中に分散させてエアロゾルとするエアロゾル発生装置と、真空チャンバーとを備えてなり、該真空チャンバー内に、被膜形成対象である基材に対し所定の開口部を有するマスクと、円周曲面を有し円周方向に回転する回転部材と、該回転部材に向けて前記エアロゾルを噴射するエアロゾル噴射ノズルとを有する被膜形成装置であって、
該被膜形成装置は、前記エアロゾルを前記エアロゾル噴射ノズルより噴射させ、前記回転部材の円周曲面に一次衝突させ、該回転部材の円周曲面から反射したエアロゾル中のセラミックス微粒子を、前記基材の表面に前記マスクを介して二次衝突させてセラミックス被膜を形成することを特徴とする被膜形成装置。
An aerosol generating device for dispersing ceramic fine particles in a gas to form an aerosol, and a vacuum chamber, a mask having a predetermined opening with respect to a substrate on which a film is to be formed, and a circle in the vacuum chamber A film forming apparatus having a rotating member having a circumferential curved surface and rotating in a circumferential direction, and an aerosol injection nozzle for injecting the aerosol toward the rotating member,
The coating film forming apparatus sprays the aerosol from the aerosol spray nozzle, primarily collides with a circumferential curved surface of the rotating member, and reflects ceramic fine particles in the aerosol reflected from the circumferential curved surface of the rotating member on the substrate. A film forming apparatus, wherein a ceramic film is formed by causing secondary collision with the surface through the mask.
前記セラミックス被膜が形成される基材の表面が円周曲面であり、該基材を円周方向に回転または軸方向に移動させながら前記セラミックス被膜を形成し、前記軸方向の移動は、位置決め用XYテーブルを用いてなされ、前記円周方向の回転は、前記位置決め用XYテーブル上に設置された対象物回転用モータを用いてなされることを特徴とする請求項1記載の被膜形成装置。   The surface of the substrate on which the ceramic coating is formed is a circumferentially curved surface, and the ceramic coating is formed while the substrate is rotated in the circumferential direction or moved in the axial direction. The film forming apparatus according to claim 1, wherein the film is formed using an XY table, and the rotation in the circumferential direction is performed using an object rotation motor installed on the positioning XY table. 前記原料セラミックス微粒子は、脆性材料でありかつ微粒子粒径で 0.01〜2μm であることを特徴とする請求項1または請求項2記載の被膜形成装置。   3. The film forming apparatus according to claim 1, wherein the raw material ceramic fine particles are a brittle material and have a fine particle diameter of 0.01 to 2 [mu] m. 前記ガスは、アルゴン、窒素またはヘリウムを含む不活性ガスであることを特徴とする請求項1、請求項2または請求項3記載の被膜形成装置。   The film forming apparatus according to claim 1, wherein the gas is an inert gas containing argon, nitrogen, or helium. セラミックス微粒子をガス中に分散させたエアロゾルを、真空チャンバー内でエアロゾル噴射ノズルから基材上に噴射し衝突させて成膜を行なうエアロゾルデポジション法による被膜形成方法であって、
請求項1ないし請求項4のいずれか一項記載の被膜形成装置を用い、前記エアロゾルを前記エアロゾル噴射ノズルより噴射させ、前記回転部材の円周曲面に一次衝突させ、該回転部材の円周曲面から反射したエアロゾル中のセラミックス微粒子を、前記基材の表面にマスクを介して二次衝突させてセラミックス被膜を形成することを特徴とする被膜形成方法。
A method of forming a film by an aerosol deposition method, in which an aerosol in which ceramic fine particles are dispersed in a gas is jetted onto a substrate from an aerosol jet nozzle and collided in a vacuum chamber,
The coating film forming apparatus according to any one of claims 1 to 4, wherein the aerosol is sprayed from the aerosol spray nozzle and primarily collides with a circumferential curved surface of the rotating member, and the circumferential curved surface of the rotating member. A ceramic film is formed by causing ceramic fine particles in the aerosol reflected from the substrate to secondarily collide with the surface of the substrate through a mask to form a ceramic film.
JP2006176770A 2006-06-27 2006-06-27 Film-forming apparatus and film-forming method using the apparatus Pending JP2008007804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006176770A JP2008007804A (en) 2006-06-27 2006-06-27 Film-forming apparatus and film-forming method using the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006176770A JP2008007804A (en) 2006-06-27 2006-06-27 Film-forming apparatus and film-forming method using the apparatus

Publications (1)

Publication Number Publication Date
JP2008007804A true JP2008007804A (en) 2008-01-17

Family

ID=39066276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006176770A Pending JP2008007804A (en) 2006-06-27 2006-06-27 Film-forming apparatus and film-forming method using the apparatus

Country Status (1)

Country Link
JP (1) JP2008007804A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011082660A1 (en) 2010-09-15 2012-03-15 Toto Ltd. Film forming method
KR101123397B1 (en) 2009-10-30 2012-03-23 한국세라믹기술원 Manufacturing method of hydrogen filtering membrane
JP2016027185A (en) * 2014-06-25 2016-02-18 有限会社 渕田ナノ技研 Film deposition method, film deposition apparatus, and structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101123397B1 (en) 2009-10-30 2012-03-23 한국세라믹기술원 Manufacturing method of hydrogen filtering membrane
DE102011082660A1 (en) 2010-09-15 2012-03-15 Toto Ltd. Film forming method
US8597728B2 (en) 2010-09-15 2013-12-03 Toto Ltd. Film forming method
JP2016027185A (en) * 2014-06-25 2016-02-18 有限会社 渕田ナノ技研 Film deposition method, film deposition apparatus, and structure

Similar Documents

Publication Publication Date Title
JP5736138B2 (en) Coating deposition apparatus and method
US20010001680A1 (en) Method for thermal barrier coating
JP2008069450A (en) Method for concurrent thermal spray and cooling hole cleaning
CN101711290A (en) Method for forming bond coats for thermal barrier coatings on turbine engine components
JP2008007804A (en) Film-forming apparatus and film-forming method using the apparatus
JP2008045191A (en) Apparatus and method for depositing coating film
JP5211412B2 (en) Film forming method
US10329670B2 (en) Apparatus and method for cold spraying and coating processing
JP2008202117A (en) Nozzle for film deposition system, and film deposition system
JP2008291285A (en) Coating film forming apparatus
JP2008240068A (en) Nozzle for depositing film on chamfered part and deposition apparatus
JP2008285743A (en) Film formation system
KR100988175B1 (en) Apparatus For Forming Ceramic Coated Layer
RU2393267C1 (en) Procedure for gas-thermal application of coating on internal surface of item aperture
JP2008029977A (en) Aerosol discharge nozzle and coating-film forming device
JP2007225074A (en) Insulated rolling bearing
JP2010137341A (en) Blasting device
US20150197840A1 (en) Systems and methods for removing overspray
JP2008069399A (en) Film deposition method
JP2008110293A (en) Aerosol discharge nozzle and filming device
JP2007270899A (en) Electrolytic corrosion prevention constant velocity joint
US7472850B2 (en) Ultrasonic standing-wave atomizer arrangement
JP2007253079A (en) Film deposition apparatus and film deposition method
JP2018508644A (en) Thermal spraying method that integrates selective removal of particles
JP2002045735A (en) Method and apparatus for forming thin ultrafine- particle film