JP2004148069A - Reflection type detector for degree of blood oxygen saturation - Google Patents

Reflection type detector for degree of blood oxygen saturation Download PDF

Info

Publication number
JP2004148069A
JP2004148069A JP2002351792A JP2002351792A JP2004148069A JP 2004148069 A JP2004148069 A JP 2004148069A JP 2002351792 A JP2002351792 A JP 2002351792A JP 2002351792 A JP2002351792 A JP 2002351792A JP 2004148069 A JP2004148069 A JP 2004148069A
Authority
JP
Japan
Prior art keywords
oxygen saturation
light
artery
degree
hemoglobin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002351792A
Other languages
Japanese (ja)
Inventor
Takeshi Kosaka
武 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSE KK
Original Assignee
TSE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSE KK filed Critical TSE KK
Priority to JP2002351792A priority Critical patent/JP2004148069A/en
Publication of JP2004148069A publication Critical patent/JP2004148069A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflection type detector for the degree of blood oxygen saturation which accurately calculates the degree of oxygen saturation in the artery while considering the degree of oxygen saturation in the vein, the variation in the pulsation of the vein, hemoglobin, and the like. <P>SOLUTION: The calculation is carried out according to an expression using at least three biospecroscopic signals in the absorption spectroscopic region of a hemoglobin or using at least four biospectroscopic signals in the absorption spectroscopic region of the hemoglobin. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の属する技術分野】
本発明は血中の成分検出装置に関する。
【従来の技術】
動脈中の酸素飽和度を非侵襲的に計測する装置はすでにパルスオキシメーターとして商品になっている。測定部位については指先が多数をしめるが、指先は非常によく動き動脈の酸素飽和度の測定値に悪影響をあたえる。そこで比較的動きが鈍い頭、額などが候補になっている。又、生体の緊急時における酸素供給システムの優位性を考慮して指先より脳、心臓などがより重要な計測の対象となる。それらを合わせて脳に近い額、顔面あるいは頭部で計測する、所謂反射光型が考案されすでに市販されている。これらは動脈の脈動を応用した2つの分光センサーの信号処理している。
【発明が解決しようとする課題】
問題は生体に起因するS/Nが悪くどんな場合でも動脈の酸素飽和度が正確に計測できる、とはなってないことである。問題は、次のような場合に生じる。
人が立ってる状態の額から計測できる酸素飽和度と、寝ている状態の額から計測できる酸素飽和度が異なることである。状態によって値がことなるのは問題である。この原因は立っている状態では額には血の鬱積が生じないが、寝た状態では血の鬱積が生じ主に静脈血がたまり、近傍の動脈の脈動が静脈に脈動を与え、その結果静脈の酸素飽和度が動脈の酸素飽和度に悪影響を与えることによる。
この悪影響をとり除くことが本発明の課題である。
またセンサーに起因する問題もあり、これは使用されているSiフォトダイオードに主に問題がある。使用されているSiフォトダイオードは入射光のフォトンエネルギーに対応して電流を発生させている。又、光源は強度を生体に安全な最大値にしてS/Nを最良するように構成されている。しかしながら、人によっては全反射光(表面の反射ではなく内部まで入った光の情報をとらえる、としてここでは全反射光という)の到達効率は大きく変化し、トータルの光源―センサーのS/Nが問題となり計測できない場合がある。本発明ではこれも解決する。
【課題を解決するための手段】
はじめに静脈の酸素飽和度を取り除く測定原理を説明する。
図1に計測部位の模式図を示す。入射光の強さをI0λとし(既知)、全反射光の強さを
λとする。すると

Figure 2004148069
ここで
λ、:測定値、λはある波長、
0λ:固定吸収部分、動脈中の厚さ不変部分も含む
f(t): 動脈の厚さの変動部分、周期関数とする
f(t)は周期関数としているので
Figure 2004148069
λ:ヘモグロビンの散乱係数
λ:ヘモグロビンの吸収係数
この式はSλ、λの大小の関係を考慮したクベルカ.ムンクの方程式を解いた結果である。第1項の指数関数は動脈の状態を表し、第2項の指数関数は静脈の状態を表している。従来のパルスオキシメーターは、動脈は脈動しており、本来静脈は脈動していないとして測定部の脈動信号をとり取り出している。しかしこの場合は、動脈の脈動が静脈に伝わり(鬱血した部分に伝わり)、動脈に静脈の脈動が加算され、動脈信号のみの信号処理で算出した動脈中の酸素飽和度が誤差をもつことになる。本発明は第一はこの誤差をなくすためのものである。
ここでI0λ−Iλの成分をとる。
Figure 2004148069
符号に注意して対数をとる。
Figure 2004148069
(3)で更に交流AC成分をとる。
Figure 2004148069
ここで (4)の右辺第一項は動脈の状態を、第2項は静脈の状態を表している。Sλは動脈、静脈とも同じと考えられている。Kλはヘモグロビンの酸化の程度によりことなり、KλとK1λで区分している。
k2:動脈の脈動と静脈の脈動の比を表す係数である。ただしk2は時間的に任意に変化すると考えており、k2・f(t)はf(t)とは別関数として取り扱える。つまり静脈独自の脈動変化をg(t)とすればg(t)=k2(t)・f(t)と置くことができる。即ちk2が解ることは静脈の脈動変化がわかることである。体動発生時の動脈と静脈の個々の動きもk2でとらえることができる。
ここでKλ、K1λ
λ=δ・CtHb・{(SpO/100)(εHbO2 λεHb λ)+εHb λ}−−−−−(5)
1λ=δ・CtHb・{(SpO /100)(εHbO2 λεHbλ)+εHb λ}−−−−−(6)
ここで
δ:吸収係数の単位を合わせるための定数(観血により決める、一度でよい)
tHb:CtHbO2+CtHbのトータルヘモグロビン濃度
HbO2:酸化ヘモグロビン濃度
Hb:還元ヘモグロビン濃度
SpO:動脈の酸化飽和度、%表示
SpO :靜脈の酸化飽和度、%表示
εHbO2 λ:酸化ヘモグロビンの波長λにおける吸収係数
εHb λ:還元ヘモグロビンの波長λにおける吸収係数
tHbは動脈、静脈とも同じ値とかんがえられるからCとする。
ここでまた夫々次ぎのように置換える。
λ=SλεHbO2 λεHb λ
S=SpO/100
λ=2SλεHb λ
=SpO /100
すると(4)式は
Figure 2004148069
ここで(7)からSが求まれば動脈中の酸素飽和度であり問題ない。ここでは
Figure 2004148069
える。( )は3個の未知数から出来ているが掛算の形になっており個場合分離できなく、合わせて一個とかんがえる。
分光波長を1,2,3、4の4個の場合を考える。
(7)は夫々次ぎのようになる。
Figure 2004148069
Figure 2004148069
ここで(8)、(9)から次の式を得る。
Figure 2004148069
(9)、(10)から次式を得る。
Figure 2004148069
同様に(10)、(11)から次式を得る。
Figure 2004148069
ここで(12),(13),(14)は未知数S、S、k2の3個であり解くことが出来る。一つの解法を示す。
(12)、(13)よりk2を消去すれば次式を得る。
Figure 2004148069
(13)、(14)より次式を得る
Figure 2004148069
ここで
S=1−U…………………………(17)
とおく。Uは 0<U<1、すると近似の展開2次までとると
Figure 2004148069
ここで
Figure 2004148069
とおき、(18)をもちいて(15)の左辺の分子を変形すると次式をうる。
Figure 2004148069
(a−a)−(1/2)(a/C+a/C)U−(1/8)(a /C +a /C )U…………………………(20)
結局Uの2次式となる。
=1−U…………………………………………………(21)
とおき、(15)、(16)を変形すれば次式を得る。
(α+βU+γ)/(α+β(U)+γ(U)=
(α+βU+γ)/(α+β(U)+γ(U)=
(α+βU+γ)/(α+β(U)+γ(U
……………………………………………………(22)
ここでαi、βi、γi はU、(U)の各係数である。
(22)式より、U≠(U)として次式をうる。
(αβ−αβ)+(γα−γα)(U+(U))+(β1γ2−β2γ1)(U・(U1))=0……………………………(23)
(α2β3−α3β2)+(γ3α2−γ2α3)(U+(U1))+(β2γ3−β3γ2)(U・(U1))=0……………………………(24)
ここで
X1=U+(U1) ………………………………………………(25)
X2=U・(U1)…………………………………………………(26)
とおくと、
(α1β2−α2β1)+(γ2α1−γ1α2)X1+(β1γ2−β2−γ1)X2=0− …………………………………(27)
(α2β3−α3β2)+(γ3α2−γ2α3)X1+(β2γ3−β3γ2)X2=0………………………………(28)
(27)、(28)の一次の連立方程式を解けばX1,X2がもとまり、U、(U1)は次の2次の方程式を求めればよい。
t2−X1・t+X2=0……………………………………………………(29)以上が一つの解法である。
(17)の代わりにS=S0(1−U)としてもよい。
この場合は、AがAS0となるが同様の展開でU、(U1)を求めることが出来る。いずれにしても、U、(U1)からS,S1を求めることができる。
またS1はあまり変化するものではなく一定値と考えられる場合もある。
その時は未知数はS、( δ C ・f)、k2の3個であり必要な方程式は最少独立の3個の方程式があればよい。解き方の一つは(15)式のS1を固定してSを求めればよい。展開は省略するがSの2次方程式となり、解くことができる。2つの答えがえられるがSの状態を考慮してもちいればよい。
また以上展開した方法は反射の情報をとるためのものだが、透過の場合にも適用できる。それは(2)式から解くことであり、以上の展開と同様に解くことができる。
【発明の実施の形態】
図2以下本発明装置の説明をする。図2は本発明の発光−受光センサーLDSを額の測定部位P(額の略中央部)に取り付けた模式図である。LDSは円形となっているが必ずしも円形の必要はない。その中に必要な発光部、受光部が配置されておればよい。ケーブルは直線的に描写しているが、フレキシブルなもので内部には発光−受光センサーに必要な信号線が入っていればよい。ケーブルを介して信号が必要な演算等をする部署(ここでは図示されていない)に伝達される。図3はLDSの発光部ALと受光部BDを模式的に示したものである。ALはここでは4個の分光波長で個々に構成されるLEDであって、夫々λ1、λ2、λ3、λ4の分光波長の光を発している。その光は測定部位PのP1(必ずしも点でなくてもよく、面でもよい)から入射して光路LLPを通ってP2から外へ出て行く。BDはそれらを受光する受光部である。LDSは主にALとBDで構成され、それらに必要な信号等はケーブルLで伝達される。
図4はAL、BDにおいて各分光波長の入射光路が一つの場合の模式図である。ALにおいて各LEDから発せられたλ1、λ2、λ3、λ4の分光波長の光をダイクロイックミラー等で合成して測定部位に入れ、測定の光路を通った後、外部に出てくる。それをBDの受光部で受光する。時系列的に各LEDが発光する場合はBDの受光部は分光する必要はない、が同時発光或いは
ブロードな分光波長をもっている場合は分光する必要がある。図4のBDは分光する場合を模式的に示したもので、ダイクロイックミラー等から構成される。
図5はLDSの中の各LED、あるいは受光部の配置をしめした模式図である。一つは各LEDの分光波長の光を図示している各λ1、λ2、λ3、λ4を周辺から入射させ、中央から合成した光をとる。或いは、逆に中央から合成した光もしくはブロードな光を入射させ、周辺から各分光波長の光を取り出してもよい。
或いはブロードな光を中央を含むいずれから入れ、いずれかから取り出しその後分光波長に分解する。或いは分光波長された光をいずれかの部位から入れ、合成された光をいずれからとりだしてもよい。
図6は本発明の構成を機能ブロックで示したものである。ALから発せられた光は被測定部を通ってBDで受光される。BDからの信号はA/D変換等の機能を経て演算等の機能にはいる。これらの機能はメインの機能を示したもので、細部の機能については(1)式から(29)式までの展開をおこない、アナログ回路の方が有利な場合はアナログ回路を用いて細部の機能を果たす。特に演算等の機能では、動脈の血中酸素飽和度SpO2、静脈の血中酸素飽和度SpO21、脈波f(t)、動脈の静脈への影響度K2を算出する。算出したものから表示、あるいは信号の出力等必要に応じて出力する。駆動等の機能ブロックはALの回路を駆動するためのものであるが、一方では演算等の機能ブロック、或いはA/D変換等の機能ブロックからの信号をフィードバック信号として受け、適切な算出値がえられるようにALへの信号をコントロールしている。またLD1,LD2、LD3、LD4、LD5、LD6の伝達部分は有線であっても、無線であってもよい。特にLD1、LD6が無線の場合はAL、BD内に必要な電源を確保する。
図7はALの発光LEDの印加電圧の掛けかたの一例である。IEをゼロにして、Lα1を−にするとλ1が発光し+にするとλ2が発光し、Lα2を−にするとλ3が発光し+にするとλ4が発光する。従ってLα1とLα2とを交互に印加させ、印加の極も順次変えていけば各LEDは順次点灯する。それにより3芯線で各LEDの点灯が可能となる。
図9は、Lα1、Lα2、Lα3、Lα4の印加に従って各LEDを個々に制御できるようにしたものである。図10は受光部回路の説明図である。受光素子としてAPD(アバランシエ.フォト.ダイオード)を用いる場合の回路である。APDは逆バイアス電圧BVを印加することによりPD(フォト.ダイオード)に比べ数十倍から百数十倍の出力の増大となる特性を有する。この特性を応用して今まで感度が足りなく問題となっていた測定部位を測定可能にする。回路はBVの電位に直列に抵抗R1,R3が結線され、R3の電位からコンデンサーCDを介してオペアンプOPに結線されフィードバック抵抗R2で増幅され、出力VOが得られる。この回路でλがAPDに入射するとPDに比べ数十倍から百数十倍の電流がえられその内交流成分のみがOPに入力し、交流成分の何倍かしたものがVOとして得られる。この交流成分の意味を考える。(1)式のIλはここでは入射光λとしている。問題は交流成分が何に相当しているか、である。
(1) 式のC0λを次のようにおく。
0λ=eCC0λ…………………………………………………(30)
すると(1)は
Figure 2004148069
ここで
Figure 2004148069
を考慮して(31)を展開すると
Figure 2004148069
ここで交流成分(IλAC を考えると
Figure 2004148069
ここでI0λ・C0λ/CC0λは分光波長が決まれば固定され、或いは分光波長によらない定数であるから、整理して
λ=(IλAC /(I0λ・C0λ/CC0λ
とおけば
(4)式を得る。
即ち図8に示す回路により従来のPDより感度のいいAPDを用いてaλを得て必要な因子を求めることができる。またAPDの増幅率は入射光の分光波長がことなればことなってくる場合もある。その補正はBVを可変にすることにより可能となる。BVの電圧により増幅率がかわるという特性を応用する。あらかじめ分光的な増幅率が分かっている場合は、一定になるように、あらかじめシュミレーションした電圧を自動或いは手動で与えてやればよい。
【発明の効果】
本発明によればヘモグロビンの吸収分光波長域の少なくとも3個、或いは4個の分光波長の反射型の生体信号を得て、動脈中の酸素飽和度、静脈中の酸素飽和度、静脈の脈動変化量、血中のヘモグロビン濃度等、を算出することができる。
【図面の簡単な説明】
【図1】本発明にかかる測定原理の説明図
【図2】本発明にかかる測定部位と検出部の説明図
【図3】本発明にかかる測定検出部の発光部と受光部の説明図
【図4】本発明にかかる測定検出部の発光部と受光部の説明図
【図5】本発明にかかる測定検出部の説明図
【図6】本発明にかかる機能ブロックの説明図
【図7】本発明にかかる測定検出部の発光部の説明図
【図8】本発明にかかる測定検出部の受光部の説明図
【図9】本発明にかかる測定検出部の発光部の説明図
【符号の説明】
0λ 入射光
λ 全反射光
k2 動脈の脈波の静脈への影響度
f(t) 動脈の脈波の変化部分
LDS 発光−受光センサー
P 測定部位
L ケーブル
AL 発光部
BD 受光部
λ 分光波長
λ1 分光波長
λ2 分光波長
λ3 分光波長
λ4 分光波長
P1 入射部位
P2 射出部位
LLP 光路
IE 印加端子
Lα1 印加端子
Lα2 印加端子
Lα3 印加端子
Lα4 印加端子
LD1 伝達ライン
LD2 伝達ライン
LD3 伝達ライン
LD4 伝達ライン
LD5 伝達ライン
LD6 伝達ライン
A/D アナログ/デジタル変換機
R1 抵抗
R2 抵抗
R3 抵抗
APD アバランシエ・フォト・ダイオード
BV 印加電源
CD コンデンサー
OP 作動増幅器
VO OPの出力TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for detecting components in blood.
[Prior art]
A device that non-invasively measures oxygen saturation in arteries has already been commercialized as a pulse oximeter. Although many fingertips are used at the measurement site, the fingertips move very well and adversely affect the measured value of arterial oxygen saturation. Therefore, heads and foreheads whose movements are relatively slow are candidates. In addition, in consideration of the superiority of the oxygen supply system in an emergency of a living body, the brain, the heart, and the like are more important measurement targets than the fingertips. The so-called reflected light type, which measures them with the forehead, face or head near the brain in combination, has been devised and is already on the market. These are signal processing of two spectroscopic sensors applying arterial pulsation.
[Problems to be solved by the invention]
The problem is that the S / N due to the living body is poor and the oxygen saturation of the artery cannot be accurately measured in any case. The problem arises when:
The difference is that the oxygen saturation that can be measured from the forehead when the person is standing is different from the oxygen saturation that can be measured from the forehead while sleeping. It is a problem that the value varies depending on the state. The cause is that blood does not accumulate on the forehead in the standing state, but blood congestion occurs in the lying state, and mainly venous blood accumulates, and the pulsation of the nearby artery pulsates the vein, and as a result, the vein Oxygen saturation of the arteries adversely affects arterial oxygen saturation.
It is an object of the present invention to eliminate this adverse effect.
There is also a problem due to the sensor, which is mainly a problem with the Si photodiode used. The used Si photodiode generates a current corresponding to the photon energy of the incident light. In addition, the light source is configured to maximize the S / N by setting the intensity to a safe maximum value for the living body. However, depending on the person, the arrival efficiency of total reflection light (here, information of light that has entered the interior rather than reflection of the surface, which is referred to as total reflection light here) changes greatly, and the S / N of the total light source-sensor becomes large. It may be a problem and cannot be measured. The present invention also solves this.
[Means for Solving the Problems]
First, the measurement principle for removing venous oxygen saturation will be described.
FIG. 1 shows a schematic diagram of the measurement site. The intensity of the incident light and I 0λ (known), the intensity of the total reflected light and I lambda. Then
Figure 2004148069
Where I λ,: measured value, λ is a certain wavelength,
C : Includes a fixed absorption part and a thickness invariable part in the artery f (t): A part where the thickness of the artery fluctuates, f (t) which is a periodic function is a periodic function
Figure 2004148069
S λ : Hemoglobin scattering coefficient K λ : Hemoglobin absorption coefficient This equation is based on Kubelka's method considering the magnitude relationship between S λ and K λ . This is the result of solving Munch's equation. The exponential function of the first term represents the state of the artery, and the exponential function of the second term represents the state of the vein. In the conventional pulse oximeter, the artery is pulsating, and the vein is not originally pulsating, and the pulsation signal of the measuring section is taken out and taken out. However, in this case, the pulsation of the artery is transmitted to the vein (transmitted to the congested portion), the pulsation of the vein is added to the artery, and the oxygen saturation in the artery calculated by signal processing of only the artery signal has an error. Become. The first aspect of the present invention is to eliminate this error.
Here, the component of I −I λ is taken.
Figure 2004148069
Note the sign and take the logarithm.
Figure 2004148069
In (3), an AC AC component is further taken.
Figure 2004148069
Here, the first term on the right side of (4) represents the state of the artery, and the second term represents the state of the vein. is considered the same for arteries and veins. K λ varies depending on the degree of oxidation of hemoglobin, it has been divided into a K λ and K 1λ.
k2 is a coefficient representing the ratio of arterial pulsation to venous pulsation. However, k2 is considered to change arbitrarily with time, and k2 · f (t) can be handled as a function different from f (t). That is, if the pulsation change unique to the vein is g (t), g (t) = k2 (t) · f (t) can be set. That is, knowing k2 means that the pulsation change of the vein is known. Individual movements of arteries and veins at the time of occurrence of body motion can also be captured by k2.
Here K λ, K 1λ the K λ = δ · C tHb · {(SpO 2/100) (εHbO2 λ - εHb λ) + εHb λ} ----- (5)
K 1λ = δ · C tHb · {(SpO 2 1/100) (εHbO2 λ - εHb λ) + εHb λ} ----- (6)
Here, δ: a constant for adjusting the unit of the absorption coefficient (determined by invasion, only once)
C tHb: C tHbO2 + C tHb total hemoglobin concentration C HbO2: oxidized hemoglobin concentration C Hb: deoxyhemoglobin concentration SpO 2: oxidation saturation of the arterial,% display SpO 2 1: Shizumyaku oxide saturation, in percent
εHbO2 λ: absorption at the wavelength of the oxyhemoglobin λ coefficient
εHb λ: absorption coefficient C tHb at a wavelength of deoxyhemoglobin lambda is arterial, venous both be considered that the same value as C.
Here, they are replaced as follows.
A λ = S λ (εHbO2 λ - εHb λ)
S = SpO 2/100
B λ = 2S λ · εHb λ
S 1 = SpO 2 1/100
Then, equation (4) becomes
Figure 2004148069
Here, if S is obtained from (7), it is the oxygen saturation in the artery, and there is no problem. here
Figure 2004148069
I can. () Is made up of three unknowns, but is in the form of a multiplication and cannot be separated in the case of an individual.
Consider the case of four spectral wavelengths of 1, 2, 3, and 4.
(7) is as follows.
Figure 2004148069
Figure 2004148069
Here, the following equation is obtained from (8) and (9).
Figure 2004148069
The following equation is obtained from (9) and (10).
Figure 2004148069
Similarly, the following equation is obtained from (10) and (11).
Figure 2004148069
Here, (12), (13) and (14) are three unknowns S, S 1 and k2 and can be solved. Here is one solution.
If k2 is eliminated from (12) and (13), the following equation is obtained.
Figure 2004148069
The following equation is obtained from (13) and (14).
Figure 2004148069
Here, S = 1-U (17)
far. U is 0 <U <1.
Figure 2004148069
here
Figure 2004148069
When the numerator on the left side of (15) is transformed using (18), the following equation is obtained.
Figure 2004148069
(A 1 C 2 -a 2 C 1) - (1/2) (a 1 A 2 / C 2 + a 2 A 1 / C 1) U- (1/8) (a 1 A 2 2 / C 2 3 + a 2 A 1 2 / C 1 3) U 2 .............................. (20)
Eventually, it becomes a quadratic expression of U.
S 1 = 1−U 1 .................................................................. (21)
Then, if (15) and (16) are modified, the following equation is obtained.
1 + β 1 U + γ 1 U 2 ) / (α 1 + β 1 (U 1 ) + γ 1 (U 1 ) 2 ) =
2 + β 2 U + γ 2 U 2 ) / (α 2 + β 2 (U 1 ) + γ 2 (U 1 ) 2 ) =
3 + β 3 U + γ 3 U 2 ) / (α 3 + β 3 (U 1 ) + γ 3 (U 1 ) 2 )
………………………………… (22)
Here, αi, βi, and γi are coefficients of U and (U 1 ).
From equation (22), the following equation is obtained as U ≠ (U 1 ).
(Α 1 β 2 -α 2 β 1) + (γ 2 α 1 -γ 1 α 2) (U + (U 1)) + (β1γ2-β2γ1) (U · (U1)) = 0 ............... ............ (23)
(Α2β3-α3β2) + (γ3α2-γ2α3) (U + (U1)) + (β2γ3-β3γ2) (U · (U1)) = 0 = 0... (24)
Here, X1 = U + (U1) (25)
X2 = U · (U1) ……………………………… (26)
After all,
(Α1β2-α2β1) + (γ2α1-γ1α2) X1 + (β1γ2-β2-γ1) X2 = 0-... (27)
(Α2β3-α3β2) + (γ3α2-γ2α3) X1 + (β2γ3-β3γ2) X2 = 0 ... (28)
Solving the first-order simultaneous equations (27) and (28) yields X1 and X2, and for U and (U1), the following second-order equations may be obtained.
t2−X1 · t + X2 = 0... ...... (29) The above is one solution.
Instead of (17), S = S0 (1-U) may be set.
In this case, A becomes AS0, but U and (U1) can be obtained by similar expansion. In any case, S and S1 can be obtained from U and (U1).
In some cases, S1 does not change so much and is considered to be a constant value.
At that time, the unknowns are S, (δC · f), and k2, and the necessary equations are only required to be at least three independent equations. One way to solve is to fix S1 in equation (15) and find S. Although expansion is omitted, it becomes a quadratic equation of S and can be solved. Two answers can be obtained, but the condition of S may be considered.
The method developed above is for obtaining reflection information, but can also be applied to transmission. That is to solve from equation (2), which can be solved in the same way as the above expansion.
BEST MODE FOR CARRYING OUT THE INVENTION
The apparatus of the present invention will be described with reference to FIG. FIG. 2 is a schematic diagram in which the light emitting / receiving sensor LDS of the present invention is attached to a measurement site P (approximately the center of the forehead) of the forehead. The LDS is circular, but need not be circular. It is only necessary that the necessary light emitting unit and light receiving unit are arranged therein. Although the cable is drawn in a straight line, it is flexible as long as the signal lines required for the light-emission and light-reception sensors are provided inside. The signal is transmitted via a cable to a department (not shown) that performs necessary calculations and the like. FIG. 3 schematically shows the light emitting unit AL and the light receiving unit BD of the LDS. Here, AL is an LED individually composed of four spectral wavelengths, and emits light having spectral wavelengths of λ1, λ2, λ3, and λ4, respectively. The light is incident from P1 (not necessarily a point, but may be a surface) of the measurement site P, and goes out of P2 through the optical path LLP. BD is a light receiving unit that receives them. The LDS is mainly composed of an AL and a BD, and signals and the like necessary for them are transmitted through a cable L.
FIG. 4 is a schematic diagram in the case where there is one incident light path of each spectral wavelength in AL and BD. In the AL, light having spectral wavelengths of λ1, λ2, λ3, and λ4 emitted from each LED is combined by a dichroic mirror or the like, enters a measurement site, passes through a measurement optical path, and then exits outside. The light is received by the light receiving unit of the BD. When each LED emits light in a time series, the light receiving portion of the BD does not need to separate light, but when simultaneous emission or has a broad spectral wavelength, it is necessary to separate light. The BD in FIG. 4 schematically shows a case where the light is split, and includes a dichroic mirror and the like.
FIG. 5 is a schematic diagram showing the arrangement of each LED or light receiving unit in the LDS. One is to make each of λ1, λ2, λ3, and λ4, which show light of the spectral wavelength of each LED, enter from the periphery and take light synthesized from the center. Alternatively, conversely, light synthesized or broad light may be incident from the center, and light of each spectral wavelength may be extracted from the periphery.
Alternatively, broad light is entered from any one including the center, extracted from any one, and then decomposed into spectral wavelengths. Alternatively, light having a spectral wavelength may be input from any part, and synthesized light may be extracted from any part.
FIG. 6 shows the configuration of the present invention by functional blocks. The light emitted from the AL passes through the portion to be measured and is received by the BD. The signal from the BD enters a function such as an arithmetic operation through a function such as an A / D conversion. These functions show the main functions. For the details of the functions, the equations (1) to (29) are expanded. When the analog circuit is more advantageous, the functions of the details are used using the analog circuit. Fulfill. In particular, in the functions such as calculation, the blood oxygen saturation SpO2 of the artery, the blood oxygen saturation SpO21 of the vein, the pulse wave f (t), and the degree of influence K2 of the artery on the vein are calculated. The calculated result is displayed or output as necessary, such as output of a signal. The functional block for driving and the like is for driving the AL circuit. On the other hand, a signal from a functional block for arithmetic operation or a functional block for A / D conversion is received as a feedback signal, and an appropriate calculated value is obtained. The signal to AL is controlled so that it may be obtained. The transmission portions of LD1, LD2, LD3, LD4, LD5, and LD6 may be wired or wireless. In particular, when the LD1 and LD6 are wireless, necessary power is secured in the AL and BD.
FIG. 7 is an example of how to apply the voltage applied to the AL light emitting LED. When IE is set to zero and Lα1 is set to −, λ1 emits light. When set to +, λ2 emits light. When Lα2 is set to −, λ3 emits light. When Lα2 is set to +, λ4 emits light. Therefore, if Lα1 and Lα2 are applied alternately and the polarity of the application is also changed sequentially, each LED is sequentially turned on. Thereby, each LED can be turned on with a three-core wire.
FIG. 9 shows a configuration in which each LED can be individually controlled in accordance with the application of Lα1, Lα2, Lα3, and Lα4. FIG. 10 is an explanatory diagram of the light receiving unit circuit. This is a circuit when an APD (avalanche photo diode) is used as a light receiving element. The APD has a characteristic that the output is increased by several tens to one hundred and several tens times as compared with a PD (photo diode) by applying a reverse bias voltage BV. By applying this characteristic, it is possible to measure a measurement site which has been a problem because of insufficient sensitivity. In the circuit, resistors R1 and R3 are connected in series to the potential of BV, and the potential of R3 is connected to an operational amplifier OP via a capacitor CD, amplified by a feedback resistor R2, and an output VO is obtained. In this circuit, when λ is incident on the APD, a current several tens to hundreds of tens times larger than that of the PD is obtained, and only the AC component is input to the OP, and a multiple of the AC component is obtained as VO. Consider the meaning of this AC component. Here, Iλ in equation (1) is the incident light λ. The question is what the AC component corresponds to.
(1) C in the equation is set as follows.
C = e CC0λ ... ............ (30)
Then (1)
Figure 2004148069
here
Figure 2004148069
When (31) is expanded in consideration of
Figure 2004148069
Here, considering the AC component (I λ ) AC
Figure 2004148069
Here I · C / CC is fixed once the spectral wavelength, or because it is constant independent to spectral wavelength, and organize a λ = (I λ) AC / (I 0λ · C 0λ / CC )
Then, equation (4) is obtained.
That is, the circuit shown in FIG. 8 makes it possible to obtain aλ by using an APD having higher sensitivity than the conventional PD and obtain a necessary factor. Also, the amplification factor of the APD may be different if the spectral wavelength of the incident light is different. The correction can be made by making the BV variable. The characteristic that the amplification factor changes according to the voltage of BV is applied. If the spectral amplification factor is known in advance, a simulated voltage may be automatically or manually applied so as to be constant.
【The invention's effect】
According to the present invention, a reflection-type biological signal of at least three or four spectral wavelengths in a hemoglobin absorption spectral wavelength range is obtained, and oxygen saturation in an artery, oxygen saturation in a vein, and pulsation change of a vein are obtained. The amount, hemoglobin concentration in blood, and the like can be calculated.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a measurement principle according to the present invention; FIG. 2 is an explanatory diagram of a measurement site and a detecting unit according to the present invention; FIG. 3 is an explanatory diagram of a light emitting unit and a light receiving unit of a measurement and detecting unit according to the present invention; FIG. 4 is an explanatory diagram of a light emitting unit and a light receiving unit of the measurement detecting unit according to the present invention. FIG. 5 is an explanatory diagram of a measuring detecting unit according to the present invention. FIG. 6 is an explanatory diagram of functional blocks according to the present invention. FIG. 8 is an explanatory diagram of a light emitting unit of the measurement detecting unit according to the present invention. FIG. 8 is an explanatory diagram of a light receiving unit of the measuring detecting unit according to the present invention. FIG. 9 is an explanatory diagram of a light emitting unit of the measurement detecting unit according to the present invention. Description】
I 0 λ incident light I λ total reflected light k2 Degree of influence of arterial pulse wave on vein f (t) Variation part of arterial pulse wave LDS Light-receiving sensor P Measurement site L Cable AL Light emitting unit BD Light receiving unit λ Spectral wavelength λ1 Spectral wavelength λ2 Spectral wavelength λ3 Spectral wavelength λ4 Spectral wavelength P1 Incident part P2 Exit part LLP Optical path IE Application terminal Lα1 Application terminal Lα2 Application terminal Lα3 Application terminal Lα4 Application terminal LD1 Transmission line LD2 Transmission line LD3 Transmission line LD4 Transmission line LD5 Transmission line LD6 Transmission line A / D Analog / digital converter R1 Resistor R2 Resistor R3 Resistor APD Avalanche photo diode BV Applied power CD Capacitor OP Output of operational amplifier VO OP

Claims (2)

可視光或いは赤外光を用いて生体内部の生体信号を反射型でとり出すようにした装置において、ヘモグロビンの吸収分光域の少なくとも3個の生体分光信号を用いて、動脈中の酸素飽和度、静脈の脈動変化量、血中のヘモグロビン濃度等、を算出する装置。In a device in which a biological signal inside a living body is taken out in a reflection type using visible light or infrared light, oxygen saturation in an artery is determined using at least three biological spectral signals in an absorption spectral region of hemoglobin. A device for calculating vein pulsation change, blood hemoglobin concentration and the like. 可視光或いは赤外光を用いて生体内部の生体信号を反射型でとり出すようにした装置において、ヘモグロビンの吸収分光域の少なくとも4個の生体分光信号を用いて、動脈中の酸素飽和度、静脈中の酸素飽和度、静脈の脈動変化量、血中のヘモグロビン濃度等、を算出する装置。In a device in which a biological signal inside a living body is taken out in a reflection type using visible light or infrared light, oxygen saturation in an artery using at least four biological spectral signals in an absorption spectral region of hemoglobin, A device that calculates venous oxygen saturation, venous pulsation change, blood hemoglobin concentration, and the like.
JP2002351792A 2002-10-29 2002-10-29 Reflection type detector for degree of blood oxygen saturation Pending JP2004148069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351792A JP2004148069A (en) 2002-10-29 2002-10-29 Reflection type detector for degree of blood oxygen saturation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351792A JP2004148069A (en) 2002-10-29 2002-10-29 Reflection type detector for degree of blood oxygen saturation

Publications (1)

Publication Number Publication Date
JP2004148069A true JP2004148069A (en) 2004-05-27

Family

ID=32463184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351792A Pending JP2004148069A (en) 2002-10-29 2002-10-29 Reflection type detector for degree of blood oxygen saturation

Country Status (1)

Country Link
JP (1) JP2004148069A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8311602B2 (en) 2005-08-08 2012-11-13 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US8528185B2 (en) 2005-08-08 2013-09-10 Covidien Lp Bi-stable medical sensor and technique for using the same
JP2013223806A (en) * 2004-10-06 2013-10-31 Resmed Ltd System for non-invasive monitoring of respiratory parameter in sleep disordered breathing
US8577440B2 (en) 2011-03-29 2013-11-05 Covidien Lp Method and system for positioning a sensor
US8649838B2 (en) 2010-09-22 2014-02-11 Covidien Lp Wavelength switching for pulse oximetry
US9220436B2 (en) 2011-09-26 2015-12-29 Covidien Lp Technique for remanufacturing a BIS sensor
JP2017521199A (en) * 2014-05-15 2017-08-03 ヌーライン センサーズ, エルエルシーNuline Sensors, Llc System and method for measuring blood oxygen concentration by placing a single sensor on the skin

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9220856B2 (en) 2004-10-06 2015-12-29 Resmed Limited Method and apparatus for non-invasive monitoring of respiratory parameters in sleep disordered breathing
JP2013223806A (en) * 2004-10-06 2013-10-31 Resmed Ltd System for non-invasive monitoring of respiratory parameter in sleep disordered breathing
US10398862B2 (en) 2004-10-06 2019-09-03 ResMed Pty Ltd Method and apparatus for non-invasive monitoring of respiratory parameters in sleep disordered breathing
US8311602B2 (en) 2005-08-08 2012-11-13 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US8528185B2 (en) 2005-08-08 2013-09-10 Covidien Lp Bi-stable medical sensor and technique for using the same
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US8649838B2 (en) 2010-09-22 2014-02-11 Covidien Lp Wavelength switching for pulse oximetry
US8577440B2 (en) 2011-03-29 2013-11-05 Covidien Lp Method and system for positioning a sensor
US9220436B2 (en) 2011-09-26 2015-12-29 Covidien Lp Technique for remanufacturing a BIS sensor
JP2017521199A (en) * 2014-05-15 2017-08-03 ヌーライン センサーズ, エルエルシーNuline Sensors, Llc System and method for measuring blood oxygen concentration by placing a single sensor on the skin

Similar Documents

Publication Publication Date Title
JP6878312B2 (en) Photoelectric volumetric pulse wave recording device
WO1994003102A1 (en) Optical monitor (oximeter, etc.) with motion artefact suppression
JP5238087B1 (en) Concentration measuring device and concentration measuring method
JPS6365845A (en) Oximeter apparatus
JP2003153881A (en) Blood component measuring instrument
JPH01500493A (en) Multi-pulse oxygen concentration measurement method and device
JPH0371135B2 (en)
JPH06174A (en) Pulse oximeter
JP2004202190A (en) Biological information measuring device
JP2004148069A (en) Reflection type detector for degree of blood oxygen saturation
EP0497021A1 (en) Oximeter with monitor
JP3125321B2 (en) Blood oxygen level measurement device
RU2696422C2 (en) Optical analysis system and method
JP3858678B2 (en) Blood component measuring device
JP7370539B2 (en) Bilirubin concentration measurement system
US9888871B2 (en) Methods and systems for determining a venous signal using a physiological monitor
JP7052191B2 (en) Detection device and detection method
US10028681B2 (en) Biological sensor
JP6006668B2 (en) Concentration measuring device and concentration measuring method
JP2005169020A (en) Apparatus for detecting saturation degree of blood oxygen
JP6399528B2 (en) Concentration measuring device and method of operating the concentration measuring device
RU2175523C1 (en) Pulse oximeter
RU2233620C1 (en) Pulse oxymeter
JP2016198656A (en) Concentration measurement device and concentration measurement method
JP7091090B2 (en) Pulse oximeter and blood characteristic measuring device