JP2003194714A - Measuring apparatus for blood amount in living-body tissue - Google Patents

Measuring apparatus for blood amount in living-body tissue

Info

Publication number
JP2003194714A
JP2003194714A JP2001400431A JP2001400431A JP2003194714A JP 2003194714 A JP2003194714 A JP 2003194714A JP 2001400431 A JP2001400431 A JP 2001400431A JP 2001400431 A JP2001400431 A JP 2001400431A JP 2003194714 A JP2003194714 A JP 2003194714A
Authority
JP
Japan
Prior art keywords
light
oxygenated
tissue
amount
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001400431A
Other languages
Japanese (ja)
Inventor
Susumu Kajima
Kentaro Mitsui
顕太郎 満井
進 鹿嶋
Original Assignee
Omega Wave Kk
オメガウェーブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omega Wave Kk, オメガウェーブ株式会社 filed Critical Omega Wave Kk
Priority to JP2001400431A priority Critical patent/JP2003194714A/en
Publication of JP2003194714A publication Critical patent/JP2003194714A/en
Application status is Pending legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring apparatus for a blood amount in a living-body tissue by which an oxygenated red corpuscle amount, a deoxygenated red corpuscle amount and an oxygen saturation degree can be measured precisely without being influenced by a difference in the absorption degree of light inside the living-body tissue. <P>SOLUTION: The measuring apparatus is provided with a measuring-light output part in which three or more kinds of optical light sources 11, 12 and 13 are irradiated directly at the living-body tissue 8 at a prescribed intensity; a detection part 7a and a detection part 7b in which the intensity of transmitted and scattered light due to the passage of output measuring light through the tissue 8 is detected in two or more measuring points; a computing part 17a and a computing part 17b, in which the oxygenated red corpuscle amount in the tissue 8, the deoxygenated red corpuscle amount and an oxygenation degree as the ratio of the oxygenated red corpuscle amount to a total red corpuscle amount, or an oxygenation degree as the ratio of an oxygenated hemoglobin amount to a total hemoglobin amount, are computed on the basis of the light absorption amount in the tissue 8 obtained from the intensity difference between the output measuring light and the detected transmitted and scattered light; and a correction part 20 which corrects an error generated by the light absorption degree of the tissue 8 itself, with reference to respective measured values computed from the two or more measuring points. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、医用機器の光計測技術に係り、特に生体組織中の血液量測定や血液酸素化度合測定等に用いられる生体組織血液量測定装置に関するものである。 BACKGROUND OF THE INVENTION [0001] [Technical Field of the Invention The present invention relates to a medical device of the light measurement technology, in particular a biological tissue for use in blood volume measurement and blood oxygenation degree measurement of biological tissue it relates blood volume measuring device. 【0002】 【従来の技術】運動前および運動後の生体組織中の赤血球(またはヘモグロビン)に可視光または近赤外領域の特定波長の光を透過させると、運動前と運動後とでは光吸収スペクトルが異なることは知られている。 [0002] Light absorption in the Background of the Invention transmit light of a specific wavelength of visible light or near infrared region to the red blood cells in a biological tissue after exercise before and movement (or hemoglobin), and pre-exercise and post-exercise that the spectrum is different is known. これは、 this is,
運動前と運動後とで酸素化赤血球の量と脱酸素化赤血球の量が変動し、それが光吸収量の変化として表れるからである。 The amount of the amount of oxygenated red blood cells in the previous exercise and after exercise and deoxygenated red blood cells varies, it is because appears as a change in light absorption amount. 【0003】そこで、生体組織中の赤血球に可視光または近赤外領域の特定波長の光を透過させ、赤血球量(またはヘモグロビン量)の変動と光吸収量の変化との関係を用いて、生体組織中の赤血球量の変動を測定する方法および装置が提案されている。 [0003] Therefore, the red blood cells in a biological tissue transmits light of a specific wavelength of visible light or near infrared region, by using the relationship between the change of the variation and the amount of light absorption amount erythrocytes (or hemoglobin), biological method and apparatus for measuring variations in red cell mass in the tissue have been proposed. 【0004】例えば、従来の生体組織中血球量の変動を測定する装置は、図6に示すように、生体組織(以下、 [0004] For example, the device for measuring the variation of the conventional biological tissue blood volume, as shown in FIG. 6, the living tissue (hereinafter,
組織という)8に対し3種類の互いに波長の近い可視光または近赤外線の光源11,12,13を所定の強度で直接照射する測定光出力部と、出力された光源11,1 And measuring light output unit that irradiates directly visible or predetermined intensity light sources 11, 12 and 13 of the near-infrared close to each other wavelengths of three to organization named) 8, the light source output 11,1
2,13の測定光(以下、測定光a,b,cとする)が組織8を通過した透過散乱光の強度を検出する検出部3,5,7,16と、出力された測定光a,b,cと検出された透過散乱光の強度から酸素化度合、酸素化ヘモグロビン量と脱酸素化ヘモグロビン量を演算する酸素化度合演算部17とを備えている。 2,13 of the measuring light (hereinafter, the measuring light a, b, and c) a detection unit 3,5,7,16 which detects the intensity of the transmitted scattered light passing through the tissue 8, the output measurement luminous a , a b, oxygenation degree from the intensity of the transmitted scattered light detected is c, the oxygenation degree calculation unit 17 for calculating the oxygenated hemoglobin and deoxygenated hemoglobin. 【0005】光源11,12,13には、駆動回路19 [0005] the light source 11, 12 and 13, the drive circuit 19
より駆動電流が供給され、光源11,12,13は、集光器にて集光されて光合波器15へ送られる。 It is supplied more drive current, light sources 11, 12 and 13 is sent is condensed in the condenser and the optical multiplexer 15. そして、 And,
この光合波器15は、集光された測定光a,b,cを光コネクタ2を介して1本、または複数本の光ファイバー4に導光する。 The optical multiplexer 15 is guided focused measurement light a, b, and c 1 present via the optical connector 2 or a plurality of optical fibers 4. なお、各光源は、タイミング回路18が指定する時分割で時間をずらして供給される駆動回路1 Each light source driving circuit 1 to the timing circuit 18 is supplied at staggered times in time division to specify
9の駆動電流により発光され、光コネクタ2を介して光ファイバー4に導光する。 Emitted by 9 of the drive current is guided to the optical fiber 4 via the optical connector 2. 【0006】そして、組織8中を散乱、透過してきた測定光は、光照射点(プローブ6)から所定距離(例えば、数mmから数cm程度)離れて設置された光検出器7(または本体内の光検出器3に接続されている受光ファイバープローブ)によって受光される。 [0006] Then, the scattering medium tissue 8, the measurement light transmitted through a predetermined distance from the light irradiation point (probe 6) (e.g., about several cm from several mm) optical detector 7 which is located remotely (or body is received by the inner light receiving fiber probe that is connected to the optical detector 3). 【0007】酸素化血液(または酸素化ヘモグロビン) [0007] oxygenated blood (or oxygenated hemoglobin)
と脱酸素化血液(または脱酸素化ヘモグロビン)の光吸収スペクトルは異なっており、3種類以上の異なる波長の光吸収度合を調べることで、測定対象とする組織中の酸素化赤血球量と脱酸素化赤血球量、またはそれら変化を求めることができる。 A light absorption spectrum of deoxygenated blood (or deoxygenated hemoglobin) are different, by examining the light absorption degree of 3 or more different wavelengths, oxygenated red cell mass and deoxygenation of tissue to be measured it is possible to obtain the erythrocytes amount, or their change. 【0008】ところで、光検出器7で受光される測定光は組織8中の血液による吸収のみでなく、組織内部の散乱によっても減衰した光である。 By the way, the measurement light received by the optical detector 7 is not only absorbed by blood in the tissue 8, a light attenuated by scattering inside the tissue. 従って、検出される光は一般的に[数式1]にて表すことができる。 Therefore, it is possible to light to be detected is expressed by general [Equation 1]. 【0009】 【数1】 [0009] [number 1] 【0010】なお、[数式1]において、Iは光検出器7で検出された受光(透過光)強度を示し、ηは光システムに関わる係数を示し、I 0は照射した測定光強度を示し、exp( )は指数関数を意味する。 [0010] Note that in [Equation 1], I represents a detected received (transmitted light) intensity at the light detector 7, eta represents a coefficient relating to the optical system, I 0 represents the measurement light intensity irradiated , exp () denotes an exponential function. 【0011】また、αは単位体積、単位光路長当たりの酸素化赤血球の吸収係数を示し、V Further, alpha represents the absorption coefficient of the oxygenated red blood cells per unit volume, unit optical path length, V 1は単位体積当たりの酸素化赤血球の量を示し、βは単位体積、単位光路長当たりの脱酸素化赤血球の吸収係数を示し、V 2は単位体積当たりの脱酸素化赤血球の量を示し、μは単位長当たりの組織の、散乱係数を示し、Lは照射点と受光点間の距離(光路長)を示す。 1 shows the amount of oxygenated red blood cells per unit volume, beta is the unit volume indicates the absorption coefficient of deoxygenated red blood cells per unit path length, V 2 represents the amount of deoxygenated red blood cells per unit volume, μ is the tissue per unit length, indicates the scattering coefficient, L is indicative of the distance between the receiving point and the irradiation point (optical path length). 【0012】ここで、[数式1]は各測定光毎に得られる式であり、各測定光波長におけるα、βを代入して酸素化赤血球量や脱酸素化赤血球量を求めている。 [0012] where [Equation 1] is a formula obtained for each measurement light, alpha at each measurement wavelength, by substituting the β seeking oxygenated red cell mass and deoxygenated red cell mass. 各測定光波長のα、βの値は既知である。 α of the measuring light wavelength, the value of β are known. 従って、未知数はV Therefore, the unknowns V
1 ,V 2とμの3種類であるために3つの方程式が必要となる。 1, three equations for a three V 2 and μ is required. そこで、測定光は通常3種類以上となる。 Therefore, the measurement light is usually 3 or more. また、 Also,
μは各測定光波長が互いに近接しておれば、同じ値として近似できる。 μ is if I close the measuring light wavelengths from each other, can be approximated as equal. 【0013】演算処理回路17は、組織8中の酸素化赤血球量、脱酸素化赤血球量および血液の酸素化度合(酸素化赤血球量V 1と脱酸素化赤血球量V 2の比率で、V [0013] calculation processing circuit 17, oxygenated red cell mass in the tissue 8, in deoxygenated erythrocyte volume and oxygenation degree (the ratio of oxygenated red cell mass V 1 and deoxygenated erythrocytes amount V 2 of blood, V
1 /(V 1 +V 2 )として求められる)を求めるものである。 And requests the sought) as 1 / (V 1 + V 2 ). 【0014】そして、[数式1]において、酸素化赤血球の吸収係数α及び脱酸素化赤血球の吸収係数βは、図8の波長特性図に示すように、分光光度計等で測定可能な数値である。 [0014] In [Equation 1], the absorption coefficient of the absorption coefficient α and deoxygenated erythrocytes oxygenated erythrocytes beta, as shown in wavelength characteristic diagram of FIG. 8, in a measurable numerical by spectrophotometer is there. 【0015】次に、3種類の測定光によって得られた受光量から連立方程式を解くと、次の[数式2]と[数式3]が得られる。 Next, by solving the simultaneous equations from the amount of received light obtained by the three measuring light, and the second [Equation 2] and [Formula 3] is obtained. 【0016】 【数2】 [0016] [number 2] 【数3】 [Number 3] 【0017】そこで、光路長Lの値を[数式2]と[数式3]に代入することで、酸素化赤血球量や脱酸素化赤血球量が求められる。 [0017] Therefore, the value of optical path length L by substituting in the equation 2] and [Formula 3], oxygenated red cell mass and deoxygenated red cell mass is obtained. 【0018】なお、[数式2]及び[数式3]において、I 1 ,I 2およびI 3は光検出器7で検出された測定光1,2,および3の受光(透過光)強度を示し、I [0018] Note that in [Equation 2] and [Formula 3], I 1, I 2 and I 3 shows a receiving (transmission light) intensity of the measuring light 1, 2 and 3 detected by the photodetector 7 , I
10 ,I 10, I 20およびI 30は照射した測定光1,2,および3 20 and I 30 measuring beam 2 is irradiated, and 3
の照射光強度を示し、Lnは自然対数を示し、A,B, Shows the intensity of light applied, Ln represents the natural logarithm, A, B,
C及びDはα 1 ,α 2 ,α 3およびβ 1 ,β 2 ,β 3で表される係数を意味する。 C and D α 1, α 2, α 3 and β 1, β 2, means a coefficient expressed by beta 3. 【0019】 【発明が解決しようとする課題】ところで、組織8内を透過する透過光の強度は、組織8中の赤血球による吸収のみでなく、組織8自体による吸収によっても減衰する。 [0019] SUMMARY OF THE INVENTION Incidentally, the intensity of transmitted light transmitted through the tissue 8, not only absorption by red blood cells in the tissue 8, also attenuated by absorption by tissue 8 itself. そして、生体組織自体による吸収度は組織毎に異なり未知数である。 The absorbance by the biological tissue itself is unknown vary from tissue. 【0020】しかしながら、従来の測定方法では、組織8自体による光の吸収が各測定光において同じと仮定しており、生体組織自体の吸収度合の違いにより測定値に誤差が生じてしまう。 [0020] However, in the conventional measuring method, the absorption of light by tissue 8 itself has assumed the same as in the measurement light, an error occurs in the measured value due to a difference in the absorption degree of the living tissue itself. 特に、皮膚ではメラニン色素によって光が吸収され、その吸収度合が波長によって異なっており、更に可視光領域ではその影響が大きくなり、酸素化赤血球量、脱酸素化赤血球量および酸素飽和度のより精度の高い測定が非常に困難であった。 In particular, light is absorbed by melanin pigment in the skin, have different absorption degree by the wavelength, further the effect is large in the visible light region, oxygenated red cell mass, higher accuracy of deoxygenated red cell mass and the oxygen saturation measurement with high has been very difficult. 【0021】そこで、生体組織内の酸素化赤血球量(または酸素化ヘモグロビン量)、脱酸素化赤血球量(または脱酸素化ヘモグロビン量)とその割合を示す血液酸素化度合をより正確に測定する技術の開発が求められている。 [0021] Therefore, oxygenated red blood cells of the living tissue (or oxygenated hemoglobin), deoxygenated red cell mass (or deoxygenated hemoglobin) more accurately measure a technique for blood oxygenation degree indicating the percentage development of is required. 【0022】本発明は、上記の事項に鑑みて改良を加えたものであり、生体組織内の光の吸収度合の違いに影響されずに、より正確な酸素化赤血球量、脱酸素化赤血球量および酸素飽和度を測定できる生体組織血液量測定装置を提供することを課題とする。 [0022] The present invention has made improvements in view of the above matters, without being affected by the absorption degree of light in biological tissue differences, more accurate oxygenated red cell mass, deoxygenated red cell mass and it is an object to provide a biological tissue blood volume measuring apparatus capable of measuring the oxygen saturation. 【0023】 【課題を解決するための手段】前記課題を解決するために、本発明の生体組織血液量測定装置は、以下の手段を採用した。 [0023] In order to solve the above object, according to an aspect of the biological tissue blood volume measuring device of the present invention employs the following means. すなわち、本発明の生体組織血液量測定装置は、3種類以上の測定光を所定の強度で生体組織に対し直接照射する測定光出力部と、前記出力された測定光が前記生体組織を通過した透過散乱光の強度を2点以上の測定点で検出する検出部と、前記出力された測定光と前記検出された透過散乱光の強度差から得られる前記生体組織中の光吸収量に基づき前記生体組織中の全血液の酸素化度合、または全赤血球量(または全ヘモグロビン量)に対する酸素化赤血球量(または酸素化ヘモグロビン量)の割合である酸素化度合、酸素化赤血球量(または酸素化ヘモグロビン量)と脱酸素化赤血球量(または脱酸素化ヘモグロビン量)を演算する酸素化度合演算部と、前記2点以上の測定点から、前記演算した酸素化度合、酸素化赤血球量と脱酸素化 That is, the living tissue blood volume measuring device of the present invention includes: a measurement light output unit that irradiates directly to biological tissue three or more kinds of the measuring beam at a predetermined intensity, the outputted measurement light passed through the living body tissue based on said detecting unit and the light absorption amount of the biological tissue derived from the intensity difference between the output measurement luminous said detected transmitted and scattered light detection intensity of the transmitted and scattered light at the measurement point of the two or more points oxygenation degree of whole blood in a biological tissue or whole cell volume (or total amount of hemoglobin) oxygenation degree, oxygenated red cell mass is the percentage of oxygenated red cell mass for (or oxygenated hemoglobin) (or oxygenated hemoglobin the amount) and deoxygenated red cell mass (or the oxygenation degree calculator for calculating a deoxygenated hemoglobin), from the two or more points of measurement points, the calculated oxygenated degree, oxygenated red cell mass and deoxygenation 血球量に対し生体組織自体の光吸収度合より生じる誤差を補正する補正部とを備えたことを特徴とする。 Characterized in that a correction unit to correct an error arising from the light absorption degree of the living tissue itself to blood quantity. 【0024】なお、本発明の生体組織血液量測定装置において、前記補正部は、前記測定点が2点の場合、前記測定値の差分を求めて前記誤差を補正するように構成してもよい。 [0024] Note that, in living tissue blood volume measuring device of the present invention, the correcting unit, when the measuring point is two points, may seek difference between the measured value and configured to correct the error . また、前記補正部は、前記測定点が3点以上の場合、回帰式から前記測定値の回帰直線の傾きを求めて前記誤差を補正するように構成してもよい。 Further, the correction unit is configured when the measurement point is not less than 3 points, may be configured to correct the error in search of slope of the regression line of the measured value from the regression equation. 【0025】この構成によれば、2個以上の検出部を光照射点から異なる場所に設置して、それぞれの検出点で受光した光強度から酸素化赤血球量と脱酸素化赤血球量を求め、それぞれの光検出点で求めた酸素化赤血球量と脱酸素化赤血球量には光吸収度合の違いによる誤差(オフセット値)を含んでいるが、その差分を計算することで、組織自体の吸収係数が不明でも、誤差(オフセット値)を消去した正確な酸素化赤血球量と脱酸素化赤血球量を得ることができる。 According to this configuration, by installing two or more detector at different locations from light irradiation point, determine the oxygenation red cell mass and deoxygenated red cell mass from the light intensity received by the respective detection points, has included an error (offset value) due to the difference in the light absorption degree of the respective oxygenated red cell mass was determined by the light detecting point and deoxygenated red cell mass and calculating the difference, the absorption coefficient of the tissue itself even unknown, it is possible to obtain an error correct oxygenated red cell mass has been erased (offset value) and deoxygenated red cell mass. または、検出部が3個以上の場合は、回帰式を求めてその傾きから正確な酸素化赤血球量と脱酸素化赤血球量を得ることができる。 Or, in the case of detector is three or more, it is possible to obtain an accurate oxygenated red cell mass and deoxygenated red cell mass from the slope a regression equation. なお、光照射点から検出部までの距離は既知、または測定可能であるために、酸素化赤血球量と脱酸素化赤血球量を距離L The distance to the distance from the light irradiation point to the detector is known or measurable, oxygenated red cell mass and deoxygenated erythrocytes amount L
で規格化することが可能である。 In it is possible to standardize. 【0026】 【発明の実施の形態】次に、本発明の実施の形態にかかる生体組織血液量測定装置を図面に基づき説明する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described biological tissue blood volume measuring apparatus according to the embodiment of the present invention based on the drawings. なお、この装置は、生体組織内の酸素化赤血球量(または酸素化ヘモグロビン量)、脱酸素化赤血球量(または脱酸素化ヘモグロビン量)とその割合を示す血液酸素化度合を直接測定するものである。 In this device, oxygenation red cell mass in the body tissue (or oxygenated hemoglobin), deoxygenated red cell mass (or deoxygenated hemoglobin) and intended to directly measure blood oxygenation degree indicating the percentage is there. 【0027】まず、本発明の生体組織血液量測定装置の構成を説明する。 [0027] First, the structure of the biological tissue blood volume measuring device of the present invention. 本発明の生体組織血液量測定装置1 Biological tissue blood volume measuring device of the present invention 1
は、図1に示すように、生体組織(以下、組織という) As shown in FIG. 1, the biological tissue (hereinafter referred to as tissue)
8に対し3種類以上の互いに波長の近い近赤外線の光源11,12,13を所定の強度で直接照射する測定光出力部と、出力された光源11,12,13の測定光(以下、測定光a,b,cとする)が組織8を通過した透過散乱光の強度を2点の測定点で検出する検出部7a,7 8 to a measuring light output unit that irradiates directly three or more near-infrared light sources 11, 12, 13 close in wavelength to each other at a predetermined intensity, the measurement light output light sources 11, 12, 13 (hereinafter, measurements light a, b, and c) the detection unit 7a that detects the intensity of the transmitted scattered light passing through the tissue 8 at the measurement point of 2 points, 7
bと、出力された測定光a,b,cと検出された透過散乱光の強度から得られる組織8中の全赤血球数に対する光吸収量に基づき組織8中の酸素化赤血球量(または酸素化ヘモグロビン量)、脱酸素化赤血球量(または脱酸素化ヘモグロビン量)と全血液の酸素化度合を演算する演算部(演算処理回路)17a,17bと、2点の測定点から、前記演算した各測定値に対し組織8自体の光吸収度合より生じる誤差を補正する補正部(差分演算)2 b and the outputted measured light a, b, oxygenated red cell mass in the tissue 8 based on the amount of light absorption to the total number of red blood cells in the tissue 8 obtained from the intensity of the transmitted scattered light is detected as c (or oxygenated weight hemoglobin), deoxygenated red cell mass (or deoxygenated hemoglobin) and the total calculation section for calculating the oxygenation degree of blood (arithmetic processing circuit) 17a, 17b, from the measurement point of the two points, each was the arithmetic correction unit to correct an error arising from the light absorption degree of tissue 8 itself to measurement (differential operation) 2
0と、を備えている。 And a 0, a. 【0028】そして、この測定光出力部は、光源11, [0028] Then, the measurement light output unit includes a light source 11,
12,13と、光合波器15と、光コネクタ2と、光ファイバー4と、プローブ6とを備えている。 And 12 and 13, and the optical multiplexer 15, an optical connector 2, an optical fiber 4, and a probe 6. 【0029】この中で、光源11,12,13は、3種類の波長が異なるが近接する3つの単光色を発する発光素子と、光を効率よく光ファイバー等に導光するための集光器と、から構成されている。 [0029] In this, the light source 11, 12 and 13, three types of light emitting elements wavelength that emits three single light color different but adjacent, the collector for guiding the light efficiently such as an optical fiber and it is configured from. この発光素子は、例えば、3種類の狭い波長域の可視光または近赤外光であるレーザー光(測定光a,b,c)を発振するレーザダイオード(Laser Diode)である。 The light emitting element is, for example, three narrow wavelength range of visible light or laser beam is a near infrared light (measurement light a, b, c) a laser diode for oscillating a (Laser Diode). また、光源11,1 In addition, the light source 11, 1
2,13は、光合波器15と接続し、出力された測定光a,b,cは集光器にて集光されて光合波器15へ送られる。 2,13 is connected to the optical multiplexer 15, the output measurement luminous a, b, c is sent is condensed in the condenser and the optical multiplexer 15. 更に、光源11,12,13には、駆動回路19 Further, the light sources 11, 12, and 13, the drive circuit 19
より駆動電流が供給されている。 More driving current is supplied. 【0030】そして、この光合波器15は、光源11, [0030] Then, the optical multiplexer 15, a light source 11,
12,13のそれぞれと接続するとともに、光コネクタ2と接続し、集光された測定光a,b,cを光コネクタ2を介して1本、または複数本の光ファイバー4に導光する。 Together to connect with each of 12, 13, connected to the optical connector 2 is guided focused measurement light a, b, and c 1 present via the optical connector 2 or a plurality of optical fibers 4. 【0031】なお、各光源は、タイミング回路18が指定する時分割で時間をずらして供給される駆動回路19 [0031] The driving circuit 19 each light source, which is supplied by shifting the time-division when the timing circuit 18 is designated
の駆動電流により発光され、光コネクタ2を介して光ファイバー4に導光する。 Emitted by the drive current, for guiding the optical fiber 4 via the optical connector 2. 【0032】そして、このタイミング回路18は、図2 [0032] Then, the timing circuit 18, FIG. 2
(a)のパルス図に示すように、所定時間毎にパルスP As shown in the pulse diagram of (a), the pulse P at a predetermined time interval
1,P2,P3,P4,…を刻んでいる。 1, P2, P3, P4, it has carved .... また、タイミング回路18は、駆動回路19に対し、パルスP1の時に測定光aを発光させるように通知する(図2(b)参照)。 The timing circuit 18, to the drive circuit 19, and notifies to emit the measurement light a when the pulse P1 (refer to Figure 2 (b)). 同様に、タイミング回路18は、駆動回路19に対し、パルスP2の時に測定光bを(図2(c)参照)、パルスP3の時に測定光cを(図2(d)参照)、発光させるように通知する。 Similarly, the timing circuit 18, to the driving circuit 19, (see FIG. 2 (c)) the measuring light b when the pulse P2 (see FIG. 2 (d)) a measuring beam c when the pulse P3, emit light to notify so. 【0033】なお、組織8に導光されて透過、散乱した測定光a,b,cは、タイミング回路18が指定する時分割で時間をずらし、後述する光検出器7a,7bにより検出される。 It should be noted, transmission is guided into the tissue 8, scattered measurement light a, b, c are staggered in time division timing circuit 18 specifies, later photodetectors 7a, it is detected by 7b . 【0034】そして、この光コネクタ2は、光ファイバー4と着脱自在に接続し、測定光a,b,cが装置本体1から光ファイバー4を介して外部(組織8)へ出力するためのコネクタである。 [0034] Then, the optical connector 2 is detachably connected to the optical fiber 4, is a connector for output to the outside (tissue 8) via a measuring beam a, b, c is an optical fiber 4 from the apparatus main body 1 . 【0035】また、この光ファイバー4は、例えば石英系の光ファイバーであり、一端が光コネクタ2と着脱自在に接続し、他端がプローブ6と接続している。 Further, the optical fiber 4 is a fiber optic for example silica-based, one end is detachably connected to the optical connector 2 and the other end connected to the probe 6. また、 Also,
光ファイバー4は、波長の異なる3種類の測定光a, Optical fiber 4, three different wavelengths of the measurement light a,
b,cをプローブ6を通して組織8に照射する。 b, irradiates c to the tissue 8 through the probe 6. 【0036】更に、このプローブ6は、組織8上のある点に密着して配置され、光ファイバー4より照射された測定光a,b,cを組織8に出力する。 Furthermore, the probe 6 is placed in close contact with the point on the tissue 8, and outputs the irradiated measuring beam a from the optical fiber 4, b, and c in tissue 8. 【0037】そして、出力された測定光a,b,cは、 [0037] Then, the output measurement luminous a, b, c are,
組織8内の酸素化赤血球(または酸素化ヘモグロビン) Oxygenated red blood cells in tissue 8 (or oxygenated hemoglobin)
や脱酸素化赤血球(または脱酸素化ヘモグロビン)やその他の体液を通過して検出部7a,7bにより検出される。 And deoxygenated red blood cells (or deoxygenated hemoglobin) and passed through the other body fluid detecting section 7a, is detected by 7b. 【0038】そして、この検出部7a,7bは、それぞれ電線5a,5bと、電気的コネクタ3a,3bと、光増幅器(アンプ)16a,16bと接続している。 [0038] Then, the detection unit 7a, 7b are connected wires 5a, respectively, and 5b, electrical connector 3a, and 3b, the optical amplifier (amplifiers) 16a, 16b and. 【0039】この中で、光検出器7aは、例えば、フォトダイオードであり、組織8より測定光(すなわち透過光)を受光し、受光した透過光の強度を検出する装置であり、光ファイバー4の光照射点(プローブ6の位置) [0039] In this, the light detector 7a is, for example, a photodiode, receives the measurement light from the tissue 8 (i.e. transmitted light), a device for detecting the intensity of the received transmitted light, of the optical fiber 4 light irradiation point (position of the probe 6)
から所定距離L1(数cm程度)離れた点に配設されている。 Predetermined distance L1 (about several cm) is disposed distant point from. また、光検出器7bも、光検出器7aと同様に受光した透過光の強度を検出する装置であり、プローブ6 Further, the light detector 7b is also a device for detecting the intensity of the transmitted light received similarly to the light detector 7a, the probe 6
の位置から所定距離L2(数cm:L2>L1)程度離れた点に配設されている。 Predetermined distance L2 (several cm: L2> L1) from the position of being disposed in a point away degree. そして、この光検出器7a, This light detector 7a,
7bは、検出した透過光の強度情報を電線5を介して装置本体1に通知する。 7b notifies the intensity information of the detected transmitted light in the apparatus main body 1 through an electric wire 5. 【0040】この電線5a,5bは、例えばシールド線であり、一端が装置本体1側にある電気的コネクタ3 [0040] The electric wire 5a, 5b is, for example, a shielded wire, electrical connector 3 having one end located in the apparatus main body 1 side
a,3bとそれぞれ着脱自在に接続し、他端が光検出器7a,7bと接続している。 a, connects 3b respectively detachably connects the other end photodetectors 7a, 7b and. 【0041】この電気的コネクタ3a,3bは、電線5 [0041] The electrical connector 3a, 3b are wire 5
a,5bとそれぞれ着脱自在に接続し、また、この電気的コネクタ3a,3bは、増幅器16a,16bとそれぞれ接続している。 a, connects 5b respectively detachably, also the electrical connector 3a, 3b is connected to an amplifier 16a, 16b respectively. 【0042】この増幅器16a,16bは、電気的コネクタ3a,3bより導入された3種類の透過光の強度情報を増幅する装置である。 [0042] The amplifier 16a, 16b is a device that amplifies the intensity information of the electrical connector 3a, 3 types of the transmitted light introduced from 3b. また、この増幅器16a,1 In addition, the amplifier 16a, 1
6bは演算部(演算処理回路)17a,17bとそれぞれ接続している。 6b is connected calculating unit (processing circuit) 17a, and 17b, respectively. 【0043】そして、この演算部17a,17bは、タイミング回路18と接続し、タイミング回路18が指定する時分割に基づいて、検出された透過光の強度情報を識別し、識別した組織8中の酸素化赤血球量「V 1 [0043] Then, the calculation unit 17a, 17b is connected to the timing circuit 18, based on the time division timing circuit 18 is designated to identify the intensity information of the detected transmitted light, identified in the tissue 8 oxygenated red blood cell volume "V 1 ·
L」、脱酸素化赤血球量「V 2・L」及び酸素化度合R L ", deoxygenated red cell mass" V 2 · L "and oxygenated degree R
を演算する。 To calculate the. 【0044】また、補正部(差分演算)20は、酸素化度合演算部17a,17bと接続し、酸素化度合演算部17a,17bが演算した2点の測定点からの値の差分を求め、各測定値に対し組織8自体の光吸収度合より生じる誤差を補正する。 [0044] The correction unit (difference calculation) 20, oxygenation degree calculation unit 17a, and connected to 17b, calculates a difference value from the measurement point of the two points oxygenated degree calculation unit 17a, 17b is calculated, correcting errors arising from light absorption degree of tissue 8 itself for each measurement. 【0045】[酸素化度合演算部(演算処理回路)の説明]次に、この演算処理回路17a,17bの演算手順を説明する。 [0045] [Description of oxygenation degree calculation unit (processing circuit) will be described the operation processing circuit 17a, 17b of the operational procedures. なお、光検出器7a,7bで受光される透過光の強度(強度情報)は、組織8中の血液による吸収のみでなく、体液を含めた組織8自体による散乱と吸収によって減衰(変化)する。 The light detector 7a, the intensity of the transmitted light received by the 7b (intensity information) is not only absorbed by blood in the tissue 8, attenuated by absorption and scattering by the tissue 8 itself, including body fluids (change) . すなわち、これら組織8を透過してきた測定光の強度は、ブーゲ−ランバート−ベールの法則(Bouguer-Lambert-Beer law)によれば、組織8自体による散乱と吸収によって、その通過距離に関して指数関数的に減少する。 That is, these strength tissue 8 measuring light transmitted through the the Bouguer - Lambert - According to Beer's law (Bouguer-Lambert-Beer law), by absorption and scattering by the tissue 8 itself, exponentially with respect to the passing distance It decreases. 従って、単波長の透過光の強度Iは、一般的に[数式1]で表すことができる。 Thus, the intensity I of the transmitted light of a single wavelength can be generally represented by [Equation 1]. 【0046】 【数4】 [0046] [number 4] 【0047】なお、[数式1]において、Iは光検出器7で検出された受光(透過光)強度を示し、ηは光システムに関わる係数を示し、I 0は照射した測定光強度を示し、exp( )は指数関数を意味する。 [0047] Note that in [Equation 1], I represents a detected received (transmitted light) intensity at the light detector 7, eta represents a coefficient relating to the optical system, I 0 represents the measurement light intensity irradiated , exp () denotes an exponential function. 【0048】また、αは単位体積、単位光路長当たりの酸素化赤血球の吸収係数を示し、V [0048] Furthermore, alpha represents the absorption coefficient of the oxygenated red blood cells per unit volume, unit optical path length, V 1は単位体積当たりの酸素化赤血球の量を示し、βは単位体積、単位光路長当たりの脱酸素化赤血球の吸収係数を示し、V 2は単位体積当たりの脱酸素化赤血球の量を示し、μは単位長当たりの組織の、散乱係数を示し、Lは照射点と受光点間の距離(光路長)を示す。 1 shows the amount of oxygenated red blood cells per unit volume, beta is the unit volume indicates the absorption coefficient of deoxygenated red blood cells per unit path length, V 2 represents the amount of deoxygenated red blood cells per unit volume, μ is the tissue per unit length, indicates the scattering coefficient, L is indicative of the distance between the receiving point and the irradiation point (optical path length). 【0049】ここで、[数式1]は各測定光毎に得られる式であり、各測定光波長におけるα、βを代入して酸素化赤血球量や脱酸素化赤血球量を求めている。 [0049] where [Equation 1] is a formula obtained for each measurement light, alpha at each measurement wavelength, by substituting the β seeking oxygenated red cell mass and deoxygenated red cell mass. 各測定光波長のα、βの値は既知である。 α of the measuring light wavelength, the value of β are known. 従って、未知数はV Therefore, the unknowns V
1 ,V 2とμの3種類であるために3つの方程式が必要となる。 1, three equations for a three V 2 and μ is required. そこで、測定光は通常3種類以上となる。 Therefore, the measurement light is usually 3 or more. また、 Also,
μは各測定光波長が互いに近接しておれば、同じ値として近似できる。 μ is if I close the measuring light wavelengths from each other, can be approximated as equal. 【0050】演算処理回路17a,17bは、組織8中の酸素化赤血球量、脱酸素化赤血球量および血液の酸素化度合(酸素化赤血球量V 1と脱酸素化赤血球量V 2の比率で、V 1 /(V 1 +V 2 )として求められる)を求めるものである。 The arithmetic processing circuit 17a, 17b is oxygenated red cell mass in the tissue 8, in deoxygenated erythrocyte volume and oxygenation degree (the ratio of oxygenated red cell mass V 1 and deoxygenated erythrocytes amount V 2 of the blood, and requests the sought) as V 1 / (V 1 + V 2). 【0051】そして、[数式1]において、酸素化赤血球の吸収係数α 1及び脱酸素化赤血球の吸収係数α 2 [0051] In [Equation 1], the absorption coefficient of the absorption coefficient alpha 1 and deoxygenated red blood oxygenated erythrocytes alpha 2
は、図8の波長特性図に示すように、分光光度計等で測定可能な数値であるが、散乱係数と吸収係数の和μは、 Is, as shown in wavelength characteristic diagram of FIG. 8, is a numerical value that can be measured with a spectrophotometer or the like, the sum of the scattering coefficient and absorption coefficient mu,
未知数である。 It is unknown. しかしながら、散乱係数及び吸収係数の波長特性は、狭い波長領域内(特に近赤外領域)では、 However, wavelength characteristics of scattering coefficient and absorption coefficient in the narrow wavelength region (especially near-infrared region),
直線性があることが知られている。 It is known that there is linearity. 【0052】次に、3種類の測定光によって得られた受光量から連立方程式を解くと、次の[数式2]と[数式3]が得られる。 Next, by solving the simultaneous equations from the amount of received light obtained by the three measuring light, and the second [Equation 2] and [Formula 3] is obtained. 【0053】 【数5】 [0053] [number 5] 【数6】 [6] 【0054】そこで、光路長Lの値を[数式2]と[数式3]に代入することで、酸素化赤血球量や脱酸素化赤血球量が求められる。 [0054] Therefore, the value of optical path length L by substituting in the equation 2] and [Formula 3], oxygenated red cell mass and deoxygenated red cell mass is obtained. 【0055】なお、[数式2]及び[数式3]において、I 1 ,I 2およびI 3は光検出器7で検出された測定光1,2,および3の受光(透過光)強度を示し、I [0055] Note that in [Equation 2] and [Formula 3], I 1, I 2 and I 3 shows a receiving (transmission light) intensity of the measuring light 1, 2 and 3 detected by the photodetector 7 , I
10 ,I 10, I 20およびI 30は照射した測定光1,2,および3 20 and I 30 measuring beam 2 is irradiated, and 3
の照射光強度を示し、Lnは自然対数を示し、A,B, Shows the intensity of light applied, Ln represents the natural logarithm, A, B,
C及びDはα 1 ,α 2 ,α 3およびβ 1 ,β 2 ,β 3で表される係数を意味する。 C and D α 1, α 2, α 3 and β 1, β 2, means a coefficient expressed by beta 3. 【0056】そして、組織8自体が皮膚のメラニン色素などによって光の吸収度合が波長によって異なる場合の光の吸収を考慮すると、[数式1]は[数式4]のように表される。 [0056] When the tissue 8 itself to consider the absorption of light vary depending on the wavelength absorption degree of light such as by melanin pigment in the skin, it is expressed as [Equation 1] [Equation 4]. 【0057】 【数7】 [0057] [Equation 7] 【0058】なお、[数式4]において、γは組織自体による吸収係数である。 [0058] Note that in [Equation 4], gamma is the absorption coefficient due to tissue itself. よって、[数式2]及び[数式3]は[数式5]及び[数式6]のように表される。 Therefore, it is expressed as [Equation 2] and [Formula 3] [Formula 5] and [Formula 6]. 【0059】 【数8】 [0059] [number 8] 【数9】 [Equation 9] 【0060】なお、[数式5]及び[数式6]において、E及びFは測定光1,2及び3の各々の吸収係数γ [0060] Note that in [Equation 5] and [Formula 6], E and F are the absorption coefficient of each of the measuring light 1, 2, and 3 gamma
1 ,γ 2およびγ 3の関数で、[数式7]及び[数式8] 1, a function of gamma 2 and gamma 3, [Formula 7] and [Formula 8]
のように表される。 Represented as. 【0061】 【数10】 [0061] [number 10] 【数11】 [Number 11] 【0062】なお、[数式7]及び[数式8]において、Γ n =Ln(γ n )を示す。 [0062] Incidentally, it is shown in [Equation 7] and [Equation 8], gamma n = Ln the (γ n). 【0063】この関数Eおよび関数Fが組織8自体の吸収度合により生じる誤差(オフセット分)として測定値に影響を及ぼす。 [0063] affect the measurement values ​​as an error caused by the absorption degree of the function E and the function F is tissue 8 itself (offset). 【0064】例えば、光照射点(プローブ6)と光検出器間の距離Lを変化させて生体組織を測定したときの、 [0064] For example, when measuring the living tissue light irradiation point (probe 6) by changing the distance L between the optical detector,
距離Lと酸素化赤血球量「V 1・L」及び脱酸素化赤血球量「V 2・L」の典型的な関係を図3に示す。 Distance L and oxygenated red cell mass "V 1 · L" and deoxygenated erythrocytes amount typical relationship of "V 2 · L" shown in FIG. 【0065】図3によれば、Lが大きくなれば、測定対象体積が大きくなるので、多くの血液によって光が吸収される。 [0065] According to FIG. 3, the larger L is, the measured volume is increased, the light by a number of blood is absorbed. ここで、「L=0」のときには血液による吸収がないため、本来ならば「V 1・L」または「V 2・L」 Here, because there is no absorption by the blood at the time of the "L = 0", if the original "V 1 · L" or "V 2 · L"
の回帰直線は零点と交差するはずである。 The regression line should intersect the zero point. しかし、上記γの値が各波長によって異なっているので、関数E及び関数Fが誤差(オフセット分)の原因と関わっていると考えられる。 However, the value of the γ is different by each wavelength, the function E and the function F is considered to be involved causing the error (offset). 【0066】例えば、検出する血液量が多いとき、すなわち「L」が大きいときにはこのオフセット分は相対的に小さいが、「L」が小さいときには実際の血液量の値よりも大きくなってしまう。 [0066] For example, when the amount of blood detected is large, i.e., the offset is when "L" is larger is relatively small, but when "L" is small becomes larger than the actual blood volume values. 従って、小さい体積中の酸素化赤血球量と脱酸素化赤血球量を測定しようとする場合には、この誤差(オフセット分)を消去しないと正しい値が得られない。 Therefore, when attempting to measure the oxygenation red cell mass and deoxygenated red cell mass in a small volume, this error does not unless erased (offset) the correct value obtained. 【0067】そこで、更に光吸収度合による誤差(オフセット分)の発生のメカニズムを説明し、次に、補正部(差分演算)20の演算手順を説明する。 [0067] Therefore, further description of the mechanism of occurrence of an error (offset) due to light absorption degree, it will now be described an operation procedure of the correction unit (difference calculation) 20. 従来の技術で述べた図6に示す装置で指先を測定すると、図7に示す照射点と測定点間距離Lと血液量VLの関係図が得られる。 When measuring the fingertip in the apparatus shown in FIG. 6 described in the prior art, the relationship diagram of the distance L and the blood volume VL between the irradiation point and the measuring points shown in FIG. 7 can be obtained. 【0068】なお、図7において、使用した測定光は6 [0068] In FIG. 7, the measuring light used 6
35nm,655nmおよび690nmのレーザーダイオードである。 35 nm, a laser diode of 655nm and 690 nm. また、[数式5]及び[数式6]に示すA,B,CおよびDの値は、上記レーザーダイオードを用いた測定光のときの赤血球の吸収係数から各々「A= Also, [Equation 5] and A shown in [Equation 6], B, the values ​​of C and D, respectively from the absorption coefficient of red blood cells when the measuring light using the laser diode "A =
-6.48」,「B=2.58」,「C=0.19」および「D=-0. -6.48 "," B = 2.58 "," C = 0.19 "and" D = -0.
77」とした。 Was 77 ". 【0069】図7に示すように、酸素化赤血球量「V 1 [0069] As shown in FIG. 7, oxygenated cell volume "V 1
・L」及び脱酸素化赤血球量「V 2・L」は照射点と測定点間距離「L」に比例していることが確認できる。 · L "and deoxygenated red cell mass" V 2 · L "it can be confirmed that in proportion to the distance" L "between the measurement point and the irradiation point. 【0070】このことは、単位面積当たりの赤血球量V [0070] This means that, per unit area red cell mass V
Lは、照射点と測定点間距離Lがわずかな違いであるならば、照射点と測定点間距離Lに依存せずにほぼ一定であることを示している。 L, if the distance L between the irradiation point and the measurement point is a slight difference, which indicates a substantially constant independently of the distance L between the irradiation point and the measurement point. 【0071】また、酸素化赤血球量「V 1・L」と脱酸素化赤血球量「V 2・L」は共に「L=0」のときにオフセット分を有しており、特に酸素化赤血球量を示す「V 1・L」のオフセット分は測定値に対して非常に大きいことがわかる。 [0071] Further, oxygenated red cell mass and "V 1 · L" deoxygenated red cell mass "V 2 · L" together have offset when "L = 0", particularly oxygenated red cell mass offset of the "V 1 · L" indicating it can be seen that very large with respect to the measurement value. なお、酸素化赤血球量「V 1・L」 It should be noted, oxygenated red blood cell volume "V 1 · L"
のオフセット分が脱酸素化赤血球量「V 2・L」のオフセット分に比較して大きい理由は、[数式7]と[数式8]で表されるように、A,B,CおよびDの係数の差によるためである。 Offset is deoxygenated erythrocytes large amount of reasons compared to offset the "V 2 · L", as represented by [Equation 8] and [Formula 7], A, B, C and D This is because due to the difference in the coefficient. 【0072】このように、測定点が1点のみの従来の測定方法では正確な血液量を求めることができない。 [0072] Thus, the measurement point can not obtain an accurate blood volume in the conventional method of measuring only one point. 【0073】[補正部(差分演算)の説明]そこで、本実施の形態では、2個の光検出器7a,7bを光照射点6から異なる場所L1,L2に設置している。 [0073] [Description of correcting section (difference calculation)] Thus, in this embodiment, are installed two photodetectors 7a, and 7b from light irradiation point 6 different locations L1, L2. そして、 And,
演算処理回路17a,17bはそれぞれの検出点で受光した光強度から酸素化赤血球量「V 1・L」と脱酸素化赤血球量「V 2・L」を[数式5]と[数式6]によって求めている。 Arithmetic processing circuit 17a, 17b each of oxygenated red cell mass from the light intensity received by the detection point "V 1 · L" and deoxygenated red cell mass "V 2 · L" the Formula 5] and by [Equation 6] seeking. なお、演算処理回路17a,17bで求めた酸素化赤血球量「V 1・L」と脱酸素化赤血球量「V 2・L」はオフセット分を含んでいる。 The arithmetic processing circuit 17a, oxygenated red cell mass obtained in 17b "V 1 · L" and deoxygenated red cell mass "V 2 · L" includes the offset. 【0074】補正部(差分演算)20は、その差分を計算することで、組織8自体の吸収係数が不明でも、オフセット分を消去したより正確な酸素化赤血球量「V 1 [0074] The correction unit (difference calculation) 20, by calculating the difference, even unknown absorption coefficient of tissue 8 itself, accurate oxygenated red cell mass than erasing the offset "V 1 ·
L」と脱酸素化赤血球量「V 2・L」を得るものである。 L "and deoxygenated erythrocytes amount" is intended to obtain a V 2 · L ". なお、光照射点6からの光検出点間距離L 1 ,L 2は既知、または測定可能であるために、酸素化赤血球量「V 1・L」と脱酸素化赤血球量「V 2・L」を距離Lで規格化することが可能である。 In order between the light detecting point distance L 1 from the light irradiation point 6, L 2 are known or measurable, oxygenated red cell mass and "V 1 · L" deoxygenated red cell mass "V 2 · L "it is possible to normalized by the distance L. 【0075】すなわち、差分演算20処理の場合、光照射点6からL離れた測定点1での受光信号から演算して得られた酸素化赤血球量V 1・L 1は[数式9]として求められ、同様にL 2離れた測定点2での受光信号から演算して得られた酸素化赤血球量V 1・L 2は[数式10] [0075] That is, when the difference operation 20 processing, oxygenated cell volume V 1 · L 1 obtained by calculating from the received signal at the measurement point 1 from the light irradiation point 6 apart L is determined as [Equation 9] is similarly L 2 oxygenated cell volume V 1 · L 2 obtained by calculating from the received signal at the measurement point 2 distant from the formula 10]
で求められる。 Obtained by. 【0076】 【数12】 [0076] [number 12] 【0077】 【数13】 [0077] [number 13] ここで、I Lmnは、測定点mにおける測定光I nの受光強度を示す。 Here, I Lmn denotes a received light intensity of the measurement light I n at the measurement point m. 【0078】上記[数式9]と[数式10]の減算から酸素化赤血球量がV 1・(L 2 −L 1 ) として求められ、この値はオフセット分であるEを含まない。 [0078] oxygenated red cell mass from the subtraction of the [Equation 9] and [Formula 10] is obtained as V 1 · (L 2 -L 1 ), this value does not include the E is offset. 同様にして脱酸素化赤血球量V 2・(L 2 −L 1 )も求められる。 Similarly deoxygenated erythrocytes amount V 2 · (L 2 -L 1 ) is also determined. 【0079】また、全血液量の酸素化度合(酸素飽和度)Rは[数式11]より得られる。 [0079] Further, oxygenation degree of total blood volume (oxygen saturation) R is obtained from [Equation 11]. 【0080】 【数14】 [0080] [number 14] 【0081】図4に測定点1と2が光照射点6から各々L 1とL 2離れた2箇所の測定点の場合の酸素化赤血球量と脱酸素化赤血球量を求める概念図を示す。 [0081] Measurement points 1 to 4 and 2 shows a conceptual diagram for obtaining the oxygenated red cell mass and deoxygenated red blood cells of each case L 1 and L 2 apart two positions of the measuring points from the light irradiation point 6. 【0082】図5に本発明の実施例を示す。 [0082] Examples of the present invention in FIG. この図5 FIG. 5
は、L 1は光照射点6から1mmで、L 2を光照射点6から2mm,4mm,6mmおよび8mmの位置に移動させて、(L Is L 1 is a 1mm from light irradiation point 6 moves the L 2 from the light irradiation point 6 2 mm, 4 mm, at the position of 6mm and 8 mm, (L
2 −L 1 )に対する酸素化赤血球量と脱酸素化赤血球量の特性を調べた結果を示している。 It shows a 2 -L 1) results of examining the characteristics of the oxygenated red cell mass and deoxygenated red cell mass for. 【0083】なお、図5において、使用した測定光は6 [0083] In FIG. 5, the measurement light used 6
35nm,655nmおよび690nmのレーザーダイオードである。 35 nm, a laser diode of 655nm and 690 nm. また、[数式5]及び[数式6]に示すA,B,CおよびDの値は、上記レーザーダイオードを用いた測定光のときの血液の吸収係数から各々「A=- The value of A shown in [Equation 5] and [Formula 6], B, C and D are each "A = the absorption coefficient of blood at the time of measurement light using the laser diode -
6.48」,「B=2.58」,「C=0.19」および「D=-0.7 6.48 "," B = 2.58 "," C = 0.19 "and" D = -0.7
7」とした。 It was 7 ". 【0084】従来の図7と比較して、本発明の図5ではL=0のときのオフセット分がほぼ0(ゼロ)付近であることが示されている。 [0084] Compared to conventional 7, it is shown that offset in the case of FIG. 5, L = 0 of the present invention is around approximately 0 (zero). 【0085】また、2本の回帰直線の増加率は図7の各値とほぼ同じであり、増加率が単位体積当たりの酸素化赤血球量と脱酸素化赤血球量に相当する。 [0085] In addition, the increase rate of the two regression lines is substantially the same as the values ​​of FIG. 7, the rate of increase corresponds to oxygenated erythrocytes amount and deoxygenated red blood cells per unit volume. 【0086】[本実施の形態の生体組織血液量測定装置の作用]次に、本実施の形態の生体組織血液量測定装置の作用を説明する。 [0086] [Operation of the living tissue blood volume measuring device of the present embodiment] Next, operation of the living body tissue blood volume measuring device of the present embodiment. なお、演算処理回路17a,17b The arithmetic processing circuit 17a, 17b
が演算するに当たって必要とする所定の数値、例えば、 Predetermined value but which require when calculating, for example,
測定光の強度や、距離L1,L2は、予め設定されているものとする。 The intensity of the measuring light and the distance L1, L2 is assumed to be preset. また、光ファイバー4は光コネクタ2を介して装置本体1に接続されているものとし、電線5 Further, the optical fiber 4 is assumed to be connected to the apparatus main body 1 via the optical connector 2, the wire 5
a,5bは電気的コネクタ3a,3bを介して装置本体1に接続されているものとする。 a, 5b are assumed to be connected to the apparatus main body 1 via electrical connector 3a, a 3b. 【0087】本実施の形態の生体組織血液量測定装置1 [0087] biological tissue blood volume measurement of the embodiment device 1
の使用者(以下、使用者という)は、光ファイバー4の端部に設けられたプローブ6を測定対象の組織8上面に密着配置する。 The user (hereinafter, referred to as user) is arranged close to the probe 6 provided at the end of the optical fiber 4 to the tissue 8 upper surface of the measuring object. また、使用者は、プローブ6の密着位置(光照射点)から距離L 1の位置に光検出器7aを設定し、また光照射点6から距離L 2の位置に光検出器7 Further, the user, the optical detector 7 adhesion position setting the light detector 7a from (light irradiation point) at a distance L 1, and the position of the distance L 2 from the light emitting point 6 of the probe 6
bを設置する。 Installing a b. 【0088】次に、使用者は、装置本体1を起動させると、タイミング回路18のパルス波のタイミングに基づき駆動回路19より駆動電流が光源11,12,13に時分割で供給される。 [0088] Next, the user device when activating the body 1, the drive current from the drive circuit 19 based on the timing of the pulse wave of the timing circuit 18 is supplied by two o'clock light sources 11, 12, and 13 split. すると、測定光a,b,cが時分割で光合波器15に出力され、順次光ファイバー4に導光される。 Then, the measurement light a, b, c are outputted to the optical multiplexer 15 in time division, it is guided sequentially to the optical fiber 4. 【0089】導光された測定光a,b,cは、プローブ6から組織8内に出力され、組織8内の血液を含む体液を通過する際に散乱と吸収によって減衰する。 [0089] guided measurement light a, b, c are outputted from the probe 6 into tissue 8, attenuated by scattering and absorption in passing through the body fluid including blood in the tissue 8. 【0090】次に、光検出器7a,7bは、減衰した測定光a,b,cである透過光を順次受光して透過光の強度を検出する。 [0090] Next, the light detector 7a, 7b is attenuated measurement light a, b, and sequentially receives the transmitted light is c for detecting the intensity of the transmitted light. そして、光検出器7a,7bは、電線5 The light detector 7a, 7b are wire 5
a,5b及び電気的コネクタ3a,3bを介して、検出値を測定光毎に強度情報として増幅器16a,16bに通知する。 a, 5b and electrical connectors 3a, via 3b, and notifies the intensity information detected value for each measurement optical amplifier 16a, to 16b. 【0091】増幅器16a,16bは、通知された測定光毎の強度情報を増幅して演算処理回路17a,17b [0091] amplifiers 16a, 16b, the operation processing by amplifying the intensity information for each notified measured optical circuit 17a, 17b
に通知し、演算処理回路17a,17bは、タイミング回路18のパルス波のタイミングに基づき、通知された測定光a,b,cの強度情報を識別するとともに、前述の演算手順に従って、組織8中の酸素化赤血球量「V Notify the arithmetic processing circuit 17a, 17b, based on the timing of the pulse wave of the timing circuit 18, the notified measurement light a, b, as well as identifying the intensity information of c, according to the calculation procedure described above, in the tissue 8 oxygenated red blood cell volume "V of 1 1
・L」、脱酸素化赤血球量「V 2・L」及び全血液量に対する酸素化度合Rをそれぞれの測定点毎に演算する。 · L ", calculates deoxygenated red cell mass" V 2 · L "and oxygenation degree R to the total blood volume for each measurement point. 【0092】次に、補正部(差分演算)20は、前述の手順に基づき酸素化度合演算部17a,17bが演算した2点の測定点からの値の差分[酸素化赤血球量V 1 [0092] Next, the correction unit (difference calculation) 20, procedure based oxygenated degree calculation unit 17a described above, 17b is the difference [oxygenated cell volume V 1 · values from the measurement point of the two points is calculated
(L 2 −L 1 )及び脱酸素化赤血球量V 2・(L 2 (L 2 -L 1) and deoxygenated erythrocytes amount V 2 · (L 2 -
1 )]を求めて関数Eおよび関数Fを排除し、組織8 L 1)] to eliminate the function E and the function F seeking, tissue 8
自体の光吸収度合より生じる誤差を補正してより正確な酸素化赤血球量、または脱酸素化赤血球量を求める。 Correcting an error arising from the light absorption degree of itself determine a more accurate oxygenated red cell mass, or deoxygenated red cell mass. また、求めた差分[酸素化赤血球量V 1・(L 2 −L 1 )及び脱酸素化赤血球量V 2・(L 2 −L 1 )]に基づき全血液量の酸素化度合(酸素飽和度)Rを算出する。 Further, the obtained difference [oxygenated cell volume V 1 · (L 2 -L 1 ) and deoxygenated erythrocytes amount V 2 · (L 2 -L 1 )] the total blood volume of oxygenation degree based on (oxygen saturation ) to calculate the R. 【0093】そして、算出された酸素化赤血球量V 1 [0093] Then, the calculated oxygenated cell volume V 1 ·
(L 2 −L 1 )、脱酸素化赤血球量V 2・(L 2 −L 1 )及び全血液量の酸素化度合(酸素飽和度)Rは、差分演算20から図示しない外部表示手段に出力されて表示される。 (L 2 -L 1), deoxygenated red blood volume V 2 · (L 2 -L 1 ) and the total blood volume of oxygenation degree (oxygen saturation) R is outputted to the external display means (not shown) from the difference computing 20 It is displayed in a. 【0094】なお、上記実施の形態では、測定点が2点の場合で説明したが、測定点が3個所以上の場合は、回帰式を求めてその傾きから酸素化赤血球量と脱酸素化赤血球量を得ることができる。 [0094] In the above embodiment, the measurement point has been described in the case of two points, if the measurement point is not less than 3 points, oxygenated red cell mass from the slope a regression equation and deoxygenated red blood cells it can be obtained amount. すなわち、測定点L1,L That is, the measurement point L1, L
2〜Lnで酸素化赤血球量が各々、V1・L2〜V1・ Oxygenated red cell mass are each in 2~Ln, V1 · L2~V1 ·
Lnで求められると、一般的に一次回帰直線がV・L= When required by ln, · generally primary regression line V L =
a+b・Lの形で得られる。 Obtained in the form of a + b · L. 【0095】ここで切片aは、[数式12]として求められる。 [0095] Here, the intercept a is determined as [Equation 12]. 【数15】 [Number 15] 【0096】また、係数bは、[数式13]として求められる。 [0096] The coefficient b is obtained as [Equation 13]. 【数16】 [Number 16] 【0097】ここで、Σ(L,VL)はLと測定値VL [0097] In this case, Σ (L, VL) is L and the measured value VL
の積和であり、Σ(L)は、Lの総和、Σ(V・L)は測定値V・Lの総和である。 Of a product sum, sigma (L) is the sum of L, Σ (V · L) is the sum of the measured values ​​V · L. ここで係数bが回帰直線の傾きであり、本発明の単位体積当たりの酸素化赤血球量V1、または脱酸素化赤血球量V2に相当する。 Here the coefficient b is the slope of the regression line, corresponding to oxygenated erythrocytes amount V1, or deoxygenated erythrocytes amount V2 per unit volume of the present invention. 【0098】また、上記実施の形態において酸素化赤血球量を求める式をベールの法則で示しているが、拡散方程式等で求める方法においても本発明の解決手段は有効であり、本発明はベールの法則による演算方式に限定されるものではない。 [0098] Further, while indicating the equation for oxygenated red cell mass in the above embodiment in Beer's law, solutions of the present invention in a method for determining the diffusion equation, etc. is effective, the present invention is the veil It is not limited to the calculation method by the law. また、前述の原理式に加えて使用する測定システム、特に光測定系の特性、などの数値も同様にオフセット分として測定値に加わっており、本発明の解決手段を用いて補正し、より正確な測定値を求めることが可能である。 The measurement system used in addition to the principle expression described above, particularly the characteristics of the optical measurement system, numerical value is added to the measured value as offset in the same manner, such as, correcting by using a solution of the invention, more precisely it is possible to obtain the Do measurements. 【0099】更に、上記実施の形態では、光源として、 [0099] Further, in the above embodiment, as a light source,
レーザーダイオードを用いたが、光源はレーザーダイオードに限定されるものではなく、近接する4つの単光色を発する発光素子であれば、気体、固定レーザー、発光ダイオード等でもよい。 While using a laser diode, the light source is not limited to a laser diode, as long as the light-emitting element which emits four single light color close, gas, fixed laser, or a light emitting diode or the like. 【0100】更にまた、上記実施の形態では、検出部に電気的コネクタ3a,3b、電線5a,5b及びフォトダイオード7a,7bを用いて説明したが、測定光出力部の光コネクタ2、光ファイバー4及びプローブ6と同じ構成で、検出部を光コネクタ3、光ファイバー5及び光ファイバー5の先端を加工した受光プローブ7のように構成してもよい。 [0100] Furthermore, in the above embodiment, an electrical connector 3a to the detection unit, 3b, electric wires 5a, 5b and photodiode 7a, has been described with reference to 7b, the measurement light output portion of the optical connector 2, the optical fiber 4 and the same configuration as the probe 6, an optical connector 3 and detector may be configured as a light receiving probe 7 obtained by processing the tip of the optical fiber 5 and the optical fiber 5. 但し、検出部を光コネクタ3、光ファイバー5及び受光プローブ7で構成する場合、アンプ16には光電気変換回路が含まれる。 However, the optical connector 3 of the detecting unit, when configuring an optical fiber 5 and the light receiving probe 7, the amplifier 16 includes photoelectric conversion circuit. 【0101】 【発明の効果】以上本発明によれば、光による生体組織中の血液量とその酸素飽和度測定において、2点以上の測定点から得られた測定値を差分演算処理あるいは回帰式による演算処理することで、生体組織自体の光吸収によって生じる測定値の不正確さを取り除くことができる。 [0102] According to the present invention as described above, blood volume in a biological tissue with light and in its oxygen saturation measurement, a difference operation or regression expression measurements obtained from two or more points of measurement points by arithmetic processing by, it can be removed inaccuracy of measurement caused by the light absorption of the living tissue itself. 【0102】これによって、個人間で皮膚の色素量が異なっても、または組織自体の吸収係数が不明でも、酸素化赤血球量、脱酸素化赤血球量および酸素飽和度を測定、比較することが可能である。 [0102] Thus, even different pigment content of the skin between individuals, or absorption coefficient of the tissue itself is also unknown, oxygenated red cell mass, measured deoxygenated erythrocyte volume and oxygen saturation can be compared it is. 従って、生体組織内の血液の酸素化度合を容易に直接測定できる生体組織血液量測定装置を提供することができる。 Therefore, it is possible to provide a biological tissue blood volume measuring apparatus oxygenation degree of blood in the living tissue can be easily measured directly.

【図面の簡単な説明】 【図1】 本発明の実施の形態にかかる生体組織血液量測定装置の構成ブロック図である。 It is a block diagram of a biological tissue blood volume measuring apparatus according to the embodiment of the BRIEF DESCRIPTION OF THE DRAWINGS [Figure 1] present invention. 【図2】 タイミング回路のパルスの説明図である。 FIG. 2 is an explanatory diagram of a pulse of the timing circuit. 【図3】 酸素化ヘモグロビンと脱酸素化ヘモグロビンの光吸収係数の波長特性図である。 3 is a wavelength characteristic of an optical absorption coefficient of oxygenated hemoglobin and deoxygenated hemoglobin. 【図4】 2箇所の測定点での測定値の差分を求めた場合の説明図である。 4 is an explanatory diagram of the case of obtaining the difference between the measurements at the measurement points of the two places. 【図5】 2箇所の測定点で測定した場合の測定点間距離L 1 ,L 2と血液量VLの関係図である。 5 is a relationship diagram between the measurement point distance L 1, L 2 and blood volume VL as measured at the measurement point of the two places. 【図6】 従来の生体組織血液量測定装置の構成ブロック図である。 6 is a block diagram of a conventional biological tissue blood volume measuring device. 【図7】 従来技術で測定した場合の照射点と測定点間距離Lと血液量VLの関係図である。 7 is a relationship diagram between the irradiation point as measured by prior art measurement point distance L and blood volume VL. 【図8】 酸素化ヘモグロビンと脱酸素化ヘモグロビンの光吸収係数の波長特性図【符号の説明】 1 装置本体2,3,3a,3b 光コネクタ4,5 光ファイバー5a,5b 電線6 プローブ7,7a,7b 光検出器8 生体組織(組織) 11,12,13 光源(レーザダイオード) 15 光合波器16,16a,16b 増幅部(アンプ) 17,17a,17b 演算処理回路18 タイミング回路20 補正部(差分演算) [8] [Description of symbols] wavelength characteristic of an optical absorption coefficient of oxygenated hemoglobin and deoxygenated hemoglobin 1 apparatus body 2,3,3a, 3b optical connector 4,5 fiber 5a, 5b wire 6 probe 7,7a , 7b photodetector 8 biological tissue (tissue) 11, 12, 13 light source (laser diode) 15 optical coupler 16, 16a, 16b amplifying unit (amplifier) ​​17, 17a, 17b arithmetic processing circuit 18 a timing circuit 20 correction unit ( difference operation)

フロントページの続き Fターム(参考) 2G059 AA01 AA05 BB12 BB13 CC16 CC18 EE01 EE02 EE11 GG01 GG02 GG08 HH01 HH02 HH06 JJ17 JJ22 KK03 MM01 PP04 4C038 KK01 KL05 KL07 KM01 KX02 KY03 KY04 Front page of the continued F-term (reference) 2G059 AA01 AA05 BB12 BB13 CC16 CC18 EE01 EE02 EE11 GG01 GG02 GG08 HH01 HH02 HH06 JJ17 JJ22 KK03 MM01 PP04 4C038 KK01 KL05 KL07 KM01 KX02 KY03 KY04

Claims (1)

  1. 【特許請求の範囲】 【請求項1】3種類以上の測定光を所定の強度で生体組織に対し直接照射する測定光出力部と、 前記出力された測定光が前記生体組織を通過した透過散乱光の強度を2点以上の測定点で検出する検出部と、 前記出力された測定光と前記検出された透過散乱光の強度差から得られる前記生体組織中の光吸収量に基づき前記生体組織中の全血液の酸素化度合、または全赤血球量に対する酸素化赤血球量の割合である酸素化度合、酸素化赤血球量と脱酸素化赤血球量を演算する酸素化度合演算部と、 前記2点以上の測定点から、前記演算した酸素化度合、 And Claims 1. A measurement light output unit that irradiates directly to biological tissue three or more kinds of the measuring beam at a predetermined intensity, the outputted measurement light passed through the living tissue transparent-scattering the living tissue based on the detection unit and the light absorption amount of the biological tissue derived from the intensity difference between the output measurement luminous said detected transmitted and scattered light to detect the intensity of light at the measurement point of the two or more points All oxygenated degree of blood or oxygenation degree is the percentage of oxygenated red cell mass to the total red cell mass, in the oxygenated degree calculator for calculating an oxygenated red cell mass and deoxygenated red cell mass, the two or more points from the measurement point, the computed oxygenation degree,
    酸素化赤血球量と脱酸素化赤血球量に対し生体組織自体の光吸収度合より生じる誤差を補正する補正部とを備えたことを特徴とする生体組織血液量測定装置。 Biological tissue blood volume measuring apparatus characterized by comprising a correction unit for correcting the errors oxygenated red cell mass and deoxygenated red cell mass to occur than the light absorption degree of the living tissue itself. 【請求項2】前記補正部は、前記測定点が2点の場合、 Wherein said correction unit, if the measurement point is two points,
    前記測定値の差分を求めて前記誤差を補正する請求項1 Claim 1 for correcting the error obtaining a difference of the measured values
    に記載の生体組織血液量測定装置。 Biological tissue blood volume measuring apparatus according to. 【請求項3】前記補正部は、前記測定点が3点以上の場合、回帰式から前記測定値の回帰直線の傾きを求めて前記誤差を補正する請求項1に記載の生体組織血液量測定装置。 Wherein the correcting unit, when the measuring point is not less than 3 points, the biological tissue blood volume measurement according to claim 1 for correcting the error in search of slope of the regression line of the measured value from the regression equation apparatus.
JP2001400431A 2001-12-28 2001-12-28 Measuring apparatus for blood amount in living-body tissue Pending JP2003194714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001400431A JP2003194714A (en) 2001-12-28 2001-12-28 Measuring apparatus for blood amount in living-body tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001400431A JP2003194714A (en) 2001-12-28 2001-12-28 Measuring apparatus for blood amount in living-body tissue

Publications (1)

Publication Number Publication Date
JP2003194714A true JP2003194714A (en) 2003-07-09

Family

ID=27605015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001400431A Pending JP2003194714A (en) 2001-12-28 2001-12-28 Measuring apparatus for blood amount in living-body tissue

Country Status (1)

Country Link
JP (1) JP2003194714A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090047A (en) * 2005-08-30 2007-04-12 Nippon Koden Corp Time-segmented pulse oximetry and pulse oximeter
JP2007330381A (en) * 2006-06-13 2007-12-27 Hitachi Medical Corp Biological light measuring instrument
JP2009136434A (en) * 2007-12-05 2009-06-25 National Institute Of Advanced Industrial & Technology Optical meter
US7706852B2 (en) 2006-01-30 2010-04-27 Nellcor Puritan Bennett Llc System and method for detection of unstable oxygen saturation
US7720516B2 (en) 1996-10-10 2010-05-18 Nellcor Puritan Bennett Llc Motion compatible sensor for non-invasive optical blood analysis
US7725146B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for pre-processing waveforms
USD626562S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Triangular saturation pattern detection indicator for a patient monitor display panel
USD626561S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Circular satseconds indicator and triangular saturation pattern detection indicator for a patient monitor display panel
US7890154B2 (en) 2004-03-08 2011-02-15 Nellcor Puritan Bennett Llc Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US8007441B2 (en) 2004-03-08 2011-08-30 Nellcor Puritan Bennett Llc Pulse oximeter with alternate heart-rate determination
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8068890B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Pulse oximetry sensor switchover
US8095192B2 (en) 2003-01-10 2012-01-10 Nellcor Puritan Bennett Llc Signal quality metrics design for qualifying data for a physiological monitor
US8112375B2 (en) 2008-03-31 2012-02-07 Nellcor Puritan Bennett Llc Wavelength selection and outlier detection in reduced rank linear models
US8133176B2 (en) 1999-04-14 2012-03-13 Tyco Healthcare Group Lp Method and circuit for indicating quality and accuracy of physiological measurements
US8140272B2 (en) 2008-03-27 2012-03-20 Nellcor Puritan Bennett Llc System and method for unmixing spectroscopic observations with nonnegative matrix factorization
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8204567B2 (en) 2007-12-13 2012-06-19 Nellcor Puritan Bennett Llc Signal demodulation
US8238994B2 (en) 2005-10-28 2012-08-07 Nellcor Puritan Bennett Llc Adjusting parameters used in pulse oximetry analysis
US8292809B2 (en) 2008-03-31 2012-10-23 Nellcor Puritan Bennett Llc Detecting chemical components from spectroscopic observations
US8311602B2 (en) 2005-08-08 2012-11-13 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US8315684B2 (en) 2004-02-25 2012-11-20 Covidien Lp Oximeter ambient light cancellation
US8364224B2 (en) 2008-03-31 2013-01-29 Covidien Lp System and method for facilitating sensor and monitor communication
US8386000B2 (en) 2008-09-30 2013-02-26 Covidien Lp System and method for photon density wave pulse oximetry and pulse hemometry
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US8401608B2 (en) 2009-09-30 2013-03-19 Covidien Lp Method of analyzing photon density waves in a medical monitor
US8423109B2 (en) 2005-03-03 2013-04-16 Covidien Lp Method for enhancing pulse oximery calculations in the presence of correlated artifacts
US8433382B2 (en) 2008-09-30 2013-04-30 Covidien Lp Transmission mode photon density wave system and method
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US8442608B2 (en) 2007-12-28 2013-05-14 Covidien Lp System and method for estimating physiological parameters by deconvolving artifacts
US8494786B2 (en) 2009-07-30 2013-07-23 Covidien Lp Exponential sampling of red and infrared signals
US8494604B2 (en) 2009-09-21 2013-07-23 Covidien Lp Wavelength-division multiplexing in a multi-wavelength photon density wave system
US8509869B2 (en) 2009-05-15 2013-08-13 Covidien Lp Method and apparatus for detecting and analyzing variations in a physiologic parameter
US8515511B2 (en) 2009-09-29 2013-08-20 Covidien Lp Sensor with an optical coupling material to improve plethysmographic measurements and method of using the same
US8521246B2 (en) 2010-07-29 2013-08-27 Covidien Lp Cable cross talk suppression
US8528185B2 (en) 2005-08-08 2013-09-10 Covidien Lp Bi-stable medical sensor and technique for using the same
US8649838B2 (en) 2010-09-22 2014-02-11 Covidien Lp Wavelength switching for pulse oximetry
US8750953B2 (en) 2008-02-19 2014-06-10 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US8788001B2 (en) 2009-09-21 2014-07-22 Covidien Lp Time-division multiplexing in a multi-wavelength photon density wave system
US8798704B2 (en) 2009-09-24 2014-08-05 Covidien Lp Photoacoustic spectroscopy method and system to discern sepsis from shock
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
US8968193B2 (en) 2008-09-30 2015-03-03 Covidien Lp System and method for enabling a research mode on physiological monitors
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7720516B2 (en) 1996-10-10 2010-05-18 Nellcor Puritan Bennett Llc Motion compatible sensor for non-invasive optical blood analysis
US8133176B2 (en) 1999-04-14 2012-03-13 Tyco Healthcare Group Lp Method and circuit for indicating quality and accuracy of physiological measurements
US8095192B2 (en) 2003-01-10 2012-01-10 Nellcor Puritan Bennett Llc Signal quality metrics design for qualifying data for a physiological monitor
US8315684B2 (en) 2004-02-25 2012-11-20 Covidien Lp Oximeter ambient light cancellation
US8874181B2 (en) 2004-02-25 2014-10-28 Covidien Lp Oximeter ambient light cancellation
US8560036B2 (en) 2004-03-08 2013-10-15 Covidien Lp Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US8007441B2 (en) 2004-03-08 2011-08-30 Nellcor Puritan Bennett Llc Pulse oximeter with alternate heart-rate determination
US7890154B2 (en) 2004-03-08 2011-02-15 Nellcor Puritan Bennett Llc Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
US9351674B2 (en) 2005-03-03 2016-05-31 Covidien Lp Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
US8818475B2 (en) 2005-03-03 2014-08-26 Covidien Lp Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
US8423109B2 (en) 2005-03-03 2013-04-16 Covidien Lp Method for enhancing pulse oximery calculations in the presence of correlated artifacts
US8528185B2 (en) 2005-08-08 2013-09-10 Covidien Lp Bi-stable medical sensor and technique for using the same
US8311602B2 (en) 2005-08-08 2012-11-13 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
JP2007090047A (en) * 2005-08-30 2007-04-12 Nippon Koden Corp Time-segmented pulse oximetry and pulse oximeter
US7725146B2 (en) 2005-09-29 2010-05-25 Nellcor Puritan Bennett Llc System and method for pre-processing waveforms
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US8238994B2 (en) 2005-10-28 2012-08-07 Nellcor Puritan Bennett Llc Adjusting parameters used in pulse oximetry analysis
US7706852B2 (en) 2006-01-30 2010-04-27 Nellcor Puritan Bennett Llc System and method for detection of unstable oxygen saturation
JP2007330381A (en) * 2006-06-13 2007-12-27 Hitachi Medical Corp Biological light measuring instrument
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8068890B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Pulse oximetry sensor switchover
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
JP2009136434A (en) * 2007-12-05 2009-06-25 National Institute Of Advanced Industrial & Technology Optical meter
US8204567B2 (en) 2007-12-13 2012-06-19 Nellcor Puritan Bennett Llc Signal demodulation
US8442608B2 (en) 2007-12-28 2013-05-14 Covidien Lp System and method for estimating physiological parameters by deconvolving artifacts
US10076276B2 (en) 2008-02-19 2018-09-18 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US8750953B2 (en) 2008-02-19 2014-06-10 Covidien Lp Methods and systems for alerting practitioners to physiological conditions
US8140272B2 (en) 2008-03-27 2012-03-20 Nellcor Puritan Bennett Llc System and method for unmixing spectroscopic observations with nonnegative matrix factorization
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US8292809B2 (en) 2008-03-31 2012-10-23 Nellcor Puritan Bennett Llc Detecting chemical components from spectroscopic observations
US8364224B2 (en) 2008-03-31 2013-01-29 Covidien Lp System and method for facilitating sensor and monitor communication
US8112375B2 (en) 2008-03-31 2012-02-07 Nellcor Puritan Bennett Llc Wavelength selection and outlier detection in reduced rank linear models
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
USD626561S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Circular satseconds indicator and triangular saturation pattern detection indicator for a patient monitor display panel
USD736250S1 (en) 2008-06-30 2015-08-11 Covidien Lp Portion of a display panel with an indicator icon
USD626562S1 (en) 2008-06-30 2010-11-02 Nellcor Puritan Bennett Llc Triangular saturation pattern detection indicator for a patient monitor display panel
US8968193B2 (en) 2008-09-30 2015-03-03 Covidien Lp System and method for enabling a research mode on physiological monitors
US8433382B2 (en) 2008-09-30 2013-04-30 Covidien Lp Transmission mode photon density wave system and method
US8386000B2 (en) 2008-09-30 2013-02-26 Covidien Lp System and method for photon density wave pulse oximetry and pulse hemometry
US8509869B2 (en) 2009-05-15 2013-08-13 Covidien Lp Method and apparatus for detecting and analyzing variations in a physiologic parameter
US9380969B2 (en) 2009-07-30 2016-07-05 Covidien Lp Systems and methods for varying a sampling rate of a signal
US8494786B2 (en) 2009-07-30 2013-07-23 Covidien Lp Exponential sampling of red and infrared signals
US8788001B2 (en) 2009-09-21 2014-07-22 Covidien Lp Time-division multiplexing in a multi-wavelength photon density wave system
US8494604B2 (en) 2009-09-21 2013-07-23 Covidien Lp Wavelength-division multiplexing in a multi-wavelength photon density wave system
US8798704B2 (en) 2009-09-24 2014-08-05 Covidien Lp Photoacoustic spectroscopy method and system to discern sepsis from shock
US8515511B2 (en) 2009-09-29 2013-08-20 Covidien Lp Sensor with an optical coupling material to improve plethysmographic measurements and method of using the same
US8401608B2 (en) 2009-09-30 2013-03-19 Covidien Lp Method of analyzing photon density waves in a medical monitor
US8930145B2 (en) 2010-07-28 2015-01-06 Covidien Lp Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
US8521246B2 (en) 2010-07-29 2013-08-27 Covidien Lp Cable cross talk suppression
US8649838B2 (en) 2010-09-22 2014-02-11 Covidien Lp Wavelength switching for pulse oximetry
US9833146B2 (en) 2012-04-17 2017-12-05 Covidien Lp Surgical system and method of use of the same

Similar Documents

Publication Publication Date Title
US5746206A (en) Isolated layer pulse oximetry
US5842979A (en) Method and apparatus for improved photoplethysmographic monitoring of oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin and methemoglobin
US5379764A (en) Non-invasive determination of analyte concentration in body of mammals
US5617852A (en) Method and apparatus for non-invasively determining blood analytes
Peterson et al. Fiber-optic sensors for biomedical applications
KR0145695B1 (en) Non-invasive measurement of blood glucose
US6859658B1 (en) Device for non-invasively detecting the oxygen metabolism in tissues
US6078833A (en) Self referencing photosensor
EP0548418B1 (en) Non-invasive determination of glucose concentration in body of patient
US7072701B2 (en) Method for spectrophotometric blood oxygenation monitoring
EP0525107B1 (en) Method and apparatus for measuring the concentration of absorbing substances
US7526328B2 (en) Manual and automatic probe calibration
US4867557A (en) Reflection type oximeter for applying light pulses to a body tissue to measure oxygen saturation
US5127406A (en) Apparatus for measuring concentration of substances in blood
US5137023A (en) Method and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography
JP3679800B2 (en) Glucose fluorescence test method
US5419321A (en) Non-invasive medical sensor
US9456773B2 (en) Method for spectrophotometric blood oxygenation monitoring
US5222496A (en) Infrared glucose sensor
US4936679A (en) Optical fiber transducer driving and measuring circuit and method for using same
US5297548A (en) Arterial blood monitoring probe
Chance et al. Phase modulation system for dual wavelength difference spectroscopy of hemoglobin deoxygenation in tissues
DK2034893T3 (en) Measurement of tissue oxygenation
US4178917A (en) Method and system for non-invasive detection of zinc protoporphyrin in erythrocytes
EP1478265B1 (en) Active pulse spectrophotometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061003