US20140151738A1 - Roughened high refractive index layer/led for high light extraction - Google Patents

Roughened high refractive index layer/led for high light extraction Download PDF

Info

Publication number
US20140151738A1
US20140151738A1 US14/173,662 US201414173662A US2014151738A1 US 20140151738 A1 US20140151738 A1 US 20140151738A1 US 201414173662 A US201414173662 A US 201414173662A US 2014151738 A1 US2014151738 A1 US 2014151738A1
Authority
US
United States
Prior art keywords
layer
transparent
light emitting
emitting diode
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/173,662
Inventor
Steven P. DenBaars
James Ibbetson
Shuji Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfspeed Inc
Original Assignee
Cree Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cree Inc filed Critical Cree Inc
Priority to US14/173,662 priority Critical patent/US20140151738A1/en
Assigned to CREE, INC. reassignment CREE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IBBETSON, JAMES, NAKAMURA, SHUJI, DENBAARS, STEVEN P
Publication of US20140151738A1 publication Critical patent/US20140151738A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate

Definitions

  • This invention relates to light emitting diodes (LEDs) and more particularly to new structures for enhancing the extraction of light from LEDs.
  • LEDs Light emitting diodes
  • LEDs are an important class of solid state devices that convert electric energy to light and generally comprise an active layer of semiconductor material sandwiched between two oppositely doped layers. When a bias is applied across the doped layers, holes and electrons are injected into the active layer where they recombine to generate light. Light is emitted omnidirectionally from the active layer and from all surfaces of the LED.
  • the doped and active layers are typically formed on a substrate that can be made of different materials such as silicon (Si), silicon carbide (SiC), and sapphire (Al 2 O 3 ). SiC wafers are often preferred because they have a much closer crystal lattice match to Group-III nitrides, which results in Group III nitride films of higher quality.
  • SiC also has a very high thermal conductivity so that the total output power of Group III nitride devices on SiC is not limited by the thermal resistance of the wafer (as is the case with some devices formed on sapphire or Si). Also, the availability of semi insulating SiC wafers provides the capacity for device isolation and reduced parasitic capacitance that make commercial devices possible. SiC substrates are available from Cree Inc., of Durham, N.C. and methods for producing them are set forth in the scientific literature as well as in U.S. Pat. Nos. Re. 34,861; 4,946,547; and 5,200,022.
  • TIR total internal reflection
  • LEDs with SiC substrates have relatively low light extraction efficiencies because the high index of refraction of SiC (approximately 2.7) compared to the index of refraction for the surrounding material, such as epoxy (approximately 1.5). This difference results in a small escape cone from which light rays from the active area can transmit from the SiC substrate into the epoxy and ultimately escape from the LED package.
  • U.S. Pat. No. 6,410,942 assigned to Cree Lighting Company, discloses an LED structure that includes an array of electrically interconnected micro LEDs formed between first and second spreading layers. When a bias is applied across the spreaders, the micro LEDs emit light. Light from each of the micro LEDs reaches a surface after traveling only a short distance, thereby reducing TIR.
  • U.S. Pat. No. 6,657,236, also assigned to Cree Lighting Company discloses structures for enhancing light extraction in LEDs through the use of internal and external optical elements formed in an array.
  • the optical elements have many different shapes, such as hemispheres and pyramids, and may be located on the surface of, or within, various layers of the LED.
  • the elements provide surfaces from which light may reflect, refract, or scatter.
  • the invention is directed to light emitting diodes (LEDs) that have regions for providing increased light extraction.
  • the invention relates to an LED that includes a p-type layer of material, an n-type layer of material and an active layer between the p-type layer and the n-type layer.
  • the LED also includes a roughened layer of transparent material that is adjacent one of the p-type layer of material and the n-type layer of material.
  • the invention also relates to an LED having a p-type layer of material, a n-type layer of material, an active layer between the p-type layer and the n-type layer and a layer of transparent conducting material that is adjacent one of the p-type layer of material and the n-type layer of material.
  • the LED further includes a roughened layer of transparent material that is adjacent the transparent conducting layer.
  • the invention in another aspect, relates to an LED having a p-type layer of material, a n-type layer of material, an active layer between the p-type layer and the n-type layer and a layer of metallic conducting material that is adjacent one of the p-type layer of material and the n-type layer of material.
  • the LED also includes a roughened layer of transparent material that is adjacent the layer of metallic material.
  • the invention relates to processes of forming an LED.
  • One process includes growing a base LED structure that includes a p-type layer of material, an n-type layer of material and an active layer between the p-type layer and the n-type layer.
  • the process further includes depositing a layer of transparent material adjacent one of the p-type layer of material and the n-type layer of material and roughening the layer of transparent material.
  • Another process of forming an LED also includes growing a base LED structure that includes a p-type layer of material, an n-type layer of material and an active layer between the p-type layer and the n-type layer.
  • the process also includes depositing a layer of transparent conducting material adjacent one of the p-type layer of material and the n-type layer of material and depositing a layer of transparent material adjacent the layer of transparent conducting material.
  • the process further includes roughening the layer of transparent material.
  • Another process of forming an LED also includes growing a base LED structure that includes a p-type layer of material, an n-type layer of material and an active layer between the p-type layer and the n-type layer. Also included in this process is depositing a layer of metallic material adjacent one of the p-type layer of material and the n-type layer of material and depositing a layer of transparent material adjacent the layer of metallic material. The process further includes roughening the layer of transparent material.
  • FIG. 1 is a sectional view of a p-side up LED having a light extraction region including a roughened layer of transparent material;
  • FIGS. 2 a - 2 f are sectional views of various stages of a manufacturing process of an LED of FIG. 1 , wherein the light extraction region includes a roughened layer of transparent material;
  • FIGS. 3 a - 3 f are sectional views of various stages of a manufacturing process of an LED of FIG. 1 , wherein the light extraction region includes a roughened layer of transparent conducting material;
  • FIGS. 4 a - 4 f are sectional views of various stages of a manufacturing process of an LED of FIG. 1 , wherein the light extraction region includes a layer of transparent conducting material and a roughened layer of transparent material;
  • FIGS. 5 a - 5 f are sectional views of various stages of a manufacturing process of an LED of FIG. 1 , wherein the light extraction region includes a layer of metallic material and a roughened layer of transparent material;
  • FIG. 6 is a sectional view of a n-side up LED having a light extraction region including a roughened layer of transparent material
  • FIGS. 7 a - 7 d are sectional views of various stages of a manufacturing process of a base LED structure of FIG. 6 ;
  • FIGS. 8 a - 8 c are sectional views of various stages of a manufacturing process of an LED of FIG. 6 , wherein the light extraction region includes a roughened layer of transparent material;
  • FIGS. 9 a - 9 c are sectional views of various stages of a manufacturing process of an LED of FIG. 6 , wherein the light extraction region includes a roughened layer of transparent conducting material;
  • FIGS. 10 a - 10 c are sectional views of various stages of a manufacturing process of an LED of FIG. 6 , wherein the light extraction region includes a layer of transparent conducting material and a roughened layer of transparent material;
  • FIGS. 11 a - 11 c are sectional views of various stages of a manufacturing process of an LED of FIG. 6 , wherein the light extraction region includes a layer of metallic material and a roughened layer of transparent material.
  • the present invention provides improved light extraction for light emitting diodes (LEDs) through a roughened layer of transparent material that is deposited directly on an LED surface having an associated LED contact.
  • the roughened layer of transparent material has a refractive index close to or substantially the same as the refractive index of the LED material adjacent the layer of transparent material. The closeness of refractive indices ensures that a majority of light being emitted from the LED will cross from the LED material into the roughened layer of transparent material.
  • the layer of transparent material can be formed from a material with a high transparency and has a thickness that allows for the formation of a roughened surface sufficient to scatter light and increase light extraction.
  • the layer of transparent material may be an electrically conductive material, in which case, electrical communication between the LED material and the associated LED contact is through the transparent layer.
  • the roughened layer can be formed from a high transparent material that is not necessarily conductive.
  • electrical communication between the LED material and the associated LED contact may be provided through direct contact between the LED contact and the LED surface or alternatively, by providing an additional layer of conductive material between the roughened layer of transparent material and the LED surface.
  • This additional layer may be a layer of transparent conducting material such as a layer of transparent conducting oxide (TCO) material or transparent metallic material. While the conductive material serves as an ohmic, current spreading contact for the LED contact, the additional layer of conductive material is generally less transparent than the roughened layer of transparent material and therefore is substantially thinner than the roughened layer.
  • TCO transparent conducting oxide
  • a p-side up base LED structure 10 including a layer of p-type material 12 , a layer of n-type material 14 and a layer of active material 16 sandwiched between the p-type layer and the n-type layer.
  • a roughened light extracting region 18 is added to the base LED structure to form an LED having high light extraction properties. As described below, the roughened light extracting region 18 may take any one of several forms.
  • a p-contact 20 is associated with the light extracting region 18 and an n-contact 22 is associated with the layer of n-type material.
  • the base LED structure may be fabricated from different material systems such as the Group III nitride based material systems.
  • Group III nitrides refer to those semiconductor compounds formed between nitrogen and the elements in the Group III of the periodic table, usually aluminum (Al), gallium (Ga), and indium (In).
  • Al aluminum
  • Ga gallium
  • In indium
  • the term also refers to ternary and tertiary compounds such as AlGaN and AlInGaN.
  • the p-type material and the n-type material is GaN and the active material is InGaN.
  • the p-type and n-type materials may be AlGaN, AlGaAs or AlGaInP.
  • one embodiment of a high light extraction LED in accordance with the invention is formed by growing layers of p-GaN 24 , n-GaN 26 and active materials 28 on a substrate 30 .
  • the n-GaN 26 is adjacent the substrate 30
  • the active materials 28 are on the n-GaN 26
  • the p-GaN is on the active materials 28 .
  • the order of these layers can be different, with the p-GaN adjacent the substrate 30 and the n-GaN 26 being the top layer, with the active materials 28 between the two.
  • the substrate 30 can be made of many materials such at sapphire, silicon carbide, aluminum nitride (AlN), GaN, with a suitable substrate being a 4H polytype of silicon carbide, although other silicon carbide polytypes can also be used including 3C, 6H and 15R polytypes.
  • Silicon carbide has a much closer crystal lattice match to Group III nitrides than sapphire and results in Group III nitride films of higher quality. Silicon carbide also has a very high thermal conductivity so that the total output power of Group III nitride devices on silicon carbide is not limited by the thermal dissipation of the substrate (as may be the case with some devices formed on sapphire).
  • SiC substrates are available from Cree Research, Inc., of Durham, N.C. and methods for producing them are set forth in the scientific literature as well as in a U.S. Pat. Nos. Re. 34,861; 4,946,547; and 5,200,022.
  • the layers 24 , 26 , 28 are grown on the substrate 30 using metalorganic chemical vapor deposition (MOCVD).
  • MOCVD metalorganic chemical vapor deposition
  • a layer of transparent material 32 is deposited directly on the surface of the p-type layer 24 , also preferably by MOCVD.
  • Using the same technique to both deposit the layer of transparent material 32 and grow the base LED structure layers 24 , 26 , 28 is advantageous in that it provides increased efficiency and cost reduction through the use of a single manufacturing system.
  • Other methods of depositing the layer of transparent material 32 include sputtering and electron beam deposition.
  • a portion of the layer of transparent material 32 is removed, for example by laser or chemical etching, and a p-contact 34 is formed adjacent the exposed portion of the p-GaN layer 24 , using techniques well known in the art.
  • the layer of transparent material 32 is then roughened using, for example a combination of photolithography to create a pattern and wet or dry photoelectrochemical (PEC) etching to create texture.
  • PEC photoelectrochemical
  • a n-contact 36 is added to the LED by either separating the substrate 30 from the n-type layer 26 by, for example a known laser lift off (LLO) process, and forming the n-contact on the n-type layer ( FIG. 2 e ) or by forming the n-contact on the substrate ( FIG. 2 f ).
  • LLO laser lift off
  • the former formation is used if the substrate 30 is formed of an insulating material such as AlN or sapphire.
  • the latter formation may be used if the substrate 30 is formed of a conductive material such as SiC or GaN.
  • the n-contact is formed using techniques well known in the art.
  • the light extracting region 18 ( FIG. 1 ) of the LED includes the roughened layer of transparent material 32 .
  • a transparent material having an index of refraction close to or substantially the same as the p-type material is selected so that light passing through the p-type layer toward the junction between the p-type layer and the layer of transparent material passes through the junction into the transparent material without significant reflection.
  • An exemplary quantitative measure of closeness between indices of refraction is ⁇ 0.3.
  • the transparent material may have an index of refraction between 2.15 and 2.75.
  • Possible materials having indices of refractions falling within this range include oxide materials, such as ZnO, MgO, In 2 O 3 , TiO 2 , PbO, ZnSnO, NiO and indium tin oxide (ITO) and other materials, such as ZnS and CdS.
  • oxide materials such as ZnO, MgO, In 2 O 3 , TiO 2 , PbO, ZnSnO, NiO and indium tin oxide (ITO) and other materials, such as ZnS and CdS.
  • the layer of transparent material 32 can have many different thicknesses, with a typical thickness being in the range of 1000 to 15,000 angstrom ( ⁇ ) and a preferred thickness being approximately 2,500 ⁇ . These thicknesses allow for the formation of a roughened surface having geometric features of sufficient dimensions to enhance light extraction. Such geometric features may include, for example, pyramids, hemispheres or hexagonal cones. These geometric features reduce internal light reflection at the material/air interface and scatter the light outward.
  • another embodiment of a high light extraction LED in accordance with the invention is also initially formed by growing layers of p-GaN 40 , n-GaN 42 and active materials 44 on a substrate 46 , with the layers in different embodiments being in different order and the substrate being many different materials as described above.
  • the layers 40 , 42 , 44 are grown on either a the substrate 46 using MOCVD.
  • a layer of transparent conducting material 48 is deposited directly on the top surface of p-type layer 40 , also preferably by MOCVD. Other methods of depositing the transparent conducting layer 48 include sputtering and electron beam deposition.
  • a p-contact 50 can be formed adjacent the transparent conducting layer 48 .
  • the transparent conducting layer 48 surrounding the p-contact 50 can then roughened using, for example PEC etching.
  • a n-contact 52 can be added to the LED by either separating the substrate 46 from the n-type layer 42 using a LLO process and forming the n-contact on the n-type layer ( FIG. 3 e ) or, in the case of a conductive substrate 46 , by forming the n-contact on the substrate ( FIG. 3 f ).
  • the light extracting region 18 ( FIG. 1 ) of the LED includes the roughened transparent conducting layer 48 .
  • the transparent conducting layer is preferably formed of a material having an index of refraction close to or substantially the same as the material of the p-type layer 40 .
  • transparent conducting materials include but are not limited to transparent conducting oxides (TCOs), such as Ga 2 O 3 , InO, ZnO, In 2 O 3 and ITO.
  • TCOs transparent conducting oxides
  • the transparent conducting layer 48 can provide a more even distribution of current across the p-type and n-type layers and thus a more even generation of light within the active region.
  • the transparent conducting layer 48 can have many different thicknesses, with a typical thickness being in the range of 1,000 to 15,000 ⁇ , and a preferred thickness being approximately 2,500 ⁇ . These thicknesses allow for both the formation of a roughened surface having geometric features of sufficient dimensions to enhance light extraction, and a remaining layer of transparent conducting material adjacent the p-type layer 40 for current distribution purposes.
  • FIG. 4 a another configuration of a high light extraction LED in accordance with the invention is also initially formed by growing layers of p-GaN 60 , n-GaN 62 and active materials 64 on a substrate 66 , with the layers in other embodiment being in different order and the substrate being made of different materials as described above.
  • the layers 60 , 62 , 64 are grown on the substrate 66 using MOCVD.
  • a layer of transparent conducting material 68 is directly deposited on the top surface of the p-type layer 60 .
  • a layer of transparent material 70 is deposited directly on the top surface of the transparent conducting layer 68 .
  • the deposition of the transparent conducting layer 68 and the transparent material 70 is preferably done by MOCVD.
  • Other methods of depositing the layers 68 , 70 include sputtering and electron beam deposition.
  • a portion of the layer of transparent material 70 is removed, for example by laser or chemical etching, and a p-contact 72 is formed adjacent the exposed portion of the transparent conducting layer 68 .
  • the layer of transparent material 70 surrounding the p-contact 72 can then roughened using, for example PEC etching.
  • a n-contact 74 can be added to the LED by either separating the substrate 66 from the n-type layer 62 and forming the n-contact on the n-type layer ( FIG. 4 e ) or, in the case of a conducting substrate, by forming the n-contact on the substrate ( FIG. 4 f ).
  • the light extracting region 18 ( FIG. 1 ) of the LED includes the roughened layer of transparent material 70 and the transparent conducting layer 68 .
  • the transparent conducting layer 68 provides a more even distribution of current across the p-type and n-type layers and thus a more even generation of light within the active region, while the layer of transparent material 70 provides a platform for a higher transparency material relative to the transparent conducting layer.
  • Both the transparent conducting layer 68 and the layer of transparent material 70 can be formed from materials having indices of refraction close to or substantially the same as the material of the p-type layer. Similar to above, examples of transparent conducting materials include Ga 2 O 3 , InO, ZnO, In 2 O 3 and ITO. Possible materials for the layer of transparent material 70 include oxide materials, such as ZnO, MgO, In 2 O 3 , TiO 2 , PbO, ZnSnO, NiO and ITO, and other materials, such as ZnS and CdS. While the transparent conducting layer 68 and the layer of transparent material 70 may be formed of the same material, in a preferred embodiment, the layer of transparent material is formed from a material having a higher level of transparency than the material of the transparent conducting layer.
  • Transparent conducting layer 68 and the layer of transparent material 70 can also be many different thicknesses, with a typical range of thicknesses for both being 1,000 to 15,000 ⁇ .
  • the transparent conducting layer 68 is thick enough to perform its current distribution function while being thin enough so its lower transparency does not degrade light extraction.
  • the layer of transparent material 70 is typically thicker than the transparent conducting layer 68 in order to allow for the formation of a roughened surface having geometric features of sufficient dimensions to enhance light extraction.
  • FIG. 5 a another configuration of a high light extraction LED in accordance with the invention is also initially formed by growing layers of p-GaN 80 , n-GaN 82 and active materials 84 on a substrate 86 in the same order as shown or in a different order.
  • the substrate can be made of many different materials as described above, and in a preferred embodiment, the layers 80 , 82 , 84 can be grown on the substrate 86 using MOCVD.
  • a thin layer of metallic material 88 is deposited on the p-type layer 80 .
  • the metallic material 88 serves as an ohmic, current spreading contact and is preferably formed of a semi-transparent metal such as Pd, Pt, Pd/Au, Pt/Au, Ni/Au, NiO/Au or any alloy thereof.
  • the deposition of the metallic layer may be done using MOCVD or other well known methods including, for example, sputtering and electron beam deposition.
  • a p-contact 90 is formed adjacent the layer of metallic material 88 and a layer of transparent material 92 is deposited around the p-contact.
  • the layer of transparent material 92 may be deposited using MOCVD or other well known methods including, for example, sputtering and electron beam deposition.
  • the layer of transparent material 92 surrounding the p-contact 90 is then roughened using, for example PEC etching.
  • a n-contact 94 is added to the LED by either separating the substrate 86 from the n-GaN layer 82 by a LLO process and forming the n-contact on the n-GaN layer ( FIG. 5 e ) or by forming the n-contact on the substrate ( FIG. 5 f ).
  • the light extracting region 18 ( FIG. 1 ) of the LED includes the layer of metallic material 88 and the roughened layer of transparent material 92 .
  • the layer of transparent material 92 is preferably formed from a material having an index of refraction close to or substantially the same as the material of the p-type layer.
  • Possible materials for the layer of transparent material 92 include oxide materials, such as ZnO, MgO, In 2 O 3 , TiO 2 , PbO, ZnSnO, NiO and ITO, and other materials, such as ZnS and CdS.
  • the thickness of the layer of metallic material 88 is generally in the range of 10 to 1000 ⁇ while the thickness of the layer of transparent material 70 is generally in the range of 1000 to 15,000 ⁇ .
  • the metallic layer is approximately 100 angstroms thick.
  • the layer of metallic material 88 is typically just thick enough to perform its current distribution function while being thin enough so that it semi-transparent nature does not significantly degrade light extraction.
  • the layer of metallic material 88 can be made of many different materials, including but not limited to Pd, Au, and NiAu.
  • the layer of transparent material 92 is typically thicker than the layer of metallic material 88 in order to allow for the formation of a roughened surface having geometric features of sufficient dimensions to enhance light extraction.
  • an n-side up LED structure 100 including a layer of p-type material 102 , a layer of n-type material 104 and a layer of active material 106 sandwiched between the p-type layer and the n-type layer.
  • the LED structure 100 also includes a roughened light extracting region 108 which, as described below, may take any one of several forms.
  • An n-contact 110 is associated with the light extracting region 108 and a p-contact 112 is associated with the layer of p-type material.
  • the p-type material and the n-type material is GaN and the active material is InGaN.
  • the p-type and n-type materials may be AlGaN, AlGaAs or AlGaInP.
  • an LED base structure is formed by growing layers of p-GaN 114 , n-GaN 116 and active materials 118 on a substrate 120 that can be made of the substrate materials described above.
  • the layers 114 , 116 , 118 are grown on either a substrate 120 using MOCVD.
  • a p-contact 122 is formed on the layer of p-type material 114 .
  • the structure is flipped and bonded to a submount 124 .
  • the submount 124 may be many different structures made from different materials, for example, an Au-coated Si submount.
  • the substrate 120 shown in FIG. 7 c can be debonded from the n-type layer 116 leaving the LED base structure 126 shown in FIG. 7 d .
  • the substrate 120 may be removed by many known processes including a LLO process. As described below, any one of several roughened light extracting regions 118 may be added to the LED base structure 126 to form an LED having high light extraction properties.
  • one configuration of a high light extraction LED in accordance with the invention is formed by depositing a layer of transparent material 130 directly on the top surface of the n-type layer 116 of the base LED structure.
  • the layer of transparent material 130 may be deposited by using any one of several methods including MOCVD, sputtering and electron beam deposition.
  • a portion of the layer of transparent material 130 is removed, for example by laser or chemical etching, and a n-contact 132 is formed adjacent the exposed portion of the n-type layer 116 .
  • the layer of transparent material 130 is then roughened using, for example PEC etching.
  • the light extracting region 108 ( FIG. 6 ) of the LED includes the roughened layer of transparent material 130 .
  • This roughened layer of transparent material 130 has the same properties as previously described with respect to the configuration of FIGS. 2 a - 2 f.
  • FIG. 9 a another configuration of a high light extraction LED in accordance with the invention is formed by depositing a layer of transparent conducting material 140 directly on the top surface of the n-type layer 116 of a base LED structure.
  • the transparent conducting layer 140 may be deposited using any one of several methods including MOCVD, sputtering and electron beam deposition.
  • an n-contact 142 is formed adjacent the transparent conducting layer 140 .
  • the transparent conducting layer 140 is then roughened using, for example PEC etching.
  • the light extracting region 108 ( FIG. 6 ) of the LED includes the roughened transparent conducting layer 140 .
  • This roughened transparent conducting layer 140 has the same properties as previously described with respect to the configuration of FIGS. 3 a - 3 f.
  • FIG. 10 a another configuration of a high light extraction LED in accordance with the invention is formed by depositing a layer of transparent conducting material 150 directly on the top surface of the n-type layer 116 of a base LED structure.
  • a layer of transparent material 152 is directly deposited on the transparent conducting layer 150 .
  • the deposition of the transparent conducting layer 150 and the transparent material 152 is preferably done by MOCVD.
  • Other possible methods of depositing the layers 150 , 152 include sputtering and electron beam deposition.
  • a portion of the layer of transparent material 152 is removed, for example by laser or chemical etching, and a n-contact 154 is formed adjacent the exposed portion of the transparent conducting layer 150 .
  • the layer of transparent material 152 surrounding the n-contact 154 is then roughened using, for example PEC etching.
  • the light extracting region 108 of the LED includes the roughened layer of transparent material 152 and the transparent conducting layer 150 .
  • This roughened layer of transparent material 152 and the transparent conducting layer 150 have the same properties as previously described with respect to the configuration of FIGS. 4 a - 4 f.
  • another configuration of a high light extraction LED in accordance with the invention is formed by depositing a thin layer of metallic material 160 on the n-type layer 116 of a base LED structure.
  • the layer is preferably formed of a semi-transparent metal such as Pd, Pt, Pd/Au, Pt/Au, Ni/Au, NiO/Au or any alloy thereof.
  • the deposition of the metallic layer may be done using MOVCD or other well known methods including, for example, sputtering and electron beam deposition.
  • an n-contact 162 is formed adjacent the layer of metallic material 160 and a layer of transparent material 164 is deposited around the n-contact.
  • the layer of transparent material 164 may be deposited using MOVCD or other well known methods including, for example, sputtering and electron beam deposition.
  • the layer of transparent material 164 surrounding the n-contact 162 is then roughened using, for example PEC etching.
  • the light extracting region 108 ( FIG. 6 ) of the LED includes the layer of metallic material 160 and the roughened layer of transparent material 164 .
  • This layer of metallic material 160 and the roughened layer of transparent material 164 have the same properties as previously described with respect to the configuration of FIGS. 5 a - 5 f.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

A light emitting diode (LED) includes a p-type layer of material, an n-type layer of material and an active layer between the p-type layer and the n-type layer. A roughened layer of transparent material is adjacent one of the p-type layer of material and the n-type layer of material. The roughened layer of transparent material has a refractive index close to or substantially the same as the refractive index of the material adjacent the layer of transparent material, and may be a transparent oxide material or a transparent conducting material. An additional layer of conductive material may be between the roughened layer and the n-type or p-type layer.

Description

  • This application is a continuation of, and claims the benefit of, U.S. patent application Ser. No. 11/187,075, filed on Jul. 25, 2005.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to light emitting diodes (LEDs) and more particularly to new structures for enhancing the extraction of light from LEDs.
  • 2. Description of Related Art
  • Light emitting diodes (LEDs) are an important class of solid state devices that convert electric energy to light and generally comprise an active layer of semiconductor material sandwiched between two oppositely doped layers. When a bias is applied across the doped layers, holes and electrons are injected into the active layer where they recombine to generate light. Light is emitted omnidirectionally from the active layer and from all surfaces of the LED.
  • There has been a great deal of recent interest in LEDs formed of Group-III nitride based material systems because of their unique combination of material characteristics including high breakdown fields, wide bandgaps (3.36 eV for GaN at room temperature), large conduction band offset, and high saturated electron drift velocity. The doped and active layers are typically formed on a substrate that can be made of different materials such as silicon (Si), silicon carbide (SiC), and sapphire (Al2O3). SiC wafers are often preferred because they have a much closer crystal lattice match to Group-III nitrides, which results in Group III nitride films of higher quality. SiC also has a very high thermal conductivity so that the total output power of Group III nitride devices on SiC is not limited by the thermal resistance of the wafer (as is the case with some devices formed on sapphire or Si). Also, the availability of semi insulating SiC wafers provides the capacity for device isolation and reduced parasitic capacitance that make commercial devices possible. SiC substrates are available from Cree Inc., of Durham, N.C. and methods for producing them are set forth in the scientific literature as well as in U.S. Pat. Nos. Re. 34,861; 4,946,547; and 5,200,022.
  • The efficient extraction of light from LEDs is a major concern in the fabrication of high efficiency LEDs. For conventional LEDs with a single out-coupling surface, the external quantum efficiency is limited by total internal reflection (TIR) of light from the LED's emission region that passes through the substrate. TIR can be caused by the large difference in the refractive index between the LED's semiconductor and surrounding ambient. LEDs with SiC substrates have relatively low light extraction efficiencies because the high index of refraction of SiC (approximately 2.7) compared to the index of refraction for the surrounding material, such as epoxy (approximately 1.5). This difference results in a small escape cone from which light rays from the active area can transmit from the SiC substrate into the epoxy and ultimately escape from the LED package.
  • Different approaches have been developed to reduce TIR and improve overall light extraction, with one of the more popular being surface texturing. Surface texturing increases the light's escape probability by providing a varying surface that allows photons multiple opportunities to find an escape cone. Light that does not find an escape cone continues to experience TIR, and reflects off the textured surface at different angles until it finds an escape cone. The benefits of surface texturing have been discussed in several articles. [See Windisch et al., Impact of Texture-Enhanced Transmission on High-Efficiency Surface Textured Light Emitting Diodes, Appl. Phys. Lett., Vol. 79, No. 15, October 2001, Pgs. 2316-2317; Schnitzer et al. 30% External Quantum Efficiency From Surface Textured, Thin Film Light Emitting Diodes, Appl. Phys. Lett., Vol 64, No. 16, October 1993, Pgs. 2174-2176; Windisch et al. Light Extraction Mechanisms in High-Efficiency Surface Textured Light Emitting Diodes, IEEE Journal on Selected Topics in Quantum Electronics, Vol. 8, No. 2, March/April 2002, Pgs. 248-255; Streubel et al. High Brightness AlGaNInP Light Emitting Diodes, IEEE Journal on Selected Topics in Quantum Electronics, Vol. 8, No. March/April 2002].
  • U.S. Pat. No. 6,410,942, assigned to Cree Lighting Company, discloses an LED structure that includes an array of electrically interconnected micro LEDs formed between first and second spreading layers. When a bias is applied across the spreaders, the micro LEDs emit light. Light from each of the micro LEDs reaches a surface after traveling only a short distance, thereby reducing TIR.
  • U.S. Pat. No. 6,657,236, also assigned to Cree Lighting Company, discloses structures for enhancing light extraction in LEDs through the use of internal and external optical elements formed in an array. The optical elements have many different shapes, such as hemispheres and pyramids, and may be located on the surface of, or within, various layers of the LED. The elements provide surfaces from which light may reflect, refract, or scatter.
  • SUMMARY OF THE INVENTION
  • Briefly, and in general terms, the invention is directed to light emitting diodes (LEDs) that have regions for providing increased light extraction. In one of several aspects, the invention relates to an LED that includes a p-type layer of material, an n-type layer of material and an active layer between the p-type layer and the n-type layer. The LED also includes a roughened layer of transparent material that is adjacent one of the p-type layer of material and the n-type layer of material.
  • The invention also relates to an LED having a p-type layer of material, a n-type layer of material, an active layer between the p-type layer and the n-type layer and a layer of transparent conducting material that is adjacent one of the p-type layer of material and the n-type layer of material. The LED further includes a roughened layer of transparent material that is adjacent the transparent conducting layer.
  • In another aspect, the invention relates to an LED having a p-type layer of material, a n-type layer of material, an active layer between the p-type layer and the n-type layer and a layer of metallic conducting material that is adjacent one of the p-type layer of material and the n-type layer of material. The LED also includes a roughened layer of transparent material that is adjacent the layer of metallic material.
  • In several other aspects, the invention relates to processes of forming an LED. One process includes growing a base LED structure that includes a p-type layer of material, an n-type layer of material and an active layer between the p-type layer and the n-type layer. The process further includes depositing a layer of transparent material adjacent one of the p-type layer of material and the n-type layer of material and roughening the layer of transparent material.
  • Another process of forming an LED also includes growing a base LED structure that includes a p-type layer of material, an n-type layer of material and an active layer between the p-type layer and the n-type layer. The process also includes depositing a layer of transparent conducting material adjacent one of the p-type layer of material and the n-type layer of material and depositing a layer of transparent material adjacent the layer of transparent conducting material. The process further includes roughening the layer of transparent material.
  • Another process of forming an LED also includes growing a base LED structure that includes a p-type layer of material, an n-type layer of material and an active layer between the p-type layer and the n-type layer. Also included in this process is depositing a layer of metallic material adjacent one of the p-type layer of material and the n-type layer of material and depositing a layer of transparent material adjacent the layer of metallic material. The process further includes roughening the layer of transparent material.
  • These and other aspects and advantages of the invention will become apparent from the following detailed description and the accompanying drawings which illustrate by way of example the features of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a sectional view of a p-side up LED having a light extraction region including a roughened layer of transparent material;
  • FIGS. 2 a-2 f are sectional views of various stages of a manufacturing process of an LED of FIG. 1, wherein the light extraction region includes a roughened layer of transparent material;
  • FIGS. 3 a-3 f are sectional views of various stages of a manufacturing process of an LED of FIG. 1, wherein the light extraction region includes a roughened layer of transparent conducting material;
  • FIGS. 4 a-4 f are sectional views of various stages of a manufacturing process of an LED of FIG. 1, wherein the light extraction region includes a layer of transparent conducting material and a roughened layer of transparent material;
  • FIGS. 5 a-5 f are sectional views of various stages of a manufacturing process of an LED of FIG. 1, wherein the light extraction region includes a layer of metallic material and a roughened layer of transparent material;
  • FIG. 6 is a sectional view of a n-side up LED having a light extraction region including a roughened layer of transparent material;
  • FIGS. 7 a-7 d are sectional views of various stages of a manufacturing process of a base LED structure of FIG. 6;
  • FIGS. 8 a-8 c are sectional views of various stages of a manufacturing process of an LED of FIG. 6, wherein the light extraction region includes a roughened layer of transparent material;
  • FIGS. 9 a-9 c are sectional views of various stages of a manufacturing process of an LED of FIG. 6, wherein the light extraction region includes a roughened layer of transparent conducting material;
  • FIGS. 10 a-10 c are sectional views of various stages of a manufacturing process of an LED of FIG. 6, wherein the light extraction region includes a layer of transparent conducting material and a roughened layer of transparent material; and
  • FIGS. 11 a-11 c are sectional views of various stages of a manufacturing process of an LED of FIG. 6, wherein the light extraction region includes a layer of metallic material and a roughened layer of transparent material.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides improved light extraction for light emitting diodes (LEDs) through a roughened layer of transparent material that is deposited directly on an LED surface having an associated LED contact. The roughened layer of transparent material has a refractive index close to or substantially the same as the refractive index of the LED material adjacent the layer of transparent material. The closeness of refractive indices ensures that a majority of light being emitted from the LED will cross from the LED material into the roughened layer of transparent material.
  • The layer of transparent material can be formed from a material with a high transparency and has a thickness that allows for the formation of a roughened surface sufficient to scatter light and increase light extraction. The layer of transparent material may be an electrically conductive material, in which case, electrical communication between the LED material and the associated LED contact is through the transparent layer.
  • In some according to the present invention, the roughened layer can be formed from a high transparent material that is not necessarily conductive. In these cases, electrical communication between the LED material and the associated LED contact may be provided through direct contact between the LED contact and the LED surface or alternatively, by providing an additional layer of conductive material between the roughened layer of transparent material and the LED surface. This additional layer may be a layer of transparent conducting material such as a layer of transparent conducting oxide (TCO) material or transparent metallic material. While the conductive material serves as an ohmic, current spreading contact for the LED contact, the additional layer of conductive material is generally less transparent than the roughened layer of transparent material and therefore is substantially thinner than the roughened layer.
  • Referring now to the drawings and particularly to FIG. 1, there is shown a p-side up base LED structure 10 including a layer of p-type material 12, a layer of n-type material 14 and a layer of active material 16 sandwiched between the p-type layer and the n-type layer. A roughened light extracting region 18 is added to the base LED structure to form an LED having high light extraction properties. As described below, the roughened light extracting region 18 may take any one of several forms. A p-contact 20 is associated with the light extracting region 18 and an n-contact 22 is associated with the layer of n-type material.
  • The base LED structure may be fabricated from different material systems such as the Group III nitride based material systems. Group III nitrides refer to those semiconductor compounds formed between nitrogen and the elements in the Group III of the periodic table, usually aluminum (Al), gallium (Ga), and indium (In). The term also refers to ternary and tertiary compounds such as AlGaN and AlInGaN. In a preferred embodiment, the p-type material and the n-type material is GaN and the active material is InGaN. In alternative embodiments the p-type and n-type materials may be AlGaN, AlGaAs or AlGaInP.
  • With reference to FIG. 2 a, one embodiment of a high light extraction LED in accordance with the invention is formed by growing layers of p-GaN 24, n-GaN 26 and active materials 28 on a substrate 30. As shown, the n-GaN 26 is adjacent the substrate 30, the active materials 28 are on the n-GaN 26, and the p-GaN is on the active materials 28. In other embodiments the order of these layers can be different, with the p-GaN adjacent the substrate 30 and the n-GaN 26 being the top layer, with the active materials 28 between the two.
  • The substrate 30 can be made of many materials such at sapphire, silicon carbide, aluminum nitride (AlN), GaN, with a suitable substrate being a 4H polytype of silicon carbide, although other silicon carbide polytypes can also be used including 3C, 6H and 15R polytypes. Silicon carbide has a much closer crystal lattice match to Group III nitrides than sapphire and results in Group III nitride films of higher quality. Silicon carbide also has a very high thermal conductivity so that the total output power of Group III nitride devices on silicon carbide is not limited by the thermal dissipation of the substrate (as may be the case with some devices formed on sapphire). Also, the availability of silicon carbide substrates provides the capacity for device isolation and reduced parasitic capacitance that make commercial devices possible. SiC substrates are available from Cree Research, Inc., of Durham, N.C. and methods for producing them are set forth in the scientific literature as well as in a U.S. Pat. Nos. Re. 34,861; 4,946,547; and 5,200,022.
  • In one embodiment according to the present invention, the layers 24, 26, 28 are grown on the substrate 30 using metalorganic chemical vapor deposition (MOCVD). As shown in FIG. 2 b, a layer of transparent material 32 is deposited directly on the surface of the p-type layer 24, also preferably by MOCVD. Using the same technique to both deposit the layer of transparent material 32 and grow the base LED structure layers 24, 26, 28 is advantageous in that it provides increased efficiency and cost reduction through the use of a single manufacturing system. Other methods of depositing the layer of transparent material 32 include sputtering and electron beam deposition.
  • With reference to FIG. 2 c, a portion of the layer of transparent material 32 is removed, for example by laser or chemical etching, and a p-contact 34 is formed adjacent the exposed portion of the p-GaN layer 24, using techniques well known in the art. As shown in FIG. 2 d, the layer of transparent material 32 is then roughened using, for example a combination of photolithography to create a pattern and wet or dry photoelectrochemical (PEC) etching to create texture. With reference to FIGS. 2 e and 2 f, a n-contact 36 is added to the LED by either separating the substrate 30 from the n-type layer 26 by, for example a known laser lift off (LLO) process, and forming the n-contact on the n-type layer (FIG. 2 e) or by forming the n-contact on the substrate (FIG. 2 f). The former formation is used if the substrate 30 is formed of an insulating material such as AlN or sapphire. The latter formation may be used if the substrate 30 is formed of a conductive material such as SiC or GaN. As with the p-contact, the n-contact is formed using techniques well known in the art.
  • In this configuration, the light extracting region 18 (FIG. 1) of the LED includes the roughened layer of transparent material 32. In a preferred embodiment, a transparent material having an index of refraction close to or substantially the same as the p-type material is selected so that light passing through the p-type layer toward the junction between the p-type layer and the layer of transparent material passes through the junction into the transparent material without significant reflection. An exemplary quantitative measure of closeness between indices of refraction is ±0.3. Thus, for example, if the material of the p-type layer is GaN, with an index of refraction of approximately 2.45 (n≈2.45), the transparent material may have an index of refraction between 2.15 and 2.75. Possible materials having indices of refractions falling within this range include oxide materials, such as ZnO, MgO, In2O3, TiO2, PbO, ZnSnO, NiO and indium tin oxide (ITO) and other materials, such as ZnS and CdS.
  • The layer of transparent material 32 can have many different thicknesses, with a typical thickness being in the range of 1000 to 15,000 angstrom (Å) and a preferred thickness being approximately 2,500 Å. These thicknesses allow for the formation of a roughened surface having geometric features of sufficient dimensions to enhance light extraction. Such geometric features may include, for example, pyramids, hemispheres or hexagonal cones. These geometric features reduce internal light reflection at the material/air interface and scatter the light outward.
  • With reference to FIG. 3 a, another embodiment of a high light extraction LED in accordance with the invention is also initially formed by growing layers of p-GaN 40, n-GaN 42 and active materials 44 on a substrate 46, with the layers in different embodiments being in different order and the substrate being many different materials as described above. In a preferred embodiment, the layers 40, 42, 44 are grown on either a the substrate 46 using MOCVD. As shown in FIG. 3 b, a layer of transparent conducting material 48 is deposited directly on the top surface of p-type layer 40, also preferably by MOCVD. Other methods of depositing the transparent conducting layer 48 include sputtering and electron beam deposition.
  • With reference to FIG. 3 c, a p-contact 50 can be formed adjacent the transparent conducting layer 48. As shown in FIG. 3 d, the transparent conducting layer 48 surrounding the p-contact 50 can then roughened using, for example PEC etching. As shown in FIGS. 3 e and 3 f, a n-contact 52 can be added to the LED by either separating the substrate 46 from the n-type layer 42 using a LLO process and forming the n-contact on the n-type layer (FIG. 3 e) or, in the case of a conductive substrate 46, by forming the n-contact on the substrate (FIG. 3 f).
  • In this configuration, the light extracting region 18 (FIG. 1) of the LED includes the roughened transparent conducting layer 48. As with the previously described embodiment, the transparent conducting layer is preferably formed of a material having an index of refraction close to or substantially the same as the material of the p-type layer 40. Examples of such transparent conducting materials include but are not limited to transparent conducting oxides (TCOs), such as Ga2O3, InO, ZnO, In2O3 and ITO. The transparent conducting layer 48 can provide a more even distribution of current across the p-type and n-type layers and thus a more even generation of light within the active region.
  • The transparent conducting layer 48 can have many different thicknesses, with a typical thickness being in the range of 1,000 to 15,000 Å, and a preferred thickness being approximately 2,500 Å. These thicknesses allow for both the formation of a roughened surface having geometric features of sufficient dimensions to enhance light extraction, and a remaining layer of transparent conducting material adjacent the p-type layer 40 for current distribution purposes.
  • With reference to FIG. 4 a, another configuration of a high light extraction LED in accordance with the invention is also initially formed by growing layers of p-GaN 60, n-GaN 62 and active materials 64 on a substrate 66, with the layers in other embodiment being in different order and the substrate being made of different materials as described above. In one embodiment, the layers 60, 62, 64 are grown on the substrate 66 using MOCVD. As shown in FIG. 4 b, a layer of transparent conducting material 68 is directly deposited on the top surface of the p-type layer 60. A layer of transparent material 70 is deposited directly on the top surface of the transparent conducting layer 68. The deposition of the transparent conducting layer 68 and the transparent material 70 is preferably done by MOCVD. Other methods of depositing the layers 68, 70 include sputtering and electron beam deposition.
  • With reference to FIG. 4 c, a portion of the layer of transparent material 70 is removed, for example by laser or chemical etching, and a p-contact 72 is formed adjacent the exposed portion of the transparent conducting layer 68. As shown in 4d, the layer of transparent material 70 surrounding the p-contact 72 can then roughened using, for example PEC etching. With reference to FIGS. 4 e and 4 f, as with previously described configurations, a n-contact 74 can be added to the LED by either separating the substrate 66 from the n-type layer 62 and forming the n-contact on the n-type layer (FIG. 4 e) or, in the case of a conducting substrate, by forming the n-contact on the substrate (FIG. 4 f).
  • In this configuration, the light extracting region 18 (FIG. 1) of the LED includes the roughened layer of transparent material 70 and the transparent conducting layer 68. The transparent conducting layer 68 provides a more even distribution of current across the p-type and n-type layers and thus a more even generation of light within the active region, while the layer of transparent material 70 provides a platform for a higher transparency material relative to the transparent conducting layer.
  • Both the transparent conducting layer 68 and the layer of transparent material 70 can be formed from materials having indices of refraction close to or substantially the same as the material of the p-type layer. Similar to above, examples of transparent conducting materials include Ga2O3, InO, ZnO, In2O3 and ITO. Possible materials for the layer of transparent material 70 include oxide materials, such as ZnO, MgO, In2O3, TiO2, PbO, ZnSnO, NiO and ITO, and other materials, such as ZnS and CdS. While the transparent conducting layer 68 and the layer of transparent material 70 may be formed of the same material, in a preferred embodiment, the layer of transparent material is formed from a material having a higher level of transparency than the material of the transparent conducting layer.
  • Transparent conducting layer 68 and the layer of transparent material 70 can also be many different thicknesses, with a typical range of thicknesses for both being 1,000 to 15,000 Å. The transparent conducting layer 68 is thick enough to perform its current distribution function while being thin enough so its lower transparency does not degrade light extraction. The layer of transparent material 70 is typically thicker than the transparent conducting layer 68 in order to allow for the formation of a roughened surface having geometric features of sufficient dimensions to enhance light extraction.
  • With reference to FIG. 5 a, another configuration of a high light extraction LED in accordance with the invention is also initially formed by growing layers of p-GaN 80, n-GaN 82 and active materials 84 on a substrate 86 in the same order as shown or in a different order. The substrate can be made of many different materials as described above, and in a preferred embodiment, the layers 80, 82, 84 can be grown on the substrate 86 using MOCVD. As shown in FIG. 5 b, a thin layer of metallic material 88 is deposited on the p-type layer 80. The metallic material 88 serves as an ohmic, current spreading contact and is preferably formed of a semi-transparent metal such as Pd, Pt, Pd/Au, Pt/Au, Ni/Au, NiO/Au or any alloy thereof. The deposition of the metallic layer may be done using MOCVD or other well known methods including, for example, sputtering and electron beam deposition.
  • With reference to FIG. 5 c, a p-contact 90 is formed adjacent the layer of metallic material 88 and a layer of transparent material 92 is deposited around the p-contact. The layer of transparent material 92 may be deposited using MOCVD or other well known methods including, for example, sputtering and electron beam deposition. As shown in 5 d, the layer of transparent material 92 surrounding the p-contact 90 is then roughened using, for example PEC etching. With reference to FIGS. 5 e and 5 f, as with previously described configurations, a n-contact 94 is added to the LED by either separating the substrate 86 from the n-GaN layer 82 by a LLO process and forming the n-contact on the n-GaN layer (FIG. 5 e) or by forming the n-contact on the substrate (FIG. 5 f).
  • In this configuration, the light extracting region 18 (FIG. 1) of the LED includes the layer of metallic material 88 and the roughened layer of transparent material 92.
  • As with previous configurations, the layer of transparent material 92 is preferably formed from a material having an index of refraction close to or substantially the same as the material of the p-type layer. Possible materials for the layer of transparent material 92 include oxide materials, such as ZnO, MgO, In2O3, TiO2, PbO, ZnSnO, NiO and ITO, and other materials, such as ZnS and CdS.
  • Regarding the relative thickness of the layer of metallic material 88 and the layer of transparent material 92, the thickness of the layer of metallic material 88 is generally in the range of 10 to 1000 Å while the thickness of the layer of transparent material 70 is generally in the range of 1000 to 15,000 Å. In one embodiment the metallic layer is approximately 100 angstroms thick. The layer of metallic material 88 is typically just thick enough to perform its current distribution function while being thin enough so that it semi-transparent nature does not significantly degrade light extraction. The layer of metallic material 88 can be made of many different materials, including but not limited to Pd, Au, and NiAu. The layer of transparent material 92 is typically thicker than the layer of metallic material 88 in order to allow for the formation of a roughened surface having geometric features of sufficient dimensions to enhance light extraction.
  • Referring now to FIG. 6, there is shown an n-side up LED structure 100 including a layer of p-type material 102, a layer of n-type material 104 and a layer of active material 106 sandwiched between the p-type layer and the n-type layer. The LED structure 100 also includes a roughened light extracting region 108 which, as described below, may take any one of several forms. An n-contact 110 is associated with the light extracting region 108 and a p-contact 112 is associated with the layer of p-type material. In a preferred embodiment, the p-type material and the n-type material is GaN and the active material is InGaN. In alternative embodiments the p-type and n-type materials may be AlGaN, AlGaAs or AlGaInP.
  • With reference to FIG. 7 a, an LED base structure is formed by growing layers of p-GaN 114, n-GaN 116 and active materials 118 on a substrate 120 that can be made of the substrate materials described above. In a preferred embodiment, the layers 114, 116, 118 are grown on either a substrate 120 using MOCVD. As shown in FIG. 7 b a p-contact 122 is formed on the layer of p-type material 114.
  • With reference to FIG. 7 c, the structure is flipped and bonded to a submount 124. The submount 124 may be many different structures made from different materials, for example, an Au-coated Si submount. The substrate 120 shown in FIG. 7 c can be debonded from the n-type layer 116 leaving the LED base structure 126 shown in FIG. 7 d. The substrate 120 may be removed by many known processes including a LLO process. As described below, any one of several roughened light extracting regions 118 may be added to the LED base structure 126 to form an LED having high light extraction properties.
  • As shown in FIG. 8 a, one configuration of a high light extraction LED in accordance with the invention is formed by depositing a layer of transparent material 130 directly on the top surface of the n-type layer 116 of the base LED structure. The layer of transparent material 130 may be deposited by using any one of several methods including MOCVD, sputtering and electron beam deposition.
  • With reference to FIG. 8 b, a portion of the layer of transparent material 130 is removed, for example by laser or chemical etching, and a n-contact 132 is formed adjacent the exposed portion of the n-type layer 116. As shown in FIG. 8 c, the layer of transparent material 130 is then roughened using, for example PEC etching.
  • In this configuration, the light extracting region 108 (FIG. 6) of the LED includes the roughened layer of transparent material 130. This roughened layer of transparent material 130 has the same properties as previously described with respect to the configuration of FIGS. 2 a-2 f.
  • As shown in FIG. 9 a, another configuration of a high light extraction LED in accordance with the invention is formed by depositing a layer of transparent conducting material 140 directly on the top surface of the n-type layer 116 of a base LED structure. The transparent conducting layer 140 may be deposited using any one of several methods including MOCVD, sputtering and electron beam deposition.
  • With reference to FIG. 9 b, an n-contact 142 is formed adjacent the transparent conducting layer 140. As shown in FIG. 9 c, the transparent conducting layer 140 is then roughened using, for example PEC etching.
  • In this configuration, the light extracting region 108 (FIG. 6) of the LED includes the roughened transparent conducting layer 140. This roughened transparent conducting layer 140 has the same properties as previously described with respect to the configuration of FIGS. 3 a-3 f.
  • As shown in FIG. 10 a, another configuration of a high light extraction LED in accordance with the invention is formed by depositing a layer of transparent conducting material 150 directly on the top surface of the n-type layer 116 of a base LED structure. A layer of transparent material 152 is directly deposited on the transparent conducting layer 150. The deposition of the transparent conducting layer 150 and the transparent material 152 is preferably done by MOCVD. Other possible methods of depositing the layers 150, 152 include sputtering and electron beam deposition.
  • With reference to FIG. 10 b, a portion of the layer of transparent material 152 is removed, for example by laser or chemical etching, and a n-contact 154 is formed adjacent the exposed portion of the transparent conducting layer 150. As shown in 10 c, the layer of transparent material 152 surrounding the n-contact 154 is then roughened using, for example PEC etching.
  • In this configuration, the light extracting region 108 of the LED includes the roughened layer of transparent material 152 and the transparent conducting layer 150. This roughened layer of transparent material 152 and the transparent conducting layer 150 have the same properties as previously described with respect to the configuration of FIGS. 4 a-4 f.
  • With reference to FIG. 11 a, another configuration of a high light extraction LED in accordance with the invention is formed by depositing a thin layer of metallic material 160 on the n-type layer 116 of a base LED structure. The layer is preferably formed of a semi-transparent metal such as Pd, Pt, Pd/Au, Pt/Au, Ni/Au, NiO/Au or any alloy thereof. The deposition of the metallic layer may be done using MOVCD or other well known methods including, for example, sputtering and electron beam deposition.
  • Next, with reference to FIG. 11 b, an n-contact 162 is formed adjacent the layer of metallic material 160 and a layer of transparent material 164 is deposited around the n-contact. The layer of transparent material 164 may be deposited using MOVCD or other well known methods including, for example, sputtering and electron beam deposition. As shown in FIG. 11 c, the layer of transparent material 164 surrounding the n-contact 162 is then roughened using, for example PEC etching.
  • In this configuration, the light extracting region 108 (FIG. 6) of the LED includes the layer of metallic material 160 and the roughened layer of transparent material 164. This layer of metallic material 160 and the roughened layer of transparent material 164 have the same properties as previously described with respect to the configuration of FIGS. 5 a-5 f.
  • It will be apparent from the foregoing that while particular forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims.

Claims (40)

We claim:
1. A light emitting diode, comprising:
a plurality of semiconductor layers comprising a top semiconductor layer, a bottom semiconductor layer, and an active layer between said top and bottom semiconductor layers;
a layer of transparent conductive material on said top semiconductor layer, said layer of transparent conductive material comprising a rough primary emission surface; and
a contact on said transparent conductive material.
2. The light emitting diode of claim 1, wherein said layer of transparent conductive material is an oxide.
3. The light emitting diode of claim 1, wherein said top semiconductor layer is an n-type layer.
4. The light emitting diode of claim 1, wherein said transparent conductive material has a refractive index within approximately ±0.3 of said plurality of semiconductor layers.
5. The light emitting diode of claim 1, wherein said transparent conductive material comprises at least one of Ga2O3, InO, ZnO, In2O3, ITO, MgO, TiO2, PbO, ZnSnO, NiO, ZnS and CdS.
6. A light emitting diode, comprising:
a plurality of semiconductor layers;
a substantially planar conductive layer on a top one of said semiconductor layers;
a transparent layer on said conductive layer, said transparent layer comprising a rough primary emission surface; and
a contact on said conductive layer;
wherein said conductive layer is one of a transparent conductive oxide and a metal.
7. The light emitting diode of claim 6, wherein said conductive layer is a transparent conductive oxide.
8. The light emitting diode of claim 6, wherein said transparent layer is an oxide.
9. The light emitting diode of claim 6, wherein the bottom of said transparent layer and the bottom of said contact are coplanar.
10. The light emitting diode of claim 6, wherein said transparent layer and said contact are adjacent said conductive layer.
11. The light emitting diode of claim 6, wherein said conductive layer and said transparent layer comprise the same material.
12. The light emitting diode of claim 6, wherein said conductive layer is thinner than said transparent layer.
13. The light emitting diode of claim 6, wherein said contact is on said transparent layer.
14. A light emitting diode, comprising:
a plurality of semiconductor layers, comprising:
an n-type layer;
a p-type layer; and
an active layer between said n-type and p-type layers;
a transparent emission layer on said plurality of semiconductor layers, said emission layer comprising a rough primary emission surface;
an n-contact on said plurality of semiconductor layers with one or more layers therebetween.
15. The light emitting diode of claim 14, wherein said emission layer comprises an oxide.
16. The light emitting diode of claim 14, wherein said emission layer is conductive.
17. The light emitting diode of claim 16, wherein said n-contact is on said rough primary emission surface.
18. The light emitting diode of claim 14, wherein said emission layer is adjacent said plurality of semiconductor layers.
19. The light emitting diode of claim 14, further comprising a conductive layer between said plurality of semiconductor layers and said emission layer.
20. The light emitting diode of claim 19, wherein said conductive layer is transparent.
21. The light emitting diode of claim 19, wherein said conductive layer is a transparent conductive oxide.
22. The light emitting diode of claim 19, wherein said conductive layer is metallic.
23. The light emitting diode of claim 19, wherein said n-contact is adjacent said conductive layer.
24. The light emitting diode of claim 19, wherein said n-contact and said emission layer are on a top surface of said conductive layer.
25. The light emitting diode of claim 19, wherein said conductive layer is adjacent said n-type layer.
26. A light emitting diode, comprising:
a plurality of semiconductor layers;
a substantially transparent conducting layer on one of said semiconductor layers;
a transparent layer on said transparent conducting layer; and
a contact on said transparent conducting layer with said transparent layer at least partially surrounding said contact.
27. The light emitting diode of claim 26, wherein said transparent layer has a higher level of transparency than said transparent conducting layer.
28. The light emitting diode of claim 26, wherein said transparent conducting layer and/or said transparent layer has an index of refraction substantially the same as said semiconductor layers.
29. The light emitting diode of claim 26, wherein said transparent conducting layer and/or said transparent layer comprises a transparent conductive oxide.
30. The light emitting diode of claim 26, wherein said transparent conducting layer comprises Ga2O3, InO, ZnO, In2O3 or ITO.
31. The light emitting diode of claim 26, wherein said transparent layer comprises one or more oxide materials.
32. The light emitting diode of claim 26, wherein said transparent layer comprises Ga2O3, InO, ZnO, In2O3, ITO, MgO, TiO2, PbO, ZnSnO, NiO, ZnS and CdS.
33. The light emitting diode of claim 26, wherein the bottom of said transparent layer and the bottom of said contact are coplanar.
34. The light emitting diode of claim 26, wherein said transparent conducting layer and said transparent layer comprise the same material.
35. The light emitting diode of claim 26, wherein said transparent conducting layer and said transparent layer comprise different materials.
36. The light emitting diode of claim 26, wherein said transparent conducting layer is thinner than said transparent layer.
37. The light emitting diode of claim 26, wherein said transparent conducing layer spreads current from said contact to said semiconductors layers.
38. The light emitting diode of claim 26, wherein said transparent layer comprising a rough emission surface.
39. The light emitting diode of said 38, wherein said rough emission surface is on a surface of said transparent layer opposite said transparent conducting layer.
40. The light emitting diode of claim 38, wherein said rough emission surface surrounds said contact.
US14/173,662 2005-07-21 2014-02-05 Roughened high refractive index layer/led for high light extraction Abandoned US20140151738A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/173,662 US20140151738A1 (en) 2005-07-21 2014-02-05 Roughened high refractive index layer/led for high light extraction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/187,075 US8674375B2 (en) 2005-07-21 2005-07-21 Roughened high refractive index layer/LED for high light extraction
US14/173,662 US20140151738A1 (en) 2005-07-21 2014-02-05 Roughened high refractive index layer/led for high light extraction

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/187,075 Continuation US8674375B2 (en) 2005-07-21 2005-07-21 Roughened high refractive index layer/LED for high light extraction

Publications (1)

Publication Number Publication Date
US20140151738A1 true US20140151738A1 (en) 2014-06-05

Family

ID=37101968

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/187,075 Active 2027-01-13 US8674375B2 (en) 2005-07-21 2005-07-21 Roughened high refractive index layer/LED for high light extraction
US14/173,662 Abandoned US20140151738A1 (en) 2005-07-21 2014-02-05 Roughened high refractive index layer/led for high light extraction

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/187,075 Active 2027-01-13 US8674375B2 (en) 2005-07-21 2005-07-21 Roughened high refractive index layer/LED for high light extraction

Country Status (7)

Country Link
US (2) US8674375B2 (en)
JP (1) JP2009502043A (en)
KR (1) KR20080035648A (en)
CN (1) CN101248537B (en)
DE (1) DE112006001919T5 (en)
TW (2) TW201444117A (en)
WO (1) WO2007018789A1 (en)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI271883B (en) * 2005-08-04 2007-01-21 Jung-Chieh Su Light-emitting devices with high extraction efficiency
JP2007123517A (en) * 2005-10-27 2007-05-17 Toshiba Corp Semiconductor light-emitting element, and semiconductor light-emitting apparatus
JP2007150259A (en) * 2005-11-02 2007-06-14 Sharp Corp Nitride semiconductor light-emitting element, and method for manufacturing same
US8729580B2 (en) * 2005-12-06 2014-05-20 Toshiba Techno Center, Inc. Light emitter with metal-oxide coating
KR100735488B1 (en) * 2006-02-03 2007-07-04 삼성전기주식회사 Method for forming the gan type led device
EP2033234A4 (en) * 2006-06-12 2013-11-06 3M Innovative Properties Co Led device with re-emitting semiconductor construction and converging optical element
US20070284565A1 (en) * 2006-06-12 2007-12-13 3M Innovative Properties Company Led device with re-emitting semiconductor construction and optical element
US7952110B2 (en) * 2006-06-12 2011-05-31 3M Innovative Properties Company LED device with re-emitting semiconductor construction and converging optical element
US7902542B2 (en) * 2006-06-14 2011-03-08 3M Innovative Properties Company Adapted LED device with re-emitting semiconductor construction
TWI336965B (en) * 2006-06-16 2011-02-01 High Power Optoelectronics Inc Semiconductor light emitting device and method of fabricating the same
US20080042149A1 (en) * 2006-08-21 2008-02-21 Samsung Electro-Mechanics Co., Ltd. Vertical nitride semiconductor light emitting diode and method of manufacturing the same
KR100820546B1 (en) * 2006-09-07 2008-04-07 엘지이노텍 주식회사 Semiconductor light-emitting device and Manufacturing method thereof
JP2010512664A (en) * 2006-12-11 2010-04-22 ルーメンツ リミテッド ライアビリティ カンパニー Zinc oxide multi-junction photovoltaic cell and optoelectronic device
US7832886B2 (en) * 2007-04-16 2010-11-16 Gigno Technology Co., Ltd. Light emitting module
US20080283503A1 (en) * 2007-05-14 2008-11-20 Cheng-Yi Liu Method of Processing Nature Pattern on Expitaxial Substrate
JP2008294188A (en) * 2007-05-24 2008-12-04 Toyoda Gosei Co Ltd Semiconductor light emitting device and method of manufacturing the same
JP5048392B2 (en) * 2007-05-25 2012-10-17 豊田合成株式会社 Group III nitride compound semiconductor light emitting device
EP2003702A1 (en) * 2007-06-13 2008-12-17 High Power Optoelectronics Inc. Semiconductor light emitting device and method of fabricating the same
KR100921466B1 (en) * 2007-08-30 2009-10-13 엘지전자 주식회사 Nitride light emitting device and method of making the same
TWI419355B (en) * 2007-09-21 2013-12-11 Nat Univ Chung Hsing Light-emitting diode chip with high light extraction and method for manufacturing the same
JP2009094107A (en) * 2007-10-03 2009-04-30 Mitsubishi Chemicals Corp ELECTRODE FOR GaN-BASED LED DEVICE AND GaN-BASED LED DEVICE USING THE SAME
US8502259B2 (en) 2008-01-11 2013-08-06 Industrial Technology Research Institute Light emitting device
TWI393280B (en) * 2008-06-25 2013-04-11 Ind Tech Res Inst Light-emitting device with magnetic field
US20100117070A1 (en) * 2008-09-18 2010-05-13 Lumenz Llc Textured semiconductor light-emitting devices
EP2253988A1 (en) * 2008-09-19 2010-11-24 Christie Digital Systems USA, Inc. A light integrator for more than one lamp
KR101007113B1 (en) * 2008-11-25 2011-01-10 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
KR101064016B1 (en) * 2008-11-26 2011-09-08 엘지이노텍 주식회사 Light emitting device and manufacturing method
US8183575B2 (en) * 2009-01-26 2012-05-22 Bridgelux, Inc. Method and apparatus for providing a patterned electrically conductive and optically transparent or semi-transparent layer over a lighting semiconductor device
JP4994401B2 (en) * 2009-02-04 2012-08-08 エンパイア テクノロジー ディベロップメント エルエルシー Manufacturing method of semiconductor device
CN101656285B (en) * 2009-09-17 2010-12-08 山东大学 Method for preparing alligatored surface of light-emitting diode by using PS spheres as template
KR101712094B1 (en) * 2009-11-27 2017-03-03 포항공과대학교 산학협력단 Vertical gallium nitride-based light emitting diode and method of manufacturing the same
KR101646664B1 (en) * 2010-05-18 2016-08-08 엘지이노텍 주식회사 Light emitting device, method for fabricating the light emitting device and light emitting device package
KR101165259B1 (en) * 2010-07-08 2012-08-10 포항공과대학교 산학협력단 LIGHT-EMITTING DEVICE HAVING MgO PYRAMID STRUCTURE AND METHOD FOR MANUFACTURING THE SAME
US9012948B2 (en) * 2010-10-04 2015-04-21 Epistar Corporation Light-emitting element having a plurality of contact parts
CN104091815A (en) * 2010-10-12 2014-10-08 晶元光电股份有限公司 Light-emitting component
CN102479886A (en) * 2010-11-22 2012-05-30 鼎元光电科技股份有限公司 Method for manufacturing light emitting diode with coarsening layer
US8154034B1 (en) * 2010-11-23 2012-04-10 Invenlux Limited Method for fabricating vertical light emitting devices and substrate assembly for the same
KR101233768B1 (en) * 2010-12-30 2013-02-15 포항공과대학교 산학협력단 Nano imprint mold manufacturing method, light emitting diode manufacturing method and light emitting diode using the nano imprint mold manufactured by the method
CN102637782A (en) * 2011-02-14 2012-08-15 同方光电科技有限公司 Method for manufacturing light-emitting diode with improved light extraction efficiency
TWI423480B (en) * 2011-02-21 2014-01-11 Lextar Electronics Corp Method of patterning transparent conductive layer of light emitting diode
US20130032810A1 (en) 2011-08-03 2013-02-07 Bridgelux, Inc. Led on silicon substrate using zinc-sulfide as buffer layer
US8766293B2 (en) * 2011-08-08 2014-07-01 Genesis Photonics Inc. Light-emitting device and method for manufacturing the same
TW201349569A (en) * 2012-05-28 2013-12-01 Genesis Photonics Inc Light-emitting component and method for manufacturing the same
US8957440B2 (en) 2011-10-04 2015-02-17 Cree, Inc. Light emitting devices with low packaging factor
KR101286211B1 (en) * 2012-02-16 2013-07-15 고려대학교 산학협력단 Method of fabricating light emitting device and light emitting device fabricated by using the same
JP5729335B2 (en) * 2012-03-19 2015-06-03 豊田合成株式会社 Group III nitride semiconductor light emitting device and method of manufacturing the same
WO2013140320A1 (en) * 2012-03-19 2013-09-26 Koninklijke Philips N.V. Light emitting device grown on a silicon substrate
CN103367595B (en) 2012-03-30 2016-02-10 展晶科技(深圳)有限公司 LED crystal particle and manufacture method thereof
CN103579435A (en) * 2012-08-08 2014-02-12 广东量晶光电科技有限公司 GaN-based power-type light-emitting diode and manufacturing method thereof
WO2014115311A1 (en) * 2013-01-25 2014-07-31 パイオニア株式会社 Light-emitting device
CN103606605B (en) * 2013-10-21 2016-08-24 溧阳市东大技术转移中心有限公司 A kind of flatbed light emitting diode
US20150228861A1 (en) * 2014-02-07 2015-08-13 Epistar Corporation Light emitting device
US9647172B2 (en) * 2014-02-07 2017-05-09 Epistar Corporation Light emitting device
US10516084B2 (en) 2014-10-31 2019-12-24 eLux, Inc. Encapsulated fluid assembly emissive elements
KR102366399B1 (en) 2015-07-15 2022-02-24 서울바이오시스 주식회사 LIGHT EMITTING DEVICE INCLUDING ZnO TRANSPARENT ELECTRODE
CN107958946A (en) * 2017-11-17 2018-04-24 扬州乾照光电有限公司 A kind of light-emitting diode chip for backlight unit for improving current expansion and preparation method thereof
FR3089746A1 (en) 2018-12-06 2020-06-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD FOR ADAPTING THE LIGHT EXTRACTION OF A LIGHT EMITTING DIODE
US11362243B2 (en) 2019-10-09 2022-06-14 Lumileds Llc Optical coupling layer to improve output flux in LEDs
CN110993764A (en) * 2019-12-17 2020-04-10 湘能华磊光电股份有限公司 LED chip with coarsening structure and preparation method thereof

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739217A (en) * 1969-06-23 1973-06-12 Bell Telephone Labor Inc Surface roughening of electroluminescent diodes
JPS6159996A (en) 1984-08-31 1986-03-27 Fujitsu Ltd Matrix switch
US4866005A (en) * 1987-10-26 1989-09-12 North Carolina State University Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide
JPH0770755B2 (en) * 1988-01-21 1995-07-31 三菱化学株式会社 High brightness LED epitaxial substrate and method of manufacturing the same
US4912532A (en) * 1988-08-26 1990-03-27 Hewlett-Packard Company Electro-optical device with inverted transparent substrate and method for making same
US5103271A (en) * 1989-09-28 1992-04-07 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method of fabricating the same
US4946547A (en) * 1989-10-13 1990-08-07 Cree Research, Inc. Method of preparing silicon carbide surfaces for crystal growth
US5200022A (en) * 1990-10-03 1993-04-06 Cree Research, Inc. Method of improving mechanically prepared substrate surfaces of alpha silicon carbide for deposition of beta silicon carbide thereon and resulting product
FR2679253B1 (en) * 1991-07-15 1994-09-02 Pasteur Institut CYCLOHEXIMIDE RESISTANCE PROTEINS. USE AS A SELECTION MARKER FOR EXAMPLE TO CONTROL THE TRANSFER OF NUCLEIC ACIDS.
US5376580A (en) * 1993-03-19 1994-12-27 Hewlett-Packard Company Wafer bonding of light emitting diode layers
JP3316062B2 (en) * 1993-12-09 2002-08-19 株式会社東芝 Semiconductor light emitting device
US5985687A (en) 1996-04-12 1999-11-16 The Regents Of The University Of California Method for making cleaved facets for lasers fabricated with gallium nitride and other noncubic materials
DE19640594B4 (en) * 1996-10-01 2016-08-04 Osram Gmbh module
US6071795A (en) * 1998-01-23 2000-06-06 The Regents Of The University Of California Separation of thin films from transparent substrates by selective optical processing
JPH11238913A (en) 1998-02-20 1999-08-31 Namiki Precision Jewel Co Ltd Semiconductor light-emitting device chip
JP3525061B2 (en) * 1998-09-25 2004-05-10 株式会社東芝 Method for manufacturing semiconductor light emitting device
JP3469484B2 (en) * 1998-12-24 2003-11-25 株式会社東芝 Semiconductor light emitting device and method of manufacturing the same
US6744800B1 (en) * 1998-12-30 2004-06-01 Xerox Corporation Method and structure for nitride based laser diode arrays on an insulating substrate
US6320206B1 (en) * 1999-02-05 2001-11-20 Lumileds Lighting, U.S., Llc Light emitting devices having wafer bonded aluminum gallium indium nitride structures and mirror stacks
US20010042866A1 (en) * 1999-02-05 2001-11-22 Carrie Carter Coman Inxalygazn optical emitters fabricated via substrate removal
US6258699B1 (en) * 1999-05-10 2001-07-10 Visual Photonics Epitaxy Co., Ltd. Light emitting diode with a permanent subtrate of transparent glass or quartz and the method for manufacturing the same
EP1065734B1 (en) * 1999-06-09 2009-05-13 Kabushiki Kaisha Toshiba Bonding type semiconductor substrate, semiconductor light emitting element, and preparation process thereof.
US6410942B1 (en) * 1999-12-03 2002-06-25 Cree Lighting Company Enhanced light extraction through the use of micro-LED arrays
EP2270883A3 (en) * 1999-12-03 2015-09-30 Cree, Inc. Enhanced light extraction in LEDs through the use of internal and external optical elements
US6573537B1 (en) 1999-12-22 2003-06-03 Lumileds Lighting, U.S., Llc Highly reflective ohmic contacts to III-nitride flip-chip LEDs
DE10008583A1 (en) * 2000-02-24 2001-09-13 Osram Opto Semiconductors Gmbh Production of an optically transparent substrate comprises epitaxially growing a substrate layer on a substrate, connecting the substrate layer to the side with an optically transparent layer, and removing the substrate
JP4060511B2 (en) * 2000-03-28 2008-03-12 パイオニア株式会社 Method for separating nitride semiconductor device
TW472400B (en) 2000-06-23 2002-01-11 United Epitaxy Co Ltd Method for roughing semiconductor device surface to increase the external quantum efficiency
JP2002016286A (en) 2000-06-27 2002-01-18 Sharp Corp Semiconductor light-emitting element
US6562648B1 (en) * 2000-08-23 2003-05-13 Xerox Corporation Structure and method for separation and transfer of semiconductor thin films onto dissimilar substrate materials
DE10042947A1 (en) * 2000-08-31 2002-03-21 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor component based on GaN
JP3708014B2 (en) * 2000-10-20 2005-10-19 株式会社東芝 Semiconductor device
JP4091261B2 (en) * 2000-10-31 2008-05-28 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
US6468824B2 (en) * 2001-03-22 2002-10-22 Uni Light Technology Inc. Method for forming a semiconductor device having a metallic substrate
TW564584B (en) * 2001-06-25 2003-12-01 Toshiba Corp Semiconductor light emitting device
US7148520B2 (en) * 2001-10-26 2006-12-12 Lg Electronics Inc. Diode having vertical structure and method of manufacturing the same
JP3802424B2 (en) * 2002-01-15 2006-07-26 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
JP3782357B2 (en) 2002-01-18 2006-06-07 株式会社東芝 Manufacturing method of semiconductor light emitting device
KR100909733B1 (en) * 2002-01-28 2009-07-29 니치아 카가쿠 고교 가부시키가이샤 Nitride semiconductor device having support substrate and manufacturing method thereof
US6716654B2 (en) * 2002-03-12 2004-04-06 Opto Tech Corporation Light-emitting diode with enhanced brightness and method for fabricating the same
TW573372B (en) 2002-11-06 2004-01-21 Super Nova Optoelectronics Cor GaN-based III-V group compound semiconductor light-emitting diode and the manufacturing method thereof
KR100454132B1 (en) * 2002-09-09 2004-10-26 삼성전자주식회사 Non-volatile memory device and method of forming the same
US20040079947A1 (en) * 2002-10-26 2004-04-29 Wen-How Lan Light-emitting diode with low resistance layer
TWI303909B (en) * 2002-11-25 2008-12-01 Nichia Corp Ridge waveguide semiconductor laser diode
US6786390B2 (en) * 2003-02-04 2004-09-07 United Epitaxy Company Ltd. LED stack manufacturing method and its structure thereof
JP2004311986A (en) 2003-03-25 2004-11-04 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
US7102175B2 (en) * 2003-04-15 2006-09-05 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and method for fabricating the same
US20040211972A1 (en) 2003-04-22 2004-10-28 Gelcore, Llc Flip-chip light emitting diode
JP2005045054A (en) 2003-07-23 2005-02-17 Sharp Corp Group iii nitride semiconductor light emitting element
US6847057B1 (en) 2003-08-01 2005-01-25 Lumileds Lighting U.S., Llc Semiconductor light emitting devices
US6806112B1 (en) * 2003-09-22 2004-10-19 National Chung-Hsing University High brightness light emitting diode
TWI234295B (en) 2003-10-08 2005-06-11 Epistar Corp High-efficiency nitride-based light-emitting device
US20050082562A1 (en) * 2003-10-15 2005-04-21 Epistar Corporation High efficiency nitride based light emitting device
US7012281B2 (en) * 2003-10-30 2006-03-14 Epistar Corporation Light emitting diode device and manufacturing method
JP4590905B2 (en) * 2003-10-31 2010-12-01 豊田合成株式会社 Light emitting element and light emitting device
EP1686629B1 (en) * 2003-11-19 2018-12-26 Nichia Corporation Nitride semiconductor light emitting diode and method for manufacturing the same
JP2005191530A (en) 2003-12-03 2005-07-14 Sumitomo Electric Ind Ltd Light emitting device
US7704763B2 (en) 2003-12-09 2010-04-27 The Regents Of The University Of California Highly efficient group-III nitride based light emitting diodes via fabrication of structures on an N-face surface
JP2005244202A (en) 2004-01-26 2005-09-08 Showa Denko Kk Group iii nitride semiconductor laminate
JP4581478B2 (en) 2004-05-12 2010-11-17 日亜化学工業株式会社 Manufacturing method of nitride semiconductor
US7534633B2 (en) * 2004-07-02 2009-05-19 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
TWI234301B (en) 2004-08-12 2005-06-11 Genesis Photonics Inc Manufacturing process of light-emitting diode
TWM261838U (en) 2004-09-16 2005-04-11 Super Nova Optoelectronics Cor Structure for GaN based LED with high light extraction efficiency
TWM265766U (en) 2004-09-16 2005-05-21 Super Nova Optoelectronics Cor Structure of GaN light emitting device
US7335920B2 (en) * 2005-01-24 2008-02-26 Cree, Inc. LED with current confinement structure and surface roughening
JP2006253298A (en) * 2005-03-09 2006-09-21 Toshiba Corp Semiconductor light emitting element and device therefor

Also Published As

Publication number Publication date
US20070018183A1 (en) 2007-01-25
CN101248537B (en) 2013-01-16
TW201444117A (en) 2014-11-16
JP2009502043A (en) 2009-01-22
WO2007018789A1 (en) 2007-02-15
TWI487133B (en) 2015-06-01
US8674375B2 (en) 2014-03-18
CN101248537A (en) 2008-08-20
TW200711177A (en) 2007-03-16
KR20080035648A (en) 2008-04-23
DE112006001919T5 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
US8674375B2 (en) Roughened high refractive index layer/LED for high light extraction
US8772792B2 (en) LED with surface roughening
US6992331B2 (en) Gallium nitride based compound semiconductor light-emitting device
US9455378B2 (en) High efficiency light emitting diode and method for fabricating the same
US6649440B1 (en) Aluminum indium gallium nitride-based LED having thick epitaxial layer for improved light extraction
JP5550078B2 (en) Semiconductor light emitting device
CN106058000A (en) Light emitting diode and method of manufacturing same
KR100999756B1 (en) Light emitting device and method for fabricating the same
KR102251237B1 (en) Light emitting device
CN108140697A (en) Luminescent device
US10147840B2 (en) Light emitting diode with light emitting layer containing nitrogen and phosphorus
KR102250531B1 (en) Light emitting device
KR20090108674A (en) Flip-chip structured group 3 nitride-based semiconductor light emitting diodes and methods to fabricate them
US20110186884A1 (en) LED Reflective Structure and Method of Fabricating the Same

Legal Events

Date Code Title Description
AS Assignment

Owner name: CREE, INC., NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DENBAARS, STEVEN P;IBBETSON, JAMES;NAKAMURA, SHUJI;SIGNING DATES FROM 20140206 TO 20140218;REEL/FRAME:032273/0631

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION