TWI393280B - Light-emitting device with magnetic field - Google Patents

Light-emitting device with magnetic field Download PDF

Info

Publication number
TWI393280B
TWI393280B TW98121422A TW98121422A TWI393280B TW I393280 B TWI393280 B TW I393280B TW 98121422 A TW98121422 A TW 98121422A TW 98121422 A TW98121422 A TW 98121422A TW I393280 B TWI393280 B TW I393280B
Authority
TW
Taiwan
Prior art keywords
layer
electrode
light emitting
illuminating device
magnetic source
Prior art date
Application number
TW98121422A
Other languages
Chinese (zh)
Other versions
TW201004004A (en
Inventor
Rong Xuan
Chih Hao Hsu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/146,418 external-priority patent/US7767996B2/en
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Publication of TW201004004A publication Critical patent/TW201004004A/en
Application granted granted Critical
Publication of TWI393280B publication Critical patent/TWI393280B/en

Links

Landscapes

  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Devices (AREA)

Description

磁性發光裝置Magnetic illuminating device

本發明是有關於一種發光裝置,且特別是有關於一種磁性發光裝置。The present invention relates to a light emitting device, and more particularly to a magnetic light emitting device.

例如發光二極體(Light Emitting Diode,LED)的發光裝置可依據驅動電子流穿過LED的活性層而據以發光。然而,若是分佈於整個發光區域的電流密度均勻,則發光的均勻性會降低。更進一步而言,在傳統設計上,不透光的頂部電極通常被配置於發光區域的中央區域。根據上述,在頂部電極下方的電流密度大於其他區域且可以發出更多光。然而基於頂部電極是不透光,於是在頂部電極下方的發光會被遮蓋。由於傳統LED的頂部電極遮蓋位於中央區域的最高強度發光,導致輸出的亮光減少。A light emitting device such as a Light Emitting Diode (LED) can emit light depending on the driving electron flow through the active layer of the LED. However, if the current density distributed throughout the light-emitting region is uniform, the uniformity of light emission is lowered. Still further, in conventional designs, the opaque top electrode is typically disposed in a central region of the illuminating region. According to the above, the current density under the top electrode is larger than other regions and more light can be emitted. However, based on the top electrode being opaque, the illumination below the top electrode is covered. Since the top electrode of a conventional LED covers the highest intensity illumination in the central region, the output brightness is reduced.

據此,在相關技術領域上,改善LED發光輸出效率仍須進一步開發。Accordingly, in the related art, improvement of LED light-emitting output efficiency still needs further development.

本發明提供一種具有磁源的發光裝置。發光裝置包括發光堆疊結構。發光堆疊結構具有第一電極、第二電極、上部摻雜堆疊層、底部摻雜堆疊層,與介於上部摻雜堆疊層與底部摻雜堆疊層之間的活性層。第一電極與第二電極配置於發光堆疊結構的同側,並用以提供驅動電流。磁源層用以提供磁場至發光堆疊結構,磁場的方向實質上垂直於上部摻雜堆疊層。The present invention provides a light emitting device having a magnetic source. The light emitting device includes a light emitting stack structure. The light emitting stacked structure has a first electrode, a second electrode, an upper doped stacked layer, a bottom doped stacked layer, and an active layer interposed between the upper doped stacked layer and the bottom doped stacked layer. The first electrode and the second electrode are disposed on the same side of the light emitting stack structure and configured to provide a driving current. The magnetic source layer is used to provide a magnetic field to the light emitting stack structure, the direction of the magnetic field being substantially perpendicular to the upper doped stacked layer.

本發明提供一種具有磁源的發光裝置,包括發光堆疊結構。發光堆疊結構具有分佈於發光堆疊結構同側的第一電極與第二電極。磁源層接合於發光堆疊結構,用以提供磁場至發光堆疊結構,其中磁場的方向實質上垂直於發光堆疊結構。The present invention provides a light emitting device having a magnetic source, comprising a light emitting stack structure. The light emitting stack structure has first and second electrodes distributed on the same side of the light emitting stack structure. The magnetic source layer is bonded to the light emitting stack structure to provide a magnetic field to the light emitting stack structure, wherein the direction of the magnetic field is substantially perpendicular to the light emitting stack structure.

本發明提供一種增加發光裝置之發光效能之方法,其中方法包括施加實質上垂直於發光裝置之發光區域之方向的磁場。The present invention provides a method of increasing the luminous efficacy of a light emitting device, wherein the method includes applying a magnetic field substantially perpendicular to the direction of the light emitting region of the light emitting device.

前述的總體說明與後述的詳細說明為示範性說明,並提供本發明更進一步解釋。The foregoing general description and the following detailed description are exemplary and are in the

本說明書所包括的伴隨圖式用以讓本發明更明顯易懂,且整合與作成本說明書。圖式解釋本發明多個示範實施例,並配合說明書據以解釋本發明之原理。The accompanying drawings included in the present specification are intended to provide a more obvious understanding of the invention and The drawings illustrate various exemplary embodiments of the invention, and are in accordance

本發明提出一種垂直施予磁場於的發光裝置,據以增加光輸出效率。許多示範實施例用以說明本發明,然而本發明並不限定於多個示範實施例。更進一步而言,各種示範實施例的結合可據以形成其他示範實施例。The present invention provides a light-emitting device for applying a magnetic field perpendicularly, thereby increasing light output efficiency. Many exemplary embodiments are described to illustrate the invention, but the invention is not limited to a plurality of exemplary embodiments. Still further, combinations of various exemplary embodiments may be utilized to form other exemplary embodiments.

在物理現象中,霍爾效應(Hall effect)為當電流流過導線且橫向施加磁場時,則例如為電子流的電流路徑會基於F=q*v*B的磁場Lorenz力而橫向偏移。本發明根據霍爾效應的原理而將霍爾效應結合於LED。In the physical phenomenon, the Hall effect is that when a current flows through the wire and a magnetic field is applied laterally, then, for example, the current path of the electron current is laterally shifted based on the magnetic field Lorenz force of F=q*v*B. The present invention incorporates a Hall effect into an LED in accordance with the principles of the Hall effect.

圖1繪示依照本發明之一示範實施例之磁性LED結構之橫切面。圖1中以LED為例。舉例來說,LED包括底部電極100,發光結構102,以及頂部電極104,而發光結構102包括第一半導體結構層102a,活性層102b,與另一半導體結構層102c,其中第一半導體結構層102a例如P型摻雜半導體結構層,用以發光的活性層102b為電子與電洞組合,而另一半導體結構層102c例如為N型摻雜層。頂部電極104可不配置於發光區域180的中央。1 illustrates a cross-section of a magnetic LED structure in accordance with an exemplary embodiment of the present invention. In Fig. 1, an LED is taken as an example. For example, the LED includes a bottom electrode 100, a light emitting structure 102, and a top electrode 104, and the light emitting structure 102 includes a first semiconductor structure layer 102a, an active layer 102b, and another semiconductor structure layer 102c, wherein the first semiconductor structure layer 102a For example, a P-type doped semiconductor structure layer, the active layer 102b for emitting light is a combination of electrons and holes, and the other semiconductor structure layer 102c is, for example, an N-type doped layer. The top electrode 104 may not be disposed in the center of the light emitting region 180.

當進行運作時,電流從底部電極100流至頂部電極104。然而。若是於一個方向橫向施加磁場,例如磁場106所示,則會產生Lorenz力以偏移並延展電流。於此以圖1為例,根據相同的觀念,電極的導電種類以及磁場的方向可以根據實際設計而改變。據此,電流可以橫向偏移且從底部電極流至頂部電極。驅動電流可以更有效率地使活性層102b發光。When operating, current flows from the bottom electrode 100 to the top electrode 104. however. If a magnetic field is applied laterally in one direction, such as indicated by magnetic field 106, a Lorenz force is generated to deflect and extend the current. Taking FIG. 1 as an example, according to the same concept, the conductivity type of the electrode and the direction of the magnetic field can be changed according to the actual design. Accordingly, the current can be laterally offset and flow from the bottom electrode to the top electrode. The driving current can more efficiently illuminate the active layer 102b.

從圖1的結構所示,兩電極100與104位於發光結構102的相反兩側,且接著施加磁場的方向平行於發光區域180,其中驅動電流在發光結構102內偏移。然而,當電極配置於發光結構的同側時,則會產生大量水平部分的電流,且磁場方向須作相對應的改變。As shown in the structure of FIG. 1, the two electrodes 100 and 104 are located on opposite sides of the light emitting structure 102, and then the direction of the applied magnetic field is parallel to the light emitting region 180, wherein the drive current is offset within the light emitting structure 102. However, when the electrodes are disposed on the same side of the light-emitting structure, a large amount of current in the horizontal portion is generated, and the direction of the magnetic field must be changed correspondingly.

圖2A與2B繪示依照本發明之一示範實施例之磁場於發光二極體結構之物理過程之俯視面。請參照圖2A,發光結構200為矩形,兩電極202與204位於對角側。當施予 適當電壓時,電流206集中於最短路徑的區域,據以使得電流密度不均勻。請參照圖2B,當磁場208以一磁場方向如垂直於發光結構200的方向施加時,Lorenz力使得電流206的流動方向被改變。據此,電流206可延展且均勻分佈於發光結構200整個區域。此意味可增加發光區域且不集中於某個區域。然而電極204的位置會依照施加磁場而對應改變。2A and 2B illustrate top views of a physical process of a magnetic field in a light emitting diode structure in accordance with an exemplary embodiment of the present invention. Referring to FIG. 2A, the light emitting structure 200 is rectangular, and the two electrodes 202 and 204 are located on the diagonal side. When given At the appropriate voltage, the current 206 is concentrated in the region of the shortest path, so that the current density is not uniform. Referring to FIG. 2B, when the magnetic field 208 is applied in a direction of a magnetic field, such as perpendicular to the direction of the light emitting structure 200, the Lorenz force causes the flow direction of the current 206 to be changed. Accordingly, the current 206 can be spread and evenly distributed throughout the entire area of the light emitting structure 200. This means that the illuminating area can be increased and not concentrated in a certain area. However, the position of the electrode 204 will change correspondingly according to the applied magnetic field.

圖3至4繪示依照本發明之一示範實施例之施予磁場於發光裝置之改善成果。請參照圖3,研究資料顯示當施加磁場時,輸出功率可以增加。具菱形點的曲線代表無磁場時的輸出功率,而具圓點的曲線代表具0.05特斯拉(Tesla)磁場的輸出功率。輸出功率的改善成果亦可由注射電流觀察。在圖4中,施予磁場的曲線相同地具有較大的輸出功率。換句話說,圖2的物理過程可以實際改善輸出功率。根據本發明所提出的物理過程,多個示範實施例可根據不同設計須求而據以實施。然而本發明並不限於所述示範實施例更進一步而言,各種示範實施例的適當結合可據以形成其他示範實施例。3 through 4 illustrate improvements in the application of a magnetic field to a light emitting device in accordance with an exemplary embodiment of the present invention. Referring to Figure 3, the research data shows that the output power can be increased when a magnetic field is applied. The curve with diamond dots represents the output power without a magnetic field, while the curve with dots represents the output power with a magnetic field of 0.05 Tesla. The improvement in output power can also be observed from the injection current. In Fig. 4, the curve of the applied magnetic field has the same large output power. In other words, the physical process of Figure 2 can actually improve the output power. In accordance with the physical processes presented by the present invention, a plurality of exemplary embodiments can be implemented in accordance with different design requirements. However, the present invention is not limited to the exemplary embodiments. Further combinations of the various exemplary embodiments may be combined to form other exemplary embodiments.

圖5至9繪示依照本發明之多個示範實施例之發光裝置結構之橫切面。請參照圖5,發光結構包括配置於基底252的基本結構264。基本結構可包括例如底部摻雜層254,其中底部摻雜層254可為有機、無機半導體,或是任何適用於發光的摻雜材料。基本結構264可包括例如底部摻雜堆疊層254、活性層256(產生光子)與上部摻雜堆疊層258。於此,底部摻雜堆疊層254或上部摻雜堆疊層258 為不同導電種類。然而根據運作電壓,底部摻雜堆疊層254或上部摻雜堆疊層258可為P型或N型。除此之外,舉例來說,基於電極與摻雜半導體材料的接觸能力相對不足,其例如更可以包括透明導電層(transparent conductive,TCL)260,用以增加電流在上部摻雜堆疊層258的電流擴散效果。另一方面,為了在發光區域270獲得更好的發光輸出,粗糙表面262可形成例如於TCL 260或上部摻雜堆疊層258之上。實際上,粗糙表面262可以根據發光輸出面配置於任何適當表面。分別配置於底部摻雜堆疊層254與上部摻雜堆疊層258。兩電極266與268位於發光結構的同側,而這樣的配置稱為水平式(horizontal-type)發光二極體。5 through 9 illustrate cross-sectional views of a light emitting device structure in accordance with various exemplary embodiments of the present invention. Referring to FIG. 5, the light emitting structure includes a basic structure 264 disposed on the substrate 252. The basic structure can include, for example, a bottom doped layer 254, wherein the bottom doped layer 254 can be an organic, inorganic semiconductor, or any doped material suitable for luminescence. The base structure 264 can include, for example, a bottom doped stacked layer 254, an active layer 256 (which produces photons), and an upper doped stacked layer 258. Here, the bottom doped stacked layer 254 or the upper doped stacked layer 258 For different conductive types. However, depending on the operating voltage, the bottom doped stacked layer 254 or the upper doped stacked layer 258 may be P-type or N-type. In addition, for example, the contact capability of the electrode based on the doped semiconductor material is relatively insufficient, which may further include, for example, a transparent conductive layer (TCL) 260 for increasing the current in the upper doped stacked layer 258. Current spreading effect. On the other hand, to obtain a better light output at the light emitting region 270, the rough surface 262 may be formed, for example, over the TCL 260 or the upper doped stacked layer 258. In fact, the rough surface 262 can be disposed on any suitable surface depending on the light output face. The bottom doped stacked layer 254 and the upper doped stacked layer 258 are respectively disposed. The two electrodes 266 and 268 are located on the same side of the light emitting structure, and such a configuration is referred to as a horizontal-type light emitting diode.

在本發明中,基底252於另一側額外實施磁源層250。根據圖2B所示物理過程,磁源層250用以產生磁場據以將水平部分的電流密度重新分佈於透明導電層(transparent conductive,TCL)260。磁源層250可例如為天然磁鐵,用以提供實質上垂直於發光區域270的磁場,並重新分佈水平部分的電流密度。電極266與268相對應於產生的磁場而設置於對應的位置。磁源層250用以產生預設磁場據以偏移驅動電流,且任何適當的改良設計可據以實施。磁源層250亦可是為另一個基底。更進一步舉例來說,磁源層250可為無須物理接觸的外加結構。換句話說,磁源層250可為用以施加磁場的外部單元,或是為於發光結構裡的整合結構層。In the present invention, the substrate 252 additionally implements the magnetic source layer 250 on the other side. According to the physical process shown in FIG. 2B, the magnetic source layer 250 is used to generate a magnetic field to redistribute the current density of the horizontal portion to a transparent conductive (TCL) 260. The magnetic source layer 250 can be, for example, a natural magnet to provide a magnetic field substantially perpendicular to the illuminating region 270 and redistribute the current density of the horizontal portion. The electrodes 266 and 268 are disposed at corresponding positions corresponding to the generated magnetic field. The magnetic source layer 250 is used to generate a predetermined magnetic field to offset the drive current, and any suitable improved design can be implemented. The magnetic source layer 250 can also be another substrate. Still further by way of example, the magnetic source layer 250 can be an additional structure that does not require physical contact. In other words, the magnetic source layer 250 can be an external unit for applying a magnetic field or an integrated structural layer in the light emitting structure.

根據物理過程的相同觀念,圖5所示的結構可以改善例如圖6所示。請參照圖6,圖5的基底252可以改為反射層272。反射層272可例如為金屬層,或是利用其他方式製作的反射物。更進一步而言,圖7中反射層272可以用例如以絕緣層274取代。基底配合反射層272或是絕緣層274可以是減少厚度的基底。圖5至7所示的多個示範實施例僅用以示範用。本發明不限於上述示範實施例。According to the same concept of the physical process, the structure shown in Fig. 5 can be improved, for example, as shown in Fig. 6. Referring to FIG. 6, the substrate 252 of FIG. 5 may be replaced with a reflective layer 272. The reflective layer 272 can be, for example, a metal layer or a reflective material made by other means. Still further, the reflective layer 272 of FIG. 7 can be replaced with, for example, an insulating layer 274. The substrate-compatible reflective layer 272 or the insulating layer 274 may be a substrate having a reduced thickness. The various exemplary embodiments shown in Figures 5 through 7 are for illustrative purposes only. The invention is not limited to the above exemplary embodiments.

上述示範實施例中,磁源層250實施於底部。然而磁源層250亦可實施於頂部。因為發光結構的上側表面通常不平,於是磁源層可以採用例如封裝方式據以實施。In the above exemplary embodiment, the magnetic source layer 250 is implemented at the bottom. However, the magnetic source layer 250 can also be implemented on the top. Since the upper side surface of the light-emitting structure is generally not flat, the magnetic source layer can then be implemented, for example, by means of a package.

請參照圖8,磁源層284可以利用習知的的銲接凸塊280與282以及透過覆晶(flip chip)封裝製程據以實施。於此,基於發光輸出朝向透光基底252的方向考量,粗糙表面262可以形成於基底252的外表面,且例如金屬層的反射層260’可以實施於基本結構264’,然而此並非用以實施磁源層284的唯一封裝方式。Referring to FIG. 8, the magnetic source layer 284 can be implemented by using conventional solder bumps 280 and 282 and a flip chip packaging process. Here, based on the direction in which the light-emitting output is directed toward the light-transmitting substrate 252, the rough surface 262 may be formed on the outer surface of the substrate 252, and the reflective layer 260' such as a metal layer may be implemented on the basic structure 264', however this is not implemented. The only way to package the magnetic source layer 284.

另一方面,示範例實施方式可例如省略銲接凸塊280與282,且製程電極266與268可採用電鍍或任何適合半導體製程,並使之具有相同高度。因為電極266與268具有相同高度,接著設置磁源層284的方式可例如依附電極。換句話說,磁源層284可以採用任何適當方式形成。On the other hand, exemplary embodiments may, for example, omit solder bumps 280 and 282, and process electrodes 266 and 268 may be plated or of any suitable semiconductor process and have the same height. Since the electrodes 266 and 268 have the same height, the manner in which the magnetic source layer 284 is subsequently disposed may, for example, be attached to the electrodes. In other words, the magnetic source layer 284 can be formed in any suitable manner.

更進一步的示範實施例可參照圖8,圖8所示的結構可為結合磁源層250於圖5所示結構之底部,據以實施兩個磁源層。For further exemplary embodiments, reference may be made to FIG. 8. The structure shown in FIG. 8 may be combined with the magnetic source layer 250 at the bottom of the structure shown in FIG. 5, whereby two magnetic source layers are implemented.

圖9中,另一種實施方式則可視磁源層284為基底。在此情況之下,基本結構264’’如同前述可與磁源層284進行封裝。相似於圖8,反射層260’實施於基本結構264’’中。除此之外,底端摻雜層254具有粗糙表面262。據此,光線可經過粗糙表面262據以獲得較好表現。In Fig. 9, another embodiment is to view the magnetic source layer 284 as a substrate. In this case, the basic structure 264'' can be packaged with the magnetic source layer 284 as described above. Similar to Figure 8, reflective layer 260' is implemented in basic structure 264''. In addition to this, the bottom doped layer 254 has a rough surface 262. Accordingly, light can pass through the rough surface 262 for better performance.

如同前述,上述多個示範實施例僅用以示範用,且全部示範實施例可組合以形成其他示範實施例。As before, the various exemplary embodiments described above are for illustrative purposes only, and all of the exemplary embodiments can be combined to form other exemplary embodiments.

後述將說明設置電極的位置。The position where the electrodes are provided will be described later.

圖10至11繪示依照本發明之多個示範實施例之用以設置電極之發光裝置結構之俯視面。請參照圖10,於發光裝置300設計中,用以連接上部與底部摻雜堆疊層的兩電極302與304可為具有線型圖樣。然而在俯視面中,兩線型圖樣部分交插。在此電極結構下,兩電極302與304並非全然對稱。在一個示範實施例中,介於兩條線型圖樣之兩分支線之間的間隙距離並非如同選擇性常數一樣永遠一致。請參照圖11,在另一設計中電極306與308並非配置於對角線上。這樣電極配置的方式係根據施加磁場而設計。磁場的強度與方向可引起不同效果。詳而言之,在圖11中若是如同圖2A所示而施加磁場,電極306相對應於磁場則並非位於對稱位置。10 through 11 illustrate top views of a structure of a light emitting device for arranging electrodes in accordance with various exemplary embodiments of the present invention. Referring to FIG. 10, in the design of the light emitting device 300, the two electrodes 302 and 304 for connecting the upper and bottom doped stacked layers may have a line pattern. However, in the plan view, the two-line pattern is partially interleaved. Under this electrode structure, the two electrodes 302 and 304 are not completely symmetrical. In an exemplary embodiment, the gap distance between the two branch lines of the two line patterns is not as consistent as the selectivity constant. Referring to Figure 11, in another design, electrodes 306 and 308 are not disposed on a diagonal. The manner in which the electrodes are arranged is designed according to the applied magnetic field. The strength and direction of the magnetic field can cause different effects. In detail, if a magnetic field is applied as shown in FIG. 2A in FIG. 11, the electrode 306 corresponds to the magnetic field and is not in a symmetrical position.

根據圖10與圖11所示的電極配置,則可以完成研究資料。舉例來說,施予位於垂直方向的420毫特斯拉磁場,以及200毫安培的電流。相較於無施加磁場的情況,圖10所示的結構可以增加約12%的輸出功率。圖11中可以增加約5.6%的輸出功率。根據研究資料,根據電極配置的位置,本發明所額外增加磁場可實際增強效能。According to the electrode configuration shown in Figs. 10 and 11, the research data can be completed. For example, a 420 millitesla magnetic field in the vertical direction and a current of 200 milliamps are applied. The structure shown in Fig. 10 can increase the output power by about 12% compared to the case where no magnetic field is applied. An output power of about 5.6% can be increased in FIG. According to the research data, according to the position of the electrode configuration, the additional magnetic field of the present invention can actually enhance the performance.

從運作方法的另一觀點而言,本發明提供一種增加發光裝置之發光效能之方法,其中方法包括施加實質上垂直於發光裝置之發光區域之方向的磁場。根據一個示範實施例,施予磁場的方式可包括整合磁源層於發光裝置,其中磁源層產生磁場。在另一個示範實施例中,磁場可以採用外部施加。From another aspect of the method of operation, the present invention provides a method of increasing the luminous efficacy of a light emitting device, wherein the method includes applying a magnetic field substantially perpendicular to the direction of the light emitting region of the light emitting device. According to an exemplary embodiment, the manner in which the magnetic field is applied may include integrating the magnetic source layer to the light emitting device, wherein the magnetic source layer generates a magnetic field. In another exemplary embodiment, the magnetic field can be applied externally.

雖然本發明已以示範實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可根據上述之示範實施例所教導、揭露或暗示的內容作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described above by way of exemplary embodiments, it is not intended to limit the invention, and it is to be understood by those skilled in the art without departing from the spirit and scope of the invention. The teachings, disclosures, or stipulations of the invention are subject to a few changes and modifications, and the scope of the invention is defined by the scope of the appended claims.

100‧‧‧底部電極100‧‧‧ bottom electrode

102、200‧‧‧發光結構102,200‧‧‧Lighting structure

102a、102c‧‧‧半導體結構層102a, 102c‧‧‧ semiconductor structural layer

102c、256‧‧‧活性層102c, 256‧‧‧ active layer

104‧‧‧頂部電極104‧‧‧Top electrode

106、208‧‧‧磁場106, 208‧‧‧ magnetic field

180、270‧‧‧發光區域180, 270‧‧‧Lighting area

202、204、266、268、302、304、306、308‧‧‧電極202, 204, 266, 268, 302, 304, 306, 308 ‧ ‧ electrodes

206‧‧‧電流206‧‧‧ Current

250、284‧‧‧磁源層250, 284‧‧‧ magnetic source layer

252‧‧‧基底252‧‧‧Base

254‧‧‧底端摻雜層254‧‧‧Bottom doped layer

258‧‧‧上部摻雜堆疊層258‧‧‧Upper doped stack

260、260’‧‧‧透明導電層260, 260' ‧ ‧ transparent conductive layer

262‧‧‧粗糙表面262‧‧‧Rough surface

264、264’、264”‧‧‧基本結構264, 264’, 264” ‧‧‧ basic structure

272‧‧‧反射層272‧‧‧reflective layer

274‧‧‧絕緣層274‧‧‧Insulation

280、282‧‧‧銲接凸塊280, 282‧‧‧ solder bumps

300‧‧‧發光裝置300‧‧‧Lighting device

圖1是依照本發明之一示範實施例之磁性發光二極體結構之橫切面。1 is a cross-sectional view of a structure of a magnetic light emitting diode in accordance with an exemplary embodiment of the present invention.

圖2A與2B是依照本發明之一示範實施例之磁場於發光二極體結構之物理過程之俯視面。2A and 2B are top views of a physical process of a magnetic field in a light emitting diode structure in accordance with an exemplary embodiment of the present invention.

圖3至4是依照本發明之一示範實施例之施予磁場於發光裝置之改善成果。3 through 4 are diagrams showing an improvement in the application of a magnetic field to a light-emitting device in accordance with an exemplary embodiment of the present invention.

圖5至9是依照本發明之多個示範實施例之發光裝置結構之橫切面。5 through 9 are cross-sectional views of a structure of a light emitting device in accordance with various exemplary embodiments of the present invention.

圖10至11是依照本發明之多個示範實施例之用以設置電極之發光裝置結構之俯視面。10 through 11 are top views of a structure of a light emitting device for arranging electrodes in accordance with various exemplary embodiments of the present invention.

250...磁源層250. . . Magnetic source layer

252...基底252. . . Base

254...底端摻雜層254. . . Bottom doped layer

256...活性層256. . . Active layer

258...上部摻雜堆疊層258. . . Upper doped stack

260...透明導電層260. . . Transparent conductive layer

262...粗糙表面262. . . Rough surface

264...基本結構264. . . basic structure

266、268...電極266, 268. . . electrode

270...發光區域270. . . Luminous area

Claims (19)

一種具有磁源的發光裝置,包括:一發光堆疊結構,具有一第一電極、一第二電極、一上部摻雜堆疊層、一底部摻雜堆疊層,與介於該上部摻雜堆疊層與該底部摻雜堆疊層之間的一活性層,其中該第一電極與該第二電極配置於該發光堆疊結構的同側,並用以提供一驅動電流;以及一磁源層,設置在該發光堆疊結構的外部,用以提供一磁場至該發光堆疊結構,該磁場的方向實質上垂直於該上部摻雜堆疊層。 A light emitting device having a magnetic source, comprising: a light emitting stacked structure having a first electrode, a second electrode, an upper doped stacked layer, a bottom doped stacked layer, and the upper doped stacked layer The bottom layer is doped with an active layer between the stacked layers, wherein the first electrode and the second electrode are disposed on the same side of the light emitting stack structure and configured to provide a driving current; and a magnetic source layer is disposed on the light emitting layer The exterior of the stacked structure is configured to provide a magnetic field to the light emitting stack structure, the direction of the magnetic field being substantially perpendicular to the upper doped stacked layer. 如申請專利範圍第1項所述之發光裝置,其中該底部摻雜堆疊層具有N型或P型其中之一導電種類。 The light-emitting device of claim 1, wherein the bottom doped stacked layer has one of an N-type or a P-type conductivity type. 如申請專利範圍第1項所述之發光裝置,更包括一基底,其中該發光堆疊結構配置於該基底的一第一側,該磁源層配置於該基底的一第二側。 The illuminating device of claim 1, further comprising a substrate, wherein the illuminating stack structure is disposed on a first side of the substrate, and the magnetic source layer is disposed on a second side of the substrate. 如申請專利範圍第1項所述之發光裝置,更包括一反射層,其中該發光堆疊結構配置於該反射層的一前側,該磁源層配置於該反射層的一背側。 The illuminating device of claim 1, further comprising a reflective layer, wherein the illuminating stack structure is disposed on a front side of the reflective layer, and the magnetic source layer is disposed on a back side of the reflective layer. 如申請專利範圍第1項所述之發光裝置,其中該發光堆疊結構的該上部摻雜堆疊層之上部包括一透明導電層,用以接觸該第一電極。 The illuminating device of claim 1, wherein the upper portion of the upper doped stacked layer of the luminescent stack structure comprises a transparent conductive layer for contacting the first electrode. 如申請專利範圍第5項所述之發光裝置,其中該透明導電層具有一粗糙表面,用以增加一發光輸出效率。 The illuminating device of claim 5, wherein the transparent conductive layer has a rough surface for increasing a luminous output efficiency. 如申請專利範圍第1項所述之發光裝置,更包括一 絕緣層,其中該絕緣層配置於該磁源層,該發光堆疊結構配置於該絕緣層。 The illuminating device according to claim 1, further comprising a An insulating layer, wherein the insulating layer is disposed on the magnetic source layer, and the light emitting stacked structure is disposed on the insulating layer. 如申請專利範圍第1項所述之發光裝置,更包括一銲接材料層,其中該磁源層與該發光堆疊結構封裝以接觸該第一電極與該第二電極。 The illuminating device of claim 1, further comprising a solder material layer, wherein the magnetic source layer and the luminescent stack structure are packaged to contact the first electrode and the second electrode. 如申請專利範圍第8項所述之發光裝置,更包括一基底,其中該發光堆疊結構配置於該基底。 The illuminating device of claim 8, further comprising a substrate, wherein the illuminating stack structure is disposed on the substrate. 如申請專利範圍第1項所述之發光裝置,其中該第一電極具有一第一線型圖樣,該第二電極具有一第二線型圖樣,部分該第一線型圖樣與部分該第二線型圖樣交插於對應於該磁場之多個區域。 The illuminating device of claim 1, wherein the first electrode has a first line pattern, the second electrode has a second line pattern, and the first line pattern and a portion of the second line pattern The pattern is interleaved in a plurality of regions corresponding to the magnetic field. 如申請專利範圍第10項所述之發光裝置,其中該介於該第一線型圖與該第二線型圖之多個分支線之間的一線間隙不為固定。 The illuminating device of claim 10, wherein the line gap between the first line pattern and the plurality of branch lines of the second line pattern is not fixed. 如申請專利範圍第1項所述之發光裝置,其中該第一電極與該第二電極包括點狀區域。 The illuminating device of claim 1, wherein the first electrode and the second electrode comprise a dot-like region. 如申請專利範圍第1項所述之發光裝置,其中該磁源層為具有一磁力作用的一磁化材料層,該磁力作用實質上垂直於該上部摻雜堆疊層。 The illuminating device of claim 1, wherein the magnetic source layer is a layer of magnetized material having a magnetic force, the magnetic force acting substantially perpendicular to the upper doped stacked layer. 如申請專利範圍第1項所述之發光裝置,其中該磁源層不直接物理接觸至該發光堆疊結構。 The illuminating device of claim 1, wherein the magnetic source layer is not in direct physical contact with the luminescent stack structure. 一種具有磁源的發光裝置,包括:一發光堆疊結構,具有分佈於該發光堆疊結構之一發光輸出側的一第一電極與一第二電極;以及 一磁源層,接合於該發光堆疊結構,用以提供一磁場至該發光堆疊結構,其中該磁場的方向實質上垂直於該發光堆疊結構,其中該磁源層為一外部磁源。 A light-emitting device having a magnetic source, comprising: a light-emitting stack structure having a first electrode and a second electrode distributed on one of the light-emitting output sides of the light-emitting stack structure; A magnetic source layer is coupled to the light emitting stack to provide a magnetic field to the light emitting stack, wherein the direction of the magnetic field is substantially perpendicular to the light emitting stack, wherein the magnetic source layer is an external magnetic source. 如申請專利範圍第15項所述之發光裝置,其中該磁源層與該發光堆疊結構封裝。 The illuminating device of claim 15, wherein the magnetic source layer is encapsulated with the luminescent stack structure. 如申請專利範圍第15項所述之發光裝置,其中該磁源層為一承載基底。 The illuminating device of claim 15, wherein the magnetic source layer is a carrier substrate. 如申請專利範圍第15項所述之發光裝置,其中該磁源層堆疊於該發光堆疊結構一側。 The illuminating device of claim 15, wherein the magnetic source layer is stacked on one side of the illuminating stack structure. 如申請專利範圍第15項所述之發光裝置,其中該第一電極與該第二電極設置於對應於該磁場之多個區域,藉以於一發光區域橫向偏移一驅動電流。 The illuminating device of claim 15, wherein the first electrode and the second electrode are disposed in a plurality of regions corresponding to the magnetic field, whereby a driving region is laterally offset by a driving current.
TW98121422A 2008-06-25 2009-06-25 Light-emitting device with magnetic field TWI393280B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/146,418 US7767996B2 (en) 2008-01-11 2008-06-25 Light-emitting device with magnetic field

Publications (2)

Publication Number Publication Date
TW201004004A TW201004004A (en) 2010-01-16
TWI393280B true TWI393280B (en) 2013-04-11

Family

ID=44838164

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98121422A TWI393280B (en) 2008-06-25 2009-06-25 Light-emitting device with magnetic field

Country Status (1)

Country Link
TW (1) TWI393280B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201103161A (en) * 2009-07-01 2011-01-16 Long-Jian Chen Spin-injection gallium-nitride LED and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874749A (en) * 1993-06-29 1999-02-23 The United States Of America As Represented By The Secretary Of The Navy Polarized optical emission due to decay or recombination of spin-polarized injected carriers
TW449949B (en) * 1998-09-10 2001-08-11 Rohm Co Ltd Light emitting semiconductor element and method for manufacturing the same
TW200711177A (en) * 2005-07-21 2007-03-16 Cree Inc Roughened high refractive index layer/LED for high light extraction
TWM323689U (en) * 2007-05-11 2007-12-11 Arima Optoelectronics Corp Bump-patterned structure on crystal-growing surface of nitride-system light-emitting element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874749A (en) * 1993-06-29 1999-02-23 The United States Of America As Represented By The Secretary Of The Navy Polarized optical emission due to decay or recombination of spin-polarized injected carriers
TW449949B (en) * 1998-09-10 2001-08-11 Rohm Co Ltd Light emitting semiconductor element and method for manufacturing the same
TW200711177A (en) * 2005-07-21 2007-03-16 Cree Inc Roughened high refractive index layer/LED for high light extraction
TWM323689U (en) * 2007-05-11 2007-12-11 Arima Optoelectronics Corp Bump-patterned structure on crystal-growing surface of nitride-system light-emitting element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
施敏原著,黃調元譯,半導體元件物理與製作技術(第二版)/Semiconductor devices, Physics and Technology (2nd Edition), 國立交通大學出版社, 2003/9 *

Also Published As

Publication number Publication date
TW201004004A (en) 2010-01-16

Similar Documents

Publication Publication Date Title
US7767996B2 (en) Light-emitting device with magnetic field
JP5799124B2 (en) AC drive type light emitting diode
JP5706614B2 (en) AC drive type light emitting device
TWI540766B (en) Light emitting diode package structure
JP5571946B2 (en) Light emitting device package
JP5318163B2 (en) Light emitting device
KR100788265B1 (en) Light emitting diode package having a plurality of vertical light emitting device
TWI502771B (en) Semiconductor light emitting device
WO2010003386A2 (en) Light-emitting device and packaging structure thereof
JP2011249411A (en) Semiconductor light-emitting element, light-emitting device, illumination device, display device, signal light unit and road information device
JP4904628B2 (en) Composite light emitting device
US7858991B2 (en) Light emitting device with magnetic field
US20100127635A1 (en) Optoelectronic device
US20070200119A1 (en) Flip-chip led package and led chip
JP5266349B2 (en) Light emitting device
TWI393280B (en) Light-emitting device with magnetic field
KR20130007213A (en) The light emitting device
TWI573296B (en) Flip chip light emitting diode packaging
TWM458670U (en) Packing structure of optoelectronic integrated LED array
TWI478374B (en) Light emitting device
TWI393268B (en) Light emitting device
KR100956106B1 (en) Transparent display apparatus using chip level light emitting diode package
KR100661914B1 (en) Disposition structure of bonding pad in light-emitting diode
JP2007227675A (en) Light source apparatus
KR101104763B1 (en) The light emitting device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees