US20130302860A1 - Coryneform Bacterium Transformant and Process for Producing Aniline Using The Same - Google Patents

Coryneform Bacterium Transformant and Process for Producing Aniline Using The Same Download PDF

Info

Publication number
US20130302860A1
US20130302860A1 US13/997,107 US201113997107A US2013302860A1 US 20130302860 A1 US20130302860 A1 US 20130302860A1 US 201113997107 A US201113997107 A US 201113997107A US 2013302860 A1 US2013302860 A1 US 2013302860A1
Authority
US
United States
Prior art keywords
gene
aniline
dna
seq
dec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/997,107
Other languages
English (en)
Inventor
Hideaki Yukawa
Masayuki Inui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Sumitomo Rubber Industries Ltd
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd, Research Institute of Innovative Technology for the Earth RITE filed Critical Sumitomo Rubber Industries Ltd
Assigned to RESEARCH INSTITUTE OF INNOVATIVE TECHNOLOGY FOR THE EARTH, SUMITOMO RUBBER INDUSTRIES, LTD. reassignment RESEARCH INSTITUTE OF INNOVATIVE TECHNOLOGY FOR THE EARTH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INUI, MASAYUKI, YUKAWA, HIDEAKI
Publication of US20130302860A1 publication Critical patent/US20130302860A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01024Aminobenzoate decarboxylase (4.1.1.24)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a technique for producing aniline.
  • the present invention relates to a coryneform bacterium transformant constructed by specific gene recombination and thereby provided with an aniline-producing function, and relates to an efficient aniline-producing process using the transformant.
  • Aniline is widely used as raw materials for various products including chemical products, such as dyes and rubber product materials (a vulcanization accelerator and an antioxidant for tires, etc.); functional materials, such as and textiles and conductive polymers; agricultural chemicals; medicinal drugs; or the like.
  • chemical products such as dyes and rubber product materials (a vulcanization accelerator and an antioxidant for tires, etc.); functional materials, such as and textiles and conductive polymers; agricultural chemicals; medicinal drugs; or the like.
  • aniline is chemically produced from crude oil as a raw material.
  • Chemical processes for producing aniline include a process in which nitrobenzen is reduced with the use of tin or iron and hydrochloric acid; a process in which nitrobenzen is reduced by hydrogen addition with the use of a metal catalyst, such as copper or nickel; and a process called ammonolysis, in which chlorobenzene and ammonia are made to react at high temperature and pressure.
  • a metal catalyst such as copper or nickel
  • ammonolysis in which chlorobenzene and ammonia are made to react at high temperature and pressure.
  • Non Patent Literature 1 discloses that a slight amount of aniline is produced by culturing Mycobacterium smegmatis , washing the cells, and then adding 4-aminobenzoic acid. However, the process of Non Patent Literature 1 does not show practically sufficient aniline productivity. Non Patent Literature 1 does not mention any enzyme involved in aniline production from 4-aminobenzoic acid, let alone its activity or related gene.
  • Non Patent Literature 2 discloses that a slight amount of aniline is produced by adding anthranilic acid (2-aminobenzoic acid) or 4-aminobenzoic acid to washed cells of virulent Escherichia coli O111 or an extract from the cells. However, the process of Non Patent Literature 2 does not have practically sufficient aniline productivity. Non Patent Literature 2 does not mention any enzyme involved in aniline production from 4-aminobenzoic acid, let alone its activity or related gene.
  • Patent Literature 1 discloses a technology in which Streptomyces griseus is cultured in TSB culture medium (Trypticase Soy Broth) supplemented with glucose (raw material for aniline) under aerobic conditions for 4 to 5 days for aniline production.
  • TSB culture medium Terypticase Soy Broth
  • glucose raw material for aniline
  • Patent Literature 1 does not specifically show the amount of produced aniline or the productivity. Therefore, the practicality of the method of Patent Literature 1 is unknown.
  • An object of the present invention is to provide a microorganism capable of efficiently producing aniline from aminobenzoic acid, and a process for efficiently producing aniline from aminobenzoic acid.
  • the present inventors have wholeheartedly carried out investigations in order to achieve the object described above and obtained the findings that a transformant constructed by introducing an aminobenzoate decarboxylase gene into a coryneform bacterium can efficiently produce aniline from aminobenzoic acid and that the transformant has a particularly higher aniline productivity when growth is substantially inhibited in a reaction mixture under reducing conditions.
  • the present invention which has been completed based on the above-mentioned findings, provides the following transformant and process for producing aniline.
  • the transformant of the above [1], wherein the gene which encodes an enzyme having aminobenzoate decarboxylase activity is a gene derived from Bacillus subtilis , a gene derived from Lactobacillus rhamnosus , a gene derived from Lactobacillus brevis , a gene derived from Pseudomonas putida , a gene derived from Escherichia coli , a gene derived from Saccharomyces cerevisiae , or a gene derived from Enterobacter cloacae.
  • the transformant of the above [1], wherein the gene which encodes an enzyme having aminobenzoate decarboxylase activity is the DNA of the following (a) or (b).
  • (b) a DNA which hybridizes to a DNA consisting of a complementary base sequence of any of the DNAs of (a) under stringent conditions and which encodes a polypeptide having aminobenzoate decarboxylase activity [4] The transformant of any one of the above [1] to [3], wherein the coryneform bacterium as the host is Corynebacterium glutamicum.
  • Corynebacterium glutamicum ANI-1 accesion Number: NITE BP-1001
  • a process for producing aniline which comprises a step of allowing the transformant of any one of the above [1] to [6] to react in a reaction mixture containing aminobenzoic acid, an ester thereof, and/or a salt thereof under reducing conditions, and a step of recovering aniline from the reaction mixture.
  • aniline can be efficiently produced from aminobenzoic acid, a salt thereof, and/or an ester thereof.
  • aniline production with the use of microorganisms can be achieved with a practically sufficient efficiency.
  • FIG. 1 shows the constructs of plasmids used in Examples.
  • the transformant of the present invention capable of producing aniline is a transformant constructed by introducing a gene which encodes an enzyme having aminobenzoate decarboxylase activity into a coryneform bacterium as a host.
  • coryneform bacterium is a group of microorganisms defined in Bergey's Manual of Determinative Bacteriology, Vol. 8, 599 (1974), and is not particularly limited as long as it grows under normal aerobic conditions.
  • Corynebacterium is preferred.
  • Corynebacterium examples include Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium ammoniagenes, Corynebacterium halotolerance , and Corynebacterium alkanolyticum.
  • Corynebacterium glutamicum is preferred for safety and high aniline production.
  • Examples of preferred strains include Corynebacterium glutamicum R (FERM P-18976), ATCC13032, ATCC13869, ATCC13058, ATCC13059, ATCC13060, ATCC13232, ATCC13286, ATCC13287, ATCC13655, ATCC13745, ATCC13746, ATCC13761, ATCC14020, ATCC31831, MJ-233 (FERM BP-1497), and MJ-233AB-41 (FERM BP-1498).
  • strains R (FERM P-18976), ATCC13032, and ATCC13869 are preferred.
  • coryneform bacteria such as Brevibacterium flavum, Brevibacterium lactofermentum, Brevibacterium divaricatum , and Corynebacterium lilium are standardized to Corynebacterium glutamicum (Liebl, W. et al., Transfer of Brevibacterium divaricatum DSM 20297T, “ Brevibacterium flavum ” DSM 20411, “ Brevibacterium lactofermentum ” DSM 20412 and DSM 1412, and Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns. Int. J. Syst. Bacteriol. 41: 255-260. (1991); and Kazuo Komagata et al., “Classification of the coryneform group of bacteria”, Fermentation and industry, 45: 944-963 (1987)).
  • Brevibacterium lactofermentum ATCC13869, Brevibacterium flavum MJ-233 (FERM BP-1497) and MJ-233AB-41 (FERM BP-1498), etc. of the old classification are also suitable as Corynebacterium glutamicum.
  • Brevibacterium examples include Brevibacterium ammoniagenes (for example, ATCC6872).
  • Arthrobacter examples include Arthrobacter globiformis (for example, ATCC8010, ATCC4336, ATCC21056, ATCC31250, ATCC31738 and ATCC35698).
  • Mycobacterium examples include Mycobacterium bovis (for example, ATCC19210 and ATCC27289).
  • Micrococcus examples include Micrococcus freudenreichii (for example, NO. 239 (FERM P-13221)), Micrococcus leuteus (for example, NO. 240 (FERM P-13222)), Micrococcus ureae (for example, IAM1010), and Micrococcus roseus (for example, IFO3764).
  • Micrococcus freudenreichii for example, NO. 239 (FERM P-13221)
  • Micrococcus leuteus for example, NO. 240 (FERM P-13222)
  • Micrococcus ureae for example, IAM1010
  • Micrococcus roseus for example, IFO3764.
  • the coryneform bacteria may be, let alone a wild strain, a mutant thereof or an artificial recombinant thereof.
  • Examples thereof include disruptants in which a gene of lactate dehydrogenase, phosphoenolpyruvate carboxylase, or malate dehydrogenase is disrupted. Using such a disruptant as a host can improve aniline productivity and reduce production of by-products.
  • a disruptant in which a lactate dehydrogenase gene is disrupted.
  • the lactate dehydrogenase gene is disrupted and the metabolic pathway from pyruvic acid to lactic acid is blocked.
  • a disruptant of Corynebacterium glutamicum R (FERM P-18976) strain in which the lactate dehydrogenase gene is disrupted.
  • Such a disruptant can be prepared based on a conventional gene engineering process.
  • Such a lactate dehydrogenase disruptant and the preparation process thereof are described in WO 2005/010182 A1.
  • coryneform bacteria are more resistant to solvents, such as aniline. Further, compared with other aerobic bacteria, coryneform bacteria more efficiently produce substances under reducing conditions where growth is substantially inhibited. In these respects, coryneform bacteria are suitable for the aniline production by the method of the present invention.
  • Aminobenzoate decarboxylase is an enzyme that catalyzes a reaction in which aniline is produced by elimination of carbonic acid from aminobenzoic acid and the reverse reaction.
  • the gene which encodes an enzyme having aminobenzoate decarboxylase activity may be of any origin without particular limitation, and preferred examples thereof include a gene derived from Bacillus subtilis , a gene derived from Lactobacillus rhamnosus , a gene derived from Lactobacillus brevis , a gene derived from Pseudomonas putida , a gene derived from Escherichia coli , a gene derived from Saccharomyces cerevisiae , and a gene derived from Enterobacter cloacae .
  • a gene derived from Bacillus subtilis and a gene derived from Enterobacter cloacae are preferred.
  • the substrate is anthranilic acid (2-aminobenzoic acid)
  • preferred is a gene derived from Bacillus subtilis
  • preferred is a gene derived from Enterobacter cloacae.
  • Examples of the gene derived from Bacillus subtilis include the DNA consisting of the base sequence of SEQ ID NO: 16
  • examples of the gene derived from Lactobacillus rhamnosus include the DNA consisting of the base sequence of SEQ ID NO: 19
  • examples of the gene derived from Lactobacillus brevis include the DNA consisting of the base sequence of SEQ ID NO: 22
  • examples of the gene derived from Pseudomonas putida include the DNA consisting of the base sequence of SEQ ID NO: 25
  • examples of the gene derived from Escherichia coli include the DNA consisting of the base sequence of SEQ ID NO: 28
  • examples of the gene derived from Saccharomyces cerevisiae include the DNA consisting of the base sequence of SEQ ID NO: 31, and examples of the gene derived from Enterobacter cloacae include the DNA consisting of the base sequence of SEQ ID NO: 34.
  • a DNA which hybridizes to a DNA consisting of a complementary base sequence of the base sequence of SEQ ID NO: 16, 19, 22, 25, 28, 31, or 34 under stringent conditions and which encodes a polypeptide having aminobenzoate decarboxylase activity can also be used.
  • stringent conditions means general conditions, for example, the conditions described in Molecular Cloning, ALaboratory Manual, Second edition, 1989, Vol. 2, p. 11. 45. It means, in particular, conditions where hybridization occurs at a temperature 5 to 10° C. below the melting temperature (Tm) of a perfect hybrid.
  • the aminobenzoate decarboxylase activity can be measured by a modified method of the method described in J. Am. Chem. Soc., 79, 628-630 (1957). Briefly, a coryneform bacterium is cultured in a nutrient medium at 33° C. for 18 hours, washed with minimal medium twice, and resuspended in minimal medium to prepare intact cells. Subsequently, for the reaction, HEPES (pH 7.0) as a buffer solution is added to the intact cells so that the concentration is 25 mM, and anthranilic acid or 4-amino benzoate as a substrate is added so that the final concentration is 5 mM. After shaking at 200 rpm at 33° C.
  • the reaction mixture was centrifuged to separate bacterial cells and supernatant.
  • the supernatant is filtered through a 0.22- ⁇ m filter, and the filtrate is used as a sample.
  • the produced aniline can be quantified by GC/MS or HPLC.
  • a DNA consisting of a base sequence which has 90% or more, preferably 95% or more, more preferably 98% or more homology with the base sequence of SEQ ID NO: 16, 19, 22, 25, 28, 31, or 34 and which encodes a polypeptide having aminobenzoate decarboxylase activity can also be used.
  • the base sequence homology was calculated using GENETYX Ver. 8 (made by Genetyx).
  • the homologue of the DNA consisting of the base sequence of SEQ ID NO: 16, 19, 22, 25, 28, 31, or 34 can be selected from a DNA library of a different species by, for example, PCR or hybridization using a primer or a probe designed based on these base sequences, according to a conventional method, and as a result, a DNA which encodes a polypeptide having aminobenzoate decarboxylase activity can be obtained with a high probability.
  • the DNA which encodes aminobenzoate decarboxylase is amplified by PCR and then cloned into a suitable vector which is replicable in a host.
  • the plasmid vector may be any plasmid vector as long as it comprises a gene responsible for autonomously replicating function in a coryneform bacterium.
  • Specific examples of the plasmid vector include pAM330 derived from Brevibacterium lactofermentum 2256 (JP 58-67699 A; Miwa, K. et al., Cryptic plasmids in glutamic acid-producing bacteria. Agric. Biol. Chem. 48:2901-2903 (1984); and Yamaguchi, R. et al., Determination of the complete nucleotide sequence of the Brevibacterium lactofermentum plasmid pAM330 and the analysis of its genetic information. Nucleic Acids Symp. Ser.
  • pHM1519 derived from Corynebacterium glutamicum ATCC13058 (Miwa, K. et al., Cryptic plasmids in glutamic acid-producing bacteria. Agric. Biol. Chem. 48:2901-2903 (1984)) and pCRY30 derived from the same (Kurusu, Y. et al., Identification of plasmid partition function in coryneform bacteria. Appl. Environ. Microbiol. 57:759-764 (1991)); pCG4 derived from Corynebacterium glutamicum T250 (JP 57-183799 A; and Katsumata, R.
  • promoter PgapA as a promoter of the glyceraldehyde-3-phosphate dehydrogenase A gene (gapA)
  • promoter Pmdh as a promoter of the malate dehydrogenase gene (mdh)
  • promoter PldhA as a promoter of lactate dehydrogenase A gene (ldhA), all of which are derived from Corynebacterium glutamicum R, and inter alia, PgapA is preferred.
  • Examples of a preferred terminator include terminator rrnB T1T2 of Escherichia coli rRNA operon, terminator trpA of Escherichia coli , and terminator trp of Brevibacterium lactofermentum , and inter alia, terminator rrnB T1T2 is preferred.
  • any publicly known method can be used without limitation.
  • Examples of such a known method include the calcium chloride/rubidium chloride method, the calcium phosphate method, DEAE-dextran transfection, and electroporation.
  • electroporation preferred for a coryneform bacterium is electroporation, which can be performed by a known method (Kurusu, Y. et al., Electroporation-transformation system for Coryneform bacteria by auxotrophic complementation., Agric. Biol. Chem. 54:443-447 (1990); and Vertes A. A. et al., Presence of mrr- and mcr-like restriction systems in Coryneform bacteria. Res. Microbial. 144:181-185 (1993)).
  • the transformant is cultured using a culture medium usually used for culture of microorganisms.
  • the culture medium may be a natural or synthetic medium containing a carbon source, a nitrogen source, inorganic salts, other nutritional substances, etc.
  • Examples of the carbon source include carbohydrates and sugar alcohols such as glucose, fructose, sucrose, mannose, maltose, mannitol, xylose, arabinose, galactose, starch, molasses, sorbitol and glycerol; organic acids such as acetic acid, citric acid, lactic acid, fumaric acid, maleic acid and gluconic acid; and alcohols such as ethanol and propanol. Hydrocarbons, such as normal paraffin, etc. may also be used as desired. These carbon sources may be used alone or as a mixture of two or more thereof. The concentration of these carbon sources in the culture medium is usually about 0.1 to 10 w/v %.
  • the nitrogen source examples include inorganic or organic ammonium compounds, such as ammonium chloride, ammonium sulfate, ammonium nitrate, and ammonium acetate; urea; aqueous ammonia; sodium nitrate; and potassium nitrate.
  • Nitrogen-containing organic compounds such as corn steep liquor, meat extract, peptone, N—Z-amine, protein hydrolysate, amino acid, etc. may also be used. These nitrogen sources may be used alone or as a mixture of two or more thereof. The concentration of these nitrogen sources in the culture medium varies depending on the kind of the nitrogen compound, but is usually about 0.1 to 10 w/v %.
  • the inorganic salts include potassium dihydrogen phosphate, dipotassium hydrogenphosphate, magnesium sulfate, sodium chloride, iron(II) nitrate, manganese sulfate, zinc sulfate, cobalt sulfate, and calcium carbonate. These inorganic salts may be used alone or as a mixture of two or more thereof.
  • the concentration of the inorganic salts in the culture medium varies depending on the kind of the inorganic salts, but is usually about 0.01 to 1 w/v %.
  • the nutritional substances include meat extract, peptone, polypeptone, yeast extract, dry yeast, corn steep liquor, skim milk powder, defatted soybean hydrochloric acid hydrolysate, and extract from animals, plants or microorganisms, and degradation products thereof.
  • concentration of the nutritional substances in the culture medium varies depending on the kind of the nutritional substances, but is usually about 0.1 to 10 w/v %.
  • vitamins may be added as needed. Examples of the vitamins include biotin, thiamine (vitamin B1), pyridoxine (vitamin B6), pantothenic acid, inositol, nicotinic acid, etc.
  • the pH of the culture medium is preferably about 5 to 8.
  • Examples of the preferable microbial culture medium include A medium (Inui, M. et al., Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J. Mol. Microbiol. Biotechnol. 7:182-196 (2004)), BT medium (Omumasaba, C. A. et al., Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation. J. Mol. Microbiol. Biotechnol. 8:91-103 (2004)), etc.
  • the culture temperature is about 15 to 45° C., and the culture period is about 1 to 7 days.
  • Aniline can be produced by a process comprising a step of allowing the above-described transformant of the present invention to react in a reaction mixture containing aminobenzoic acid, a salt thereof, and/or an ester thereof, and a step of recovering aniline from the reaction mixture.
  • the transformant is preferably cultured and grown under aerobic conditions at about 25 to 35° C. for about 12 to 48 hours.
  • the culture medium used for aerobic culture of the transformant before the reaction may be a natural or synthetic medium containing a carbon source, a nitrogen source, inorganic salts, other nutritional substances, etc.
  • Examples of the carbon source that can be used include sugars (monosaccharides such as glucose, fructose, mannose, xylose, arabinose, and galactose; disaccharides such as sucrose, maltose, lactose, cellobiose, xylobiose, and trehalose; polysaccharides such as starch; and molasses); sugar alcohols such as mannitol, sorbitol, xylitol, and glycerol; organic acids such as acetic acid, citric acid, lactic acid, fumaric acid, maleic acid and gluconic acid; alcohols such as ethanol and propanol; and hydrocarbons such as normal paraffin.
  • sugars monosaccharides such as glucose, fructose, mannose, xylose, arabinose, and galactose
  • disaccharides such as sucrose, maltose, lactose, cellobiose, xy
  • These carbon sources may be used alone or as a mixture of two or more thereof.
  • nitrogen source examples include inorganic or organic ammonium compounds, such as ammonium chloride, ammonium sulfate, ammonium nitrate, and ammonium acetate; urea; aqueous ammonia; sodium nitrate; and potassium nitrate.
  • Nitrogen-containing organic compounds such as corn steep liquor, meat extract, peptone, N—Z-amine, protein hydrolysate, amino acid, etc. may also be used. These nitrogen sources may be used alone or as a mixture of two or more thereof. The concentration of these nitrogen sources in the culture medium varies depending on the kind of the nitrogen compound, but is usually about 0.1 to 10 w/v %.
  • the inorganic salts include potassium dihydrogen phosphate, dipotassium hydrogenphosphate, magnesium sulfate, sodium chloride, iron(II) nitrate, manganese sulfate, zinc sulfate, cobalt sulfate, and calcium carbonate. These inorganic salts may be used alone or as a mixture of two or more thereof.
  • the concentration of the inorganic salts in the culture medium varies depending on the kind of the inorganic salts, but is usually about 0.01 to 1 w/v %.
  • the nutritional substances include meat extract, peptone, polypeptone, yeast extract, dry yeast, corn steep liquor, skim milk powder, defatted soybean hydrochloric acid hydrolysate, and extract from animals, plants or microorganisms, and degradation products thereof.
  • concentration of the nutritional substances in the culture medium varies depending on the kind of the nutritional substances, but is usually about 0.1 to 10 w/v %.
  • vitamins may be added as needed.
  • examples of the vitamins include biotin, thiamine (vitamin B1), pyridoxine (vitamin B6), pantothenic acid, inositol, nicotinic acid, etc.
  • the pH of the culture medium is preferably about 6 to 8.
  • the preferable culture medium for coryneform bacteria include A medium (Inui, M. et al., Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J. Mol. Microbiol. Biotechnol. 7:182-196 (2004)), BT medium (Omumasaba, C. A. et al., Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation. J. Mol. Microbiol. Biotechnol. 8:91-103 (2004)), etc.
  • Such a culture medium can be used after prepared so as to contain a sugar at a concentration in the above-mentioned range.
  • reaction mixture water, a buffer solution, an inorganic salt medium, or the like, containing an aniline precursor (raw material for aniline) can be used.
  • aminobenzoic acid As the precursor, aminobenzoic acid, a salt thereof, and/or an ester thereof may be used.
  • aminobenzoic acid 2-aminobenzoic acid (o-aminobenzoic acid; anthranilic acid), 3-aminobenzoic acid (m-aminobenzoic acid), and 4-aminobenzoic acid (p-aminobenzoic acid) are all usable.
  • 2-aminobenzoic acid and 4-aminobenzoic acid because they are soluble in water and thus easy to use for the reaction.
  • Examples of the salt include a sodium salt, a potassium salt, and a hydrochloride.
  • Examples of the ester include esters with alcohols having 1 to 4 carbon atoms.
  • Salts are preferred because they are highly soluble in the reaction mixture. These precursors may be used alone or a mixture of two or more kinds.
  • the concentration of aminobenzoic acid, a salt thereof, and/or an ester thereof in the reaction mixture is preferably about 0.1 to 10 w/v %, more preferably about 0.5 to 7 w/v %, and still more preferably about 0.5 to 5 w/v %.
  • concentration is in the above range, aniline can be efficiently produced.
  • the buffer solution examples include a phosphate buffer, a Tris buffer, a carbonate buffer, etc.
  • concentration of the buffer solution is preferably about 10 to 150 mM.
  • the inorganic salt medium examples include a medium containing one or more kinds of inorganic salts including potassium dihydrogen phosphate, dipotassium hydrogenphosphate, magnesium sulfate, sodium chloride, iron(II) nitrate, manganese sulfate, zinc sulfate, cobalt sulfate, and calcium carbonate. Inter alia, preferred is a medium containing magnesium sulfate.
  • Specific example of the inorganic salt medium include BT medium (Omumasaba, C. A. et al., Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation. J. Mol. Microbiol. Biotechnol. 8:91-103 (2004)) etc.
  • the concentration of the inorganic salts in the culture medium varies depending on the kind of the inorganic salts, but is usually about 0.01 to 1 w/v %.
  • the pH of the reaction mixture is preferably about 6 to 8.
  • the pH of the reaction mixture is preferably kept nearly neutral, in particular at around 7 with the use of aqueous ammonia, aqueous sodium hydroxide, or the like, under the control of a pH controller (for example, Type: DT-1023 made by Able).
  • a pH controller for example, Type: DT-1023 made by Able.
  • the reaction temperature that is, the temperature for keeping the transformant alive during the reaction is preferably about 20 to 40° C., and more preferably about 25 to 35° C. When the temperature is in the above range, aniline can be efficiently produced.
  • the reaction period is preferably about 1 to 7 days, and more preferably about 1 to 3 days.
  • the culture may be a batch process, a fed-batch process, or a continuous process. Inter alia, a batch process is preferred.
  • the reaction may be performed under aerobic conditions or reducing conditions, but preferably is performed under reducing conditions. Under reducing conditions, coryneform bacteria do not substantially grow and can further efficiently produce aniline.
  • the “reducing conditions” is defined based on the oxidation-reduction potential of the reaction mixture.
  • the oxidation-reduction potential of the reaction mixture is preferably about ⁇ 200 mV to ⁇ 500 mV, and more preferably about ⁇ 250 mV to ⁇ 500 mV.
  • the reducing conditions of the reaction mixture can be simply estimated with the use of resazurin indicator (in reducing conditions, decolorization from blue to colorless is observed).
  • a redox-potential meter for example, ORP Electrodes made by BROADLEY JAMES is used.
  • any publicly known method can be used without limitation.
  • a liquid medium for preparation of the reaction mixture an aqueous solution for a reaction mixture may be used instead of distillated water or the like.
  • the method for preparing a culture medium for strictly anaerobic microorganisms such as sulfate-reducing microorganisms (Pfennig, N. et al.: The dissimilatory sulfate-reducing bacteria, In The Prokaryotes, A Handbook on Habitats, Isolation and Identification of Bacteria, Ed. by Starr, M. P. et al.
  • distillated water or the like by treating distillated water or the like with heat or under reduced pressure for removal of dissolved gases, an aqueous solution for a reaction mixture under reducing conditions can be obtained.
  • distillated water or the like may be treated under reduced pressure of about 10 mmHg or less, preferably about 5 mmHg or less, more preferably about 3 mmHg or less, for about 1 to 60 minutes, preferably for about 5 to 40 minutes.
  • a suitable reducing agent for example, thioglycolic acid, ascorbic acid, cysteine hydrochloride, mercaptoacetic acid, thiol acetic acid, glutathione, sodium sulfide, etc.
  • a suitable reducing agent for example, thioglycolic acid, ascorbic acid, cysteine hydrochloride, mercaptoacetic acid, thiol acetic acid, glutathione, sodium sulfide, etc.
  • the method employed for this purpose include a method comprising encapsulating the reaction system with inert gas, such as nitrogen gas, carbon dioxide gas, etc.
  • inert gas such as nitrogen gas, carbon dioxide gas, etc.
  • addition of a solution of various nutrients or a reagent solution for adjusting and maintaining the pH of the reaction system may be needed. In such a case, for more effective prevention of oxygen incorporation, it is effective to remove oxygen in the solutions to be added, in advance.
  • aniline is produced in the reaction mixture.
  • Aniline can be recovered by collecting the reaction mixture, and it is also feasible to isolate aniline from the reaction mixture by a known method. Examples of such a known method include distillation, the membrane permeation method, and the organic solvent extraction method.
  • chromosomal DNA was recovered from the collected cells with the use of a DNA extraction kit (trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham) according to the instruction manual.
  • a DNA extraction kit (trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham) according to the instruction manual.
  • chromosomal DNA was recovered from the collected cells with the use of a DNA extraction kit (trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham) according to the instruction manual.
  • a DNA extraction kit (trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham) according to the instruction manual.
  • chromosomal DNA was recovered from the collected cells with the use of a DNA extraction kit (trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham) according to the instruction manual.
  • a DNA extraction kit (trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham) according to the instruction manual.
  • chromosomal DNA was recovered from the collected cells with the use of a DNA extraction kit (trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham) according to the instruction manual.
  • a DNA extraction kit (trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham) according to the instruction manual.
  • chromosomal DNA was recovered from the collected cells with the use of a DNA extraction kit (trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham) according to the instruction manual.
  • a DNA extraction kit (trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham) according to the instruction manual.
  • NBRC10217 To extract chromosomal DNA from Saccharomyces cerevisiae NBRC10217, the bacterium was inoculated into NBRC Medium No. 108 (10 g of glucose, 5 g of polypeptone, 3 g of yeast extract, and 3 g of malt extract were dissolved in 1 L of distilled water) with the use of a platinum loop, and cultured with shaking at 24° C. until the logarithmic growth phase. After bacterial cells were collected, chromosomal DNA was recovered from the collected cells with the use of a DNA extraction kit (trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham) according to the instruction manual.
  • a DNA extraction kit trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham
  • telomeres were inoculated into NBRC Medium No. 802 (10 g of polypeptone, 2 g of yeast extract, and 1 g of MgSO 4 .7H 2 O were dissolved in 1 L of distilled water) with the use of a platinum loop, and cultured with shaking at 37° C. until the logarithmic growth phase. After the bacterial cells were collected, chromosomal DNA was recovered from the collected cells with the use of a DNA extraction kit (trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham) according to the instruction manual.
  • a DNA extraction kit trade name: GenomicPrep Cells and Tissue DNA Isolation Kit, made by Amersham
  • a DNA fragment comprising a DNA replication origin sequence of pCASE1, a plasmid derived from Corynebacterium casei JCM12072 (hereinafter abbreviated as pCASE1-ori) and a DNA fragment comprising a cloning vector pHSG298 (made by Takara Bio, Inc.) were amplified by the following PCR method.
  • Primers (a-1) and (b-1) each have a BglII restriction enzyme site added thereto.
  • Primers (a-2) and (b-2) each have a BglII restriction enzyme site added thereto.
  • TaKaRa LA Taq TM (5 units/ ⁇ L) 0.5 ⁇ L 10X LA PCR TM Buffer II 5 ⁇ L (Mg 2+ free) 25 mM MgCl 2 5 ⁇ L dNTP Mixture (2.5 mM each) 8 ⁇ L Template DNA 5 ⁇ L (DNA content: 1 ⁇ g or less) The above 2 primers* ) 0.5 ⁇ L each (final conc.: 1 ⁇ M) Sterile distilled water 25.5 ⁇ L The above ingredients were mixed, and 50 ⁇ L of the reaction mixture was subjected to PCR.
  • Annealing step 52° C., 60 seconds
  • Escherichia coli JM109 was transformed by the calcium chloride method (Journal of Molecular Biology, 53, 159 (1970)) and was applied to LB agar medium (1% polypeptone, 0.5% yeast extract, 0.5% sodium chloride, and 1.5% agar) containing 50 ⁇ g/mL of kanamycin.
  • LB agar medium 1% polypeptone, 0.5% yeast extract, 0.5% sodium chloride, and 1.5% agar
  • Plasmid DNA was extracted from the culture and cut with the use of restriction enzyme BglII to confirm the inserted fragment.
  • restriction enzyme BglII restriction enzyme
  • the cloning vector comprising the pCASE1-ori sequence was named pCRB22.
  • PgapA glyceraldehyde-3-phosphate dehydrogenase
  • terminator sequence rrnBT1T2 bidirectional terminator sequence
  • the following sets of primers were synthesized based on SEQ ID NO: 7 (PgapA sequence) and SEQ ID NO: 8 (terminator sequence) for cloning of the PgapA sequence and the terminator sequence, and were used.
  • Primer (a-3) has a SalI restriction enzyme site added thereto, and primer (b-3) has SalI, BamHI, and NcoI restriction enzyme sites added thereto.
  • Primer (a-4) has SphI and NcoI restriction enzyme sites added thereto, and primer (b-4) has SphI and BspHI restriction enzyme sites added thereto.
  • the chromosomal DNA extracted from Corynebacterium glutamicum R (FERM P-18976) and the plasmid pKK223-3 (made by Pharmacia) were used.
  • TaKaRa LA Taq TM (5 units/ ⁇ L) 0.5 ⁇ L 10X LA PCR TM Buffer II 5 ⁇ L (Mg 2+ free) 25 mM MgCl 2 5 ⁇ L dNTP Mixture (2.5 mM each) 8 ⁇ L Template DNA 5 ⁇ L (DNA content: 1 ⁇ g or less)
  • the above 2 primers* 0.5 ⁇ L each (final conc.: 1 ⁇ M) Sterile distilled water 25.5 ⁇ L
  • the above ingredients were mixed, and 50 ⁇ L of the reaction mixture was subjected to PCR. * )
  • a combination of primers (a-3) and (b-3) For amplification of the PgapA sequence, a combination of primers (a-3) and (b-3), and for amplification of the terminator sequence, a combination of primers (a-4) and (b-4) were used.
  • Annealing step 52° C., 60 seconds
  • Escherichia coli JM109 was transformed by the calcium chloride method (Journal of Molecular Biology, 53, 159 (1970)) and was applied to LB agar medium (1% polypeptone, 0.5% yeast extract, 0.5% sodium chloride, and 1.5% agar) containing 50 ⁇ g/mL of kanamycin.
  • LB agar medium 1% polypeptone, 0.5% yeast extract, 0.5% sodium chloride, and 1.5% agar
  • Plasmid DNA was extracted from the culture and cut with the use of restriction enzyme SalI to confirm the inserted fragment.
  • SalI restriction enzyme
  • the cloning vector comprising the PgapA sequence was named pCRB206.
  • Escherichia coli JM109 was transformed by the calcium chloride method (Journal of Molecular Biology, 53, 159 (1970)) and was applied to LB agar medium (1% polypeptone, 0.5% yeast extract, 0.5% sodium chloride, and 1.5% agar) containing 50 ⁇ g/mL of kanamycin.
  • LB agar medium 1% polypeptone, 0.5% yeast extract, 0.5% sodium chloride, and 1.5% agar
  • Plasmid DNA was extracted from the culture and cut with the use of the restriction enzyme to confirm the inserted fragment.
  • an about 0.4-kb DNA fragment of the terminator sequence was confirmed.
  • the cloning vector comprising the rrnBT1T2 terminator sequence was named pCRB207.
  • a DNA fragment comprising a promoter sequence of the gapA (glyceraldehyde 3-phosphate dehydrogenase A) gene (hereinafter abbreviated as PgapA) derived from Corynebacterium glutamicum R was amplified by the following method.
  • the following set of primers was synthesized based on SEQ ID NO: 13 (pCRB207) for cloning of the pCRB207 sequence, and was used.
  • Primers (a-5) and (b-5) each have an NdeI restriction enzyme site added thereto.
  • the cloning vector pCRB207 comprising a gapA promoter and a rrnBT1T2 terminator sequence was used.
  • TaKaRa LA Taq TM (5 units/ ⁇ L) 0.5 ⁇ L 10X LA PCR TM Buffer II 5 ⁇ L (Mg 2+ free) 25 mM MgCl 2 5 ⁇ L dNTP Mixture (2.5 mM each) 8 ⁇ L Template DNA 5 ⁇ L (DNA content: 1 ⁇ g or less)
  • the above 2 primers* 0.5 ⁇ L each (final conc.: 1 ⁇ M) Sterile distilled water 25.5 ⁇ L
  • the above ingredients were mixed, and 50 ⁇ L of the reaction mixture was subjected to PCR. * )
  • a combination of primers (a-5) and (b-5) was used.
  • Annealing step 52° C., 60 seconds
  • Escherichia coli JM109 was transformed by the calcium chloride method (Journal of Molecular Biology, 53, 159 (1970)) and was applied to LB agar medium (1% polypeptone, 0.5% yeast extract, 0.5% sodium chloride, and 1.5% agar) containing 50 ⁇ g/mL of kanamycin.
  • LB agar medium 1% polypeptone, 0.5% yeast extract, 0.5% sodium chloride, and 1.5% agar
  • Plasmid DNA was extracted from the culture and cut with the use of restriction enzyme NdeI to confirm the inserted restriction enzyme site.
  • the cloning vector comprising the PgapA sequence and the rrnBT1T2 terminator sequence was named pCRB209.
  • a DNA fragment comprising the bsdBCD (hereinafter indicated as dec/BS) gene which encodes aminobenzoate decarboxylase derived from Bacillus subtilis was amplified by the PCR method as described below.
  • the following set of primers was synthesized based on SEQ ID NO: 16 (the dec/BS gene of Bacillus subtilis ) with the use of “394 DNA/RNA Synthesizer” made by Applied Biosystems for cloning of the dec/BS gene, and was used.
  • Primers (a-6) and (b-6) each have an NdeI restriction enzyme site added thereto.
  • a DNA fragment comprising the ubiDX (hereinafter indicated as dec/LR) gene which encodes aminobenzoate decarboxylase derived from Lactobacillus rhamnosus was amplified by the PCR method as described below.
  • the following set of primers was synthesized based on SEQ ID NO: 19 (the dec/LR gene of Lactobacillus rhamnosus ) with the use of “394 DNA/RNA Synthesizer” made by Applied Biosystems for cloning of the dec/LR gene, and was used.
  • Primers (a-7) and (b-7) each have an NdeI restriction enzyme site added thereto.
  • a DNA fragment comprising the LVIS — 1987-LVIS — 1986 (hereinafter indicated as dec/LB) gene which encodes aminobenzoate decarboxylase derived from Lactobacillus brevis was amplified by the PCR method as described below.
  • the following set of primers was synthesized based on SEQ ID NO: 22 (the dec/LB gene of Lactobacillus brevis ) with the use of “394 DNA/RNA Synthesizer” made by Applied Biosystems for cloning of the dec/LB gene, and was used.
  • a DNA fragment comprising the ubiD (hereinafter indicated as dec/PP) gene which encodes aminobenzoate decarboxylase derived from Pseudomonas putida was amplified by the PCR method as described below.
  • the following set of primers was synthesized based on SEQ ID NO: 25 (the dec/PP gene of Pseudomonas putida ) with the use of “394 DNA/RNA Synthesizer” made by Applied Biosystems for cloning of the dec/PP gene, and was used.
  • Primers (a-9) and (b-9) each have an NdeI restriction enzyme site added thereto.
  • a DNA fragment comprising the purEK (hereinafter indicated as dec/EC) gene which encodes aminobenzoate decarboxylase derived from Escherichia coli was amplified by the PCR method as described below.
  • the following set of primers was synthesized based on SEQ ID NO: 28 (the dec/EC gene of Escherichia coli ) with the use of “394 DNA/RNA Synthesizer” made by Applied Biosystems for cloning of the dec/EC gene, and was used.
  • a DNA fragment comprising the ADE2 (hereinafter indicated as dec/SC) gene which encodes aminobenzoate decarboxylase derived from Saccharomyces cerevisiae was amplified by the PCR method as described below.
  • the following set of primers was synthesized based on SEQ ID NO: 31 (the dec/SC gene of Saccharomyces cerevisiae ) with use of “394 DNA/RNA Synthesizer” made by Applied Biosystems for cloning of the dec/SC gene, and was used.
  • Primers (a-11) and (b-11) each have an NcoI restriction enzyme site added thereto.
  • a DNA fragment comprising the ECL — 04083-ECL — 04082-ECL — 04081 (hereinafter indicated as dec/ECL) gene which encodes aminobenzoate decarboxylase derived from Enterobacter cloacae was amplified by the PCR method as described below.
  • the following set of primers was synthesized based on SEQ ID NO: 34 (the dec/ECL gene of Enterobacter cloacae ) with the use of “394 DNA/RNA Synthesizer” made by Applied Biosystems for cloning of the dec/ECL gene, and was used.
  • Primers (a-12) and (b-12) each have an NdeI restriction enzyme site added thereto.
  • NBRC14144 obtained from NITE Biological Resource Center (NBRC) was used.
  • Lactobacillus rhamnosus For Lactobacillus rhamnosus , the chromosomal DNA extracted from Lactobacillus rhamnosus NBRC3425 obtained from NITE Biological Resource Center (NBRC) was used.
  • Lactobacillus brevis For Lactobacillus brevis , the chromosomal DNA extracted from Lactobacillus brevis ATCC367 obtained from American Type Culture Collection (ATCC) was used.
  • the chromosomal DNA extracted from Escherichia coli K-12 MG1655 was used.
  • Saccharomyces cerevisiae the chromosomal DNA extracted from Saccharomyces cerevisiae NBRC10217 obtained from NITE Biological Resource Center (NBRC) was used.
  • NBRC13535 obtained from NITE Biological Resource Center (NBRC) was used.
  • TaKaRa LA Taq TM (5 units/ ⁇ L) 0.5 ⁇ L 10X LA PCR TM Buffer II 5 ⁇ L (Mg 2+ free) 25 mM MgCl 2 5 ⁇ L dNTP Mixture (2.5 mM each) 8 ⁇ L Template DNA 5 ⁇ L (DNA content: 1 ⁇ g or less) The above 2 primers* ) 0.5 ⁇ L each (final conc.: 1 ⁇ M) Sterile distilled water 25.5 ⁇ L The above ingredients were mixed, and 50 ⁇ L of the reaction mixture was subjected to PCR.
  • Escherichia coli JM109 was transformed by the calcium chloride method (Journal of Molecular Biology, 53, 159 (1970)) and was applied to LB agar medium (1% polypeptone, 0.5% yeast extract, 0.5% sodium chloride, and 1.5% agar) containing 50 ⁇ g/mL of kanamycin.
  • LB agar medium 1% polypeptone, 0.5% yeast extract, 0.5% sodium chloride, and 1.5% agar
  • Plasmid DNA was extracted from the culture medium and cut with the use of the restriction enzyme to confirm the inserted fragment.
  • an about 1.7-kb inserted fragment of the dec/SC gene derived from Saccharomyces cerevisiae was confirmed.
  • the plasmid comprising the dec/SC gene derived from Saccharomyces cerevisiae was named pCRB207-dec/SC ( FIG. 1 ).
  • Escherichia coli JM109 was transformed by the calcium chloride method (Journal of Molecular Biology, 53, 159 (1970)) and was applied to LB agar medium (1% polypeptone, 0.5% yeast extract, 0.5% sodium chloride, and 1.5% agar) containing 50 ⁇ g/mL of kanamycin.
  • Plasmid DNA was extracted from the culture and cut with the use of restriction enzyme to confirm the inserted fragment.
  • an about 2.1-kb inserted fragment in the case of the dec/LR derived from Lactobacillus rhamnosus (Ligation Liquid G)
  • an about 2.0-kb inserted fragment in the case of the dec/LB gene derived from Lactobacillus brevis (Ligation Liquid H)
  • an about 0.6-kb inserted fragment in the case of the dec/PP gene derived from Pseudomonas putida (Ligation Liquid I)
  • an about 1.6-kb inserted fragment in the case of the case of the dec/PP gene derived from Pseudomonas putida (Ligation Liquid I)
  • the plasmid comprising the dec/BS gene derived from Bacillus subtilis was named pCRB209-dec/BS
  • the plasmid comprising the dec/LR gene derived from Lactobacillus rhamnosus was named pCRB209-dec/LR
  • the plasmid comprising the dec/LB gene derived from Lactobacillus brevis was named pCRB209-dec/LB
  • the plasmid comprising the dec/PP gene derived from Pseudomonas putida was named pCRB209-dec/PP
  • the plasmid comprising the dec/EC gene derived from Escherichia coli was named pCRB209-dec/EC
  • the plasmid comprising the dec/ECL gene derived from Enterobacter cloacae was named pCRB209-dec/ECL ( FIG. 1 ).
  • transformation of Corynebacterium glutamicum R was performed by electroporation (Agric. Biol. Chem., Vol. 54, 443-447 (1990) and Res. Microbiol., Vol. 144, 181-185 (1993)), and each strain was applied to A agar medium containing 50 ⁇ g/mL of kanamycin.
  • Plasmid DNA was extracted from the culture and cut with the use of restriction enzyme to confirm the inserted plasmid.
  • introduction of the above-constructed plasmids pCRB209-dec/BS, pCRB209-dec/LR, pCRB209-dec/LB, pCRB209-dec/PP, pCRB209-dec/EC, pCRB207-dec/SC, and pCRB209-dec/ECL was confirmed.
  • the strain to which the plasmid pCRB209-dec/BS had been introduced was named Corynebacterium glutamicum ANI-1
  • the strain to which the plasmid pCRB209-dec/LR had been introduced was named Corynebacterium glutamicum ANI-2
  • the strain to which the plasmid pCRB209-dec/LB had been introduced was named Corynebacterium glutamicum ANI-3
  • the strain to which the plasmid pCRB209-dec/PP had been introduced was named Corynebacterium glutamicum ANI-4
  • the strain to which the plasmid pCRB209-dec/EC had been introduced was named Corynebacterium glutamicum ANI-5
  • the strain to which the plasmid pCRB207-dec/SC had been introduced was named Corynebacterium glutamicum ANI-6
  • Corynebacterium glutamicum ANI-1 was deposited in Incorporated Administrative Agency National Institute of Technology and Evaluation, NITE Patent Microorganisms Depositary (2-5-8 Kazusakamatari, Kisarazu-shi, Chiba 292-0818 Japan) under Accession Number NITE BP-1001 on Nov. 16, 2010.
  • Corynebacterium glutamicum ANI-1 to ANI-7 strains constructed in Example 1 was applied to A agar medium (2 g of (NH 2 ) 2 CO, 7 g of (NH 4 ) 2 SO 4 , 0.5 g of KH 2 PO 4 , 0.5 g of K 2 HPO 4 , 0.5 g of MgSO 4 .7H 2 O, 1 mL of 0.06% (w/v) Fe 2 SO 4 .7H 2 O+0.042% (w/v) MnSO 4 .2H 2 O, 1 mL of 0.02% (w/v) biotin solution, 2 mL of 0.01% (w/v) thiamin solution, 2 g of yeast extract, 7 g of vitamin assay casamino acid, 40 g of glucose, and 15 g of agar were suspended in 1 L of distilled water) containing 50 ⁇ g/mL of kanamycin, and left stand in the dark at 33° C. for 20 hours.
  • Corynebacterium glutamicum ANI-1 to ANI-7 strains constructed in Example 1 was applied to A agar medium (2 g of (NH 2 ) 2 CO, 7 g of (NH 4 ) 2 SO 4 , 0.5 g of KH 2 PO 4 , 0.5 g of K 2 HPO 4 , 0.5 g of MgSO 4 .7H 2 O, 1 mL of 0.06% (w/v) Fe 2 SO 4 .7H 2 O+0.042% (w/v) MnSO 4 .2H 2 O, 1 mL of 0.02% (w/v) biotin solution, 2 mL of 0.01% (w/v) thiamin solution, 2 g of yeast extract, 7 g of vitamin assay casamino acid, 40 g of glucose, and 15 g of agar were suspended in 1 L of distilled water) containing 50 ⁇ g/mL of kanamycin, and left stand in the dark at 33° C. for 20 hours.
  • aniline can be produced from aminobenzoic acid with a practical efficiency using microorganisms.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
US13/997,107 2010-12-28 2011-12-24 Coryneform Bacterium Transformant and Process for Producing Aniline Using The Same Abandoned US20130302860A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010293972 2010-12-28
JP2010-293972 2010-12-28
PCT/JP2011/080151 WO2012090978A1 (fr) 2010-12-28 2011-12-27 Bactérie corynéforme transformée et procédé de production d'aniline l'utilisant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080151 A-371-Of-International WO2012090978A1 (fr) 2010-12-28 2011-12-27 Bactérie corynéforme transformée et procédé de production d'aniline l'utilisant

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/983,178 Continuation US9453248B2 (en) 2010-12-28 2015-12-29 Coryneform bacterium transformant and process for producing aniline using the same

Publications (1)

Publication Number Publication Date
US20130302860A1 true US20130302860A1 (en) 2013-11-14

Family

ID=46383073

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/997,107 Abandoned US20130302860A1 (en) 2010-12-28 2011-12-24 Coryneform Bacterium Transformant and Process for Producing Aniline Using The Same
US14/983,178 Active US9453248B2 (en) 2010-12-28 2015-12-29 Coryneform bacterium transformant and process for producing aniline using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/983,178 Active US9453248B2 (en) 2010-12-28 2015-12-29 Coryneform bacterium transformant and process for producing aniline using the same

Country Status (6)

Country Link
US (2) US20130302860A1 (fr)
EP (1) EP2660313A4 (fr)
JP (1) JP5940985B2 (fr)
CN (1) CN103282485B (fr)
BR (1) BR112013016132A2 (fr)
WO (1) WO2012090978A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9803223B2 (en) 2013-04-17 2017-10-31 Research Institute Of Innovative Technology For The Earth Coryneform bacterium transformant with improved aniline productivity and process for producing aniline using the same
US10731187B2 (en) 2014-02-20 2020-08-04 Covestro Deutschland Ag Recombinant strain producing O-aminobenzoate and fermentative production of aniline from renewable resources via 2-aminobenzoic acid

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201546027A (zh) * 2014-02-20 2015-12-16 Bayer Materialscience Ag 經由胺茴酸鹽製造苯胺
WO2019211937A1 (fr) * 2018-05-01 2019-11-07 公益財団法人地球環境産業技術研究機構 Transformant d'une bactérie corynéforme et procédé de production de composé utile l'utilisant
CN109234179B (zh) * 2018-10-29 2021-11-12 贵州茅台酒股份有限公司 一种酒醅中酵母菌分离培养基及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183799A (en) 1981-04-17 1982-11-12 Kyowa Hakko Kogyo Co Ltd Novel plasmid
JPS5867699A (ja) 1981-10-16 1983-04-22 Ajinomoto Co Inc プラスミド
JPS62166890A (ja) 1986-01-20 1987-07-23 Asahi Chem Ind Co Ltd イソクエン酸デヒドロゲナ−ゼ産生遺伝子を含むdna断片
ATE462002T1 (de) 2003-07-29 2010-04-15 Res Inst Innovative Tech Earth Transformanten eines coryneformen bakteriums und deren verwendung in verfahren zur produktion von dicarbonsäure
JP4518864B2 (ja) * 2004-08-10 2010-08-04 国立大学法人岐阜大学 新規な4−ヒドロキシ安息香酸脱炭酸酵素、その酵素をコードするポリヌクレオチド、その製造方法、およびこれを利用した芳香族化合物の製造方法
JP5199693B2 (ja) * 2007-03-30 2013-05-15 住友ゴム工業株式会社 微生物を利用した老化防止剤、加硫促進剤または変性天然ゴムの製造方法
BR112012009332A2 (pt) * 2009-10-23 2015-09-15 Genomatica Inc micro-organismo para a produção de anilina
CN103221533B (zh) * 2010-11-10 2017-08-22 绿色苯酚开发株式会社 棒状细菌转化体及使用该转化体的苯酚的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Yukawa H et al. Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. 2007. Microbiology. 153. p. 1042-1058. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9803223B2 (en) 2013-04-17 2017-10-31 Research Institute Of Innovative Technology For The Earth Coryneform bacterium transformant with improved aniline productivity and process for producing aniline using the same
US10731187B2 (en) 2014-02-20 2020-08-04 Covestro Deutschland Ag Recombinant strain producing O-aminobenzoate and fermentative production of aniline from renewable resources via 2-aminobenzoic acid

Also Published As

Publication number Publication date
JPWO2012090978A1 (ja) 2014-06-05
US20160130617A1 (en) 2016-05-12
EP2660313A4 (fr) 2014-05-21
CN103282485B (zh) 2016-05-18
CN103282485A (zh) 2013-09-04
US9453248B2 (en) 2016-09-27
WO2012090978A1 (fr) 2012-07-05
EP2660313A1 (fr) 2013-11-06
JP5940985B2 (ja) 2016-06-29
BR112013016132A2 (pt) 2018-07-10

Similar Documents

Publication Publication Date Title
US10738296B2 (en) Transformant for producing 4-hydroxybenzoic acid or salt thereof
US10017791B2 (en) Coryneform bacterium transformant and process for producing 4-hydroxybenzoic acid or salt thereof using the same
US9290770B2 (en) Coryneform bacterium transformant and process for producing valine using the same
US9453248B2 (en) Coryneform bacterium transformant and process for producing aniline using the same
US8846367B2 (en) Coryneform bacterium transformant and process for producing phenol using the same
US20130273624A1 (en) Coryneform bacterium transformant and process for producing phenol using the same
US9090900B2 (en) Coryneform bacterium transformant and process for producing phenol using the same
US20130203139A1 (en) Coryneform bacterium transformant and process for producing phenol using the same
US9803223B2 (en) Coryneform bacterium transformant with improved aniline productivity and process for producing aniline using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUMITOMO RUBBER INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YUKAWA, HIDEAKI;INUI, MASAYUKI;REEL/FRAME:030907/0976

Effective date: 20130716

Owner name: RESEARCH INSTITUTE OF INNOVATIVE TECHNOLOGY FOR TH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YUKAWA, HIDEAKI;INUI, MASAYUKI;REEL/FRAME:030907/0976

Effective date: 20130716

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION