US20130293002A1 - Device comprising an electronic component with high switching speed - Google Patents

Device comprising an electronic component with high switching speed Download PDF

Info

Publication number
US20130293002A1
US20130293002A1 US13/875,021 US201313875021A US2013293002A1 US 20130293002 A1 US20130293002 A1 US 20130293002A1 US 201313875021 A US201313875021 A US 201313875021A US 2013293002 A1 US2013293002 A1 US 2013293002A1
Authority
US
United States
Prior art keywords
components
component
khz
switching
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/875,021
Other languages
English (en)
Inventor
Johnny Bou Saada
Fisal AL KAYAL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom Transport Technologies SAS
Original Assignee
Alstom Transport SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Transport SA filed Critical Alstom Transport SA
Publication of US20130293002A1 publication Critical patent/US20130293002A1/en
Assigned to ALSTOM TRANSPORT SA reassignment ALSTOM TRANSPORT SA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Al Kayal, Fisal, BOU SAADA, JOHNNY
Assigned to ALSTOM TRANSPORT TECHNOLOGIES reassignment ALSTOM TRANSPORT TECHNOLOGIES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALSTOM TRANSPORT SA
Assigned to ALSTOM TRANSPORT TECHNOLOGIES reassignment ALSTOM TRANSPORT TECHNOLOGIES CORRECTIVE ASSIGNMENT TO CORRECT THE EXECUTION DATE PREVIOUSLY RECORDED AT REEL: 035400 FRAME: 0722. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: ALSTOM TRANSPORT SA
Assigned to ALSTOM TRANSPORT TECHNOLOGIES reassignment ALSTOM TRANSPORT TECHNOLOGIES CHANGE OF ADDRESS Assignors: ALSTOM TRANSPORT TECHNOLOGIES
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an electric switching device for an electronic component having a fast switching speed.
  • the present invention is particularly applicable in the railway sector.
  • components made of a semiconductor material with a wide band gap are being marketed.
  • components made of silicon carbide or gallium nitride are present on the market. These components involve lower losses and operate at a switching speed that is higher than components made with ordinary materials. In addition, their junction temperature is generally higher.
  • Components made of silicon carbide are available for several components types like: diodes, transistors known as MOSFETs (acronym for Metal Oxyd Semi conductor Field Effect Transistors) or transistors of the type JFET (acronym for “Junction Field Effect Transistor”).
  • a power module generally consists of several components, for example in parallel.
  • the switching frequency used should be of the order of a few tens of kHz (kilohertz) in order to minimise the size of the passive components.
  • the switching speed must also be high in order to minimise switching losses.
  • a high switching speed is a switching speed of at least 10 kilo amps per microsecond (kA/ ⁇ s) or 20 kilo volts per microsecond (kA/ ⁇ s).
  • IPM Intelligent Power Module
  • the present invention provides an electric switching device comprising at least one electronic component and a control circuit designed to control the or each component.
  • Each component is connected to the control circuit by a respective connection.
  • the component has a switching speed that is higher than 10 kA/ ⁇ s or higher than 20 kV/ ⁇ s and the or each connection has an inductance that is lower than 10 nH.
  • the invention also concerns an electrical switching device comprising at least two electronic components and a control circuit designed to control the or each component.
  • Each component is connected to the control circuit by a respective connection.
  • Each component has a switching speed that is higher than 10 kA/ ⁇ s or higher than 20 kV/ ⁇ s and the or each connection has an inductance that is lower than 10 nH.
  • the device comprises one or more of the following characteristic features, considered alone or in accordance with all technically possible combinations:
  • the component is made out of a material selected from amongst the group consisting of diamond, silicon carbide and gallium nitride
  • control circuit includes a signal amplifier, the connection connecting the amplifier to the component,
  • the component is operative at a switching frequency that is between 1 kHz and 500 kHz,
  • the component is operative at a switching frequency between 10 kHz and 40 kHz
  • the device comprises N components, N being an integer which is strictly greater than 1 and the circuit includes [(N+1)/2] control units, [(N+1)/2] of not an integer rounded down to be integer, each of the control units being connected to one or two electronic component(s),
  • the device comprises N components, N being an integer which is strictly greater than 1, and wherein the circuit includes N control units, each component being connected to a different unit,
  • the device comprises a plurality of connections, each connection having the same inductance more or less 3%,
  • connection has an inductance that is lower than 5 nH
  • the component has a switching speed that is higher than 15 kA/ ⁇ s or 30 kV/ ⁇ s,
  • the circuit comprises of several control units, which are synchronized with each other, and
  • the units are synchronized by connecting each of the outputs of the units to the same potential.
  • the invention also relates to a power converter comprising a device as previously described here above.
  • the object of the invention is also a railway vehicle having the power converter as previously described here above.
  • FIG. 1 is a schematic view of an example of an electrical switching device according to the invention
  • FIG. 2 is a schematic view of another example of device
  • FIG. 3 is a graph illustrating the result of a digital simulation for a device according to the state of the art
  • FIG. 4 is a graph illustrating the result of another digital simulation based on a device according to the state of the art
  • FIG. 5 is a graph illustrating the result obtained with a device according to the invention.
  • FIGS. 6 and 7 are graphs illustrating the results of the switching simulation for a device according to the state of the art.
  • FIGS. 8 and 9 are graphs illustrating the results of the switching simulation for a device according to the invention.
  • An electrical switching device 10 shown in FIG. 1 comprises six electronic components 12 .
  • the components 12 have a fast switching speed.
  • the term fast switching speed is understood to mean a switching speed that is higher than 10 kA/ ⁇ s or 20 kV/ ⁇ s.
  • the switching speed of the components 12 is greater than 15 kA/ ⁇ s (respectively 30 kV/ ⁇ s).
  • components 12 made of diamond, silicon carbide or gallium nitride have a fast switching speed.
  • the components 12 are, by way of an illustration, a MOSFET transistor, a JFET transistor or any other electronic component having the aforementioned switching speed.
  • the device 10 also comprises a control circuit 14 or igniter.
  • the control circuit 14 is used to control the components 12 .
  • control circuit 14 is capable of transmitting an order that is imposed on the input “gate” of a transistor.
  • the control circuit 14 comprises a plurality of control units 16 .
  • the circuit 14 includes two units 16 .
  • the outputs of each of the units 16 are connected together. This implies that the outputs of all 16 the units are all at the same potential. In other words, the outputs deliver the same signal. Thus, optimal synchronisation of the units 16 is ensured.
  • these outputs are not connected together.
  • the sequence of the ignition (or blocking) of each unit 16 is controlled so as to improve the balancing between the components 12 and to facilitate the fabrication of the device 10 .
  • control units 16 are synchronized with each other.
  • Each component 12 is joined to a unit 16 via a connection 18 .
  • connection 18 is of the wired type, it being understood that any type of connection providing for electrical conductivity between the component 12 and the associated unit 16 may be considered.
  • these connections are made from aluminum wires (referred to by the generic English term “wire bonding”) or on printed circuit board (for example of the DBC type, DBC being the acronym for “Direct Bond Copper”).
  • the length of these wires must be limited in order to be able to accelerate the switching speed without causing the control system to oscillate.
  • a distance of 1 cm gives a wiring inductance of the order of 10 nH. This distance of 1 cm seems to be a good compromise between a high switching speed and a device 10 that may be produced for a reasonable manufacturing cost.
  • Each of the connections 18 has an inductance that is lower than 10 nH (nanohenries). Such an inductance value ensures the fast switching of the component 12 due to the fact that the circuit 14 is placed in the proximity of the controlled component 12 .
  • connections 18 all have the same inductance more or less 3% in order to ensure fast switching speed for all the components 12 .
  • the inductance of the connection 18 is lower than 5 nH.
  • control circuit 14 be relatively close to the components 12 .
  • close it is meant that the circuit 14 is at the very most about 10 mm away from each component 12 .
  • the device 10 is presented in the form of a power module 20 incorporating the components 12 and the control circuit 14 .
  • a power module 20 in fact has restricted dimensions.
  • control circuit 14 For a device 10 comprising N electronic components 12 , it is advantageous to provide the control circuit 14 with:
  • each unit 16 is connected to a maximum of two components 12 .
  • the distance between the unit 16 and the components 12 to which the unit 16 is connected is greatly reduced.
  • the module 20 includes:
  • (N ⁇ 1)/2 units 16 are each connected to two components 12 and one single unit 16 is connected to a single component 12 .
  • This component 12 associated with the single unit is placed in the middle of the other components 12 .
  • FIG. 2 illustrates another variant that makes it possible to obtain an associated inductance of a low value for each connection 18 between a component 12 and the unit 16 .
  • each component 12 is associated with a control unit 16 .
  • the device 10 comprises only four components 12 .
  • the control circuit 14 thus comprises four units 16 . Having a single control unit 16 per component 12 enables to ensure better control of the components 12 .
  • the units 16 comprise a first sub-unit 22 and a second sub-unit 24 .
  • the first sub-unit 22 includes elements of the unit 16 that have an effect on the proper functioning of the component 12 for high switching speeds.
  • this sub unit 22 may be considered as the active part of the unit 16 .
  • it has a signal amplifier.
  • This first sub-unit 22 is placed in the module 20 so as to be in the proximity of the components 12 .
  • the second sub-unit 24 is not integrated in the module 20 .
  • the sub-unit 24 is at a further distance from the components 12 than the sub-unit 22 .
  • the sub-unit 24 comprises, for example, a DC-DC converter, the means for providing galvanic isolation, a defect management controller and means for ensuring other functions according to the various embodiments considered.
  • the functions of the elements of the sub-unit 24 are far away because they have no influence on the proper functioning of the component 12 for high switching speeds.
  • the subunit 24 is at a distance that is greater than 10 cm from the module 20 .
  • the electrical switching device 10 benefits from the fast switching property of the component 12 .
  • the low value of the inductance of the connections 18 in the invention makes it possible to achieve this. In order to demonstrate this, various tests and simulations have been conducted.
  • Table 1 here below shows the results of tests carried out for several configurations. Configurations 1 and 2 are based on the state of the art while the configuration 3 is according to the invention. Table 1 indicates the associated performance levels for the switching. More specifically, the switching speed of the component 12 expressed in kA/ ⁇ s and used for the test is given. The switching time is also given. This switching time is expressed in ns (nanoseconds). In addition, the switching power which corresponds to the switching losses is also given. It is expressed in mJ (milliJoules) and is measured in a configuration where the components operate at 750 V (volts) for 500 A (amps).
  • the configuration 1 corresponds to a case where the control circuit is placed on the exterior of the module 20 .
  • This configuration corresponds to the conventional configuration for semiconductor devices having a relatively slow switching speed.
  • the connection between the control circuit and the component is typically of the order of 1000 nH.
  • Configuration 2 corresponds to the case of the IPM component previously described above.
  • the inductance of the connection is lower by about 100 nH.
  • the switching speed of the component is higher than in the case of configuration 1.
  • the switching speed is faster (7.0 kA/ ⁇ s)
  • the switching power (26.6 mJ) and switching time (71 ns) are only about 50% of that in configuration 1.
  • the inductance of the connection is 10 nH. It is observed that, for a switching speed of 11.1 kA/ ⁇ s for the components 12 , the switching power amounts 17 mJ and the switching time amounts to only 45 ns. This shows that the use of an inductance reduced to 10 nH makes it possible to obtain good switching.
  • the component 12 is a transistor, a power MOSFET which comprises, in a manner known per se, a drain, a source and a gate.
  • the MOSFET transistor used is a MOSFET transistor made of silicon carbide, of the CRI brand (reference DMF 20 120 D).
  • Each of the graphs in FIGS. 3 , 4 and 5 shows the results of a test based on several configurations.
  • the variable parameters are the inductance of the connection 18 between the control circuit 14 and the component 12 and to be controlled and the switching speed of the component 12 .
  • the wiring inductance amounts to 100 nH between the control circuit and the MOSFET transistor.
  • the MOSFET transistor is controlled at a low switching speed of the order of 1.5 kV/ ⁇ s.
  • the evolutionary trends over time of the two curves 26 and 28 are represented in the form of an oscillogram (waveform diagram), the unit of time is 100 ns/tile.
  • the first curve 26 is a curve showing the change evolving over time of the voltage between the drain and source of the transistor.
  • One tile represents 100 volts V.
  • the second curve 28 is the curve of the change in the voltage between the gate and source of the transistor. This curve 28 is represented with an ordinate (y-coordinate) corresponding to 5 V/tile.
  • FIG. 4 illustrates the variation over time obtained for the same configuration but at a higher switching speed, that is at 6 kV/ ⁇ s.
  • FIG. 4 is also in the form of an oscillogram (waveform), whose unit of time is 50 ns/tile.
  • the variation over time of the voltage between the drain and the source is represented in the curve 30 while the curve 32 illustrates the variation over time of the voltage between the gate and source.
  • the unit of variation is not the same between the curves 30 and 32 .
  • one tile represents 10 V while for curve 30 , one tile represents 100 V.
  • the most notable element of this FIG. 4 is the phenomenon of re-blocking observed in the encircled portion 34 .
  • the phenomena of re-blocking or re-ignition are linked to the resonance between the control circuit 14 and the transistor 12 .
  • the origin of these oscillations is the relatively high inductance of the connection between these two elements.
  • FIG. 5 is presented in the form of an oscillogram. The variation over time is represented with respect to the voltage between the drain and the source and the voltage between the gate and the source.
  • the curve 36 which corresponds to the voltage between the drain and the source is represented with the following units: 5 V/tile and 100 ns/tile on the abscissa (X axis).
  • the curve 38 is represented with a scale of 100 V/tile on the ordinate (Y axis) and 100 ns/tile on the abscissa.
  • FIGS. 3 , 4 and 5 The results of FIGS. 3 , 4 and 5 have been illustrated in the case where the control circuit 14 controls one single component 12 .
  • a single control circuit 14 is used to control all the components arranged 12 in parallel and the associated connections 18 have varying inductances (variances greater than 3%) and of relatively large values (greater than 10 nH).
  • FIGS. 6 and 7 show the results of simulations of switching for two MOSFET type transistors 12 made of silicon carbide arranged in parallel when they are controlled by a single control circuit 14 .
  • FIGS. 6 and 7 is represented the variation over time of the current between the drain and the source of the component 12 as well as that of the voltage between the gate and source of the two transistors 12 . Oscillations are observed over the curves of the currents and the voltages.
  • FIGS. 8 and 9 illustrate the same case as that in FIGS. 6 and 7 , except that the configuration according to the invention is used.
  • the switching speed of the components 12 can be made far more rapid because the behaviour of the fast switching module is stable.
  • control units 16 This corresponds to the fact that it is preferable for the control units 16 to be synchronized. Such a synchronisation ensures that the control signal reaches all the components 12 at the same time. Thus, the power current is evenly distributed amongst all the components 12 .
  • the advantage of the proposed invention is to optimise the switching of the power module 20 by using a very fast power semiconductor 12 .
  • the switching is also made stable.
  • This optimization makes it possible to raise the frequency of switching, and therefore allows for the use of other types of magnetic materials that are well suited for high frequency switching. Such materials make it possible so that the power converter as a whole has a smaller mass and a reduced volume.
  • the weight of a silicon inverter for 50 kW (kilowatts) is of the order of 90 kg, while the same inverter made of silicon carbide makes up only 33% of this mass.

Landscapes

  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)
US13/875,021 2012-05-03 2013-05-01 Device comprising an electronic component with high switching speed Abandoned US20130293002A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1254076A FR2990312B1 (fr) 2012-05-03 2012-05-03 Un dispositif comportant un composant electronique avec une grande vitesse de commutation
FRFR1254076 2012-05-03

Publications (1)

Publication Number Publication Date
US20130293002A1 true US20130293002A1 (en) 2013-11-07

Family

ID=46826645

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/875,021 Abandoned US20130293002A1 (en) 2012-05-03 2013-05-01 Device comprising an electronic component with high switching speed

Country Status (5)

Country Link
US (1) US20130293002A1 (ja)
EP (1) EP2660978A1 (ja)
JP (1) JP2013236078A (ja)
CN (1) CN103384147B (ja)
FR (1) FR2990312B1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9510436B2 (en) * 2014-03-31 2016-11-29 Hypertherm, Inc. Wide bandgap semiconductor based power supply assemblies for plasma operating systems and related methods and devices
FR3055496B1 (fr) * 2016-08-26 2018-09-28 Alstom Transport Technologies Appareil de commutation electrique comportant un dispositif d'interconnexion electrique ameliore

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030190506A1 (en) * 2000-03-15 2003-10-09 Mueller Otward M. Cryogenic power conversion for fuel cell systems especially for vehicles
US20040155303A1 (en) * 2003-02-10 2004-08-12 Kabushiki Kaisha Toshiba Power switching device
US20050052888A1 (en) * 2003-08-20 2005-03-10 Yoshihiro Takeshima Switching power supply
US20080174184A1 (en) * 2007-01-23 2008-07-24 Schneider Toshiba Inverter Europe Sas Device for controlling a power electronic switch and speed controller comprising same
US20090021227A1 (en) * 2007-07-17 2009-01-22 Takashi Sase Power-supply device, ic circuit, and information processing apparatus, and soft-start control method
US20090251197A1 (en) * 2008-04-08 2009-10-08 Peter Friedrichs Simplified Circuit to Use a Normally Conducting Circuit Element That Requires a Normally Blocking Circuit Element
US20100283061A1 (en) * 2009-05-07 2010-11-11 Semisouth Laboratories, Inc. High temperature gate drivers for wide bandgap semiconductor power jfets and integrated circuits including the same
US20110101878A1 (en) * 2009-10-30 2011-05-05 Stmicroelectronics Design & Application Gmbh Driving circuit for driving a load
US20110204835A1 (en) * 2006-04-20 2011-08-25 Converteam Sas Switching circuit for series configuration of igbt transistors
US20130020872A1 (en) * 2011-07-22 2013-01-24 Oracle International Corporation Power supply with dual asymmetrical inputs

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4558407B2 (ja) * 2003-08-20 2010-10-06 パナソニック株式会社 スイッチング電源装置
US8835987B2 (en) * 2007-02-27 2014-09-16 Cree, Inc. Insulated gate bipolar transistors including current suppressing layers
US7915944B2 (en) * 2009-04-27 2011-03-29 General Electric Company Gate drive circuitry for non-isolated gate semiconductor devices
CA2759210A1 (en) * 2009-05-11 2010-11-18 Ss Sc Ip, Llc Gate driver for enhancement-mode and depletion-mode wide bandgap semiconductor jfets
JP2011182591A (ja) * 2010-03-02 2011-09-15 Panasonic Corp 半導体装置
JP5273095B2 (ja) * 2010-05-24 2013-08-28 株式会社デンソー 半導体装置
EP2590311A4 (en) * 2010-09-29 2014-04-23 Panasonic Corp POWER CONVERTER APPARATUS
JP5521966B2 (ja) * 2010-10-07 2014-06-18 三菱電機株式会社 直流電源装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030190506A1 (en) * 2000-03-15 2003-10-09 Mueller Otward M. Cryogenic power conversion for fuel cell systems especially for vehicles
US20040155303A1 (en) * 2003-02-10 2004-08-12 Kabushiki Kaisha Toshiba Power switching device
US20050052888A1 (en) * 2003-08-20 2005-03-10 Yoshihiro Takeshima Switching power supply
US20110204835A1 (en) * 2006-04-20 2011-08-25 Converteam Sas Switching circuit for series configuration of igbt transistors
US20080174184A1 (en) * 2007-01-23 2008-07-24 Schneider Toshiba Inverter Europe Sas Device for controlling a power electronic switch and speed controller comprising same
US20090021227A1 (en) * 2007-07-17 2009-01-22 Takashi Sase Power-supply device, ic circuit, and information processing apparatus, and soft-start control method
US20090251197A1 (en) * 2008-04-08 2009-10-08 Peter Friedrichs Simplified Circuit to Use a Normally Conducting Circuit Element That Requires a Normally Blocking Circuit Element
US20100283061A1 (en) * 2009-05-07 2010-11-11 Semisouth Laboratories, Inc. High temperature gate drivers for wide bandgap semiconductor power jfets and integrated circuits including the same
US20110101878A1 (en) * 2009-10-30 2011-05-05 Stmicroelectronics Design & Application Gmbh Driving circuit for driving a load
US20130020872A1 (en) * 2011-07-22 2013-01-24 Oracle International Corporation Power supply with dual asymmetrical inputs

Also Published As

Publication number Publication date
FR2990312B1 (fr) 2015-05-15
CN103384147B (zh) 2017-03-01
CN103384147A (zh) 2013-11-06
JP2013236078A (ja) 2013-11-21
FR2990312A1 (fr) 2013-11-08
EP2660978A1 (fr) 2013-11-06

Similar Documents

Publication Publication Date Title
US10418895B2 (en) Power module and power circuit
JP5798412B2 (ja) 半導体モジュール
KR101755085B1 (ko) 전력용 반도체 모듈 및 전력 변환 장치
US8094475B2 (en) Inverter with asymmetric clocking and thermally isolated modules
JP4138192B2 (ja) 半導体スイッチ装置
Schlapbach Dynamic paralleling problems in IGBT module construction and application
JP7113381B2 (ja) スイッチング回路
KR20180073474A (ko) 반도체 장치 및 인버터 시스템
US20170117820A1 (en) Semiconductor device
Alkayal et al. Compact three phase inverter in Silicon Carbide technology for auxiliary converter used in railway applications
JP6637065B2 (ja) 高電力回路のためのスイッチングデバイスの並列化
CN111697933A (zh) 栅极路径中具有扼流圈的并联功率半导体
Xu et al. Suppressing gate voltage oscillation in paralleled SiC MOSFETs for HEV/EV traction inverter application
Zeng et al. Comparative evaluation of Kelvin connection for current sharing of multi-chip power modules
US20130293002A1 (en) Device comprising an electronic component with high switching speed
JP7133524B2 (ja) 電力変換装置、鉄道車両電気システム
US10218257B2 (en) Power converter having parallel-connected semiconductor switches
US10700681B1 (en) Paralleled power module with additional emitter/source path
CN109983699B (zh) 栅极驱动电路
JP2004063687A (ja) パワーモジュールのゲート駆動回路
JP2007288046A (ja) 電力用半導体モジュール
EP3026802B1 (en) Power module
CN115642783B (zh) 一种高频电源及用于高频电源的功率器件
US20170033705A1 (en) Semiconductor device
JP2005020869A (ja) 電圧駆動型半導体素子の駆動装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALSTOM TRANSPORT SA, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOU SAADA, JOHNNY;AL KAYAL, FISAL;REEL/FRAME:032037/0695

Effective date: 20131016

AS Assignment

Owner name: ALSTOM TRANSPORT TECHNOLOGIES, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALSTOM TRANSPORT SA;REEL/FRAME:035400/0722

Effective date: 20150331

AS Assignment

Owner name: ALSTOM TRANSPORT TECHNOLOGIES, FRANCE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE EXECUTION DATE PREVIOUSLY RECORDED AT REEL: 035400 FRAME: 0722. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:ALSTOM TRANSPORT SA;REEL/FRAME:035909/0882

Effective date: 20150225

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ALSTOM TRANSPORT TECHNOLOGIES, FRANCE

Free format text: CHANGE OF ADDRESS;ASSIGNOR:ALSTOM TRANSPORT TECHNOLOGIES;REEL/FRAME:043382/0290

Effective date: 20150930