US20130278584A1 - Driving circuit of display panel capable of eliminating flash - Google Patents
Driving circuit of display panel capable of eliminating flash Download PDFInfo
- Publication number
- US20130278584A1 US20130278584A1 US13/687,129 US201213687129A US2013278584A1 US 20130278584 A1 US20130278584 A1 US 20130278584A1 US 201213687129 A US201213687129 A US 201213687129A US 2013278584 A1 US2013278584 A1 US 2013278584A1
- Authority
- US
- United States
- Prior art keywords
- circuit
- voltage
- driving circuit
- data
- gamma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3685—Details of drivers for data electrodes
- G09G3/3688—Details of drivers for data electrodes suitable for active matrices only
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/038—Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3674—Details of drivers for scan electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3685—Details of drivers for data electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3696—Generation of voltages supplied to electrode drivers
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0842—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0247—Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0271—Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
- G09G2320/0276—Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
Definitions
- the present invention relates generally to a driving circuit of display panel, and particularly to a driving circuit of display panel capable of eliminating screen flash (flicker) phenomenon and thus enhancing the displaying quality.
- LCDs have the advantages of small size, low radiation, and low power consumption, and thus becoming the mainstream in the market.
- FIG. 1 shows a schematic diagram of the display panel and its plurality of pixel structures according to the prior art.
- the display panel comprises a plurality of pixel structures 10 ′ and a driving chip 20 ′.
- the driving chip 20 ′ produces a driving signal for driving the plurality of pixel structures 10 ′.
- each of the pixel structures 10 ′ includes a thin film transistor (TFT) 12 ′ and a storage capacitor 14 ′.
- the gate of the TFT 12 ′ is coupled to a scan line; the source of the TFT 12 ′ is coupled to the driving chip 20 ′; and the drain of the TFT 12 ′ is coupled to the storage capacitor 14 ′.
- TFTs 12 ′ are mainly used as the switching devices in active-matrix LCDs.
- FIG. 2 shows a schematic diagram of the plurality of pixel structures of the display panel
- FIG. 3 shows waveform of the driving signal for the plurality of pixel structures according to the prior art.
- the driving chip 20 ′ will produce a plurality of scan signals G 0 , G 1 , . . . , Gn and transmit the plurality of scan signals G 0 , G 1 , . . . , Gn sequentially to a plurality of scan lines Ga 1 , Ga 2 , . . .
- a plurality of data lines S 0 , S 1 , . . . , Sn supply the corresponding voltages of image data to the pixel structures 10 ′ of the display panel and thus displaying the image.
- parasitic capacitor 16 ′ between the TFT 14 ′ of the plurality of pixel structures 10 ′ and the storage capacitor 14 ′ such as Cs 1 , Cs 2 , Cs 3 , and Cs 4 in FIG. 2 .
- the storage voltages across the storage capacitors Cs 1 , Cs 2 will be shifted downwards by a shift voltage Vsft owing to the parasitic capacitors 16 ′, which is approximately 1 volt.
- the driving chip 20 ′ will provide a reference voltage DC to a common electrode 18 ′ of the plurality of pixel structures according to the shift voltage Vsft, which is used as a common voltage.
- the parasitic capacitors 16 ′ vary over the display panel.
- the shift voltage Vsft will be slightly different.
- the storage voltages across the storage capacitors Cs 1 , Cs 2 tend to be not symmetrical to the common voltage of the common electrode 18 ′ and thus producing the flash phenomenon.
- the scan signal G 0 switches TFTs, as shown in FIG. 3 , the voltage level of the common voltage on the common electrode of the pixel structures are influenced, which further influences the displaying quality.
- the present invention provides a novel driving circuit of display panel capable of eliminating flash.
- the storage voltages across the storage capacitors tend to be asymmetrical to the common voltage of the common electrode and resulting in the flash phenomenon.
- the present invention provides a driving circuit of display panel to solve the problem.
- An objective of the present invention is to provide a driving circuit of display panel capable of eliminating flash, which uses a data driving circuit to adjust the voltage levels of the data signals of a plurality of adjacent pixel structures to be symmetrical to a common voltage of the plurality of pixel structures for eliminating the screen flash phenomenon.
- the driving circuit of display panel comprises a scan driving circuit and a data driving circuit.
- the scan driving circuit produces a plurality of scan signals for scanning a plurality of pixel structures of the display panel.
- the data driving circuit produces a plurality of data signals for transmitting the plurality of data signals to the plurality of pixel structures when the plurality of pixel structures are scanned.
- the data driving circuit transmits the plurality of data signals to the plurality of pixel structures
- the data driving circuit adjusts the voltage levels of the data signals of the plurality of pixel structures to be symmetrical to a common voltage of the plurality of pixel structures. Accordingly, by using the data driving circuit to adjust the voltage levels of the data signals of a plurality of adjacent pixel structures to be symmetrical to the common voltage of the plurality of pixel structures, the screen flash phenomenon can be eliminated.
- FIG. 1 shows a schematic diagram of the display panel and its plurality of pixel structures according to the prior art
- FIG. 2 shows a schematic diagram of the plurality of pixel structures of the display panel according to the prior art
- FIG. 3 shows waveforms of the driving signal for the plurality of pixel structures according the prior art
- FIG. 4 shows a schematic diagram of the display device according to an embodiment of the present invention.
- FIG. 5 shows a schematic diagram of the pixel structures of the display panel of the display device in FIG. 4 according to an embodiment of the present invention
- FIG. 6A shows schematic diagrams of the display panel of the display device and the pixel structures thereof in FIG. 4 according to an embodiment of the present invention
- FIG. 6B shows schematic diagrams of the display panel of the display device and the pixel structures thereof in FIG. 4 according to another embodiment of the present invention
- FIG. 6C shows schematic diagrams of the display panel of the display device and the pixel structures thereof in FIG. 4 according to another embodiment of the present invention.
- FIG. 7A shows waveforms of the driving circuit in FIG. 6A driving the display panel according to the present invention
- FIG. 7B shows waveforms of the driving circuit in FIGS. 6A and 6B driving the display panel according to the present invention
- FIG. 8 shows a circuit diagram of the data driving circuit according to an embodiment of the present invention.
- FIG. 9 shows a circuit diagram of the data driving circuit according to another embodiment of the present invention.
- FIG. 10 shows a circuit diagram of the data driving circuit according to still another embodiment of the present invention.
- FIGS. 4 , 5 , and 6 A show schematic diagrams of the display panel, the display device, and a plurality of pixel structures thereof according to an embodiment of the present invention.
- the display device according to the present invention comprises a display panel I and a driving circuit 2 .
- the display panel includes a plurality of pixel structures 10 , which are located at the intersections of the scan lines and the data lines of the display panel 1 , as shown in FIG. 5 .
- the plurality of pixel structures 10 include a first pixel structure P 1 , a second pixel structure P 2 , a third pixel structure P 3 , and a fourth pixel structure P 4 .
- the first pixel structure P, the second pixel structure P 2 , the third pixel structure, and the fourth pixel structure P 4 are arranged in a matrix.
- the first and second pixel structures P 1 , P 2 are arranged horizontally;
- the first and third pixel structures P 1 , P 3 are arranged vertically;
- the second and fourth pixel structures P 2 , P 4 are arranged vertically;
- the third and fourth pixel structures are arranged horizontally.
- the first and second pixel structures P 1 , P 2 are controlled by a first scan line G 0 ; the third and fourth pixel structures P 3 , P 4 are controlled by a second scan line G 1 ; the first and third pixel structures P 1 , P 3 are coupled to a data line S 0 ; and the second and fourth pixel structures P 2 , P 4 are coupled to a second data line S 1 .
- Each pixel structure 10 includes a transistor 12 and a storage capacitor 14 .
- the transistor 12 has a gate, a source, and a drain.
- the transistor 12 is a switch.
- the gate of the transistor 12 is coupled to the scan line of the display panel 1 for controlling the turning on and cutoff of the transistor 12 .
- the source of the transistor 12 is coupled to the data line of the display panel 1 for receiving the data signal according to the turning on of the transistor 12 .
- the drain of the transistor 12 is coupled to a terminal of the storage capacitor 14 .
- the other terminal of the storage capacitor 14 namely, the common electrode COM, is coupled to a ground.
- the storage capacitor 14 is a liquid crystal capacitor.
- the driving circuit 2 of the display device includes a scan driving circuit 20 and a data driving circuit 30 .
- the scan driving circuit 20 produces a plurality of scan signals for scanning the plurality of pixel structures 10 of the display panel 1 .
- the data driving circuit 30 produces a plurality of data signals and transmits the plurality of data signals to the plurality of pixel structures 10 corresponding to the plurality of scan signals. That is to say, when the plurality of pixel structures 10 are scanned, the data driving circuit 30 transmits the plurality of data signals to the plurality of pixel structures 10 .
- the data driving circuit 30 When the data driving circuit 30 transmits the plurality of data signals to the plurality of adjacent pixel structures 10 , the data driving circuit 30 adjusts the voltage levels of the data signals of the plurality of adjacent pixel structures 10 to be symmetrical to the common voltage VCOM of the plurality of pixel structures 10 .
- the scan driving circuit 20 produces and transmits the scan signal to the first scan line G 0 , the first pixel structure CS 1 and the adjacent second pixel CS 2 , the data driving circuit 20 produces and transmits the plurality of data signals to the first pixel structure CS 1 and the adjacent second pixel CS 2 , respectively.
- the polarities of the plurality of data signals transmitted by the data driving circuit 20 to the first pixel structure CS 1 and the adjacent second pixel CS 2 , respectively, are opposite.
- the voltage levels of the plurality of data signals transmitted by the data driving circuit 30 to the first pixel structure CS 1 and the adjacent second pixel CS 2 are symmetrical to the common voltage VCOM of the plurality of pixel structures 10 .
- the storage voltage across the storage capacitor 14 of the first pixel structure CS 1 and the storage voltage across the storage capacitor 14 of the second pixel structure CS 2 are still symmetrical to the common voltage VCOM of the common electrode COM of the plurality of pixel structures 10 . Accordingly, the present invention can eliminate the screen flash phenomenon.
- the driving circuit 2 further includes a common-electrode power supply circuit 60 , which is coupled to the common electrode COM of the plurality of pixel structures 10 for supplying the common voltage VCOM.
- FIGS. 6B and 7B show schematic diagrams of the display panel of the display device and the pixel structures thereof in FIG. 4 and waveforms of the driving circuit driving the display panel according to another embodiment of the present invention.
- the difference between the present embodiment and the one according to the previous one is that the common electrode COM of the plurality of pixel structures 10 according to the present embodiment is coupled to a ground.
- the data driving circuit 30 transmits the plurality of data signals to the plurality of adjacent pixel structures 10
- the data driving circuit 30 adjusts the voltage levels of the data signals of the plurality of adjacent pixel structures 10 to be symmetrical to the common voltage VCOM of the plurality of pixel structures 10 , as shown in FIGS. 5 and 7B .
- the data driving circuit 30 transmits the plurality of data signals, respectively, to the first pixel structure CS 1 and the second pixel structure CS 2 .
- the level of the scan signal of the first scan line G 0 is high and the first and second pixel structures CS 1 , CS 2 are displaying identical grayscale voltages
- the voltage levels of the plurality of data signals of transmitted to the first and second pixel structures CS 1 , CS 2 by the data driving circuit 30 are symmetrical to the common voltage VCOM of the plurality of pixel structures 10 .
- the data signal of the first pixel structure CS 1 and the data signal of the second pixel structure CS 2 are symmetrical to the ground voltage.
- the plurality of data signals are still symmetrical to the common voltage VCOM, which is the ground voltage in the present embodiment.
- FIG. 6C shows schematic diagrams of the display panel of the display device and the pixel structures thereof in FIG. 4 according to another embodiment of the present invention.
- the difference between the present embodiment and the one in FIG. 6B is that the common electrode COM of the plurality of pixel structures 10 according to the present embodiment is not coupled to the ground directly. Instead, it is coupled to the ground via the driving circuit 20 .
- the common electrode COM of the plurality of pixel structures 10 of the display panel 1 is coupled to any ground of the driving circuit 20 for making the common voltage VCOM of the common electrode COM zero.
- FIG. 8 shows a circuit diagram of the data driving circuit of the display panel according to an embodiment of the present invention.
- the data driving circuit 30 of the display device according to the present invention comprises a compensation circuit 32 , a gamma voltage generating circuit 34 , a plurality of digital-to-analog converters (DACs) 36 , and a plurality of buffer units 38 .
- the compensation circuit 32 produces a compensation signal.
- the gamma voltage generating circuit 34 generates a plurality of gamma voltages according the compensation signal and gamma curve data.
- the compensation signal produced by the compensation circuit 32 is used for adjusting the signal levels of the plurality of gamma voltages output by the gamma voltage generating circuit 34 .
- the plurality of DACs 36 select a portion of the plurality of gamma voltages according to a plurality of display signals. In other words, after the plurality of DACs 36 receive the display signals, respectively, they will determine to select one of the plurality of gamma voltages, respectively, according to the display signals and output the determined gamma voltage. For example, the gamma voltage generating circuit 34 generates 64 gamma voltages to the plurality of DACs 36 . When the display signal received by the first DAC 36 is 15, the first DAC 36 will select the 15th gamma voltage for outputting. When the display signal received by the fifth DAC 36 is 55, the fifth DAC 36 will select the 55th gamma voltage for outputting.
- the plurality of buffer units 38 correspond to the plurality of DACs 36 and produce a plurality of data signals according to the plurality of gamma voltages output by the plurality of DACs 36 for driving the display panel 1 .
- the plurality of buffer units 38 are coupled to the plurality of DACs 36 , respectively, for buffering the plurality of gamma voltages output by the plurality of DACs 36 , and hence producing and outputting the plurality of data signals for driving the display panel 1 . Accordingly, by using the compensation signal produced by the compensation circuit 32 , the signal levels of the plurality of gamma voltages output by the gamma voltage generating circuit 34 can be adjusted.
- the scan signal is cut off and the storage voltage across the storage capacitor 14 is shifted downwards by a shift voltage Vsft owing to the parasitic capacitor, as shown in FIGS. 7A and 7B , the storage voltage across the storage capacitor 14 is still symmetrical to the common voltage VCOM of the common electrode COM while displaying identical grayscale voltages.
- the magnitude of compensation signal is the shift voltage Vsft. Then the signal levels of the plurality of gamma voltage are adjusted upwards or downwards by a shift voltage Vsft.
- the storage voltage across the storage capacitor 14 is still symmetrical to the common voltage VCOM of the common electrode COM while displaying identical grayscale voltages.
- the gamma voltage generating circuit 34 comprises a voltage dividing circuit 340 and a gamma-voltage selection unit 342 .
- the voltage dividing circuit 340 receives a power supply voltage GV DD and produces a plurality of voltage dividing signals according to the compensation signal.
- the gamma-voltage selection unit 342 is coupled to the voltage dividing circuit 340 and generating the plurality of gamma voltages by selecting a portion of the voltage dividing signal of the plurality of voltage dividing signals according to the gamma curve data.
- the data driving circuit 30 of the display panel 1 further includes an input/output interface 40 , a gamma curve data register 42 , a display memory 44 , a shift register 46 , and a buffer circuit 48 .
- the input/output interface 40 receives the gamma curve data and the display signal.
- the gamma curve data register 42 is coupled to the input/output interface 40 , registers the gamma curve data, and transmitting the gamma curve data to the gamma voltage generating circuit 34 .
- the display memory 44 is coupled to the input/output interface 40 and stores the display signal.
- the shift register 46 is coupled to the display memory 44 , and receives and shifts the display signal.
- the buffer circuit 48 is coupled to the shift register 46 . buffers the display signal, and transmits the display signal to the plurality of DACs 36 .
- FIG. 9 shows a circuit diagram of the driving circuit of the display panel according to another embodiment of the present invention.
- the compensation circuit 32 according the present embodiment comprises a compensation unit 320 , an adjusting circuit 322 , and a switching circuit 324 .
- the compensation unit 320 is used for producing a compensation signal.
- the adjusting circuit 322 receives a power supply voltage GVdd and dividing the voltage of the power supply voltage GVdd for producing a plurality of adjusting signal.
- the switching circuit 324 is coupled to the adjusting circuit 322 .
- the switching circuit 324 selects the plurality of adjusting signals according to the compensation signal for producing a first reference voltage and a second reference voltage and transmits the first and second reference voltages to the gamma voltage generating circuit 34 .
- the switching circuit 324 can select the plurality of adjusting signals produced by the adjusting circuit 322 for producing the first and second reference signals and thus adjusting the signal levels of the plurality of gamma voltages.
- the signal levels of the driving signals output by the data driving circuit 30 can be adjusted as well.
- the data driving circuit 30 to adjust the voltage levels of the data signals of the plurality of adjacent pixel structures 10 to be symmetrical to the common voltage of the plurality of pixel structures 10 , the screen flash phenomenon can be eliminated.
- the compensation circuit 32 further comprises a first amplifying unit 326 and a second amplifying unit 328 .
- the first amplifying unit 326 is coupled to the switching circuit 324 , and buffers the first reference voltage and transmits it to the voltage dividing circuit 340 .
- the second amplifying unit 328 is coupled to the switching circuit 324 , and buffers the second reference voltage and transmits it to the voltage dividing circuit 340 . Then the voltage dividing circuit 340 divides the voltage difference between the first and second reference voltage and gives the plurality of voltage dividing signals.
- FIG. 10 shows a circuit diagram of the driving circuit of the display panel according to still another embodiment of the present invention.
- the difference between the present embodiment and the embodiments of FIGS. 8 and 9 is that the data driving circuit 30 according to the present embodiment 30 further includes an operational circuit 50 , which is coupled to the gamma curve data register 42 .
- the operational circuit 50 calculates the gamma curve data and the compensation signal, and produces an operational signal and transmits the operational signal to the gamma voltage generating circuit 34 for generating the plurality of gamma voltages.
- the compensation circuit 32 produces the compensation signal according to the magnitude of the downward shift voltage Vsft, which is coupled to the storage voltage across the storage capacitors 14 of the plurality of pixel structures 10 and caused by the parasitic capacitor of the transistors 12 .
- the operational circuit 50 first add the compensation signal to the gamma curve data. Then, as the scan signal is cut off and the storage voltage across the storage capacitor 14 is shifted downwards by a shift voltage Vsft owing to the parasitic capacitor, the storage voltage across the storage capacitor 14 is still symmetrical to the common voltage VCOM of the common electrode COM while displaying identical grayscale voltages. Thus, the flash phenomenon can be eliminated.
- the driving circuit of display panel comprises a scan driving circuit and a data driving circuit.
- the scan driving circuit produces a plurality of scan signals for scanning a plurality of pixel structures of the display panel.
- the data driving circuit produces a plurality of data signals for transmitting the plurality of data signals to the plurality of pixel structures when the plurality of pixel structures are scanned.
- the data driving circuit transmits the plurality of data signals to the plurality of pixel structures
- the data driving circuit adjusts the voltage levels of the data signals of the plurality of pixel structures to be symmetrical to a common voltage of the plurality of pixel structures. Accordingly, by using the data driving circuit to adjust the voltage levels of the data signals of a plurality of adjacent pixel structures to be symmetrical to the common voltage of the plurality of pixel structures, the screen flash phenomenon can be eliminated.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal Display Device Control (AREA)
- Liquid Crystal (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
The present invention relates to a driving circuit of display panel capable of eliminating flash, which comprises a scan driving circuit and a data driving circuit. The scan driving circuit produces a plurality of scan signals for scanning a plurality of pixel structures of the display panel. The data driving circuit produces a plurality of data signals for transmitting the plurality of data signals to the plurality of pixel structures when the plurality of pixel structures are scanned. When the data driving circuit transmits the plurality of data signals to the plurality of pixel structures, the data driving circuit adjusts the voltage levels of the data signals of the plurality of pixel structures to be symmetrical to a common voltage of the plurality of pixel structures.
Description
- This Application is based on Provisional Patent Application Ser. No. 61/636,833, filed 23 Apr. 2012, currently pending.
- The present invention relates generally to a driving circuit of display panel, and particularly to a driving circuit of display panel capable of eliminating screen flash (flicker) phenomenon and thus enhancing the displaying quality.
- Modern technologies are developing prosperously. Novel information products are introduced daily for satisfying people's various needs. Early displays are mainly cathode ray tubes (CRTs). Owing to their huge size, heavy power consumption, and radiation hazardous to the heath of long-term users, traditional CRTs are gradually replaced by liquid crystal displays (LCDs). LCDs have the advantages of small size, low radiation, and low power consumption, and thus becoming the mainstream in the market.
- LCDs control the transmittance of liquid crystal cells according to data signals for displaying images.
FIG. 1 shows a schematic diagram of the display panel and its plurality of pixel structures according to the prior art. As shown inFIG. 1 , the display panel comprises a plurality ofpixel structures 10′ and adriving chip 20′. Thedriving chip 20′ produces a driving signal for driving the plurality ofpixel structures 10′. Where each of thepixel structures 10′ includes a thin film transistor (TFT) 12′ and astorage capacitor 14′. The gate of theTFT 12′ is coupled to a scan line; the source of theTFT 12′ is coupled to thedriving chip 20′; and the drain of theTFT 12′ is coupled to thestorage capacitor 14′. Because an active-matrix LCD adopts active switching devices, it is advantageous in displaying moving pictures.TFTs 12′ are mainly used as the switching devices in active-matrix LCDs. - In addition, the applications of TFT LCDs are extensive. Their driving method is to turn on the internal cell using the gate. Then the source is used for supplying the accurate voltage for controlling the orientation of the liquid crystal in the display panel for displaying images.
FIG. 2 shows a schematic diagram of the plurality of pixel structures of the display panel andFIG. 3 shows waveform of the driving signal for the plurality of pixel structures according to the prior art. As shown in the figures, thedriving chip 20′ will produce a plurality of scan signals G0, G1, . . . , Gn and transmit the plurality of scan signals G0, G1, . . . , Gn sequentially to a plurality of scan lines Ga1, Ga2, . . . , Gan of the plurality of pixel structures. As any of the scan lines is activated, namely, the scan signal reaching VGH, a plurality of data lines S0, S1, . . . , Sn supply the corresponding voltages of image data to thepixel structures 10′ of the display panel and thus displaying the image. - There exists a
parasitic capacitor 16′ between theTFT 14′ of the plurality ofpixel structures 10′ and thestorage capacitor 14′ such as Cs1, Cs2, Cs3, and Cs4 inFIG. 2 . Thereby, when the scan signal G0 is cut off, the storage voltages across the storage capacitors Cs1, Cs2 will be shifted downwards by a shift voltage Vsft owing to theparasitic capacitors 16′, which is approximately 1 volt. Thedriving chip 20′ will provide a reference voltage DC to acommon electrode 18′ of the plurality of pixel structures according to the shift voltage Vsft, which is used as a common voltage. Hence, when the scan signal G0 is cut off and the storage voltages across the storage capacitors Cs1, Cs2 are shifted by a shift voltage Vsft owing to theparasitic capacitors 16′, the storage voltages across the storage capacitors Cs1, Cs2 are still symmetrical to the common voltage of thecommon electrode 18′ while displaying identical grayscale voltages. - Nonetheless, the
parasitic capacitors 16′ vary over the display panel. As the storage voltages across the storage capacitors Cs1, Cs2 are shifted by a shift voltage Vsft, the shift voltage Vsft will be slightly different. Thereby, while displaying identical grayscale voltages, the storage voltages across the storage capacitors Cs1, Cs2 tend to be not symmetrical to the common voltage of thecommon electrode 18′ and thus producing the flash phenomenon. Moreover, as the scan signal G0 switches TFTs, as shown inFIG. 3 , the voltage level of the common voltage on the common electrode of the pixel structures are influenced, which further influences the displaying quality. - Accordingly, the present invention provides a novel driving circuit of display panel capable of eliminating flash. When the adjacent pixel structures are displaying identical grayscale voltages, the storage voltages across the storage capacitors tend to be asymmetrical to the common voltage of the common electrode and resulting in the flash phenomenon. The present invention provides a driving circuit of display panel to solve the problem.
- An objective of the present invention is to provide a driving circuit of display panel capable of eliminating flash, which uses a data driving circuit to adjust the voltage levels of the data signals of a plurality of adjacent pixel structures to be symmetrical to a common voltage of the plurality of pixel structures for eliminating the screen flash phenomenon.
- The driving circuit of display panel according to the present invention comprises a scan driving circuit and a data driving circuit. The scan driving circuit produces a plurality of scan signals for scanning a plurality of pixel structures of the display panel. The data driving circuit produces a plurality of data signals for transmitting the plurality of data signals to the plurality of pixel structures when the plurality of pixel structures are scanned. When the data driving circuit transmits the plurality of data signals to the plurality of pixel structures, the data driving circuit adjusts the voltage levels of the data signals of the plurality of pixel structures to be symmetrical to a common voltage of the plurality of pixel structures. Accordingly, by using the data driving circuit to adjust the voltage levels of the data signals of a plurality of adjacent pixel structures to be symmetrical to the common voltage of the plurality of pixel structures, the screen flash phenomenon can be eliminated.
-
FIG. 1 shows a schematic diagram of the display panel and its plurality of pixel structures according to the prior art; -
FIG. 2 shows a schematic diagram of the plurality of pixel structures of the display panel according to the prior art; -
FIG. 3 shows waveforms of the driving signal for the plurality of pixel structures according the prior art; -
FIG. 4 shows a schematic diagram of the display device according to an embodiment of the present invention; -
FIG. 5 shows a schematic diagram of the pixel structures of the display panel of the display device inFIG. 4 according to an embodiment of the present invention; -
FIG. 6A shows schematic diagrams of the display panel of the display device and the pixel structures thereof inFIG. 4 according to an embodiment of the present invention; -
FIG. 6B shows schematic diagrams of the display panel of the display device and the pixel structures thereof inFIG. 4 according to another embodiment of the present invention; -
FIG. 6C shows schematic diagrams of the display panel of the display device and the pixel structures thereof inFIG. 4 according to another embodiment of the present invention; -
FIG. 7A shows waveforms of the driving circuit inFIG. 6A driving the display panel according to the present invention; -
FIG. 7B shows waveforms of the driving circuit inFIGS. 6A and 6B driving the display panel according to the present invention; -
FIG. 8 shows a circuit diagram of the data driving circuit according to an embodiment of the present invention; -
FIG. 9 shows a circuit diagram of the data driving circuit according to another embodiment of the present invention; and -
FIG. 10 shows a circuit diagram of the data driving circuit according to still another embodiment of the present invention. - In order to make the structure and characteristics as well as the effectiveness of the present invention to be further understood and recognized, the detailed description of the present invention is provided as follows along with embodiments and accompanying figures.
-
FIGS. 4 , 5, and 6A show schematic diagrams of the display panel, the display device, and a plurality of pixel structures thereof according to an embodiment of the present invention. As shown in the figures, the display device according to the present invention comprises a display panel I and adriving circuit 2. The display panel includes a plurality ofpixel structures 10, which are located at the intersections of the scan lines and the data lines of thedisplay panel 1, as shown inFIG. 5 . The plurality ofpixel structures 10 include a first pixel structure P1, a second pixel structure P2, a third pixel structure P3, and a fourth pixel structure P4. The first pixel structure P, the second pixel structure P2, the third pixel structure, and the fourth pixel structure P4 are arranged in a matrix. In other words, the first and second pixel structures P1, P2 are arranged horizontally; the first and third pixel structures P1, P3 are arranged vertically; the second and fourth pixel structures P2, P4 are arranged vertically; and the third and fourth pixel structures are arranged horizontally. The first and second pixel structures P1, P2 are controlled by a first scan line G0; the third and fourth pixel structures P3, P4 are controlled by a second scan line G1; the first and third pixel structures P1, P3 are coupled to a data line S0; and the second and fourth pixel structures P2, P4 are coupled to a second data line S1. Eachpixel structure 10 includes atransistor 12 and astorage capacitor 14. - The
transistor 12 has a gate, a source, and a drain. Thetransistor 12 is a switch. The gate of thetransistor 12 is coupled to the scan line of thedisplay panel 1 for controlling the turning on and cutoff of thetransistor 12. The source of thetransistor 12 is coupled to the data line of thedisplay panel 1 for receiving the data signal according to the turning on of thetransistor 12. The drain of thetransistor 12 is coupled to a terminal of thestorage capacitor 14. The other terminal of thestorage capacitor 14, namely, the common electrode COM, is coupled to a ground. Here thestorage capacitor 14 is a liquid crystal capacitor. - In addition, the driving
circuit 2 of the display device according to the present invention includes ascan driving circuit 20 and adata driving circuit 30. Thescan driving circuit 20 produces a plurality of scan signals for scanning the plurality ofpixel structures 10 of thedisplay panel 1. Thedata driving circuit 30 produces a plurality of data signals and transmits the plurality of data signals to the plurality ofpixel structures 10 corresponding to the plurality of scan signals. That is to say, when the plurality ofpixel structures 10 are scanned, thedata driving circuit 30 transmits the plurality of data signals to the plurality ofpixel structures 10. When thedata driving circuit 30 transmits the plurality of data signals to the plurality ofadjacent pixel structures 10, thedata driving circuit 30 adjusts the voltage levels of the data signals of the plurality ofadjacent pixel structures 10 to be symmetrical to the common voltage VCOM of the plurality ofpixel structures 10. TakingFIGS. 5 and 7A for example, thescan driving circuit 20 produces and transmits the scan signal to the first scan line G0, the first pixel structure CS1 and the adjacent second pixel CS2, thedata driving circuit 20 produces and transmits the plurality of data signals to the first pixel structure CS1 and the adjacent second pixel CS2, respectively. The polarities of the plurality of data signals transmitted by thedata driving circuit 20 to the first pixel structure CS1 and the adjacent second pixel CS2, respectively, are opposite. Thereby, when the first pixel structure CS1 and the adjacent second pixel CS2 are displaying identical grayscale voltages, the voltage levels of the plurality of data signals transmitted by thedata driving circuit 30 to the first pixel structure CS1 and the adjacent second pixel CS2 are symmetrical to the common voltage VCOM of the plurality ofpixel structures 10. Namely, the storage voltage across thestorage capacitor 14 of the first pixel structure CS1 and the storage voltage across thestorage capacitor 14 of the second pixel structure CS2 are still symmetrical to the common voltage VCOM of the common electrode COM of the plurality ofpixel structures 10. Accordingly, the present invention can eliminate the screen flash phenomenon. - Besides, the driving
circuit 2 according to the present invention further includes a common-electrodepower supply circuit 60, which is coupled to the common electrode COM of the plurality ofpixel structures 10 for supplying the common voltage VCOM. -
FIGS. 6B and 7B show schematic diagrams of the display panel of the display device and the pixel structures thereof inFIG. 4 and waveforms of the driving circuit driving the display panel according to another embodiment of the present invention. As shown in the figures, the difference between the present embodiment and the one according to the previous one is that the common electrode COM of the plurality ofpixel structures 10 according to the present embodiment is coupled to a ground. When thedata driving circuit 30 transmits the plurality of data signals to the plurality ofadjacent pixel structures 10, thedata driving circuit 30 adjusts the voltage levels of the data signals of the plurality ofadjacent pixel structures 10 to be symmetrical to the common voltage VCOM of the plurality ofpixel structures 10, as shown inFIGS. 5 and 7B . When thescan driving circuit 20 transmits the scan signal to the first scan line G0, thedata driving circuit 30 transmits the plurality of data signals, respectively, to the first pixel structure CS1 and the second pixel structure CS2. When the level of the scan signal of the first scan line G0 is high and the first and second pixel structures CS1, CS2 are displaying identical grayscale voltages, the voltage levels of the plurality of data signals of transmitted to the first and second pixel structures CS1, CS2 by thedata driving circuit 30 are symmetrical to the common voltage VCOM of the plurality ofpixel structures 10. In other words, the data signal of the first pixel structure CS1 and the data signal of the second pixel structure CS2 are symmetrical to the ground voltage. As the voltage level of the scan signal of the first scan line G0 is low, after the parasitic-capacitor effect of the first and second pixel structures CS1, CS2, the plurality of data signals are still symmetrical to the common voltage VCOM, which is the ground voltage in the present embodiment. -
FIG. 6C shows schematic diagrams of the display panel of the display device and the pixel structures thereof inFIG. 4 according to another embodiment of the present invention. As shown in the figure, the difference between the present embodiment and the one inFIG. 6B is that the common electrode COM of the plurality ofpixel structures 10 according to the present embodiment is not coupled to the ground directly. Instead, it is coupled to the ground via the drivingcircuit 20. In other words, the common electrode COM of the plurality ofpixel structures 10 of thedisplay panel 1 is coupled to any ground of the drivingcircuit 20 for making the common voltage VCOM of the common electrode COM zero. -
FIG. 8 shows a circuit diagram of the data driving circuit of the display panel according to an embodiment of the present invention. As shown in the figure, thedata driving circuit 30 of the display device according to the present invention comprises acompensation circuit 32, a gammavoltage generating circuit 34, a plurality of digital-to-analog converters (DACs) 36, and a plurality ofbuffer units 38. Thecompensation circuit 32 produces a compensation signal. The gammavoltage generating circuit 34 generates a plurality of gamma voltages according the compensation signal and gamma curve data. The compensation signal produced by thecompensation circuit 32 is used for adjusting the signal levels of the plurality of gamma voltages output by the gammavoltage generating circuit 34. - The plurality of
DACs 36 select a portion of the plurality of gamma voltages according to a plurality of display signals. In other words, after the plurality ofDACs 36 receive the display signals, respectively, they will determine to select one of the plurality of gamma voltages, respectively, according to the display signals and output the determined gamma voltage. For example, the gammavoltage generating circuit 34 generates 64 gamma voltages to the plurality ofDACs 36. When the display signal received by thefirst DAC 36 is 15, thefirst DAC 36 will select the 15th gamma voltage for outputting. When the display signal received by thefifth DAC 36 is 55, thefifth DAC 36 will select the 55th gamma voltage for outputting. - The plurality of
buffer units 38 correspond to the plurality ofDACs 36 and produce a plurality of data signals according to the plurality of gamma voltages output by the plurality ofDACs 36 for driving thedisplay panel 1. Namely, the plurality ofbuffer units 38 are coupled to the plurality ofDACs 36, respectively, for buffering the plurality of gamma voltages output by the plurality ofDACs 36, and hence producing and outputting the plurality of data signals for driving thedisplay panel 1. Accordingly, by using the compensation signal produced by thecompensation circuit 32, the signal levels of the plurality of gamma voltages output by the gammavoltage generating circuit 34 can be adjusted. Thereby, as the scan signal is cut off and the storage voltage across thestorage capacitor 14 is shifted downwards by a shift voltage Vsft owing to the parasitic capacitor, as shown inFIGS. 7A and 7B , the storage voltage across thestorage capacitor 14 is still symmetrical to the common voltage VCOM of the common electrode COM while displaying identical grayscale voltages. Thus, the flash phenomenon can be eliminated. For example, the magnitude of compensation signal is the shift voltage Vsft. Then the signal levels of the plurality of gamma voltage are adjusted upwards or downwards by a shift voltage Vsft. When the scan signal is cut off and the storage voltage across thestorage capacitor 14 is shifted downwards by a shift voltage Vsft owing to the parasitic capacitor, the storage voltage across thestorage capacitor 14 is still symmetrical to the common voltage VCOM of the common electrode COM while displaying identical grayscale voltages. Thereby, by using thedata driving circuit 30 to adjust the voltage levels of the data signals of a plurality of adjacent pixel structures to be symmetrical to the common voltage of the plurality of pixel structures, the screen flash phenomenon can be eliminated. - Refer again to
FIG. 8 . The gammavoltage generating circuit 34 according to the present invention comprises avoltage dividing circuit 340 and a gamma-voltage selection unit 342. Thevoltage dividing circuit 340 receives a power supply voltage GVDD and produces a plurality of voltage dividing signals according to the compensation signal. The gamma-voltage selection unit 342 is coupled to thevoltage dividing circuit 340 and generating the plurality of gamma voltages by selecting a portion of the voltage dividing signal of the plurality of voltage dividing signals according to the gamma curve data. - Moreover, the
data driving circuit 30 of thedisplay panel 1 according to the present invention further includes an input/output interface 40, a gamma curve data register 42, adisplay memory 44, ashift register 46, and abuffer circuit 48. The input/output interface 40 receives the gamma curve data and the display signal. The gamma curve data register 42 is coupled to the input/output interface 40, registers the gamma curve data, and transmitting the gamma curve data to the gammavoltage generating circuit 34. Thedisplay memory 44 is coupled to the input/output interface 40 and stores the display signal. Theshift register 46 is coupled to thedisplay memory 44, and receives and shifts the display signal. Thebuffer circuit 48 is coupled to theshift register 46. buffers the display signal, and transmits the display signal to the plurality ofDACs 36. -
FIG. 9 shows a circuit diagram of the driving circuit of the display panel according to another embodiment of the present invention. As shown in the figure, the difference between the present embodiment and the one inFIG. 8 is that thecompensation circuit 32 according the present embodiment comprises acompensation unit 320, an adjustingcircuit 322, and aswitching circuit 324. Thecompensation unit 320 is used for producing a compensation signal. The adjustingcircuit 322 receives a power supply voltage GVdd and dividing the voltage of the power supply voltage GVdd for producing a plurality of adjusting signal. Theswitching circuit 324 is coupled to the adjustingcircuit 322. Theswitching circuit 324 selects the plurality of adjusting signals according to the compensation signal for producing a first reference voltage and a second reference voltage and transmits the first and second reference voltages to the gammavoltage generating circuit 34. Thereby, according to the present embodiment, by using the compensation signal produced by thecompensation unit 32, theswitching circuit 324 can select the plurality of adjusting signals produced by the adjustingcircuit 322 for producing the first and second reference signals and thus adjusting the signal levels of the plurality of gamma voltages. Hence, the signal levels of the driving signals output by thedata driving circuit 30 can be adjusted as well. Thereby, by using thedata driving circuit 30 to adjust the voltage levels of the data signals of the plurality ofadjacent pixel structures 10 to be symmetrical to the common voltage of the plurality ofpixel structures 10, the screen flash phenomenon can be eliminated. - In addition, the
compensation circuit 32 according to the present embodiment further comprises afirst amplifying unit 326 and asecond amplifying unit 328. Thefirst amplifying unit 326 is coupled to theswitching circuit 324, and buffers the first reference voltage and transmits it to thevoltage dividing circuit 340. Thesecond amplifying unit 328 is coupled to theswitching circuit 324, and buffers the second reference voltage and transmits it to thevoltage dividing circuit 340. Then thevoltage dividing circuit 340 divides the voltage difference between the first and second reference voltage and gives the plurality of voltage dividing signals. -
FIG. 10 shows a circuit diagram of the driving circuit of the display panel according to still another embodiment of the present invention. As shown in the figure, the difference between the present embodiment and the embodiments ofFIGS. 8 and 9 is that thedata driving circuit 30 according to thepresent embodiment 30 further includes anoperational circuit 50, which is coupled to the gamma curve data register 42. Theoperational circuit 50 calculates the gamma curve data and the compensation signal, and produces an operational signal and transmits the operational signal to the gammavoltage generating circuit 34 for generating the plurality of gamma voltages. Namely, Thecompensation circuit 32 produces the compensation signal according to the magnitude of the downward shift voltage Vsft, which is coupled to the storage voltage across thestorage capacitors 14 of the plurality ofpixel structures 10 and caused by the parasitic capacitor of thetransistors 12. Thereby, theoperational circuit 50 first add the compensation signal to the gamma curve data. Then, as the scan signal is cut off and the storage voltage across thestorage capacitor 14 is shifted downwards by a shift voltage Vsft owing to the parasitic capacitor, the storage voltage across thestorage capacitor 14 is still symmetrical to the common voltage VCOM of the common electrode COM while displaying identical grayscale voltages. Thus, the flash phenomenon can be eliminated. - To sum up, the driving circuit of display panel according to the present invention comprises a scan driving circuit and a data driving circuit. The scan driving circuit produces a plurality of scan signals for scanning a plurality of pixel structures of the display panel. The data driving circuit produces a plurality of data signals for transmitting the plurality of data signals to the plurality of pixel structures when the plurality of pixel structures are scanned. When the data driving circuit transmits the plurality of data signals to the plurality of pixel structures, the data driving circuit adjusts the voltage levels of the data signals of the plurality of pixel structures to be symmetrical to a common voltage of the plurality of pixel structures. Accordingly, by using the data driving circuit to adjust the voltage levels of the data signals of a plurality of adjacent pixel structures to be symmetrical to the common voltage of the plurality of pixel structures, the screen flash phenomenon can be eliminated.
Claims (9)
1. A driving circuit of display panel capable eliminating flash, comprising:
a scan driving circuit, producing a plurality of scan signals, and scanning a plurality of pixel structures of said display panel; and
a data driving circuit, producing a plurality of data signals, and transmitting said plurality of data signals to said plurality of pixel structures when said plurality of pixels structures are scanned; where when said data driving circuit transmits said plurality of data signals to said plurality of adjacent pixel structures, said data driving circuit adjusts the voltage levels of said data signals of said plurality of adjacent pixel structures to be symmetrical to a common voltage of said plurality of pixel structures.
2. The driving circuit of claim 1 , wherein said data driving circuit comprises:
a compensation circuit, producing a compensation signal;
a gamma voltage generating circuit, generating a plurality of gamma voltages according to said compensation signal and gamma curve data; and
a plurality of digital-to-analog converters, selecting a portion of said plurality of gamma voltages according to a plurality of display signals for outputting and driving said display panel;
where said compensation signal of said compensation circuit adjusts the signal levels of said plurality of gamma voltages for adjusting the voltage levels of said data signals of said plurality of adjacent pixel structures to be symmetrical to said common voltage of said plurality of pixel structures.
3. The driving circuit of claim 2 , wherein said data driving circuit further comprises a plurality of buffer units, corresponding to said plurality of digital-to-analog converters, producing a plurality of data signals according to said plurality of gamma voltages output by said plurality of digital-to-analog converters for driving said display panel.
4. The driving circuit of claim 2 , wherein said gamma voltage generating circuit comprises:
a voltage dividing circuit, producing a plurality of voltage dividing signals; and
a gamma voltage selecting unit, coupled to said voltage dividing unit, and selecting a portion of said plurality of voltage dividing signals according to said gamma curve data for producing said plurality of gamma voltages.
5. The driving circuit of claim 2 , and further comprising:
an input/output interface, receiving said gamma curve data and said display signal; and
a gamma curve data register, coupled to said input/output interface, registering said gamma curve data, and transmitting said gamma curve data to said gamma voltage generating circuit.
6. The driving circuit of claim 5 , and further comprising:
a display memory, coupled to said input/output interface, and storing said display signal;
a shift register, coupled to said display memory, and receiving and shifting said display signal; and
a buffer circuit, coupled to said shift register, buffering and transmitting said display signal to said plurality of digital-to-analog converters.
7. The driving circuit of claim 4 , wherein said compensation circuit comprises:
a compensation unit, producing a compensation signal;
an adjusting circuit, receiving a power supply voltage, and dividing said power supply voltage for producing a plurality of adjusting signals; and
a switching circuit, coupled to said adjusting circuit, selecting said plurality of adjusting signals for producing a first reference voltage and a second reference voltage, and transmitting said first reference voltage and said second reference voltage to said voltage dividing circuit so that said voltage dividing circuit producing said plurality of voltage dividing signals according to said first reference voltage and said second reference voltage.
8. The driving circuit of claim 7 , wherein said gamma voltage generating circuit further comprises:
a first amplifying unit, coupled to said switching circuit, and buffering and transmitting said first reference voltage to said voltage dividing circuit; and
a second amplifying unit, coupled to said switching circuit, and buffering and transmitting said second reference voltage to said voltage dividing circuit.
9. The driving circuit of claim 2 , and further comprising an operational circuit, calculating said gamma curve data and said compensation signal for producing an operational signal, and transmitting said operational signal to said gamma voltage generating circuit for generating said plurality of gamma voltages.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/687,129 US20130278584A1 (en) | 2012-04-23 | 2012-11-28 | Driving circuit of display panel capable of eliminating flash |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261636833P | 2012-04-23 | 2012-04-23 | |
US13/687,129 US20130278584A1 (en) | 2012-04-23 | 2012-11-28 | Driving circuit of display panel capable of eliminating flash |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130278584A1 true US20130278584A1 (en) | 2013-10-24 |
Family
ID=47446325
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/687,129 Abandoned US20130278584A1 (en) | 2012-04-23 | 2012-11-28 | Driving circuit of display panel capable of eliminating flash |
US13/687,134 Active US9268419B2 (en) | 2012-04-23 | 2012-11-28 | Display panel and driving circuit thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/687,134 Active US9268419B2 (en) | 2012-04-23 | 2012-11-28 | Display panel and driving circuit thereof |
Country Status (5)
Country | Link |
---|---|
US (2) | US20130278584A1 (en) |
JP (5) | JP5760028B2 (en) |
KR (5) | KR101618403B1 (en) |
CN (4) | CN105321489B (en) |
TW (2) | TWI473066B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105047154A (en) * | 2015-08-11 | 2015-11-11 | 武汉华星光电技术有限公司 | Driving compensating circuit, liquid crystal display device with driving compensating circuit and driving method |
US20170277006A1 (en) * | 2016-03-25 | 2017-09-28 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Liquid crystal display panel and electrostatic discharge circuit |
US20180336855A1 (en) * | 2017-04-07 | 2018-11-22 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Gray scale voltage compensation method of liquid crystal panel, circuit and liquid crystal panel |
CN109658890A (en) * | 2019-01-24 | 2019-04-19 | 南京中电熊猫平板显示科技有限公司 | A kind of the compensation data method and display device of display device |
CN109741491A (en) * | 2018-12-18 | 2019-05-10 | 深圳市铁证科技有限公司 | A kind of finger vein face lock main control module |
US20210118379A1 (en) * | 2019-08-02 | 2021-04-22 | Sitronix Technology Corp. | Driving method for flicker suppression of display panel and driving circuit thereof |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI473066B (en) * | 2012-04-23 | 2015-02-11 | Sitronix Technology Corp | Display panel and its drive circuit |
JP6058289B2 (en) * | 2012-06-05 | 2017-01-11 | サターン ライセンシング エルエルシーSaturn Licensing LLC | Display device, imaging device, and gradation voltage generation circuit |
CN103794187B (en) * | 2014-01-27 | 2016-06-01 | 北京京东方光电科技有限公司 | Gamma reference voltage generating device and indicating meter |
TWI562124B (en) * | 2014-09-30 | 2016-12-11 | Au Optronics Corp | Pixel circuit and method for driving the same |
CN104361873B (en) * | 2014-11-18 | 2017-03-15 | 深圳市华星光电技术有限公司 | The method of adjustment of display parameters, device and liquid crystal display systems |
TWI534792B (en) * | 2014-12-11 | 2016-05-21 | Richtek Technology Corp | Gamma Curve Correction Method for Liquid Crystal Display |
TWI665654B (en) * | 2018-04-11 | 2019-07-11 | 立錡科技股份有限公司 | Liquid crystal display and gamma voltage correction method |
CN105788514A (en) * | 2014-12-23 | 2016-07-20 | 昆山国显光电有限公司 | Gamma voltage regulating circuit and method for driving chip, and AMOLED display |
CN104680998B (en) * | 2015-03-18 | 2017-03-08 | 京东方科技集团股份有限公司 | A kind of source electrode driver and liquid crystal indicator |
CN105070262B (en) * | 2015-08-26 | 2018-01-26 | 深圳市华星光电技术有限公司 | A kind of source electrode drive circuit and liquid crystal display panel |
KR20170072423A (en) | 2015-12-16 | 2017-06-27 | 삼성디스플레이 주식회사 | Display apparatus and method of driving the same |
CN105676499A (en) * | 2016-03-25 | 2016-06-15 | 深圳市华星光电技术有限公司 | Liquid-crystal display panel and static electricity discharging circuit thereof |
CN106773399A (en) * | 2016-12-28 | 2017-05-31 | 武汉华星光电技术有限公司 | A kind of array base palte and liquid crystal display |
CN107331365B (en) * | 2017-08-30 | 2020-06-05 | 昆山龙腾光电股份有限公司 | Source driver, display device and elimination method of display split screen |
CN107492358B (en) * | 2017-09-14 | 2020-02-21 | 京东方科技集团股份有限公司 | Gamma reference voltage generation circuit and generation method thereof |
CN107886917B (en) * | 2017-10-31 | 2020-12-25 | 南京中电熊猫平板显示科技有限公司 | Display device and voltage compensation method thereof |
TWI657429B (en) * | 2018-01-19 | 2019-04-21 | 奇景光電股份有限公司 | Display device and over driving method |
CN110070835B (en) * | 2018-01-22 | 2021-05-28 | 矽创电子股份有限公司 | Electronic paper display driving circuit |
TWI719391B (en) * | 2018-01-22 | 2021-02-21 | 矽創電子股份有限公司 | Reference voltage generator of display device |
CN108986731B (en) * | 2018-08-07 | 2021-10-08 | 京东方科技集团股份有限公司 | Display panel, compensation method thereof and display device |
CN109285510B (en) * | 2018-09-11 | 2021-04-02 | 重庆惠科金渝光电科技有限公司 | Display, display device and grounding resistance adjusting method |
CN109215577B (en) * | 2018-09-11 | 2020-06-23 | 重庆惠科金渝光电科技有限公司 | Driving circuit, driving method and display panel |
CN109243355B (en) * | 2018-10-24 | 2021-04-06 | 惠科股份有限公司 | Gamma voltage correction circuit, method and display device |
US10861377B2 (en) | 2018-10-24 | 2020-12-08 | HKC Corporation Limited | Gamma voltage correction circuit, method and display device |
CN111402824B (en) | 2019-01-03 | 2022-04-01 | 矽创电子股份有限公司 | Display driving circuit |
TWI701655B (en) * | 2019-04-25 | 2020-08-11 | 瑞鼎科技股份有限公司 | Common voltage compensation apparatus and common voltage compensation method applied to display driving circuit |
US20210295788A1 (en) * | 2020-03-17 | 2021-09-23 | Novatek Microelectronics Corp. | Display Panel Driving Method and Display Panel Driving Circuit Thereof |
CN111933073B (en) * | 2020-09-27 | 2021-03-26 | 南京芯视元电子有限公司 | Gray scale voltage generating circuit |
CN112150979B (en) * | 2020-10-23 | 2022-04-08 | 京东方科技集团股份有限公司 | Liquid crystal display device and driving method thereof |
CN113129849B (en) * | 2021-04-09 | 2022-11-01 | 深圳市华星光电半导体显示技术有限公司 | Pixel driving circuit and pixel driving method |
CN114913829B (en) | 2022-05-19 | 2023-04-28 | 惠科股份有限公司 | Data driving circuit, display module and display device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060125761A1 (en) * | 2004-12-13 | 2006-06-15 | Samsung Electronics Co., Ltd. | Digital-to-analog converters including full-type and fractional decoders, and source drivers for display panels including the same |
US20080198122A1 (en) * | 2007-02-15 | 2008-08-21 | Samsung Electronics Co., Ltd. | Display device and method of driving the same |
US20080211703A1 (en) * | 2006-11-02 | 2008-09-04 | Nec Electronics Corporation | Digital-to-analog converter circuit, data driver, and display device using the digital-to-analog converter circuit |
US20090160749A1 (en) * | 2007-12-21 | 2009-06-25 | Lg Display Co., Ltd. | Liquid crystal display device and driving method thereof |
US20100001984A1 (en) * | 2008-07-07 | 2010-01-07 | Samsung Electronics Co., Ltd. | Gamma voltage controller, gradation voltage generator and display device having the same |
US20100060621A1 (en) * | 2008-09-10 | 2010-03-11 | Himax Technologies Limited | Source driver device and display device having the same |
US20110050671A1 (en) * | 2009-08-27 | 2011-03-03 | Gigno Technology Co., Ltd. | Non-volatile display module and non-volatile display apparatus |
US20120019569A1 (en) * | 2010-07-22 | 2012-01-26 | Seungchan Byun | Organic light emitting diode display and driving method thereof |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0540451A (en) * | 1991-08-06 | 1993-02-19 | Nec Corp | Liquid crystal driving voltage generating circuit |
JP2780543B2 (en) * | 1991-11-06 | 1998-07-30 | 日本電気株式会社 | Liquid crystal display substrate and liquid crystal display device |
JPH07219484A (en) * | 1994-02-02 | 1995-08-18 | Fujitsu Ltd | Liquid crystal display device |
JP3689583B2 (en) | 1999-03-16 | 2005-08-31 | キヤノン株式会社 | Liquid crystal device and driving method of liquid crystal device |
JP2001195031A (en) | 1999-10-27 | 2001-07-19 | Internatl Business Mach Corp <Ibm> | Reference potential generating circuit for gamma correction |
JP3571993B2 (en) * | 2000-04-06 | 2004-09-29 | キヤノン株式会社 | Driving method of liquid crystal display element |
JP3520863B2 (en) * | 2000-10-04 | 2004-04-19 | セイコーエプソン株式会社 | Image signal correction circuit, correction method thereof, liquid crystal display device, and electronic device |
JP2002214582A (en) * | 2001-01-23 | 2002-07-31 | Hitachi Ltd | Liquid crystal display device |
JP2002229520A (en) * | 2001-01-31 | 2002-08-16 | Toshiba Corp | Planar display device and its driving method |
JP2002250908A (en) * | 2001-02-23 | 2002-09-06 | Matsushita Electric Ind Co Ltd | Liquid crystal display device and image display applied instrument |
JP2002366112A (en) * | 2001-06-07 | 2002-12-20 | Hitachi Ltd | Liquid crystal driving device and liquid crystal display device |
JP4284494B2 (en) * | 2002-12-26 | 2009-06-24 | カシオ計算機株式会社 | Display device and drive control method thereof |
JP2004354625A (en) * | 2003-05-28 | 2004-12-16 | Renesas Technology Corp | Self-luminous display device and driving circuit for self-luminous display |
JP4201193B2 (en) | 2004-03-17 | 2008-12-24 | ローム株式会社 | Gamma correction circuit and display device including the same |
JP4364742B2 (en) | 2004-07-21 | 2009-11-18 | 株式会社ルネサステクノロジ | Display drive device |
KR100700645B1 (en) | 2005-01-10 | 2007-03-27 | 삼성에스디아이 주식회사 | Liquid Crystal Display Device and Method of Driving the same |
JP5017810B2 (en) * | 2005-07-15 | 2012-09-05 | カシオ計算機株式会社 | Display driving device and display device |
US7348952B2 (en) * | 2005-08-09 | 2008-03-25 | Sin-Min Chang | Method and apparatus for stereoscopic display employing a transmissive active-matrix liquid crystal pixel array |
KR20070034656A (en) * | 2005-09-26 | 2007-03-29 | 삼성전자주식회사 | Liquid Crystal Display Module and Driving Method thereof |
JP2007101570A (en) * | 2005-09-30 | 2007-04-19 | Seiko Epson Corp | Driving device, electrooptical apparatus, electronic equipment, and driving method |
KR101189277B1 (en) | 2005-12-06 | 2012-10-09 | 삼성디스플레이 주식회사 | Liquid crystal display |
KR100725976B1 (en) * | 2005-12-27 | 2007-06-08 | 삼성전자주식회사 | Gamma control circuit and method thereof |
KR101200966B1 (en) | 2006-01-19 | 2012-11-14 | 삼성디스플레이 주식회사 | Common voltage generation circuit and liquid crystal display comprising the same |
JP2008242440A (en) * | 2007-02-28 | 2008-10-09 | Casio Comput Co Ltd | Display drive device and display device |
CN101290744B (en) * | 2007-04-20 | 2010-11-03 | 联咏科技股份有限公司 | Luminance compensating mechanism and method for backlight module |
CN101295470B (en) * | 2007-04-25 | 2010-05-26 | 群康科技(深圳)有限公司 | Gamma voltage output circuit and liquid crystal display device |
KR101438586B1 (en) | 2007-05-31 | 2014-09-05 | 엘지디스플레이 주식회사 | LCD and method of compensating gamma curve of the same |
KR101507152B1 (en) | 2007-07-09 | 2015-04-03 | 엘지디스플레이 주식회사 | Liquid crystal display and driving method there |
JP2009025665A (en) * | 2007-07-20 | 2009-02-05 | Toshiba Corp | Gamma correction circuit and display control circuit |
JP2010041368A (en) * | 2008-08-05 | 2010-02-18 | Nec Electronics Corp | Operational amplifier circuit and display panel driving apparatus |
TWI406240B (en) * | 2008-10-17 | 2013-08-21 | Hannstar Display Corp | Liquid crystal display and its control method |
CN100594413C (en) * | 2008-11-24 | 2010-03-17 | 上海广电光电子有限公司 | Liquid crystal display panel and driving method thereof |
CN101739973A (en) * | 2008-11-27 | 2010-06-16 | 比亚迪股份有限公司 | Display device and display method thereof |
US20110298774A1 (en) * | 2009-03-18 | 2011-12-08 | Sharp Kabushiki Kaisha | Display apparatus |
KR101330415B1 (en) * | 2009-04-30 | 2013-11-20 | 엘지디스플레이 주식회사 | Liquid crystal display and driving method thereof |
TWI420486B (en) | 2009-07-07 | 2013-12-21 | Himax Tech Ltd | Gamma voltage generator and source driver |
KR20110014428A (en) | 2009-08-05 | 2011-02-11 | 삼성전자주식회사 | Display driver circuit outputting symmetry grayscale voltage |
CN102013237A (en) * | 2009-09-07 | 2011-04-13 | 联咏科技股份有限公司 | Drive device for driving liquid crystal display panel and relevant display device thereof |
TWI436341B (en) | 2009-10-09 | 2014-05-01 | Innolux Corp | Voltage compensation circuit, display module, display apparatus and control methods thereof |
JP2012037772A (en) * | 2010-08-09 | 2012-02-23 | Funai Electric Co Ltd | Liquid crystal display device |
TWI401648B (en) * | 2010-08-11 | 2013-07-11 | Orise Technology Co Ltd | Driving circuit for driving electronic paper |
TWM408885U (en) * | 2010-11-23 | 2011-08-01 | Sitronix Technology Corp | signal generating circuit |
KR101765656B1 (en) * | 2010-12-23 | 2017-08-08 | 삼성디스플레이 주식회사 | Driving Integrated Circuit and Display Apparatus comprising Driving Integrated Circuit |
TWI473066B (en) * | 2012-04-23 | 2015-02-11 | Sitronix Technology Corp | Display panel and its drive circuit |
-
2012
- 2012-08-01 TW TW101127760A patent/TWI473066B/en active
- 2012-08-01 TW TW101127759A patent/TWI473065B/en active
- 2012-09-03 CN CN201510611382.6A patent/CN105321489B/en active Active
- 2012-09-03 CN CN201610924635.XA patent/CN106898314B/en active Active
- 2012-09-03 CN CN201210327548.8A patent/CN102867493B/en active Active
- 2012-09-03 CN CN201210327546.9A patent/CN102867492B/en active Active
- 2012-11-28 US US13/687,129 patent/US20130278584A1/en not_active Abandoned
- 2012-11-28 US US13/687,134 patent/US9268419B2/en active Active
-
2013
- 2013-03-12 KR KR1020130025992A patent/KR101618403B1/en active IP Right Grant
- 2013-03-12 KR KR1020130025994A patent/KR101683945B1/en active IP Right Grant
- 2013-03-19 JP JP2013057312A patent/JP5760028B2/en active Active
- 2013-03-19 JP JP2013057120A patent/JP2013225119A/en active Pending
-
2015
- 2015-03-04 JP JP2015042716A patent/JP6325999B2/en active Active
- 2015-03-24 KR KR1020150041005A patent/KR101645618B1/en active IP Right Grant
- 2015-04-02 JP JP2015075795A patent/JP6486749B2/en active Active
- 2015-05-26 KR KR1020150073338A patent/KR20150064005A/en active Application Filing
-
2017
- 2017-02-06 KR KR1020170016421A patent/KR101763264B1/en active IP Right Grant
- 2017-12-26 JP JP2017249128A patent/JP2018077505A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060125761A1 (en) * | 2004-12-13 | 2006-06-15 | Samsung Electronics Co., Ltd. | Digital-to-analog converters including full-type and fractional decoders, and source drivers for display panels including the same |
US20080211703A1 (en) * | 2006-11-02 | 2008-09-04 | Nec Electronics Corporation | Digital-to-analog converter circuit, data driver, and display device using the digital-to-analog converter circuit |
US20080198122A1 (en) * | 2007-02-15 | 2008-08-21 | Samsung Electronics Co., Ltd. | Display device and method of driving the same |
US20090160749A1 (en) * | 2007-12-21 | 2009-06-25 | Lg Display Co., Ltd. | Liquid crystal display device and driving method thereof |
US20100001984A1 (en) * | 2008-07-07 | 2010-01-07 | Samsung Electronics Co., Ltd. | Gamma voltage controller, gradation voltage generator and display device having the same |
US20100060621A1 (en) * | 2008-09-10 | 2010-03-11 | Himax Technologies Limited | Source driver device and display device having the same |
US20110050671A1 (en) * | 2009-08-27 | 2011-03-03 | Gigno Technology Co., Ltd. | Non-volatile display module and non-volatile display apparatus |
US20120019569A1 (en) * | 2010-07-22 | 2012-01-26 | Seungchan Byun | Organic light emitting diode display and driving method thereof |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105047154A (en) * | 2015-08-11 | 2015-11-11 | 武汉华星光电技术有限公司 | Driving compensating circuit, liquid crystal display device with driving compensating circuit and driving method |
US20170277006A1 (en) * | 2016-03-25 | 2017-09-28 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Liquid crystal display panel and electrostatic discharge circuit |
US20180336855A1 (en) * | 2017-04-07 | 2018-11-22 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Gray scale voltage compensation method of liquid crystal panel, circuit and liquid crystal panel |
US10460685B2 (en) * | 2017-04-07 | 2019-10-29 | Shenzhen China Star Optoelectronics Technology Co., Ltd | Method circuit and liquid crystal panel for compensating gray scale voltage |
CN109741491A (en) * | 2018-12-18 | 2019-05-10 | 深圳市铁证科技有限公司 | A kind of finger vein face lock main control module |
CN109658890A (en) * | 2019-01-24 | 2019-04-19 | 南京中电熊猫平板显示科技有限公司 | A kind of the compensation data method and display device of display device |
US20210118379A1 (en) * | 2019-08-02 | 2021-04-22 | Sitronix Technology Corp. | Driving method for flicker suppression of display panel and driving circuit thereof |
US11847988B2 (en) * | 2019-08-02 | 2023-12-19 | Sitronix Technology Corporation | Driving method for flicker suppression of display panel and driving circuit thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102867492A (en) | 2013-01-09 |
CN106898314A (en) | 2017-06-27 |
JP5760028B2 (en) | 2015-08-05 |
JP2015148816A (en) | 2015-08-20 |
KR20150064005A (en) | 2015-06-10 |
JP2018077505A (en) | 2018-05-17 |
JP6325999B2 (en) | 2018-05-16 |
US9268419B2 (en) | 2016-02-23 |
TWI473065B (en) | 2015-02-11 |
CN102867493A (en) | 2013-01-09 |
CN106898314B (en) | 2020-02-18 |
KR101683945B1 (en) | 2016-12-07 |
JP6486749B2 (en) | 2019-03-20 |
JP2013225119A (en) | 2013-10-31 |
KR20130119343A (en) | 2013-10-31 |
CN102867493B (en) | 2016-08-03 |
KR101618403B1 (en) | 2016-05-04 |
KR20150037803A (en) | 2015-04-08 |
KR20130119342A (en) | 2013-10-31 |
US20130278639A1 (en) | 2013-10-24 |
JP2013225120A (en) | 2013-10-31 |
KR101645618B1 (en) | 2016-08-05 |
JP2015111303A (en) | 2015-06-18 |
KR20170017980A (en) | 2017-02-15 |
KR101763264B1 (en) | 2017-07-31 |
CN105321489A (en) | 2016-02-10 |
CN102867492B (en) | 2016-12-21 |
TWI473066B (en) | 2015-02-11 |
TW201344667A (en) | 2013-11-01 |
CN105321489B (en) | 2019-12-20 |
TW201344668A (en) | 2013-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9268419B2 (en) | Display panel and driving circuit thereof | |
US10515604B2 (en) | Display device and driving method thereof | |
US10163392B2 (en) | Active matrix display device and method for driving same | |
US9910329B2 (en) | Liquid crystal display device for cancelling out ripples generated the common electrode | |
US8102354B2 (en) | Data driver and liquid crystal display using the same | |
EP1863010A1 (en) | Liquid crystal display and driving method thereof | |
US8487851B2 (en) | Liquid crystal display | |
US11270652B2 (en) | Display device, data driving circuit, and data driving method having offset data voltage | |
KR20080002237A (en) | Gate driving circuit, liquid crystal display using the same and driving method thereof | |
KR20180094180A (en) | Liquid crystal display device | |
US20110043506A1 (en) | Device for Driving LCD panel and Related Display Device | |
KR20180014337A (en) | Liquid crystal display device | |
KR20090129558A (en) | Liquid crystal display panel | |
KR101507162B1 (en) | Liquid crystal display of horizontal electronic fieldapplying type | |
KR20090010832A (en) | Driving circuit for liquid crystal display device | |
WO2012102236A1 (en) | Display device | |
KR20160078804A (en) | Display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SITRONIX TECHNOLOGY CORP., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIAO, MIN-NAN;REEL/FRAME:029414/0177 Effective date: 20121128 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |