US20130258115A1 - Method for calibrating a camera - Google Patents

Method for calibrating a camera Download PDF

Info

Publication number
US20130258115A1
US20130258115A1 US13/828,058 US201313828058A US2013258115A1 US 20130258115 A1 US20130258115 A1 US 20130258115A1 US 201313828058 A US201313828058 A US 201313828058A US 2013258115 A1 US2013258115 A1 US 2013258115A1
Authority
US
United States
Prior art keywords
image
center
view
camera
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/828,058
Other languages
English (en)
Inventor
Niklas Hansson
Andreas Palsson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Axis AB
Original Assignee
Axis AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axis AB filed Critical Axis AB
Priority to US13/828,058 priority Critical patent/US20130258115A1/en
Assigned to AXIS AB reassignment AXIS AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PALSSON, ANDREAS, HANSSON, NIKLAS
Publication of US20130258115A1 publication Critical patent/US20130258115A1/en
Priority to US15/245,553 priority patent/US10425566B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/58Means for changing the camera field of view without moving the camera body, e.g. nutating or panning of optics or image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/633Control of cameras or camera modules by using electronic viewfinders for displaying additional information relating to control or operation of the camera

Definitions

  • the present invention relates to a method for calibrating a camera and in particular a method for calibrating a pan-tilt enabled camera system in order to account for misalignments in the camera system
  • the precision becomes even worse in a system where you have a camera head acquiring images through a lens, e.g., a wide angle lens, not mounted on the camera head but rather fixedly attached to a support structure of the camera head.
  • a lens e.g., a wide angle lens
  • the precision of the mounting of the lens and the support structure to which it is attached is critical.
  • the camera may be shipped without having the lens or the support structure mounted together with the camera head, and in such case, the precision mounting has to be performed in the field. Accordingly, these types of systems often present problems with precision in positioning.
  • a method is described to improve the precision in positioning a camera for acquiring a desired image view.
  • a method for calibrating a camera with an image sensor having a center position includes capturing an image view projected onto the image sensor by a lens, the projected image view having a center, detecting at least one image view boundary of the image view captured by the image sensor.
  • the method further includes determining, in at least one dimension, a projection center position corresponding to the center of the projected image view on the image sensor based on detected boundary, determining offset between the projection center position and a sensor center position, defined in at least one dimension, corresponding to the center of the image sensor capturing the projected image view, and moving the image sensor in relation to the lens based on the offset in order to arrive at a substantially zero offset in at least one dimension between the center of image sensor and the center of the projected image view.
  • the act of determining offset is facilitated. Moreover, this enables capturing of maximum image information in that it enables maximum utilization of the image sensor. Further, by aligning the optical axis and the center of the image sensor pan tilt positioning will be more precise, especially when it comes to converting pixel positions in a displayed view to pan and tilt angles.
  • the method further comprises performing an additional capture of the image view projected onto the image sensor at a point in time after the moving of the sensor, detecting at least one image view boundary relating to the latter captured image view projected onto the image sensor, determining, in at least one dimension, an updated projection center position corresponding to the center of the projected image view on the image sensor based on latter detected boundary, determining offset between the updated projection center position and the sensor center position, defined in at least one dimension, corresponding to the center of the image sensor capturing the projected image view, and if the offset is zero or substantially zero, then storing the position of the updated projection center, the position being defined relating to at least one dimension including and including a dimension different from the dimension used for determining offset between the between the updated projection center position and the sensor center position.
  • the image view is projected onto the image sensor through a wide angle lens which is producing a circular image or at least a substantially circular image.
  • the determining of the position of the center of the projected image view includes calculating parameters defining a circle that are likely to represent the at least one detected edge relating to the projected image view.
  • the calculating of parameters defining a circle that are likely to represent the at least one detected edge relating to the projected image view is based on a Hough transform.
  • the camera comprises a pan and tilt enabled camera head including the image sensor, wherein the image view is projected onto the image sensor through a lens fixedly arranged in relation to a base of the camera, and wherein the moving of the image sensor includes moving of the camera head.
  • the moving of the camera head is performed as pan and/or tilt movements calculated from the offset between the center of projected image view and center of the image sensor capturing the projected image view.
  • a method for calibrating a camera comprises a) the steps of the method described above, b) selecting a position in an overview image view captured by the camera and presented to the operator, c) calculating a pan angle and a tilt angle corresponding to the selected position, d) moving the camera head to a position in which it may capture a detailed image view, not through the wide angle lens, having a center representing the calculated pan angle and tilt angle, e) adjusting the camera head, after the camera head has moved to the position, until the position selected in the overview image is centered in the detailed view, e) saving data representing the amount of adjustment used in for centering the position in detailed view, repeating the steps a-f until a predetermined amount of data relating to the adjustment has been saved, and estimating an error function based on the saved data.
  • the precision of the transformation and the resulting transition from overview to detailed view may be increased.
  • the estimation of an error function from the error samples may then allow for a less cumbersome process of getting enough error values in that the number of required error values will decrease without resulting in substantially less precision.
  • the act of estimating an error function includes determining coefficients of a polynomial error function using Linear Least Square Estimation.
  • a method for transforming a selected position in an overview image captured by a camera to a pan and tilt angle for a camera that are to capture a more detailed view of the selected position comprises calculating the pan and tilt angle for the selected position based on the selected position in the overview image, and compensating the resulting pan tilt angle based on an error function achieved by means of the process described above. In this way, the precision of the transformation may be increased.
  • FIG. 1 is a schematic side view of a monitoring camera implementing one embodiment of the invention
  • FIG. 2 is the same side view as in FIG. 1 with the difference that the camera head of the monitoring camera is tilted
  • FIG. 3 is a schematic overview of an example room in which a monitoring camera according to one embodiment of the invention is fictionally installed
  • FIG. 4 is an example overview image from the monitoring camera in the example room of FIG. 3 capturing images through a wide angle lens as in FIG. 1 ,
  • FIG. 5 is an example of a detailed view from the monitoring camera in example room of FIG. 3 capturing images through the dome glass as depicted in FIG. 2 ,
  • FIG. 6 is a schematic block diagram of a camera head according to one embodiment of the invention.
  • FIGS. 7 a - b show diagrams of the relations between the camera head, positions in overview image, and pan-tilt angles for the camera head,
  • FIG. 8 a shows an overview image and a selected position in the overview image
  • FIG. 8 b shows a possible detailed view resulting from the camera transitioning from the overview mode to a detailed view of the selected position
  • FIG. 9 shows a schematic diagram of a camera in which the camera head and the wide angle lens is not aligned properly
  • FIG. 10 a shows an overview image projected to the image sensor in a camera where the camera head and the wide angle lens is not properly aligned
  • FIG. 10 b shows the overview image projected on the image sensor after the camera head and the wide angle lens has been aligned according to one embodiment of the invention
  • FIG. 11 is a flowchart showing a process of centering the projected overview image onto the image sensor
  • FIG. 12 is a flowchart showing a process of calibrating a transfer function from a position in an overview image to a pan and tilt position for a detailed view
  • FIG. 13 schematically depicts an overlay for facilitating selection of calibration positions that may be used in the process of FIG. 12 .
  • FIG. 14 schematically indicates a turning function of the overlay of FIG. 13 .
  • FIG. 15 is a flowchart is a flowchart showing an alternative process of calibrating a transfer function from a position in an overview image to a pan and tilt position for a detailed view
  • FIGS. 16 a - d show the overview image and a selection overlay at different stages of the process described in connection with FIG. 15 .
  • FIG. 17 shows a detailed view incorporating an overview image according to one embodiment of the invention.
  • the monitoring camera 10 is a dome camera including a camera head 12 , a transparent dome cover 14 , and a dome base 16 .
  • the camera head 12 is enabled to pan and tilt by means of electronically controlled motors, not shown.
  • the camera head 12 may be any known camera head that is enabled to pan and tilt.
  • the camera head 12 includes a lens 18 .
  • the lens 18 is arranged to focus light representing a scene to be captured by the camera 10 onto an image sensor in the camera head 12 .
  • the viewing angle of the captured image may be fixed or variable. Variable viewing angle may be accomplished by having a zoom enabled lens 18 . In case of a fixed viewing angle lens, the selection of the viewing angle may differ between different applications of the camera.
  • the dome camera further comprises a wide angle lens 20 mounted on the transparent dome cover 14 and extending from the dome cover 14 and away from the camera head 12 .
  • the wide angle lens 20 is mounted in a direction making the optical axis 22 of the wide angle lens substantially coincide with a rotational axis 24 around which the camera head 12 is turned during panning, hereinafter referred to as panning axis 24 .
  • the viewing angle of the wide angle lens 20 is wider than the viewing angle of the lens 18 in the camera head 12 .
  • the viewing angle of the wide angle lens 20 is substantially wider than the viewing angle of the lens 18 of the camera head 12 .
  • the viewing angle of the wide angle lens may be more than 180 degrees. However, depending on the application, the viewing angle may be less or more. The angle should at least be selected to provide a reasonable overview image.
  • the wide angle lens 20 is mounted so that the optical axis 26 of the camera head 12 is aligned with the optical axis 22 of the wide angle lens 20 when the camera head 12 is directed for capturing an image through the wide angle lens 20 .
  • the camera head 12 Due to the positioning of the wide angle lens 20 and the fact that the camera head 12 is moveable, it is possible to capture overview images through the wide angle lens 20 as depicted in FIG. 1 and when something interesting is spotted or detected in the overview image, it is possible to investigate in more detail by simply moving the camera head 12 away from the wide angle lens 20 and directing it towards the interesting event or feature and capturing images through the dome cover.
  • FIG. 2 the camera is shown in a position for capturing the images through the dome cover in order to get a more detailed view and not through the wide angle lens 20 .
  • the viewing angle or the focal length of the lens 18 of the camera head 12 may be selected so that the images captured by the camera head 12 , when not captured through the wide angle lens 20 , are adequate for providing relevant surveillance information.
  • relevant surveillance information may for instance be the registration number of a car, an identifiable face of a person, detailed progress of an event, etc.
  • the viewing angle of the wide angle lens 20 may be selected so that the camera head 12 may capture an image view of at least the floor of an entire room in which the monitoring camera is installed when directed to capture images through the wide angle lens 20 .
  • the viewing angle of the wide angle lens 20 is selected so that the camera head 12 will capture an overview image of the monitored area when the camera head 12 is directed to capture images through the wide angle lens 20 . Then an operator or an image analysis process may identify events or features of interest in the overview and redirect the camera head 12 for direct capture of the scene including the event or feature of interest. “Direct capture” in the above sentence should be understood as capturing an image by means of the camera head 12 when not directed to capture images through the wide angle lens 20 .
  • a monitoring camera 10 is installed in the ceiling of a room 30 , see FIG. 3 .
  • the room includes four walls 31 - 34 , wherein wall 31 holds a door 36 for passage to an area next to the room, wall 32 presents a passage into a corridor 38 , and wall 34 holds a window 40 .
  • the monitoring camera 10 is set in an overview mode, i.e., the camera head is capturing an overview image of the monitored area by capturing images through the wide angle lens, the setting of the camera that is shown in FIG. 1 .
  • a frame from a video sequence from the monitoring cameral° in overview mode may look like the image in FIG.
  • the directing of the camera head 12 away from the wide angle lens 20 may alternatively be initiated in response to a detected motion in the overview image, detected by means of a motion detection process.
  • the camera head 12 may be moved into a position similar to the position shown in FIG. 2 , and may capture an image 44 as the one presented in FIG. 5 .
  • the image captured by the camera head 12 may have a wider or narrower image view depending on the lens 18 on the camera head 12 and/or the zoom setting of this lens 18 .
  • the camera head 12 may be returned to capture images through the wide angle lens 20 and thereby be returned to the overview mode of the monitoring camera.
  • the directing of the camera head 12 away from the wide angle lens 20 was performed in response to motion detection in the overview image, then the camera head 12 may return to capturing images through the wide angle lens 20 in response to no motion being detected in the detailed view.
  • the monitoring camera 10 includes an image sensor 50 , an image processing unit 52 , a general processing unit 54 , a volatile memory 56 , a non-volatile memory 58 , a network interface 60 , a camera position controller 61 , a panning motor 62 , a panning motor controller 64 , a tilting motor 66 , and a tilting motor controller 68 . Further means and devices required in a camera in order to perform normal camera functionality and normal network activities are not described herein as these means and devices are well known to the person skilled in the art.
  • the image sensor 50 may be any known image sensor able to capture light representing an image view and convert the light to electrical signals, which then may be processed into digital images and or digital image streams by the image processing unit 52 .
  • the image sensor 50 may be arranged to capture visible light or infrared light, depending on the application of the camera.
  • the image data from the image sensor 50 is sent to the image processing unit 52 via connection 70 .
  • the image processing unit 52 and the general processing unit 54 may be the same device, may be implemented as separate units on the same chip, or may be separate devices. Moreover, many functions described below as being performed in the image processing unit 52 may be performed in the general processing unit 54 and vice versa.
  • the processing units 52 , 54 are connected to the volatile memory 56 for use as a work memory via for instance a bus 72 .
  • the volatile memory 56 may be used as temporary data storage for image data during processing of the image data and the volatile memory 56 may therefore be connected to the image sensor 50 as well.
  • the non-volatile memory 58 may store program code required for the processing units 52 , 54 to operate and may store settings and parameters that are to be preserved for a longer time period and even withstand power outages.
  • the processing units 52 , 54 are connected to the non-volatile memory 58 via, for instance, the bus 72 .
  • the network interface 60 includes an electrical interface to the network 74 , which the monitoring camera is to be connected to. Further, the network interface 60 also includes all logic interface parts that are not implemented as being executed by the processing unit 54 .
  • the network 74 may be any known type of LAN (Local Area Network), WAN (Wide Area Network), or the Internet. The person skilled in the art is well aware of how to implement a network interface using any of a plurality of known implementations and protocols.
  • the panning motor 62 and the tilting motor 66 are controlled by the processing 54 unit via each motor controller 64 , 68 .
  • the motor controllers are arranged to convert instructions from the camera position controller 61 into electrical signals compatible with the motors.
  • the camera position controller 61 may be implemented by means of code stored in memory 58 or by logical circuitry.
  • the tilt motor 66 may be arranged within or very close to a panable/tiltable camera head 12 and the pan motor 62 are in many cases arranged further away from the camera head 12 , in particular in the cases where the joint for panning is the second joint, counted from the camera head 12 . Control messages for pan and tilt may be received via the network 74 and processed by the processing unit 54 before forwarded to the motor controllers 64 , 68 .
  • the above described function of redirecting the camera head from capturing overview images to capturing detailed images of positions indicated in an image captured in overview mode may be implemented by transforming the coordinates of the indicated position within the overview image to pan and tilt angles for positioning the camera in detailed mode to capture an image of the indicated position.
  • the pan angle, ⁇ , and the tilt angle, ⁇ may be calculated from the coordinates x, y, in the overview image, schematically depicted in FIG. 7 a , using the equations below.
  • Distances dx and dy, respectively are the distances from the center, (x c ,y c ), of the overview image to an indicated position, x, y within the boundary 102 of the overview image.
  • the total view angle, ⁇ , captured by the wide angle lens is a parameter used for approximating the tilt angle requested from indication of a point in the overview. The relations between these angles and coordinates are also shown in FIGS. 7 a and 7 b .
  • the pan angle ⁇ is simply calculated by applying trigonometry to the Cartesian coordinates, see Equation 3.
  • the tilt angle ⁇ is an approximation in which the calculation approximates the features of the image captured as being positioned on a spherical surface 702 , thus arriving at the Equation 2, in which the tilt angle ⁇ is calculated by applying the distance ratio of the distance d and the distance r to the total view angle ⁇ .
  • This embodiment is not necessarily limited to this transformation scheme, but any like transformation scheme may be used.
  • FIGS. 8 a - b The resulting transformation from a system offering less quality transformations is illustrated in FIGS. 8 a - b in which an overview image 802 and an detailed image 804 resulting from the selection of a point 806 in the overview image is shown. For instance, it may be assumed that the user selects the position 806 in the overview image depicting the features of a doorknob 808 .
  • the camera then changes mode into the detailed mode and redirects the camera for capturing an image or video having the selected point 808 in the center 810 of the frame.
  • the transformation of positions between the two modes is not particularly precise resulting in an offset of e x and e y .
  • An offset from requested positions, as described in the above example is worth adjusting for a couple of reasons. Examples of such reasons are that the offset is annoying for the user, the offset may result in a missed opportunity of identifying a person who only is visible for a short amount of time, the offset may be troublesome in applications requiring masking, etc. In the example of applications requiring masking, e.g. of areas, objects, or persons, a high degree of precision is required in order not to mask a large portion outside the intended area, object or person and thereby blocking view of more information than requested.
  • the offset, e x and e y may result from the act of mounting the wide angle lens 20 on the dome 14 , the mounting of the dome 14 on the dome base 16 , the mounting of the camera head 12 in the housing, etc.
  • the camera assembly 10 requires tight mechanical tolerances in order not to introduce offset problems. For example, offset problems may occur if a mounting screw for any one of the dome, the camera, the wide angle lens, etc. is over tightened a bit too much.
  • the optical axis 22 of the wide angle lens 20 and the optical axis 26 of the camera head 12 is offset, m off , when the camera head is arranged having its optical axis 26 coinciding with the rotational axis 24 for panning the camera head, see FIG. 9 .
  • the position in which the optical axis 26 of the camera head 12 is arranged to coincide with the rotational axis 24 of the camera head 12 is default position for capturing images through the wide angle lens 20 by means of the camera head 12 .
  • a slight offset of the wide angle lens may result in problems.
  • This type of misalignment may also result in other problems than the problem of offset in between positions in an overview image and corresponding positions in a detailed view.
  • Another problem may be for instance that the image sensor is not effectively utilized in view of useable pixels captured.
  • FIG. 10 a One example of the image sensor not being effectively utilized is depicted in FIG. 10 a , where the image view projected onto the image sensor via the wide angle lens and the optics of the camera head is not centered on to the image sensor, indicated by distances e x and e y indicating the distance between the center point 1002 of the projected image view and the center point 1004 of the image sensor.
  • the problem of the image sensor not being effectively utilized is addressed by calibrating the camera system.
  • the calibration in this embodiment includes the act of tilting the camera head 12 and moving the center point 1002 of the projected image view to a position on an imaginary center-line 1006 , dividing the image sensor in two halves, see FIG. 10 b .
  • the projected image view is substantially circular due to the use of a wide angle lens that produces a circular image.
  • the image sensor of this embodiment is rectangular having a greater width, w, than height, h, and being wider than the diameter of the resulting projected circular image.
  • the positioning of the projected image view in the direction of the width of the image sensor, i.e., along the x-axis, is not as critical as the positioning in the direction of the height of the image sensor.
  • One way of implementing this calibration feature is described below referring to FIGS. 10 a , 10 b , and 11 .
  • the idea behind the counter is to count the number of times the repositioning procedure below has been performed in order to limit the number of times this procedure is performed.
  • An image is captured through the wide angle lens, step 1106 , and the position CCy of the center of the captured image is determined, step 1108 .
  • the center position along the y-axis of the projected image is determined but not necessary the center position along the x-axis, because we only use the position along the y-axis for the adjustments.
  • the position along the x-axis is required as well as the position along the y-axis.
  • One way of determining the center position is by using edge detection and a Standard Hough Transform arranged for finding parameters of a circle.
  • the circle being represented by the edge of the image projection and the image projection being substantially circular if the camera is equipped with a lens generating circular images.
  • step 1114 a determination is made as to if the center CCy of the projected image is determined to correspond to the center CSy of the image sensor in the y-direction, or if the counter C counting the number of times this check and repositioning of the camera head has been performed n times.
  • the value of n is three.
  • n defines how many times the repositioning and checking of the camera head is allowed to be performed.
  • One reason for this parameter is to avoid that the system get stuck in a loop, such as for instance, if the system for some reason is not able to determine the center.
  • the value of n may be any number as long as it is small enough not to result in a perception of deteriorated performance.
  • an angle ⁇ tilterr that the camera head 12 is to be tilted is calculated based on equation 4 below:
  • tilterr ⁇ totch ⁇ e y h Equation ⁇ ⁇ 4
  • step 1114 If the check in step 1114 is true, then the position of the camera head is stored in memory in order to be used as the position to return the camera head to when entering overview mode, step 1120 , i.e., the overview mode coordinates or angles are set for the camera head. Then, when the overview position for the camera head has been determined, the calibration process for positioning of the camera head in overview mode is concluded.
  • the center of the projected image is found using a Hough Transform and the projected image is substantially circular. Further information of the Hough Transform may be found in “Computer Vision”, by Shapiro, Linda and Stockman, Prentice-Hall, Inc. 2001.
  • the boundary of the image projection has to be determined. This may be performed using any standard edge detection algorithm. When the edge of the projected image has been detected, the Hough Transform is applied to the detected edge.
  • the processing using the Hough Transform may be accelerated by defining a limited range of possible circle radiuses for the analysing by means of the Hough transform. This may be achieved as a result of it being possible to have a quite accurate idea of the size of the circle shaped image projection.
  • the radius used in the Hough transform is in the range of 0.25-0.35 times the width of the image sensor. For a system having a sensor that has a width of 1280 pixels, the radius is selected in the range of 320 pixels-448 pixels.
  • the radius may be selected from the range of 0.2921875-0.3125 times the width of the image sensor in pixels. For a system having a sensor that has a width of 1280 pixels the radius may be selected in the range of 374 pixels-400 pixels.
  • the above process of centering the image projection on the images sensor may be part of a calibration scheme for decreasing the offset between a selected position in the overview image and the center position in the detailed image view, see discussion relating to FIG. 8 a - b.
  • a method 1200 for calibrating a pan tilt enabled camera may comprise acts described below.
  • the process is initiated with the camera in overview mode and the process captures an overview image when camera is in overview mode, step 1202 .
  • the captured overview image is displayed and a pattern including indicators of at least three suggested selection areas is arranged as an overlay on the overview image, step 1204 .
  • the orientation of the overlay may then be adjusted by the operator in order to have as many distinguishing features as possible within a selection area indicated by the overlay, step 1206 .
  • the adjustment of the orientation of the overlay may include rotation of the overlay, e.g., around a center point of the image view, repositioning the suggested selection areas by uniformly moving them closer to or further away from the center point of the image view. This reposition operation and the rotation operation may be performed as a drag and drop operation on the overlay. Then, a point at a feature in one of the at least three suggested selection areas is selected, step 1208 . The coordinates of the selected point is transformed into a pan angle and a tilt angle, step 1210 .
  • the camera is panned and tilted in accordance with the pan angle and the tilt angle, entering the camera into detailed mode, and detailed image is captured when camera is in detailed mode after panning and tilting in accordance with the pan angle and the tilt angle is completed, step 1212 .
  • the transition to detailed mode seldom results in the selected feature occurring in the center of the captured image in the detailed image view.
  • the operator may manually adjust pan angle and tilt angle until the camera presents the point of the feature selected in the overview image substantially in the center of the image captured in detailed mode, step 1214 .
  • the camera is capturing images frequently during this panning and tilting in order to present the result of the panning and tilting to the operator.
  • Information indicating the difference between the manually adjusted pan angle and tilt angle and the pan angle and the tilt angle resulting from the transforming of the position of the feature is now saved, step 1216 , for later use.
  • the steps of selecting features and registering the error in the transition from overview mode to detailed mode may then be repeated for at least two further selection areas, i.e.
  • n 3 in step 1218 .
  • the value of n may be any number equal to or greater than three.
  • the value of n should however not be too large, because then the calibration will be quite time consuming.
  • the value of n may be in the range of 4-10.
  • the process estimates a function ⁇ ⁇ err ( ⁇ calc ), representing a pan error, in which ⁇ calc is the pan angle directly transformed from the overview coordinates, and a function ⁇ ⁇ err ( ⁇ calc ), representing a tilt error, which also is depending on the pan angle ⁇ calc .
  • These functions ⁇ ⁇ err ( ⁇ calc ) and ⁇ ⁇ err ( ⁇ calc ) represent the errors based on the saved information, step 1220 , and the calibration process is ended.
  • the estimated function may now be used for compensating in transformations between positions in the overview mode and pan and tilt angles in detailed mode, i.e., the function may be applied on operations including transforming coordinates from the overview image to pan and tilt angles.
  • FIG. 13 an example is shown of the overlay 1300 including indicators 1302 a - d of suggested areas.
  • the overlay is shown positioned in an overview image view, depicted with dashed lines, in order to indicate its relation to the overview image.
  • the main function of the overlay is to support the operator performing the calibration by facilitate uniformly selection of calibration points.
  • the overlay is rotatable, see FIG. 14 . By enabling rotation of the overlay, it is possible for the operator to keep the uniform distribution of the selection areas while trying to fit easily identifiable features to select as calibration points. As seen in the overview image of FIG.
  • the indicators of suggested areas 1302 a - d are rotated around the center point of the image view in real time in order to make it easy for the operator to see when features that are easily identifiable are present in all or at least in most of the indicators of suggested areas.
  • the selection of calibration points that are uniformly distributed around the center point of the overview image makes the estimation of the error function more precise than if the points are positioned towards one side of the overview image. While four suggested selection areas 1302 a - d are shown in FIGS. 13-14 , as discussed above the number of selection areas may vary.
  • the process of selecting satisfactory points for use in calibration is performed by means of a dynamically adapting selection overlay.
  • the process of this dynamic selection overlay comprises an initial presentation of an image 1300 captured in overview mode, step 1502 , and then displaying this image 1300 and added thereon an overlay presenting a suggested selection area 1602 a - d , step 1504 .
  • the image captured by the camera is shown as dashed lines in order to facilitate distinguishing between the overlay and the captured image in the figures. For the first selection, it is not necessary to present any suggested selection area because the following recommended selections will be based on the position in the overview image of the actual selection.
  • the user may then select a specific calibration position 1604 a - d within the presented overview image, step 1508 .
  • the selected calibration position is advantageously a position showing a clearly distinguishing feature for facilitating identification of the feature when in detailed mode.
  • These position coordinates are then transformed to pan and tilt angles in accordance with Equations 1-3, step 1510 , for use by the camera in detailed mode.
  • the camera head is panned and tilted to the pan and tilt angles in detailed mode and captures a detailed image view, step 1512 .
  • This detailed image view is studied by an operator who makes necessary adjustments for centering of the selected feature in the detailed view, step 1514 .
  • the difference between the transformed center position and the center position after adjustment by the operator is stored in memory for later use in estimating error functions, step 1516 .
  • the distribution in circumferential direction of selected positions is evaluated. This is performed by identifying an angle ⁇ between radiuses from the center to two circumferentially adjacent selected positions. When only one position is selected the angle ⁇ will be 360 degrees.
  • the greatest angle ⁇ max between adjacent selected positions is identified, step 1518 . For the first selected position this angle is 360 degrees. If ⁇ max is smaller than a predetermined threshold value ⁇ thresh , step 1520 , then the process is deemed to have enough data to estimate error functions and the process ends by estimating the error function representing the saved differences, step 1522 .
  • step 1520 if ⁇ max is not smaller than the predetermined threshold ⁇ thresh value, step 1520 , then a suggested selection area is positioned between, in circumferential direction, the two positions presenting the largest angle ⁇ max between them.
  • the new suggested selection area is positioned substantially at an angle of ⁇ max /2 from any one of the two adjacent positions. Then the process returns to step 1508 for selection of another calibration position.
  • FIGS. 16 a - d shows four consecutive selection loops relating to the process described in FIG. 15 .
  • FIG. 16 a shows the initial suggested selection area 1602 a and the initial selected calibration position 1604 a selected in this first selection loop.
  • the largest angle ⁇ max after this initial selection of a calibration position is 360 degrees.
  • the lines 1606 and 1608 are only a helplines later used in order to facilitate the description of angles and, thus, these lines do not have to be included in the interface of an implementation of the invention. Then in FIG.
  • the selection view is shown when the selection process has returned for selection of a second calibration process and positioned a new suggested selection area 1602 b at an angle ⁇ max /2 from the previously selected calibration position 1604 a , see the angle between helplines 1606 and 1610 .
  • the suggested selection area 1602 b is positioned 180 degrees from the previous calibration position 1604 a as there was only one previous selection position 1604 a.
  • the operator may select a new calibration position 1604 b over a suitable feature.
  • the suggested selection areas 1602 a - d are not necessary the only areas possible to select calibration positions within but rather indicates suitable areas for selecting calibration positions.
  • the selection process continues and eventually presents a new suggested selection area 1602 c for the operator.
  • the position of this new suggested selection area 1602 c is once more calculated as half the angle ⁇ max /2 of the largest angle ⁇ max between two circumferentially neighbouring selected calibration positions. In FIG.
  • the largest angle ⁇ max is found between the calibration positions 1604 a and 1604 b and is a fraction larger than 180 degrees and, thus, the suggested selection area 1602 c is arranged substantially 90 degrees from any of the lines 1606 or 1612 .
  • a new calibration position 1604 c is selected by the operator and the process loops once more.
  • the next suggested selection area 1602 d is then positioned substantially at an angle marginally less than 90 degrees from the lines 1606 or 1612 forming the largest angle ⁇ max .
  • the operator may then select the next calibration position 1604 d and the process continues, unless this is the last calibration position to be recorded.
  • the error functions ⁇ ⁇ err ( ⁇ calc ) and ⁇ ⁇ err ( ⁇ calc ) may be estimated by a trigonometric function or a polynomial.
  • the advantage of using a polynomial estimation is that a Linear Least Square Estimation (LLSE) may be used to find the coefficients of the functions. How to estimate a polynomial function using LLSE is well known to the person skilled in the art.
  • an error estimation of the pan-tilt angle at any calculated pan-tilt position may be retrieved using the values produced by the transform from coordinates, x, y, to the pan tilt position ⁇ calc , ⁇ calc .
  • the error in each pan-tilt position may be calculated according to Equations 5 and 6:
  • the resulting pan-tilt position i.e., the one determined by adjusting using the error function, is of substantially higher accuracy than a position calculated without using the error compensation.
  • Transformations from a pan-tilt position ⁇ , ⁇ to an overview position x, y may also be necessary.
  • One case in which such transformation may be of interest is if an object in the detailed view has to be masked and the operator returns the camera to the overview mode.
  • the masked object should be masked in the overview mode as well as in the detailed mode.
  • the position in the detailed mode has to be transformed to a position in the overview.
  • the transformation from pan-tilt positions ⁇ , ⁇ to overview positions x,y is based on equations inverting the transformation described in relation to Equations 1-3.
  • the transformation includes calculating the distance d in the overview, see FIGS. 7 a - b and Equation 9. The distance d is approximated as having the same relation to the radius of the overview image as the relation between tilt ⁇ and the total view angle ⁇ . When this distance d is calculated the dx and dy distances may be calculated using basic trigonometry, see Equation 10 and Equation 11, in which ⁇ is the pan angle.
  • the process further adjusts for the coordinates of the center point x c , y c , used as reference for the pan angle ⁇ , for the distance d and for dx and dy.
  • this transform as well as in the transform for transformation from overview to detailed view, misalignment errors are present and therefore error functions for x and y, respectively, has to be determined.
  • these functions are estimated from substantially the same calibration process and data as described above. More specifically, the calibration process may be identical to any of the calibration processes described in connection with FIG. 12 or FIG.
  • the detection of the position error includes applying transformation equations to the pan-tilt position resulting from the operator's adjustments when aligning the center of the detailed view with the presently selected feature.
  • the resulting coordinates in the Cartesian coordinate system of the overview i.e., x t , y t , are then compared with the coordinates, x,y, from the original selection of the feature.
  • the error functions may be estimated from the error data using the same methods as discussed above in relation to the estimation of the estimation of error functions for the transformation from overview mode to detailed mode.
  • the error functions ⁇ x ( ⁇ ), ⁇ y ( ⁇ ) have been estimated based on pan angle dependency not taking the tilt angle into account. In this embodiment, the tilt angle had substantially no effect on the error and therefore it was not necessary to consider the tilt-angle.
  • the error functions may be based on other variables, if a specific implementation so requires.
  • this transformation from the detailed mode to the overview mode may be used in correctly positioning masks.
  • masks for the pan-tilt cameras are often defined in pan-tilt angles and by introducing a more precise transformation method theses masks may simply be recalculated for the overview instead of being re-entered for the overview coordinates and thus facilitating the setting up of the monitoring camera.
  • Another use of this transformation is that it enables improvements to the interface. For example, when the camera is in detailed mode, depicted in FIG. 17 , a marker 1700 indicating the position of the detailed image view may be simultaneously displayed on the overview. In such an application, the overview may be displayed together with the detailed view in order to facilitate the understanding of the orientation of the camera.
  • the position of the center point of the detailed view is continuously transformed into overview coordinates which are used for positioning the marker in the overview.
  • the operator using this type of system may quickly identify where the monitoring camera is monitoring and may thus easily inform others about the whereabouts of specific activities.
  • Providing a detailed view and an overview in the same operators view are not necessary restricted to use of a camera described in this application, but may also be used in a system using two separate cameras, one for the detailed view and another for the overview or in a system using a standard pan-tilt-zoom camera in combination with an overview image being stitched from a plurality of images captured by the camera. In the latter case the stitched overview image may be updated when new image information is available.
  • the overview image may according to one embodiment be a static image when a detailed view is presented, but according to another embodiment the overview may be a live image even when the detailed view is presented live.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)
US13/828,058 2012-03-29 2013-03-14 Method for calibrating a camera Abandoned US20130258115A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/828,058 US20130258115A1 (en) 2012-03-29 2013-03-14 Method for calibrating a camera
US15/245,553 US10425566B2 (en) 2012-03-29 2016-08-24 Method for calibrating a camera

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP12162107.2 2012-03-29
EP20120162107 EP2645701A1 (fr) 2012-03-29 2012-03-29 Procédé d'étalonnage de caméra
US201261621181P 2012-04-06 2012-04-06
US13/828,058 US20130258115A1 (en) 2012-03-29 2013-03-14 Method for calibrating a camera

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/245,553 Continuation US10425566B2 (en) 2012-03-29 2016-08-24 Method for calibrating a camera

Publications (1)

Publication Number Publication Date
US20130258115A1 true US20130258115A1 (en) 2013-10-03

Family

ID=46025362

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/828,058 Abandoned US20130258115A1 (en) 2012-03-29 2013-03-14 Method for calibrating a camera
US15/245,553 Active US10425566B2 (en) 2012-03-29 2016-08-24 Method for calibrating a camera

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/245,553 Active US10425566B2 (en) 2012-03-29 2016-08-24 Method for calibrating a camera

Country Status (3)

Country Link
US (2) US20130258115A1 (fr)
EP (2) EP3122034B1 (fr)
CN (1) CN103365030B (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130314533A1 (en) * 2012-05-25 2013-11-28 Fujitsu Ten Limited Data deriving apparatus
US20140375795A1 (en) * 2013-06-19 2014-12-25 Trimble Jena Gmbh Determination of a measurement error
US10580121B2 (en) * 2017-11-16 2020-03-03 Axis Ab Image noise reduction based on a modulation transfer function of a camera dome
US20200145585A1 (en) * 2018-11-01 2020-05-07 Hanwha Techwin Co., Ltd. Video capturing device including cameras and video capturing system including the same
US11153495B2 (en) * 2019-05-31 2021-10-19 Idis Co., Ltd. Method of controlling pan-tilt-zoom camera by using fisheye camera and monitoring system
US11263795B1 (en) * 2015-03-13 2022-03-01 Amazon Technologies, Inc. Visualization system for sensor data and facility data
US20220065621A1 (en) * 2020-08-31 2022-03-03 Gopro, Inc. Optical center calibration
CN117459688A (zh) * 2023-12-26 2024-01-26 海纳云物联科技有限公司 基于地图系统的摄像头角度标示方法、装置及介质

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105794198A (zh) * 2015-01-06 2016-07-20 深圳市大疆创新科技有限公司 一种图像处理方法、相关装置、处理器及系统
CN106341590B (zh) * 2015-10-10 2019-05-21 北京智谷睿拓技术服务有限公司 图像采集控制方法和装置、图像采集设备
JP6687729B2 (ja) 2015-10-16 2020-04-28 アルコン インコーポレイティド 眼科手術画像処理
CN108540793B (zh) * 2017-03-03 2020-04-14 光宝电子(广州)有限公司 摄像模块的定位调校系统
CN108769666A (zh) * 2018-05-03 2018-11-06 深圳睿晟自动化技术有限公司 光发射模组的光心定位方法、装置、终端设备和存储介质
CN110895372B (zh) * 2018-09-13 2022-03-11 浙江宇视科技有限公司 光轴偏差校准方法及相关装置
CN109712196B (zh) * 2018-12-17 2021-03-30 北京百度网讯科技有限公司 摄像头标定处理方法、装置、车辆控制设备及存储介质
CN109782755B (zh) * 2018-12-27 2022-05-31 广东飞库科技有限公司 控制agv进行校准、agv校准位置的方法、计算机存储介质及agv
CN110009698B (zh) * 2019-05-15 2024-03-15 江苏弘冉智能科技有限公司 一种双目视觉系统智能标定装置及标定方法
CN110375168A (zh) * 2019-08-22 2019-10-25 成都越凡创新科技有限公司 一种摄像头标定云台及包含该标定云台的标定工装
CN110764341B (zh) * 2019-10-30 2022-05-10 明基智能科技(上海)有限公司 投影机
CN111862620B (zh) * 2020-07-10 2022-10-18 浙江大华技术股份有限公司 一种图像融合处理方法及装置
CN112422960B (zh) * 2020-11-20 2023-01-06 北京紫光展锐通信技术有限公司 摄像头模组的偏移估算方法及装置、存储介质、终端
CN112967343B (zh) * 2021-01-20 2023-01-06 深圳视觉龙智能传感器有限公司 一种实现2d相机引导2.5d贴装的算法
JP2022126066A (ja) * 2021-02-18 2022-08-30 トヨタ自動車株式会社 車載センサシステム、及び車載センサシステムのデータ生成方法
CN114422676A (zh) * 2022-01-17 2022-04-29 广州市奥威亚电子科技有限公司 摄像头模组的参数记录方法、暗角调整方法及装置
CN114460110B (zh) * 2022-03-08 2023-06-06 中国电子科技集团公司第三十八研究所 一种伺服系统误差补偿方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121966A (en) * 1992-11-02 2000-09-19 Apple Computer, Inc. Navigable viewing system
US20060203098A1 (en) * 2004-02-19 2006-09-14 Henninger Paul E Iii Method and apparatus for producing frame accurate position data in a PTZ dome camera with open loop control
US20080074507A1 (en) * 2006-09-25 2008-03-27 Naoto Ohara Image pickup apparatus and method and apparatus for manufacturing the same
US20080094480A1 (en) * 2006-10-19 2008-04-24 Robert Bosch Gmbh Image processing system and method for improving repeatability
US20080204560A1 (en) * 2007-02-19 2008-08-28 Axis Ab Method for compensating hardware misalignments in a camera
US20080291318A1 (en) * 2005-12-09 2008-11-27 6115187 Canada Inc. Method and Device for Identifying and Calibrating Panoramic Optical Systems
US20090208063A1 (en) * 2008-02-19 2009-08-20 I-Hsien Chen Dynamic calibration method for single and multiple vedio capture devices
US20100033567A1 (en) * 2008-08-08 2010-02-11 Objectvideo, Inc. Automatic calibration of ptz camera system
US20100119221A1 (en) * 2008-11-12 2010-05-13 Axis Ab Camera assembly
US20110063466A1 (en) * 2009-09-15 2011-03-17 Sony Corporation Image capturing system, image capturing device, information processing device, and image capturing method
US20130155290A1 (en) * 2011-12-19 2013-06-20 Pelco, Inc. Method and System for Image Centering during Zooming

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6738073B2 (en) * 1999-05-12 2004-05-18 Imove, Inc. Camera system with both a wide angle view and a high resolution view
US7207926B2 (en) * 2004-07-22 2007-04-24 Hoag Frederick J Deckless treadmill system
WO2006017402A2 (fr) * 2004-08-06 2006-02-16 Ipix Corporation Système et méthode de surveillance
US20060203090A1 (en) * 2004-12-04 2006-09-14 Proximex, Corporation Video surveillance using stationary-dynamic camera assemblies for wide-area video surveillance and allow for selective focus-of-attention
US7796154B2 (en) * 2005-03-07 2010-09-14 International Business Machines Corporation Automatic multiscale image acquisition from a steerable camera
US7884849B2 (en) * 2005-09-26 2011-02-08 Objectvideo, Inc. Video surveillance system with omni-directional camera
US9182228B2 (en) * 2006-02-13 2015-11-10 Sony Corporation Multi-lens array system and method
US8539098B2 (en) * 2007-10-17 2013-09-17 Dispersive Networks, Inc. Multiplexed client server (MCS) communications and systems
US20100079602A1 (en) * 2008-09-26 2010-04-01 Silverbrook Research Pty Ltd. Method and apparatus for alignment of an optical assembly with an image sensor
US8488001B2 (en) * 2008-12-10 2013-07-16 Honeywell International Inc. Semi-automatic relative calibration method for master slave camera control
US8294560B2 (en) * 2009-07-20 2012-10-23 The United States Of America As Represented By The Secretary Of The Army Method and apparatus for identifying threats using multiple sensors in a graphical user interface
NO332170B1 (no) * 2009-10-14 2012-07-16 Cisco Systems Int Sarl Anordning og fremgangsmate for kamerakontroll
US20110128385A1 (en) * 2009-12-02 2011-06-02 Honeywell International Inc. Multi camera registration for high resolution target capture
EP2553924B1 (fr) * 2010-03-26 2017-05-10 Fortem Solutions Inc. Navigation sans effort entre des caméras et commande collaborative de caméras
US9007432B2 (en) * 2010-12-16 2015-04-14 The Massachusetts Institute Of Technology Imaging systems and methods for immersive surveillance
JP5739722B2 (ja) * 2011-04-26 2015-06-24 株式会社日立情報通信エンジニアリング 物体認識方法及び認識装置
US20130128050A1 (en) * 2011-11-22 2013-05-23 Farzin Aghdasi Geographic map based control

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121966A (en) * 1992-11-02 2000-09-19 Apple Computer, Inc. Navigable viewing system
US20060203098A1 (en) * 2004-02-19 2006-09-14 Henninger Paul E Iii Method and apparatus for producing frame accurate position data in a PTZ dome camera with open loop control
US20080291318A1 (en) * 2005-12-09 2008-11-27 6115187 Canada Inc. Method and Device for Identifying and Calibrating Panoramic Optical Systems
US20080074507A1 (en) * 2006-09-25 2008-03-27 Naoto Ohara Image pickup apparatus and method and apparatus for manufacturing the same
US20080094480A1 (en) * 2006-10-19 2008-04-24 Robert Bosch Gmbh Image processing system and method for improving repeatability
US20080204560A1 (en) * 2007-02-19 2008-08-28 Axis Ab Method for compensating hardware misalignments in a camera
US20090208063A1 (en) * 2008-02-19 2009-08-20 I-Hsien Chen Dynamic calibration method for single and multiple vedio capture devices
US20100033567A1 (en) * 2008-08-08 2010-02-11 Objectvideo, Inc. Automatic calibration of ptz camera system
US20100119221A1 (en) * 2008-11-12 2010-05-13 Axis Ab Camera assembly
US20110063466A1 (en) * 2009-09-15 2011-03-17 Sony Corporation Image capturing system, image capturing device, information processing device, and image capturing method
US20130155290A1 (en) * 2011-12-19 2013-06-20 Pelco, Inc. Method and System for Image Centering during Zooming

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130314533A1 (en) * 2012-05-25 2013-11-28 Fujitsu Ten Limited Data deriving apparatus
US20140375795A1 (en) * 2013-06-19 2014-12-25 Trimble Jena Gmbh Determination of a measurement error
US9563952B2 (en) * 2013-06-19 2017-02-07 Trimble Jena Gmbh Determination of a measurement error
US11263795B1 (en) * 2015-03-13 2022-03-01 Amazon Technologies, Inc. Visualization system for sensor data and facility data
US10580121B2 (en) * 2017-11-16 2020-03-03 Axis Ab Image noise reduction based on a modulation transfer function of a camera dome
US20200145585A1 (en) * 2018-11-01 2020-05-07 Hanwha Techwin Co., Ltd. Video capturing device including cameras and video capturing system including the same
US10979645B2 (en) * 2018-11-01 2021-04-13 Hanwha Techwin Co., Ltd. Video capturing device including cameras and video capturing system including the same
US11153495B2 (en) * 2019-05-31 2021-10-19 Idis Co., Ltd. Method of controlling pan-tilt-zoom camera by using fisheye camera and monitoring system
US20220065621A1 (en) * 2020-08-31 2022-03-03 Gopro, Inc. Optical center calibration
US11600023B2 (en) * 2020-08-31 2023-03-07 Gopro, Inc. Optical center calibration
CN117459688A (zh) * 2023-12-26 2024-01-26 海纳云物联科技有限公司 基于地图系统的摄像头角度标示方法、装置及介质

Also Published As

Publication number Publication date
CN103365030B (zh) 2017-06-09
CN103365030A (zh) 2013-10-23
EP2645701A1 (fr) 2013-10-02
EP3122034A1 (fr) 2017-01-25
US20160364863A1 (en) 2016-12-15
US10425566B2 (en) 2019-09-24
EP3122034B1 (fr) 2020-03-18

Similar Documents

Publication Publication Date Title
US10425566B2 (en) Method for calibrating a camera
US11227410B2 (en) Multi-camera tracking
US10165157B2 (en) Method and device for hybrid robotic/virtual pan-tilt-zoom cameras for autonomous event recording
EP1914682B1 (fr) Système de traitement d'images et procédé d'amélioration de la répétabilité
US10044932B2 (en) Wide angle fisheye security camera having offset lens and image sensor
US8405731B2 (en) Method for compensating hardware misalignments in a camera
US20060209186A1 (en) Field angle adjustment apparatus, camera system, and field angle adjustment method
US9936112B2 (en) Monitoring camera
WO2022000300A1 (fr) Procédé de traitement d'image, appareil d'acquisition d'image, véhicule aérien sans pilote, système de véhicule aérien sans pilote et support de stockage
US8872944B2 (en) Method and system for image centering during zooming
US20130162760A1 (en) Monitoring camera and method for monitoring
GB2459033A (en) Resolution reduced video monitoring method to enable real time video processing
CN106559656B (zh) 监控画面遮盖方法、装置及网络摄像机
US9386280B2 (en) Method for setting up a monitoring camera
EP2648406B1 (fr) Procédé de changement de mode vidéo dans une caméra
KR101452342B1 (ko) 감시카메라 유닛 및 그 구동방법
JP4254667B2 (ja) 広視野角映像撮影装置
KR102482341B1 (ko) 차량 단속영역좌표 자동 보정 시스템
US10750132B2 (en) System and method for audio source localization using multiple audio sensors
JP2005175852A (ja) 撮影装置及び撮影装置の制御方法
Sankaranarayanan et al. An efficient active camera model for video surveillance
TW201915582A (zh) 影像擷取系統及其馬達定位方法
JP2023038480A (ja) 監視システム及び監視方法
CN117750184A (zh) 一种摄像机的安装调节方法以及相关装置
KR20160090650A (ko) 설정 가능한 센서네트워크에서의 사용자 위치 추정 장치 및 방법

Legal Events

Date Code Title Description
AS Assignment

Owner name: AXIS AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HANSSON, NIKLAS;PALSSON, ANDREAS;SIGNING DATES FROM 20130408 TO 20130409;REEL/FRAME:030459/0437

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION