US20130190714A1 - Multi-layered tubing - Google Patents
Multi-layered tubing Download PDFInfo
- Publication number
- US20130190714A1 US20130190714A1 US13/354,029 US201213354029A US2013190714A1 US 20130190714 A1 US20130190714 A1 US 20130190714A1 US 201213354029 A US201213354029 A US 201213354029A US 2013190714 A1 US2013190714 A1 US 2013190714A1
- Authority
- US
- United States
- Prior art keywords
- weight
- tube
- acrylate copolymer
- methyl acrylate
- layer comprises
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920006225 ethylene-methyl acrylate Polymers 0.000 claims abstract description 46
- 239000004698 Polyethylene Substances 0.000 claims abstract description 31
- -1 polyethylene Polymers 0.000 claims abstract description 29
- 229920000573 polyethylene Polymers 0.000 claims abstract description 29
- 229920001577 copolymer Polymers 0.000 claims abstract description 27
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 claims abstract description 26
- 150000008064 anhydrides Chemical class 0.000 claims abstract description 20
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 239000004433 Thermoplastic polyurethane Substances 0.000 claims abstract description 5
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 44
- 239000012530 fluid Substances 0.000 claims description 33
- 239000004814 polyurethane Substances 0.000 claims description 33
- 229920002635 polyurethane Polymers 0.000 claims description 33
- 229920001684 low density polyethylene Polymers 0.000 claims description 18
- 239000004702 low-density polyethylene Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 13
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 13
- 229920000570 polyether Polymers 0.000 claims description 13
- 125000003118 aryl group Chemical group 0.000 claims description 12
- 229920001903 high density polyethylene Polymers 0.000 claims description 10
- 239000004700 high-density polyethylene Substances 0.000 claims description 10
- 238000001125 extrusion Methods 0.000 claims description 8
- 229920000092 linear low density polyethylene Polymers 0.000 claims description 5
- 239000004707 linear low-density polyethylene Substances 0.000 claims description 5
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 claims description 4
- 230000032798 delamination Effects 0.000 claims description 4
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 claims description 3
- 125000001931 aliphatic group Chemical group 0.000 claims description 3
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 claims description 3
- 210000004204 blood vessel Anatomy 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 118
- 239000005043 ethylene-methyl acrylate Substances 0.000 description 9
- 239000004800 polyvinyl chloride Substances 0.000 description 9
- 229920000915 polyvinyl chloride Polymers 0.000 description 8
- HGVPOWOAHALJHA-UHFFFAOYSA-N ethene;methyl prop-2-enoate Chemical compound C=C.COC(=O)C=C HGVPOWOAHALJHA-UHFFFAOYSA-N 0.000 description 5
- 239000005042 ethylene-ethyl acrylate Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 4
- RYECOJGRJDOGPP-UHFFFAOYSA-N Ethylurea Chemical compound CCNC(N)=O RYECOJGRJDOGPP-UHFFFAOYSA-N 0.000 description 3
- 230000004323 axial length Effects 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000002386 leaching Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- QLZJUIZVJLSNDD-UHFFFAOYSA-N 2-(2-methylidenebutanoyloxy)ethyl 2-methylidenebutanoate Chemical compound CCC(=C)C(=O)OCCOC(=O)C(=C)CC QLZJUIZVJLSNDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 1
- 229920012485 Plasticized Polyvinyl chloride Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000010062 adhesion mechanism Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000002355 dual-layer Substances 0.000 description 1
- 239000013536 elastomeric material Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M39/00—Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
- A61M39/08—Tubes; Storage means specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B1/00—Layered products having a non-planar shape
- B32B1/08—Tubular products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L11/10—Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements not embedded in the wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L11/12—Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/16—Articles comprising two or more components, e.g. co-extruded layers
- B29C48/18—Articles comprising two or more components, e.g. co-extruded layers the components being layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/16—Articles comprising two or more components, e.g. co-extruded layers
- B29C48/18—Articles comprising two or more components, e.g. co-extruded layers the components being layers
- B29C48/22—Articles comprising two or more components, e.g. co-extruded layers the components being layers with means connecting the layers, e.g. tie layers or undercuts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2535/00—Medical equipment, e.g. bandage, prostheses or catheter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2597/00—Tubular articles, e.g. hoses, pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
Definitions
- the present invention relates to polymeric tubing typically formed by a co-extrusion process, the tubing having multiple layers of the same or different polymeric materials each layer successively adhered to each other.
- Tubing comprised of polymeric material is used in many industrial and commercial applications including in the medical field. Various FDA compliant plastics are used, depending upon properties desired and the intended applications. Where the tubing is used to transport fluids for in vivo treatment of human patients, selection of the polymeric materials can be a factor.
- Polyvinyl chloride is one of the most widely used plastics. While structurally stable and easily formable into desired shapes, PVC is typically manufactured using plasticizers which can migrate out of the PVC matrix into bodily fluids and has other properties not ideally suited for medical treatment applications. Likewise, due to the inherent nature of plasticized PVC tubing, there arises the potential absorption of medicines and other components of aqueous fluids used in medical treatments into the sidewall of the PVC tube. Polyurethane is potentially a substitute for PVC. However, dual layer tubing comprised of polyurethane and polyethylene suffers from the inability of the two layers to remain adhered to each other under low to moderate stress, strain or mechanical manipulation conditions. U.S. Pat. No.
- Schmitt 4,627,844 to Schmitt (“Schmitt”), the disclosure of which is incorporated herein by reference as if fully set forth, discloses a tri-layer tube which is embodied in a commercial product sold under the trademark “SUREPATH 151” by the Natvar Division of Tekni-Plex, Inc.
- SUREPATH 151 the Natvar Division of Tekni-Plex, Inc.
- an outer layer of PVC and an inner fluid-contact layer of low density polyethylene (LDPE) are co-extruded with an intermediate tie layer of ethylene vinyl acetate copolymer (EVA).
- LDPE low density polyethylene
- EVA ethylene vinyl acetate copolymer
- Schmitt greatly reduces the possibility for the migration of additives from the PVC to the fluid and absorption of components from the fluid to the PVC tubing by providing a LDPE fluid-contact layer
- elimination of the PVC is preferred.
- Other tubing configurations are disclosed in U.S. Pat. No. 7,647,949, U.S. Pat. No. 4,211,741 and U.S. Patent Publication No. 2007/0119511, the disclosures of which are incorporated by reference as if fully set forth herein.
- a tubing, tube or tubular device that comprises at least three concentric layers of polymeric materials comprising an outer layer of a first selected polymeric material (typically comprised of at least about 90% by weight of a polyurethane), an inner layer of a second selected polymeric material (typically comprised of at least about 90% by weight of a polyethylene) and an intermediate layer of a third polymeric material (typically comprised of at least about 90% by weight of an acrylate containing polymer) that is disposed between and binds the inner and outer layers together by adhesion mechanisms, such as chemical adhesion.
- a first selected polymeric material typically comprised of at least about 90% by weight of a polyurethane
- an inner layer of a second selected polymeric material typically comprised of at least about 90% by weight of a polyethylene
- an intermediate layer of a third polymeric material typically comprised of at least about 90% by weight of an acrylate containing polymer
- the layers of polymeric materials are co-extruded together to form the tubing such that the outer and inner layers are adhered to the intermediate or middle layer and thus adhered to each other.
- the tubing is formed with a central hollow channel, bore or passage that is radially surrounded and defined by the polymeric layers that act as the walls of the tubing.
- the polymeric materials are preferably “contaminant free” meaning that they do not contain more than insignificant amounts of potentially unwanted materials (typically less than aboutout 0.5% and preferably less than about 0.2%, by weight) and/or prevent leaching or leaking of unwanted materials such as plasticizers, catalysts, monomers, metals, salts, ions or other substances that are potentially unwanted to a human being into an aqueous solution or medium with which one or the other of the three layers may come into contact during the normal course of use of the tubing in delivering aqueous fluid, such as insulin, chemotherapy drugs and other potentially unstable aqueous drug suspensions, to or from a human subject.
- unwanted materials such as plasticizers, catalysts, monomers, metals, salts, ions or other substances that are potentially unwanted to a human being into an aqueous solution or medium with which one or the other of the three layers may come into contact during the normal course of use of the tubing in delivering aqueous fluid, such as insulin, chemotherapy drugs and other potentially unstable aqueous drug suspension
- the intermediate layer prevents delamination of the outer and inner layers from the intermediate layers under conditions of relatively low to moderate stress or strain.
- the intermediate layer acts as a barrier to leaching or leaking of contaminants from the outer layer to or through the inner layer into the hollow central bore or passage of the tube.
- the polymeric material of the outer layer is comprised of a polyurethane thermoplastic elastomeric material (“TPU”)
- the inner layer is comprised of a polyethylene (“PE”), typically a low density polyethylene (“LDPE”), linear low density polyethylene (“LLDPE”), high density polyethylene (“HDPE”) or blends thereof
- the intermediate or middle layer is comprised of an ethylene ethyl acrylate copolymer (EEA), ethylene methyl acrylate copolymer (EMA), an anhydride grafted ethylene methyl acrylate copolymer (AEMA), a copolymer of two or more of said acrylates or a mixture of two or more of the foregoing.
- the polyurethane outer layer 1 is between about 0.001′′ and about 0.025′′ in thickness, T 3
- the inner layer polyethylene layer 3 is between about 0.001′′ and about 0.025′′ in thickness, T 1
- the intermediate acrylate copolymer layer 2 is between about 0.001′′ and about 0.025′′ in thickness, T 2 .
- the layers 1 , 2 , 3 collectively form a tubular wall surrounding and defining a central fluid flow passage 20 .
- Ethylene ethyl acrylate copolymers EA
- Ethylene methyl acrylate (EMA) copolymers Ethylene methyl acrylate copolymers
- AEMA anhydride grated ethylene methyl acrylate copolymers
- TPU, EEA or EMA or AEMA and PE are melt extruded through a die head to form a tubular shaped extrudate that is then cooled through conventional water baths or water vacuum tanks and which are either subsequently wound or cut into a particular length for use.
- the level of elasticity and softness of the EEA, EMA AEMA or copolymer thereof is controlled through the amount of ethyl acrylate or methyl acrylate comonomer utilized with ethylene in the copolymerization process.
- the resulting three layer tubes manufactured by such a co-extrusion process act in a monolithic manner in that they return to close to their original shape and dimensions after being strained or stretched in a tensile manner along the longitudinal axis of the tube at a stress of up to about 55 MPa and a strain of up to about 900-950% and without any visual delaminaton between any of the layers after being submersed in water at about 60° C. for about 36 hours.
- a tube comprising an inner layer, an outer layer and a middle layer, wherein the inner layer comprises a polyethylene, the outer layer comprises a thermoplastic polyurethane and the middle layer comprises an ethylene ethyl acrylate copolymer or an ethylene methyl acrylate copolymer or an anhydride grafted ethylene methyl acrylate copolymer, a copolymer of two or more of said acrylates or a mixture of two or more of the foregoing.
- the inner layer typically comprises more than about 90% by weight of a polyethylene
- the outer layer typically comprises more than about 90% by weight of an aromatic or aliphatic polyether based polyurethane
- the middle layer typically comprises more than about 90% by weight of an ethylene ethyl acrylate copolymer.
- the polyethylene typically comprises one or more of a low density polyethylene, a linear low density polyethylene and a high density polyethylene
- the aromatic polyether based polyurethane typically comprises a polytetramethyleneglycol-based polyurethane
- the ethylene ethyl acrylate copolymer typically comprises at least about 19.5 percent ethyl acrylate content by weight.
- the inner layer typically comprises more than about 90% by weight of polyethylene
- the outer layer typically comprises more than about 90% by weight of a aromatic polyether based polyurethane
- the middle layer typically comprises more than about 90% by weight of an ethylene methyl acrylate copolymer.
- the inner layer can comprise more than about 90% by weight of low density polyethylene (LDPE) while the outer layer comprises more than about 90% by weight of a polytetramethyleneglycol-based polyurethane and the middle layer comprises more than about 90% an anhydride grafted ethylene methyl acrylate copolymer.
- LDPE low density polyethylene
- the thickness of the polyurethane outer layer is between about 0.001′′ and about 0.025′′
- the thickness of the inner polyethylene layer is between about 0.001′′ and about 0.025′′
- the thickness of the intermediate acrylate copolymer layer is between about 0.001′′ and about 0.025′′.
- the inner and outer layers do not visually delaminate from each other at a stress up to of about 55 MPa and a strain of up to about 900-950% when measured by pulling a length of tubing about 2 inches in axial length along its axis using a Lloyd LR5K plus mechanical tester at a pull rate of about 12 inches/minute at ambient environmental conditions of about 72 degrees F. and about 50% relative humidity, the break point of the tubing 10 being about 57-62 MPa and about 1000-1050%.
- the tube does not visually delaminate after being subjected to submersion in water at 60° C. for 36 hours and subsequently mechanically flattened by manual squeezing of the tube from its normal round in cross-sectional condition to a flattened or oval shape cross-sectional shape or condition.
- the tube has a central axial fluid flow passage through which aqueous fluid is routed, the inner layer having a radially inner wall surface that contacts the aqueous fluid, the outer and inner layers resisting delamination from each other at a stress of up to about 55 MPa and a strain of up to about 900-950%.
- a medical tube for transport of aqueous fluid comprising:
- the inner and outer layers preferably do not visually delaminate from each other at a stress of up to about 55 MPa and a strain of up to about 900-950%. And such a tube preferably does not visually delaminate after being submersed in water at 60° C. for 36 hours.
- a medical tube for transport of an aqueous fluid comprising:
- a medical tube for transport of an aqueous fluid comprising:
- the middle layer serves as a barrier against, prevents or substantially lessens migration of mobile moieties such as monomers, short chained polymers, ions, water, small organic molecules, metals, plasticizers, catalysts and the like between the outer and inner layers or from the outer layer into the inner layer or the central flow passage or from the central flow passage or inner layer into the outer layer.
- mobile moieties such as monomers, short chained polymers, ions, water, small organic molecules, metals, plasticizers, catalysts and the like between the outer and inner layers or from the outer layer into the inner layer or the central flow passage or from the central flow passage or inner layer into the outer layer.
- a method of forming a medical tube comprising an outer layer, an innermost layer and an intermediate layer disposed between the outer layer and the innermost layer, the method comprising:
- the outer layer comprises at least about 90% by weight of the first polymeric material
- the inner layer comprises at least about 90% weight of the second polymeric material
- the intermediate layer comprises at least about 90% by weight of the third polymeric material.
- the first polymeric material is selected to be a polyurethane
- the second polymeric material is selected to be a polyethylene
- the third polymeric material is selected from the group consisting of an ethylene ethyl acrylate copolymer, an ethylene methyl acrylate copolymer, an anhydride grafted ethylene methyl acrylate copolymer, a copolymer of said acrylate copolymers or a mixture of two or more of the foregoing.
- a tube comprising an inner layer, an outer layer and a middle layer, wherein the inner layer comprises a polyethylene, the outer layer comprises a thermoplastic polyurethane and the middle layer comprises an ethylene ethyl acrylate copolymer or an ethylene methyl acrylate copolymer or an anhydride grafted ethylene methyl acrylate copolymer, a copolymer of two or more of said acrylates or a mixture of two or more of the foregoing;
- the tube has a central fluid flow passage surrounded by the layers
- the step of selecting preferably comprises:
- the outer, inner and middle layers co-extruding the outer, inner and middle layers to form the tube such that the outer layer comprises at least about 90% by weight of the polyurethane, the inner layer comprises at least about 90% weight of the polyethylyene and the intermediate layer comprises at least about 90% by weight of one or more of the arcylate copolymers.
- FIG. 1 is a schematic perspective view of a tri-layered tube showing the outer and middle or intermediate layers broken away in order to better illustrate the construction and arrangement of the tubing;
- FIG. 2 is a cross-sectional view taken along lines 2 - 2 of the tube 10 shown in FIG. 1 .
- FIG. 1 an embodiment of a co-extruded tri-layer tubing 10 according to the invention which comprises an outer layer 1 comprised of at least about 90% by weight of a polyurethane material, typically a polytetramethyleneglycol-based polyurethane one example of which is Lubrizol TPU Pellethane 2363-90AE, an inner fluid-contact layer 3 comprised of at least about 90% by weight of a polyethylene material, typically a low density polyethylene, one example of which is Westlake LDPE EM808AA and an intermediate bonding layer 2 comprised of at least about 90% by weight of an ethylene ethyl acrylate copolymer, an ethylene methyl acrylate copolymer, an anhydride grafted ethylene methyl acrylate copolymer, a copolymer of two or more of said acrylates or a mixture of two or more of these acrylate based compounds or compositions.
- a polyurethane material typically a polytetramethyleneglycol-
- ethylene ethyl acrylate copolymer is Dow Amplify EA 103 (Ethylene Ethyl Acrylate being about 19.5% by weight).
- suitable ethylene methyl acrylate copolymers are Westlake MA SP2268 (Ethylene Methyl Acrylate being about 24% by weight), Westlake MA SP2220 (Ethylene Methyl Acrylate being about 20% by weight).
- a suitable anhydride grafted ethylene methyl acrylate copolymer is Westlake Tymax GA 7001 (Anhydride grafted Ethylene Methyl Acrylate)
- the outer layer of polyurethane 1 has a radially inner facing surface S 1 that binds and adheres to a radially outer facing surface S 2 of the intermediate acrylate copolymer layer 2 .
- the inner layer of polyethylene material 3 has a radially outer facing surface S 4 that binds and adheres to the radially inner facing surface S 3 of the intermediate acrylate copolymer layer 2 .
- the intermediate layer 2 adheres to the outer 1 and inner 3 layers such that the layers 1 and 3 remain adhered to layer 2 and to each other when the tube 10 is subjected to a stress of up to about 55 MPa and a strain of up to about 900-950% as measured by pulling a length of tubing 10 of about 2 inches in axial length L along its axis A using a Lloyd LR5K Plus mechanical tester at a pull rate of about 12 inches/minute at ambient environmental conditions of about 72 degrees F. and about 50% relative humidity, the break point of the tubing 10 being at about 57-62 MPa and about 1000-1050%.
- the layers 1 , 2 , 3 of such tubing 10 does not visually delaminate after being subjected to submersion in water at 60° C. for 36 hours and subsequently mechanically flattened by manual squeezing of the tube from its normal round in cross-sectional condition to a flattened or oval shape cross-sectional shape or condition.
- the layers 1 , 2 , 3 are formed into structurally stable walls that surround and enclose a central hollow fluid passage 20 through which an aqueous solution is routed and flows in an axial A direction contacting the radially inner facing surface S 5 of the inner layer 3 .
- the intermediate layer 2 binds and holds the inner 3 and outer 1 layers together.
- the inner layer 3 provides a radially inner fluid-contact surface S 5 , the thickness, of the inner layer 3 typically ranging in cross-sectional thickness T 1 of between about 0.001 inches and about 0.025 inches.
- the intermediate layer 2 typically ranges in cross-sectional thickness T 2 of between about 0.001 inches and about 0.025 inches.
- the outer layer 1 typically ranges in cross-sectional thickness T 3 of between about 0.001 inches and about 0.025 inches.
- the polyethylene material is preferably a branched low-density polyethylene (LDPE), such as Westlake EM808, available from Westlake Chemical Corporation.
- LDPE linear low-density polyethylene
- the polyethylene material can be a linear low density polyethylene (LLDPE) such as Dowlex 2035G, available from the Dow Chemical Company.
- LLDPE linear low density polyethylene
- the polyethylene material can also be a high-density polyethylene (HDPE), such as Chevron 9506 HDPE, Chevron 9406 HDPE, and Chevron 9503 HDPE, available from Chevron Corporation.
- the polyurethane elastomer is typically the reaction product of a polyol and isocyanate and usually includes a combination of hard and soft segment domains.
- An aromatic polyether-based TPU or an aliphatic polyether-based TPU can be used such as a polytetramethyleneglycol-based polyurethane.
- TPU's include the Pellethane 2363-80 AE series available from the Lubrizol Corporation such as Lubrizol TPU Pellethane 2363-90AE.
- each layer of tubing 10 , 20 can be controlled by the extrusion tooling utilized, such as the “Tri Die” extrusion apparatus manufactured by the Genca Division of General Cable Company, Clearwater, Fla.
- the extrusion apparatus is selected so as to provide a uniform thickness of the layers 1 , 2 , 3 along the substantial entirety of the axial length L of all three layers 1 , 2 , 3 .
- the polymeric materials of which the layers 1 , 2 , 3 are comprised are selected so as to be visually clear or transparent and manually flexible along and around the axis A of the tubing.
- the polymeric materials are also selected so as to maintain the integrity of the tubing 10 (namely delamination does not occur) and its transparency or clarity after being subjected to ethylene oxide (EtO) and gamma irradiation sterilization processes.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Pulmonology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Anesthesiology (AREA)
- Veterinary Medicine (AREA)
- Laminated Bodies (AREA)
- Materials For Medical Uses (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/354,029 US20130190714A1 (en) | 2012-01-19 | 2012-01-19 | Multi-layered tubing |
US13/586,288 US9702486B2 (en) | 2012-01-19 | 2012-08-15 | Polyurethane-polyethylene delamination resistant tubing with gas barrier properties |
BR112014017785-6A BR112014017785B1 (pt) | 2012-01-19 | 2012-10-30 | tubo e método para formar um tubo |
EP12791897.7A EP2804660B1 (fr) | 2012-01-19 | 2012-10-30 | Tube multicouche |
CN201280067703.5A CN104220125A (zh) | 2012-01-19 | 2012-10-30 | 多层管道 |
CN201811023063.3A CN109045462A (zh) | 2012-01-19 | 2012-10-30 | 多层管道 |
PCT/US2012/062565 WO2013109329A1 (fr) | 2012-01-19 | 2012-10-30 | Tube multicouche |
MX2014008756A MX366202B (es) | 2012-01-19 | 2012-10-30 | Tuberia de multiples capas. |
JP2014553288A JP6203754B2 (ja) | 2012-01-19 | 2012-10-30 | 複層管 |
CA2860872A CA2860872C (fr) | 2012-01-19 | 2012-10-30 | Tube multicouche |
US13/686,197 US20130186469A1 (en) | 2012-01-19 | 2012-11-27 | Multi-layered tubing |
CR20140347A CR20140347A (es) | 2012-01-19 | 2014-07-18 | Tubo multicapa |
US15/642,668 US20170299089A1 (en) | 2012-01-19 | 2017-07-06 | Polyurethane-polyethylene delamination resistant tubing with gas barrier properties |
US15/872,042 US10646704B2 (en) | 2012-01-19 | 2018-01-16 | Method of forming a medical tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/354,029 US20130190714A1 (en) | 2012-01-19 | 2012-01-19 | Multi-layered tubing |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/586,288 Continuation-In-Part US9702486B2 (en) | 2012-01-19 | 2012-08-15 | Polyurethane-polyethylene delamination resistant tubing with gas barrier properties |
US15/872,042 Continuation US10646704B2 (en) | 2012-01-19 | 2018-01-16 | Method of forming a medical tube |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130190714A1 true US20130190714A1 (en) | 2013-07-25 |
Family
ID=47258084
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/354,029 Abandoned US20130190714A1 (en) | 2012-01-19 | 2012-01-19 | Multi-layered tubing |
US15/872,042 Active 2032-06-06 US10646704B2 (en) | 2012-01-19 | 2018-01-16 | Method of forming a medical tube |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/872,042 Active 2032-06-06 US10646704B2 (en) | 2012-01-19 | 2018-01-16 | Method of forming a medical tube |
Country Status (9)
Country | Link |
---|---|
US (2) | US20130190714A1 (fr) |
EP (1) | EP2804660B1 (fr) |
JP (1) | JP6203754B2 (fr) |
CN (2) | CN104220125A (fr) |
BR (1) | BR112014017785B1 (fr) |
CA (1) | CA2860872C (fr) |
CR (1) | CR20140347A (fr) |
MX (1) | MX366202B (fr) |
WO (1) | WO2013109329A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022177580A1 (fr) * | 2021-02-22 | 2022-08-25 | Bard Peripheral Vascular, Inc. | Composants de tubage pour administration de matériau particulaire et procédés de formation |
US11454337B2 (en) * | 2018-02-09 | 2022-09-27 | Plastiflex Group | Low-weight profiles and hoses having high flexural fatigue |
US12048782B2 (en) * | 2017-06-30 | 2024-07-30 | Fenwal, Inc. | Fluid circuit having reduced plasticizer migration |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013089620A1 (fr) * | 2011-12-15 | 2013-06-20 | Shl Group Ab | Dispositif d'auto-injection |
PL2885047T3 (pl) * | 2012-08-15 | 2017-09-29 | Tekni-Plex, Inc. | Wielowarstwowy przewód rurowy |
US10240697B2 (en) * | 2014-08-22 | 2019-03-26 | 5elem Material Scientific(Jiangsu) Co., LTD. | Fracturing liquid delivery hose for recovery of shale oil and gas, and manufacturing method thereof |
US11724477B2 (en) * | 2016-04-28 | 2023-08-15 | Long Pipes Usa, Inc. | Flexible tubular structure |
JP6809842B2 (ja) * | 2016-08-17 | 2021-01-06 | 積水化学工業株式会社 | 多層管及び配管 |
CH714842A2 (de) * | 2018-03-29 | 2019-09-30 | Tecpharma Licensing Ag | Mehrschichtiger Schlauch für ein Infusionsset zur Abgabe eines Fluids. |
WO2022098679A1 (fr) * | 2020-11-09 | 2022-05-12 | Carefusion 303, Inc. | Tubulure médicale multicouche à faible capacité d'absorption |
JP7365064B2 (ja) * | 2021-07-20 | 2023-10-19 | 株式会社トヨックス | 多層管状成形体 |
WO2023244771A1 (fr) * | 2022-06-17 | 2023-12-21 | Tekni-Plex, Inc. | Tube médical et procédé de formation |
US20240066846A1 (en) * | 2022-08-26 | 2024-02-29 | Zeus Company Inc. | Thin wall lubricious polyethylene liners |
KR102617043B1 (ko) * | 2022-12-09 | 2023-12-27 | (주)원양건축사사무소 | 공동주택 건축물의 친환경 상수관 제조방법 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4948643A (en) * | 1989-01-23 | 1990-08-14 | W. R. Grace & Co.-Conn. | Flexible medical solution tubing |
US6074715A (en) * | 1993-06-24 | 2000-06-13 | Pechiney Plastic Packaging, Inc. | Heat shrinkable barrier bags |
US6165166A (en) * | 1997-04-25 | 2000-12-26 | Schneider (Usa) Inc. | Trilayer, extruded medical tubing and medical devices incorporating such tubing |
US20030165647A1 (en) * | 2002-03-04 | 2003-09-04 | Terumo Kabushiki Kaisha | Medical tubing and extrusion die for producing the same |
US20030208259A1 (en) * | 2000-06-29 | 2003-11-06 | Pentech Medical Devices Ltd. | Polymeric stents and other surgical articles |
US6977105B1 (en) * | 2000-04-21 | 2005-12-20 | Kuraray Co., Ltd. | Multilayered tube and medical supply comprising multilayered tube |
US20090087606A1 (en) * | 2007-10-02 | 2009-04-02 | Christian Julien | Radio frequency weldable multilayer tubing and method of making the same |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4211741A (en) | 1977-04-07 | 1980-07-08 | Sunlite Plastics, Inc. | Extrusion process for laminated medical-surgical tubing |
NZ205778A (en) | 1983-09-28 | 1986-05-09 | J Winkie | Interengagable cycle pedal and shoe |
US4627844A (en) | 1985-10-30 | 1986-12-09 | High Voltage Engineering Corporation | Tri-layer tubing |
US4723947A (en) * | 1986-04-09 | 1988-02-09 | Pacesetter Infusion, Ltd. | Insulin compatible infusion set |
US5052444A (en) | 1987-04-30 | 1991-10-01 | The Fluorocarbon Company | Reinforced fluid hose having on-bonded tape |
US5215450A (en) * | 1991-03-14 | 1993-06-01 | Yehuda Tamari | Innovative pumping system for peristaltic pumps |
CA2119575C (fr) * | 1991-09-24 | 2004-11-16 | Jerry G. Latiolais | Copolymeres d'ethylene et d'acrylate d'alkyle; methodes de preparation de ces copolymeres et de pellicules de grande transparence |
US6149997A (en) | 1992-01-30 | 2000-11-21 | Baxter International Inc. | Multilayer coextruded material for medical grade products and products made therefrom |
US5538510A (en) | 1994-01-31 | 1996-07-23 | Cordis Corporation | Catheter having coextruded tubing |
BR9506981A (pt) | 1994-03-04 | 1997-09-16 | Aeroquip Corp | Compósito e camada de ligação para o mesmo |
BE1009397A3 (fr) | 1995-05-12 | 1997-03-04 | Solvay | Tube ou feuille multicouche. |
US5681627A (en) * | 1995-07-21 | 1997-10-28 | W. R. Grace & Co.-Conn. | Highly flexible multilayer films for various medical applications |
US5921285A (en) | 1995-09-28 | 1999-07-13 | Fiberspar Spoolable Products, Inc. | Composite spoolable tube |
US5932307A (en) * | 1996-05-03 | 1999-08-03 | Baxter International Inc. | Oriented medical tubing |
US6479116B1 (en) | 1998-09-09 | 2002-11-12 | Eastman Chemical Company | Multi-layered polymeric structures including a layer of ethylene copolymer |
US6230749B1 (en) | 1999-11-29 | 2001-05-15 | Norma Products (Us) Inc. | Multilayer tube |
DE10014248A1 (de) | 2000-03-22 | 2001-10-18 | Rehau Ag & Co | Medizinische Arbeitsmittel |
FR2806951B1 (fr) | 2000-03-31 | 2002-06-14 | Aro | Dispositif de motorisation electrique pour pince d'outillage |
DE10057990A1 (de) | 2000-11-23 | 2002-06-06 | Rasmussen Gmbh | Mehrschichtrohr |
DE50106781D1 (de) | 2001-03-28 | 2005-08-25 | Rasmussen Gmbh | Mehrschichtige Fluidleitung zur Anwendung in Kraftfahrzeugen |
EP1249336B1 (fr) | 2001-04-10 | 2004-07-14 | Rasmussen GmbH | Tube multicouche pour fluides contenant des hydrocarbones |
US7112357B2 (en) | 2002-01-23 | 2006-09-26 | Boston Scientific Scimed, Inc. | Medical devices comprising a multilayer construction |
WO2003064909A1 (fr) | 2002-01-25 | 2003-08-07 | Natvar Holdings, Inc. | Tubage coextrude |
JP3868312B2 (ja) * | 2002-03-04 | 2007-01-17 | テルモ株式会社 | 押出成形用ダイ、積層管状体の製造方法および積層管状体 |
KR100951833B1 (ko) | 2002-03-20 | 2010-04-12 | 감브로 룬디아 아베 | 의학적 용도의 튜브 및 이 튜브가 합체된 순환관 |
US20040073192A1 (en) * | 2002-10-15 | 2004-04-15 | Flament-Garcia Mary Jane | Intravenous fluid delivery set |
DE202004000533U1 (de) * | 2004-01-15 | 2004-03-18 | Rehau Ag + Co. | Armierter Polymerschlauch und Vorrichtung zur Herstellung |
US7695822B2 (en) | 2005-05-10 | 2010-04-13 | Toray Plastics (America), Inc. | Tie-layer for polyolefin films |
JP2007202846A (ja) | 2006-02-02 | 2007-08-16 | Ist Corp | 摺動性部材およびその製造方法 |
JP2008132659A (ja) * | 2006-11-28 | 2008-06-12 | Bridgestone Flowtech Corp | 多層チューブ |
US20100174239A1 (en) * | 2007-06-27 | 2010-07-08 | Ofer Yodfat | Tubing for Fluid Delivery Device |
CN201179269Y (zh) * | 2008-03-05 | 2009-01-14 | 深圳邦普医疗设备系统有限公司 | 医用输液复合管 |
US20090286028A1 (en) | 2008-05-01 | 2009-11-19 | Wayne Edward Garver | Multi-layered fuel tubing |
US8075964B2 (en) | 2008-06-24 | 2011-12-13 | Cryovac, Inc. | EVOH barrier film with reduced autoclave shock |
JP2010051631A (ja) | 2008-08-29 | 2010-03-11 | Nippon Sherwood Medical Industries Ltd | 医療用多層チューブ |
JP5360803B2 (ja) | 2008-10-14 | 2013-12-04 | 株式会社トヨックス | ガスバリア性合成樹脂管 |
EP2278724A1 (fr) | 2009-07-02 | 2011-01-26 | Nanoscale Labs | Système de communication |
US8399077B1 (en) | 2011-11-21 | 2013-03-19 | Cryovac, Inc. | Polyglycolic acid-based film |
-
2012
- 2012-01-19 US US13/354,029 patent/US20130190714A1/en not_active Abandoned
- 2012-10-30 CA CA2860872A patent/CA2860872C/fr active Active
- 2012-10-30 BR BR112014017785-6A patent/BR112014017785B1/pt active IP Right Grant
- 2012-10-30 CN CN201280067703.5A patent/CN104220125A/zh active Pending
- 2012-10-30 MX MX2014008756A patent/MX366202B/es active IP Right Grant
- 2012-10-30 CN CN201811023063.3A patent/CN109045462A/zh active Pending
- 2012-10-30 EP EP12791897.7A patent/EP2804660B1/fr active Active
- 2012-10-30 WO PCT/US2012/062565 patent/WO2013109329A1/fr active Application Filing
- 2012-10-30 JP JP2014553288A patent/JP6203754B2/ja active Active
-
2014
- 2014-07-18 CR CR20140347A patent/CR20140347A/es unknown
-
2018
- 2018-01-16 US US15/872,042 patent/US10646704B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4948643A (en) * | 1989-01-23 | 1990-08-14 | W. R. Grace & Co.-Conn. | Flexible medical solution tubing |
US6074715A (en) * | 1993-06-24 | 2000-06-13 | Pechiney Plastic Packaging, Inc. | Heat shrinkable barrier bags |
US6165166A (en) * | 1997-04-25 | 2000-12-26 | Schneider (Usa) Inc. | Trilayer, extruded medical tubing and medical devices incorporating such tubing |
US6977105B1 (en) * | 2000-04-21 | 2005-12-20 | Kuraray Co., Ltd. | Multilayered tube and medical supply comprising multilayered tube |
US20030208259A1 (en) * | 2000-06-29 | 2003-11-06 | Pentech Medical Devices Ltd. | Polymeric stents and other surgical articles |
US20030165647A1 (en) * | 2002-03-04 | 2003-09-04 | Terumo Kabushiki Kaisha | Medical tubing and extrusion die for producing the same |
US20090087606A1 (en) * | 2007-10-02 | 2009-04-02 | Christian Julien | Radio frequency weldable multilayer tubing and method of making the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12048782B2 (en) * | 2017-06-30 | 2024-07-30 | Fenwal, Inc. | Fluid circuit having reduced plasticizer migration |
US11454337B2 (en) * | 2018-02-09 | 2022-09-27 | Plastiflex Group | Low-weight profiles and hoses having high flexural fatigue |
WO2022177580A1 (fr) * | 2021-02-22 | 2022-08-25 | Bard Peripheral Vascular, Inc. | Composants de tubage pour administration de matériau particulaire et procédés de formation |
Also Published As
Publication number | Publication date |
---|---|
CA2860872A1 (fr) | 2013-07-25 |
CN104220125A (zh) | 2014-12-17 |
EP2804660A1 (fr) | 2014-11-26 |
US20180133449A1 (en) | 2018-05-17 |
JP6203754B2 (ja) | 2017-09-27 |
MX2014008756A (es) | 2014-08-27 |
CR20140347A (es) | 2015-02-03 |
MX366202B (es) | 2019-07-02 |
EP2804660B1 (fr) | 2020-01-01 |
BR112014017785A8 (pt) | 2019-11-12 |
CA2860872C (fr) | 2018-05-01 |
US10646704B2 (en) | 2020-05-12 |
WO2013109329A1 (fr) | 2013-07-25 |
JP2015509870A (ja) | 2015-04-02 |
CN109045462A (zh) | 2018-12-21 |
BR112014017785B1 (pt) | 2021-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10646704B2 (en) | Method of forming a medical tube | |
US9702486B2 (en) | Polyurethane-polyethylene delamination resistant tubing with gas barrier properties | |
CA2882025C (fr) | Tubage multicouche | |
AU2007236187B2 (en) | Tube for medical purposes | |
JP2005527261A (ja) | 同時押出し管材 | |
US11338540B2 (en) | Dissipative peristaltic pump tubing | |
CN201855461U (zh) | 输液器软管、输液器滴斗及其输液器 | |
EP3090777B1 (fr) | Tube multicouche | |
US20230405294A1 (en) | Medical Tube and Method of Formation | |
JP2001269403A (ja) | 医療用チューブ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TEKNI-PLEX, INC., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOURGEOIS, PHILIP;SHAH, MUNISH;REEL/FRAME:027671/0337 Effective date: 20120131 |
|
AS | Assignment |
Owner name: TEKNI-PLEX, INC., PENNSYLVANIA Free format text: PATENT RELEASE AGREEMENT;ASSIGNOR:DEUTSCHE BANK TRUST COMPANY AMERICAS AS COLLARTERAL AGENT;REEL/FRAME:028307/0114 Effective date: 20120524 |
|
AS | Assignment |
Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN Free format text: SECURITY AGREEMENT;ASSIGNORS:TEKNI-PLEX, INC.;NATVAR HOLDINGS, INC.;TRI-SEAL HOLDINGS, INC.;AND OTHERS;REEL/FRAME:028310/0199 Effective date: 20120524 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS AGENT, CALIFORNIA Free format text: FIRST SUPPLEMENT TO GRANT OF SECURITY INTEREST IN UNITED STATES;ASSIGNORS:TEKNI-PLEX, INC.;TP/ELM ACQUISITION SUBSIDIARY, INC.;NATVAR HOLDINGS, LLC;AND OTHERS;REEL/FRAME:030937/0391 Effective date: 20130703 |
|
AS | Assignment |
Owner name: TEKNI-PLEX, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (RELEASES RF 028310/0199);ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:035808/0561 Effective date: 20150601 Owner name: TPI ACQUISITION SUBSIDIARY, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (RELEASES RF 028310/0199);ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:035808/0561 Effective date: 20150601 Owner name: TRI-SEAL HOLDINGS, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (RELEASES RF 028310/0199);ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:035808/0561 Effective date: 20150601 Owner name: PLASTIC SPECIALTIES AND TECHNOLOGIES INVESTMENTS, Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (RELEASES RF 028310/0199);ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:035808/0561 Effective date: 20150601 Owner name: NATVAR HOLDINGS, INC., NEW JERSEY Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (RELEASES RF 028310/0199);ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:035808/0561 Effective date: 20150601 Owner name: PLASTIC SPECIALTIES AND TECHNOLOGIES, INC., NEW JE Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (RELEASES RF 028310/0199);ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:035808/0561 Effective date: 20150601 |
|
AS | Assignment |
Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLAT Free format text: FIRST LIEN PATENT SECURITY AGREEMENT;ASSIGNOR:TEKNI-PLEX, INC.;REEL/FRAME:035813/0164 Effective date: 20150601 Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NEW YO Free format text: ABL PATENT SECURITY AGREEMENT;ASSIGNOR:TEKNI-PLEX, INC.;REEL/FRAME:035814/0314 Effective date: 20150601 Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLAT Free format text: SECOND LIEN PATENT SECURITY AGREEMENT;ASSIGNOR:TEKNI-PLEX, INC.;REEL/FRAME:035814/0362 Effective date: 20150601 |
|
AS | Assignment |
Owner name: PLASTIC SPECIALTIES AND TECHNOLOGIES, INC., PENNSY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:044225/0079 Effective date: 20171017 Owner name: TRI-SEAL HOLDINGS, INC., PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:044225/0079 Effective date: 20171017 Owner name: NATVAR HOLDINGS, LLC, PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:044225/0079 Effective date: 20171017 Owner name: TEKNI-PLEX, INC., PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:044225/0079 Effective date: 20171017 Owner name: TEKNI-PLEX, INC., PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:044342/0928 Effective date: 20171017 Owner name: TRI-SEAL HOLDINGS, INC., PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:044342/0866 Effective date: 20171017 Owner name: PLASTIC SPECIALTIES AND TECHNOLOGIES, INC., PENNSY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:044342/0928 Effective date: 20171017 Owner name: TRI-SEAL HOLDINGS, INC., PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:044342/0928 Effective date: 20171017 Owner name: PLASTIC SPECIALTIES AND TECHNOLOGIES, INC., PENNSY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:044342/0866 Effective date: 20171017 Owner name: NATVAR HOLDINGS, LLC, PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:044342/0866 Effective date: 20171017 Owner name: NATVAR HOLDINGS, LLC, PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:044342/0928 Effective date: 20171017 Owner name: TEKNI-PLEX, INC., PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:044342/0866 Effective date: 20171017 |
|
AS | Assignment |
Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:TEKNI-PLEX, INC.;NATVAR HOLDINGS, LLC;PLASTIC SPECIALTIES AND TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:044763/0001 Effective date: 20171017 Owner name: BMO HARRIS BANK, N.A., ILLINOIS Free format text: SECURITY INTEREST;ASSIGNORS:TEKNI-PLEX, INC.;NATVAR HOLDINGS, LLC;PLASTIC SPECIALTIES AND TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:044763/0339 Effective date: 20171017 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |