US20130101359A1 - Anchoring element for a hydraulic engineering installation - Google Patents

Anchoring element for a hydraulic engineering installation Download PDF

Info

Publication number
US20130101359A1
US20130101359A1 US13/641,541 US201113641541A US2013101359A1 US 20130101359 A1 US20130101359 A1 US 20130101359A1 US 201113641541 A US201113641541 A US 201113641541A US 2013101359 A1 US2013101359 A1 US 2013101359A1
Authority
US
United States
Prior art keywords
anchoring element
shear
protection elements
element according
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/641,541
Inventor
Wolfgang Maier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voith Patent GmbH
Original Assignee
Voith Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Patent GmbH filed Critical Voith Patent GmbH
Assigned to VOITH PATENT GMBH reassignment VOITH PATENT GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAIER, WOLFGANG
Publication of US20130101359A1 publication Critical patent/US20130101359A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/52Submerged foundations, i.e. submerged in open water
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D13/00Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers
    • E02D13/04Guide devices; Guide frames
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys

Definitions

  • the invention relates to an anchoring element for a hydraulic-engineering installation, in particular a mooring block or a gravity foundation for an offshore power generating plant or a centring and guidance aid for a monopile foundation and a drilling on the bottom of a body of water.
  • JP 61046791 A suggested using spikes on the bottom of a mooring block which dig into the bottom of the body of water. This approach assumes a relatively soft sediment on the bottom of the body of water. Placing such a mooring block on rocky bottom surface can lead to a reduced anchoring effect. In order to provide sufficient safety margins, the weight of such anchoring elements is therefore increased, which however makes installation work difficult.
  • a pile foundation (monopile) is used as an alternative to a gravity foundation for the foundations of installations where the body of water has a rocky bottom
  • anchoring elements are used for centring the drilling to be performed for the pile foundation and for securing the immediate base region of the foundation—on this matter reference is made to EP 1 988 219 A1.
  • heavy anchoring elements are placed on the bottom of the body of water.
  • GB 1 492 562 A further discloses a pile foundation for an oil platform for which a foundation element is initially placed on the bottom of the body of water and then secured by pressing in piles which extend from the foundation element.
  • the piles are extended by means of a rear-side pressurisation by pumping in seawater into a sealed receiving chamber for the piles. After extending, the receiving chamber is filled with sand.
  • the object of the invention to provide an anchoring element for a hydraulic engineering installation that bears down on the bottom of a body of water through its own weight, where the ballast weight used is small compared to the limiting loads for shear protection so that it can be installed with a simplified ship.
  • the anchoring element should in particular be suitable for stony and rocky bottom surface and should be characterised by a long lifetime and by constructive and production-engineering simplicity.
  • shear-protection elements which are arranged movably in lateral guides in the anchoring element, which become wedged in the unevenness of the bottom surface after placement on the bottom of the body of water substantially improve the load-bearing capacity of the anchoring element with respect to transverse forces.
  • the shear-protection elements used for this purpose only move as a result of their own weight. Accordingly the lateral guides transmit shear forces but leave each individual one of the shear-protection elements a translational degree of freedom so that the shear-protection elements can be extended until they come in contact with the bottom of the body of water without an additional actuator mechanism.
  • Each of the shear-protection elements will occupy a specific equilibrium position when the anchoring element is placed on the bottom of the body of water.
  • High loads on the anchoring element in particular transverse forces, can lead to movement of the entire anchoring element without the individual contact points of the anchoring elements on the bottom of the body of water being substantially altered, i.e., the anchoring element as it were clings in the relief of the bottom surface with the freely movably extendable shear-protection elements.
  • the shear-protection elements are applied positively to recesses in the body of the anchoring element so that the walls of the recesses form the lateral guides for the shear-protection elements.
  • the recesses are configured as through openings in the anchoring element so that the shear-protection elements can be inserted from above into the through openings and comprise a suitable device for prevention of falling out, for example, in the form a cross-section widened in a flange shape in the head region.
  • the shear-protection elements are then held by the devices for prevention of falling out and at the same time project beyond the base region of the anchoring element.
  • the shear-protection elements Upon contact with the ground, the shear-protection elements then bear down under their own weight on the bottom of the body of water and drive in so far until the entire anchoring element reaches its respective equilibrium position.
  • the lateral guides in the contact region to the shear-protection elements are configured in the form of seawater-resistant friction bearings.
  • the lateral guides themselves and/or the parts of the shear-protection elements coming in contact with the lateral guides are covered with a suitable friction bearing material.
  • the material combinations known from the application for stern tubes come into consideration here.
  • a hard-soft pairing has proved to be particularly durable. That is, one of the contact surfaces is covered with a highly loadable polymer, for example Orkot® whilst the counter running surface consists of a hard material, possibly of stainless steel.
  • the substantial part of the anchoring element and of the shear-protection elements can be made of a concrete material.
  • fibre-reinforced concrete particularly comes into consideration here.
  • a direct alternating sliding of the concrete components is avoided by the aforesaid measure.
  • the wall of the receptacles in the anchoring element can thus be covered with the said friction bearing material whilst the shear-protection elements are configured in the form of steel tubes which are grouted with concrete to increase their own weight.
  • the lateral guides for the shear-protection elements in the form of spaced-apart plates, for example, made of steel are provided with through openings through which the shear-protection elements are guided.
  • the shear-protection elements are provided with different cross-sections which are adapted to the dimensioning of the through openings so that the shear-protection elements are secured from falling out.
  • the shear-protection elements lie directly adjacent to one another and have positive contact surfaces which are used to achieve the lateral guides and allow an alternate sliding of respectively adjacent shear-protection elements in the direction of translation provided for free movement.
  • the shear-protection elements it is in particular feasible to configure the shear-protection elements as cuboids having the same dimensions which are bordered by a frame-shaped element that guides the shear-protection elements laterally towards one another. The arrangement is supplemented by a device for prevention of falling out.
  • the anchoring element according to the invention for a first configuration can stand on at least three shear-protection elements when placed on the bottom of a body of water.
  • the remaining elements are freely movable, that is they are not guided to an end stop and therefore do not receive the weight of the anchoring element.
  • they press on an associated contact point on the bottom of the body of water and absorb the transverse forces acting on the anchoring element via the respective lateral guide.
  • the anchoring element on another separate component.
  • this is the load-absorbing frame of the anchoring element itself.
  • the vertical loads are intercepted at contact points at which lifting devices are provided for levelling the anchoring element.
  • Such a configuration can in particular be used to achieve a gravity foundation with an anchoring element according to the invention for the foundation of an offshore power generating plant. Accordingly, a centring and guidance aid for securing a drilling on the bottom of the body of water or for erecting a monopile foundation can be achieved by means of the anchoring element according to the invention.
  • FIGS. 1 a and 1 b show a cross-sectional view of an anchoring element according to the invention before and after placement on the bottom of the body of water.
  • FIGS. 2 a and 2 b show an embodiment of the anchoring element according to the invention in a diagram according to FIGS. 1 a and 1 b.
  • FIGS. 3 a and 3 b show another alternatively configured anchoring element in cross-section before and after placement.
  • FIG. 4 shows a gravity foundation for an offshore power generating installation with an anchoring element according to the invention in partial sectional view.
  • FIG. 5 shows a centring and guidance aid for a monopile foundation with an anchoring element according to the invention in a cross-sectional view.
  • FIG. 1 a shows in cross-sectional view an anchoring element 1 according to the invention that comprises a rectangular concrete block 11 as ballast weight 2 .
  • the lowering on a chain 10 which is held on the lateral fastening elements 9 . 1 , 9 . 2 is shown.
  • An anchoring element configured in such a manner preferably serves as a mooring block.
  • Recesses 4 . 1 - 4 . 11 for receiving shear-protection elements 3 . 1 - 3 . 11 are provided in the concrete block 11 which is preferably configured to receive high loads made of fibre-reinforced concrete.
  • the recesses 4 . 1 - 4 . 11 are preferably arranged in a matrix shape and provided for the present configuration in the form of through openings which extend from the upper side 38 of the concrete block to the base region 39 .
  • the longitudinal axes of the recesses 4 . 1 - 4 . 11 here run substantially vertically to the bottom region 39 provided as standing surface.
  • a certain angle of inclination is feasible which is preferably selected to be so steep and preferably ⁇ 45° and particularly preferably ⁇ 20° so that the shear-protection elements 3 . 1 - 3 . 11 overcome the frictional forces in the lateral guides and as a result of their own weight extend from the recesses 4 . 1 - 4 . 11 in the orientation provided for the lowering.
  • the shear-protection elements 3 . 1 - 3 . 11 are designed to be cylindrical and tapered. Furthermore, in the top region they have a stop 7 which is designed in the form of a collar over dimensioned with respect to the cross-section of the recesses 4 . 1 - 4 . 11 and forms a device which prevents against falling out.
  • the walls of the recesses 4 . 1 - 4 . 11 which are designed as a form fit to the lateral surface of the shear-protection elements 3 . 1 - 3 . 11 serve as lateral guides 5 for the shear-protection elements 3 . 1 - 3 . 11 .
  • the walls 12 are preferably covered with a friction bearing material 6 .
  • a friction bearing material 6 is used to reduce the frictional forces between the lateral guide 5 and the shear-protection elements 3 . 1 - 3 . 11 to such an extent that the own weight of the shear-protection elements 3 . 1 - 3 . 11 is sufficient for extending from the recesses 4 . 1 - 4 . 11 .
  • the abrasion on the shear-protection elements 3 . 1 - 3 . 11 or on the walls 12 of the recesses 4 . 1 - 4 . 11 should be reduced.
  • FIG. 1 b shows the situation after placement of the anchoring element 1 on the bottom of the body of water 8 .
  • the concrete block 11 rests on the contact points 37 . 1 , 37 . 2 on the bottom of the body of water 8 .
  • at least three contact points will be provided which is not shown in the schematically simplified cross-sectional view.
  • the anchoring element 1 is not supported directly on the shear-protection elements 3 . 1 - 3 . 11 . However these are either in contact with the bottom of the body of water 8 or are located in an end position and are held by the device to prevent falling out. The last-mentioned case applies to the shear-protection element 3 . 6 .
  • the other shear-protection elements 3 . 1 - 3 . 5 , 3 . 8 - 3 . 11 bear with their own weight on the bottom of the body of water 8 and adopt an individual position depending on the distance between the base region 29 of the concrete block 11 and the bottom of the body of water 8 .
  • FIGS. 2 a and 2 b show an alternative embodiment of the anchoring element 1 in cross-sectional view before and after placement on the bottom of the body of water 8 .
  • the schematically depicted shear-protection elements 3 . 1 - 3 . 7 are held in through openings in a first guide plate 13 and a second guide plate 15 which are parallel and spaced apart from one another to form the lateral guide 5 .
  • the first guide plate 13 and the second guide plate 15 are laterally cast into the concrete blocks 11 . 1 , 11 . 2 which form the substantial part of the loading weight 2 .
  • the arrangement is covered by a cover plate 20 which is formed from a corrosion-resistant, sufficiently solid material in correspondence with the first guide plate 13 and the second guide plate 15 .
  • these components can be designed as steel plates or as components made of fibre-reinforced concrete.
  • the shear-protection element 3 . 1 As an example a lower through opening 14 is provided in the first guide plate 13 and an upper through opening 16 in alignment thereto in the second guide plate 15 .
  • the shear-protection element 3 . 1 is guided laterally at a steep angle preferably ⁇ 20° and particularly preferably substantially perpendicularly to the placement direction.
  • the narrower lower cylinder cross-section 17 of the shear-protection elements 3 . 1 - 3 . 11 reaches through the lower through opening 14 .
  • this is too narrow for the expanded upper cylinder section 18 , thus achieving a device which prevents falling out 36 .
  • the upper cylinder section 18 passes through the wider upper through opening 16 and for the fully extended rest position of the shear-protection elements 3 . 1 - 3 . 11 shown in FIG. 2 a , extends beyond the second guide plate 15 .
  • the projecting part forming a head 19 is rounded so that when the shear-protection elements 3 . 1 - 3 . 11 are fully inserted, a gentle sliding of the head 19 on the inner side of the cover plate 20 located thereabove is ensured.
  • FIG. 2 b shows the situation of the anchoring element 1 from FIG. 2 a placed on the bottom of the body of water 8 .
  • the shear-protection elements 3 . 1 and 3 . 6 absorb the vertical loads of the anchoring element 1 .
  • the associated contact points 37 . 1 , 37 . 2 are shown.
  • a third contact point required for secure standing is not shown in the simplified cross-sectional view.
  • the load-absorbing shear-protection elements 3 . 1 and 3 . 6 then each lie in the region of their head 19 on the inner side on the cover plate 20 .
  • Lateral forces are introduced at the lower through opening 14 in the first guide plate 13 and the upper through opening 16 in the second guide plate 15 .
  • the further shear-protection elements 3 . 2 , 3 . 3 , 3 . 5 , 3 . 7 bear down on the bottom of the body of water 8 with their own weight and impart retaining forces via the respective lateral guides 5 in the case of a transverse movement of the anchoring element
  • FIGS. 3 a and 3 b sketch a further exemplary embodiment of the invention.
  • the concrete blocks 11 . 1 , 11 . 2 and the cover plate 20 form a part of a frame 40 which is closed towards the top for the precisely fitting shear-protection elements 3 . 1 - 3 . 6 .
  • These are designed so that each individual shear-protection element 3 . 1 - 3 . 6 has a contact surface 21 . 1 , 21 . 2 , 21 . 3 to an adjacent element which enables a positive sliding in the direction provided for the extension, in the present case the vertical.
  • the shear-protection elements 3 . 1 - 3 . 6 are selected as rectangular concrete blocks.
  • each individual one bears down on the bottom of the body of water 8 with its own weight and the relative position required for this to the respectively adjacent shear-protection elements 3 . 1 - 3 . 6 is accomplished by sliding along the contact surfaces 21 . 1 - 21 . 3 .
  • the topology of the ground contact points of the shear-protection elements 3 . 1 - 3 . 6 is adapted to the bottom of the body of water 8 with which shear forces on the anchoring element 1 can be reliably intercepted via the lateral guide 5 .
  • FIG. 4 shows a further development of the invention in the form of a gravity foundation 22 for an offshore power generating plant, on which a wind turbine or, as shown in the present case, a tidal turbine can be placed.
  • the figure shows a turbine chassis 27 with a water turbine 28 revolving thereon and an adjoining tower adapter 26 which can be placed on the coupling element 25 on the foundation-side support structure 24 .
  • the gravity foundation 22 comprises an anchoring element 1 with shear-protection elements 3 . 1 - 3 . 8 arranged vertically movably in recesses 4 . 1 - 4 . 8 . These retract when the gravity foundation 22 is placed on the bottom of the body of water 8 whilst maintaining contact with the bottom and thus form the adapted bottom region 39 of the gravity foundation 22 .
  • the gravity foundation is levelled by the lifting devices 23 . 1 and 23 . 3 which support the weight force of the gravity foundation 22 . Accordingly the freely vertically movable shear-protection elements 3 . 1 - 3 . 8 intercept a substantial part of the transverse forces acting on the gravity foundation 22 during operation of the installation.
  • the stability of the gravity foundation 22 can be increased by supplying a cement mixture to a further construction step via a feed channel 35 for filling cavities.
  • the shear-protection elements 3 . 1 - 3 . 8 are used for the initial securing during installation until the cement mass is finally hardened.
  • FIG. 5 shows a centring and guidance aid 30 for a drilling, possibly to form a monopile foundation.
  • a foundation element comprising a concrete block 11 which serves as ballast weight 2 and at the same time as supporting component is again shown.
  • the shear-protection elements 3 . 1 - 3 . 8 arranged on the concrete block 11 are placed freely movably vertically by means of their own weight in the recesses 4 . 1 - 4 . 8 . These are again used for adaptation to the course of the bottom of the body of water 8 .
  • a drill pipe 32 with the drill head 33 can be lowered through the guide pipe 31 into a drill hole 34 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Foundations (AREA)

Abstract

The invention relates to an anchoring element for a hydraulic engineering installation having at least one ballast weight for weighting purposes and is characterized in that the anchoring element comprises a plurality of shear-protection elements which are arranged movably on lateral guides in the anchoring element such that, when the anchoring element is deposited on the bottom of a body of water, the shear-protection elements bear down on the bottom of the body of water under their own weight when in contact with said bottom and move individually along the respective lateral guide until the anchoring element assumes a position of equilibrium.

Description

  • The invention relates to an anchoring element for a hydraulic-engineering installation, in particular a mooring block or a gravity foundation for an offshore power generating plant or a centring and guidance aid for a monopile foundation and a drilling on the bottom of a body of water.
  • In order to form a permanent anchoring point on the bottom of a body of water, typically a weight is sunk from which a connecting chain is guided to an anchoring buoy. On this matter, reference is made for example to US 2008/0112759 A1. Mesh baskets filled with broken rock, placed on the bottom of a body of water are deduced from this document. As an alternative, it is possible to form mooring blocks in the form of standardised concrete parts. In this case, a mooring block must have a high weight in order to serve as a secure anchoring point. In order to form anchoring elements for offshore installations, this results in the need to use special installation ships having a sufficient crane capacity in order to be able to place heavy anchoring elements.
  • In order to improve the durability of mooring blocks, JP 61046791 A suggested using spikes on the bottom of a mooring block which dig into the bottom of the body of water. This approach assumes a relatively soft sediment on the bottom of the body of water. Placing such a mooring block on rocky bottom surface can lead to a reduced anchoring effect. In order to provide sufficient safety margins, the weight of such anchoring elements is therefore increased, which however makes installation work difficult.
  • Reference is made to DE 10 2005 006 988 A1, for example, for the erection of wind power plants in marine locations. Furthermore, corresponding foundations secured by their own weight are known for completely immersed installations for obtaining energy from tides. In this case, a stony bottom surface results in particularly heavy foundation elements in order to be able to reliably eliminate any displacement of the installation by wave and flow forces.
  • If a pile foundation (monopile) is used as an alternative to a gravity foundation for the foundations of installations where the body of water has a rocky bottom, anchoring elements are used for centring the drilling to be performed for the pile foundation and for securing the immediate base region of the foundation—on this matter reference is made to EP 1 988 219 A1. For this application also heavy anchoring elements are placed on the bottom of the body of water.
  • GB 1 492 562 A further discloses a pile foundation for an oil platform for which a foundation element is initially placed on the bottom of the body of water and then secured by pressing in piles which extend from the foundation element. The piles are extended by means of a rear-side pressurisation by pumping in seawater into a sealed receiving chamber for the piles. After extending, the receiving chamber is filled with sand.
  • It is the object of the invention to provide an anchoring element for a hydraulic engineering installation that bears down on the bottom of a body of water through its own weight, where the ballast weight used is small compared to the limiting loads for shear protection so that it can be installed with a simplified ship. In this case, the anchoring element should in particular be suitable for stony and rocky bottom surface and should be characterised by a long lifetime and by constructive and production-engineering simplicity.
  • The object forming the basis of the invention is solved by the features of the independent claim. Advantageous embodiments are obtained from the subclaims.
  • In order to improve known anchoring elements which use a loading weight for securing, the inventors have identified that shear-protection elements which are arranged movably in lateral guides in the anchoring element, which become wedged in the unevenness of the bottom surface after placement on the bottom of the body of water substantially improve the load-bearing capacity of the anchoring element with respect to transverse forces. The shear-protection elements used for this purpose only move as a result of their own weight. Accordingly the lateral guides transmit shear forces but leave each individual one of the shear-protection elements a translational degree of freedom so that the shear-protection elements can be extended until they come in contact with the bottom of the body of water without an additional actuator mechanism.
  • Each of the shear-protection elements will occupy a specific equilibrium position when the anchoring element is placed on the bottom of the body of water. High loads on the anchoring element, in particular transverse forces, can lead to movement of the entire anchoring element without the individual contact points of the anchoring elements on the bottom of the body of water being substantially altered, i.e., the anchoring element as it were clings in the relief of the bottom surface with the freely movably extendable shear-protection elements.
  • In the simplest case, the shear-protection elements are applied positively to recesses in the body of the anchoring element so that the walls of the recesses form the lateral guides for the shear-protection elements. For a preferred configuration the recesses are configured as through openings in the anchoring element so that the shear-protection elements can be inserted from above into the through openings and comprise a suitable device for prevention of falling out, for example, in the form a cross-section widened in a flange shape in the head region. When lowering the anchoring element, the shear-protection elements are then held by the devices for prevention of falling out and at the same time project beyond the base region of the anchoring element. Upon contact with the ground, the shear-protection elements then bear down under their own weight on the bottom of the body of water and drive in so far until the entire anchoring element reaches its respective equilibrium position.
  • For an advantageous configuration the lateral guides in the contact region to the shear-protection elements are configured in the form of seawater-resistant friction bearings. For this purpose, the lateral guides themselves and/or the parts of the shear-protection elements coming in contact with the lateral guides are covered with a suitable friction bearing material. In particular, the material combinations known from the application for stern tubes come into consideration here. A hard-soft pairing has proved to be particularly durable. That is, one of the contact surfaces is covered with a highly loadable polymer, for example Orkot® whilst the counter running surface consists of a hard material, possibly of stainless steel. As a result of shear-protection elements formed in such a manner, the substantial part of the anchoring element and of the shear-protection elements can be made of a concrete material. For reasons of strength, fibre-reinforced concrete particularly comes into consideration here. A direct alternating sliding of the concrete components is avoided by the aforesaid measure. The wall of the receptacles in the anchoring element can thus be covered with the said friction bearing material whilst the shear-protection elements are configured in the form of steel tubes which are grouted with concrete to increase their own weight.
  • For an alternative configuration the lateral guides for the shear-protection elements in the form of spaced-apart plates, for example, made of steel are provided with through openings through which the shear-protection elements are guided. Particularly advantageously the shear-protection elements are provided with different cross-sections which are adapted to the dimensioning of the through openings so that the shear-protection elements are secured from falling out.
  • For a further alternative embodiment, the shear-protection elements lie directly adjacent to one another and have positive contact surfaces which are used to achieve the lateral guides and allow an alternate sliding of respectively adjacent shear-protection elements in the direction of translation provided for free movement. For such a configuration it is in particular feasible to configure the shear-protection elements as cuboids having the same dimensions which are bordered by a frame-shaped element that guides the shear-protection elements laterally towards one another. The arrangement is supplemented by a device for prevention of falling out.
  • The anchoring element according to the invention for a first configuration can stand on at least three shear-protection elements when placed on the bottom of a body of water. The remaining elements are freely movable, that is they are not guided to an end stop and therefore do not receive the weight of the anchoring element. However, as a result of their own weight they press on an associated contact point on the bottom of the body of water and absorb the transverse forces acting on the anchoring element via the respective lateral guide.
  • Alternatively, it is possible to support the anchoring element on another separate component. In the simplest case this is the load-absorbing frame of the anchoring element itself. For a further embodiment, the vertical loads are intercepted at contact points at which lifting devices are provided for levelling the anchoring element. Such a configuration can in particular be used to achieve a gravity foundation with an anchoring element according to the invention for the foundation of an offshore power generating plant. Accordingly, a centring and guidance aid for securing a drilling on the bottom of the body of water or for erecting a monopile foundation can be achieved by means of the anchoring element according to the invention.
  • The invention is explained in detail hereinafter with reference to exemplary embodiment in connections with the diagrams in which the following is shown in detail:
  • FIGS. 1 a and 1 b show a cross-sectional view of an anchoring element according to the invention before and after placement on the bottom of the body of water.
  • FIGS. 2 a and 2 b show an embodiment of the anchoring element according to the invention in a diagram according to FIGS. 1 a and 1 b.
  • FIGS. 3 a and 3 b show another alternatively configured anchoring element in cross-section before and after placement.
  • FIG. 4 shows a gravity foundation for an offshore power generating installation with an anchoring element according to the invention in partial sectional view.
  • FIG. 5 shows a centring and guidance aid for a monopile foundation with an anchoring element according to the invention in a cross-sectional view.
  • FIG. 1 a shows in cross-sectional view an anchoring element 1 according to the invention that comprises a rectangular concrete block 11 as ballast weight 2. The lowering on a chain 10 which is held on the lateral fastening elements 9.1, 9.2 is shown. An anchoring element configured in such a manner preferably serves as a mooring block.
  • Recesses 4.1-4.11 for receiving shear-protection elements 3.1-3.11 are provided in the concrete block 11 which is preferably configured to receive high loads made of fibre-reinforced concrete. The recesses 4.1-4.11 are preferably arranged in a matrix shape and provided for the present configuration in the form of through openings which extend from the upper side 38 of the concrete block to the base region 39. The longitudinal axes of the recesses 4.1-4.11 here run substantially vertically to the bottom region 39 provided as standing surface. Alternatively a certain angle of inclination is feasible which is preferably selected to be so steep and preferably <45° and particularly preferably <20° so that the shear-protection elements 3.1-3.11 overcome the frictional forces in the lateral guides and as a result of their own weight extend from the recesses 4.1-4.11 in the orientation provided for the lowering.
  • In the present case, the shear-protection elements 3.1-3.11 are designed to be cylindrical and tapered. Furthermore, in the top region they have a stop 7 which is designed in the form of a collar over dimensioned with respect to the cross-section of the recesses 4.1-4.11 and forms a device which prevents against falling out.
  • In each case, the walls of the recesses 4.1-4.11 which are designed as a form fit to the lateral surface of the shear-protection elements 3.1-3.11 serve as lateral guides 5 for the shear-protection elements 3.1-3.11.
  • In addition, the walls 12 are preferably covered with a friction bearing material 6. This is shown as an example by means of the recesses 4.1 for the shear-protection element 3.1. The friction bearing material 6 is used to reduce the frictional forces between the lateral guide 5 and the shear-protection elements 3.1-3.11 to such an extent that the own weight of the shear-protection elements 3.1-3.11 is sufficient for extending from the recesses 4.1-4.11. In addition, under continuous movement of the anchoring element 1 under changing inflow conditions or as a result of wave movements, the abrasion on the shear-protection elements 3.1-3.11 or on the walls 12 of the recesses 4.1-4.11 should be reduced.
  • FIG. 1 b shows the situation after placement of the anchoring element 1 on the bottom of the body of water 8. In this case, the concrete block 11 rests on the contact points 37.1, 37.2 on the bottom of the body of water 8. In general, at least three contact points will be provided which is not shown in the schematically simplified cross-sectional view.
  • For the present exemplary embodiment the anchoring element 1 is not supported directly on the shear-protection elements 3.1-3.11. However these are either in contact with the bottom of the body of water 8 or are located in an end position and are held by the device to prevent falling out. The last-mentioned case applies to the shear-protection element 3.6. The other shear-protection elements 3.1-3.5, 3.8-3.11 bear with their own weight on the bottom of the body of water 8 and adopt an individual position depending on the distance between the base region 29 of the concrete block 11 and the bottom of the body of water 8. They thereby follow the profile of the bottom of the body of water 8 and engage in indentations so that the forces acting on the anchoring element 1 do not lead to a displacement of the contact points. It is merely possible that the concrete block 11 executes a nodding movement under large shear forces, which leads to a certain movement of the shear-protection elements 3.1-3.11 along the associated lateral guides 5 without the contact of the shear-protection elements 3.1-3.11 on the bottom of the body of water 8 itself being lost.
  • FIGS. 2 a and 2 b show an alternative embodiment of the anchoring element 1 in cross-sectional view before and after placement on the bottom of the body of water 8. The schematically depicted shear-protection elements 3.1-3.7 are held in through openings in a first guide plate 13 and a second guide plate 15 which are parallel and spaced apart from one another to form the lateral guide 5. The first guide plate 13 and the second guide plate 15 are laterally cast into the concrete blocks 11.1, 11.2 which form the substantial part of the loading weight 2. The arrangement is covered by a cover plate 20 which is formed from a corrosion-resistant, sufficiently solid material in correspondence with the first guide plate 13 and the second guide plate 15. For example, these components can be designed as steel plates or as components made of fibre-reinforced concrete.
  • For the shear-protection element 3.1, as an example a lower through opening 14 is provided in the first guide plate 13 and an upper through opening 16 in alignment thereto in the second guide plate 15. As a result, the shear-protection element 3.1 is guided laterally at a steep angle preferably <20° and particularly preferably substantially perpendicularly to the placement direction. The narrower lower cylinder cross-section 17 of the shear-protection elements 3.1-3.11 reaches through the lower through opening 14. However, this is too narrow for the expanded upper cylinder section 18, thus achieving a device which prevents falling out 36. The upper cylinder section 18 passes through the wider upper through opening 16 and for the fully extended rest position of the shear-protection elements 3.1-3.11 shown in FIG. 2 a, extends beyond the second guide plate 15. The projecting part forming a head 19 is rounded so that when the shear-protection elements 3.1-3.11 are fully inserted, a gentle sliding of the head 19 on the inner side of the cover plate 20 located thereabove is ensured.
  • FIG. 2 b shows the situation of the anchoring element 1 from FIG. 2 a placed on the bottom of the body of water 8. It can be seen that the shear-protection elements 3.1 and 3.6 absorb the vertical loads of the anchoring element 1. The associated contact points 37.1, 37.2 are shown. A third contact point required for secure standing is not shown in the simplified cross-sectional view. The load-absorbing shear-protection elements 3.1 and 3.6 then each lie in the region of their head 19 on the inner side on the cover plate 20. Lateral forces are introduced at the lower through opening 14 in the first guide plate 13 and the upper through opening 16 in the second guide plate 15. In the case shown, the further shear-protection elements 3.2, 3.3, 3.5, 3.7 bear down on the bottom of the body of water 8 with their own weight and impart retaining forces via the respective lateral guides 5 in the case of a transverse movement of the anchoring element 1.
  • FIGS. 3 a and 3 b sketch a further exemplary embodiment of the invention. Here the concrete blocks 11.1, 11.2 and the cover plate 20 form a part of a frame 40 which is closed towards the top for the precisely fitting shear-protection elements 3.1-3.6. These are designed so that each individual shear-protection element 3.1-3.6 has a contact surface 21.1, 21.2, 21.3 to an adjacent element which enables a positive sliding in the direction provided for the extension, in the present case the vertical. For the embodiment shown the shear-protection elements 3.1-3.6 are selected as rectangular concrete blocks. These can be covered with a friction bearing material for protection from abrasion, which however is not shown in the sketch in the figures. The individual shear-protection elements 3.1-3.6 held initially by means of a device for preventing falling out 36 on the cover plate 20 retract upon contact with the ground after placement of the anchoring element 1 on the bottom of the body of water 8 depending on the unevenness present on site. It can be seen that the shear-protection elements 3.1 and 3.5 are guided directly as far as the cover plate 20 and in consequence support the anchoring element 1 in a bearing manner. The other shear-protection elements 3.2-3.4 and 3.6 are located in an intermediate position where each individual one bears down on the bottom of the body of water 8 with its own weight and the relative position required for this to the respectively adjacent shear-protection elements 3.1-3.6 is accomplished by sliding along the contact surfaces 21.1-21.3. As a result, the topology of the ground contact points of the shear-protection elements 3.1-3.6 is adapted to the bottom of the body of water 8 with which shear forces on the anchoring element 1 can be reliably intercepted via the lateral guide 5.
  • FIG. 4 shows a further development of the invention in the form of a gravity foundation 22 for an offshore power generating plant, on which a wind turbine or, as shown in the present case, a tidal turbine can be placed. The figure shows a turbine chassis 27 with a water turbine 28 revolving thereon and an adjoining tower adapter 26 which can be placed on the coupling element 25 on the foundation-side support structure 24.
  • According to the invention, the gravity foundation 22 comprises an anchoring element 1 with shear-protection elements 3.1-3.8 arranged vertically movably in recesses 4.1-4.8. These retract when the gravity foundation 22 is placed on the bottom of the body of water 8 whilst maintaining contact with the bottom and thus form the adapted bottom region 39 of the gravity foundation 22.
  • The gravity foundation is levelled by the lifting devices 23.1 and 23.3 which support the weight force of the gravity foundation 22. Accordingly the freely vertically movable shear-protection elements 3.1-3.8 intercept a substantial part of the transverse forces acting on the gravity foundation 22 during operation of the installation.
  • For a further alternative embodiment, the stability of the gravity foundation 22 can be increased by supplying a cement mixture to a further construction step via a feed channel 35 for filling cavities. For this embodiment the shear-protection elements 3.1-3.8 are used for the initial securing during installation until the cement mass is finally hardened.
  • FIG. 5 shows a centring and guidance aid 30 for a drilling, possibly to form a monopile foundation. A foundation element comprising a concrete block 11 which serves as ballast weight 2 and at the same time as supporting component is again shown. According to the invention, the shear-protection elements 3.1-3.8 arranged on the concrete block 11 are placed freely movably vertically by means of their own weight in the recesses 4.1-4.8. These are again used for adaptation to the course of the bottom of the body of water 8. After the levelling by the lifting devices 23.1, 23.2, a drill pipe 32 with the drill head 33 can be lowered through the guide pipe 31 into a drill hole 34.
  • Further embodiments of the invention are obtained from the following protective claims. In particular, it is feasible to design the lateral guides 5 for the shear-protection elements 3.1-3.11 so that these extend in an angular position to the direction of placement. It is further possible to divide the shear-protection elements 3.1-3.11 into different groups which differ due to their direction of extension and through their weight or their extension length or in relation to the shape of the contact region to the bottom of the body of water. Furthermore, the entire outer surface of the anchoring element 1 can be covered with shear-protection elements 3.1-3.11 where only a part of the shear-protection elements 3.1-3.11 comes in contact with the bottom of the body of water 8 depending on the direction of placement. As a result, the anchoring element 1 can be placed on the bottom of the body of water 8 independent of direction, thereby simplifying installation.
  • REFERENCE LIST
    • 1 Anchoring element
    • 2 Ballast weight
    • 3.1-3.11 Shear-protection element
    • 4.1-4.11 Recess
    • 5 Lateral guide
    • 6 Friction bearing material
    • 7 Stop
    • 8 Bottom of the body of water
    • 9.1, 9.2 Fastening element
    • 10 Chain
    • 11, 11.1, 11.2 Concrete block
    • 12 Wall
    • 13 First guide plate
    • 14 Lower through opening
    • 15 Second guide plate
    • 16 Upper through opening
    • 17 Lower cylinder section
    • 18 Upper cylinder section
    • 19 Head
    • 20 Cover plate
    • 21.1, 21.2
    • 22.3 Contact surface
    • 22 Gravity foundation
    • 23.1, 23.2 Lifting device
    • 24 Supporting structure
    • 25 Coupling element
    • 26 Tower adapter
    • 27 Turbine chassis
    • 28 Water turbine
    • 29 Offshore power generating plant
    • 30 Centring and guidance aid
    • 31 Guide pipe
    • 32 Drill pipe
    • 33 Drill head
    • 34 Drill hole
    • 35 Feed channel
    • 36.1-36.6 Device for preventing falling out
    • 37.1, 37.2 Contact point
    • 38 Upper side
    • 39 Bottom region
    • 40 Frame

Claims (21)

1-8. (canceled)
9. An anchoring element for a hydraulic engineering installation having at least one ballast weight for weighting purposes, wherein the ballast weight comprises a bottom region, characterized in that
the anchoring element comprises a plurality of shear-protection elements which are arranged retractably freely movably on lateral guides in the anchoring element such that, before the anchoring element is deposited on the bottom of a body of water, the shear-protection elements project beyond the bottom region and are held by devices to prevent falling out, wherein the shear-protection elements bear down on the bottom of the body of water merely under their own weight when in contact with said bottom and retract individually along the respective lateral guide until the anchoring element assumes a position of equilibrium.
10. The anchoring element according to claim 9, characterized in that each of the shear-protection elements is arranged inside a recess in the anchoring element and the walls of the recesses form the lateral guides.
11. The anchoring element according to claim 9, characterized in that the lateral guides and/or parts of the shear-protection elements coming into contact with the lateral guides are covered with a friction bearing material.
12. The anchoring element according to claim 9, characterized in that at least one part of the shear-protection elements is in direct lateral contact to one another, where the individual shear-protection elements can slide on one another and the lateral guide is effected by the alternate contact surfaces of adjoining shear-protection elements adjacent to one another.
13. The anchoring element according to claim 9, characterized in that the shear-protection elements are secured against falling out from the anchoring element.
14. The anchoring element according to claim 9, characterized in that the anchoring element is at least partially fabricated from fibre reinforced concrete.
15. The anchoring element according to claim 9, characterized in that the anchoring element comprises a lifting device for levelling after placement on the bottom of the body of water.
16. A hydraulic engineering installation having an anchoring element according to claim 9, wherein the hydraulic engineering installation serves as a gravity foundation for an offshore power generating plant or as a mooring block or as a centering and guidance aid for erecting a monopile foundation or for a drilling on the bottom of a body of water.
17. The anchoring element according to claim 10, characterized in that the lateral guides and/or parts of the shear-protection elements coming into contact with the lateral guides are covered with a friction bearing material.
18. The anchoring element according to claim 10, characterized in that at least one part of the shear-protection elements is in direct lateral contact to one another, where the individual shear-protection elements can slide on one another and the lateral guide is effected by the alternate contact surfaces of adjoining shear-protection elements adjacent to one another.
19. The anchoring element according to claim 11, characterized in that at least one part of the shear-protection elements is in direct lateral contact to one another, where the individual shear-protection elements can slide on one another and the lateral guide is effected by the alternate contact surfaces of adjoining shear-protection elements adjacent to one another.
20. The anchoring element according to claim 10, characterized in that the shear-protection elements are secured against falling out from the anchoring element.
21. The anchoring element according to claim 11, characterized in that the shear-protection elements are secured against falling out from the anchoring element.
22. The anchoring element according to claim 12, characterized in that the shear-protection elements are secured against falling out from the anchoring element.
23. The anchoring element according to claim 10, characterized in that the anchoring element is at least partially fabricated from fibre reinforced concrete.
24. The anchoring element according to claim 11, characterized in that the anchoring element is at least partially fabricated from fibre reinforced concrete.
25. The anchoring element according to claim 12, characterized in that the anchoring element is at least partially fabricated from fibre reinforced concrete.
26. The anchoring element according to claim 13, characterized in that the anchoring element is at least partially fabricated from fibre reinforced concrete.
27. The anchoring element according to claim 10, characterized in that the anchoring element comprises a lifting device for levelling after placement on the bottom of the body of water.
28. The anchoring element according to claim 11, characterized in that the anchoring element comprises a lifting device for levelling after placement on the bottom of the body of water.
US13/641,541 2010-04-16 2011-02-03 Anchoring element for a hydraulic engineering installation Abandoned US20130101359A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010015533.0 2010-04-16
DE102010015533A DE102010015533B3 (en) 2010-04-16 2010-04-16 Anchoring element for a hydraulic system
PCT/EP2011/000482 WO2011128006A1 (en) 2010-04-16 2011-02-03 Anchoring element for a hydraulic engineering installation

Publications (1)

Publication Number Publication Date
US20130101359A1 true US20130101359A1 (en) 2013-04-25

Family

ID=43624663

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/641,541 Abandoned US20130101359A1 (en) 2010-04-16 2011-02-03 Anchoring element for a hydraulic engineering installation

Country Status (7)

Country Link
US (1) US20130101359A1 (en)
EP (1) EP2558650B1 (en)
JP (1) JP5630929B2 (en)
KR (1) KR20130060192A (en)
CA (1) CA2796547A1 (en)
DE (1) DE102010015533B3 (en)
WO (1) WO2011128006A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120272614A1 (en) * 2009-10-30 2012-11-01 Norman Perner Tidal Power Plant and Method for the Creation Thereof
US20130068924A1 (en) * 2010-03-24 2013-03-21 Børge Øllgaard Method of laying a foundation
US20140300112A1 (en) * 2011-07-08 2014-10-09 SAMSUNG HEAVY IND. CO., LTD. a corporation Offshore wind power generator, lifting jig for transferring the offshore wind power generator, and method and system for installing the offshore wind power generator using the lifting jig
CN114919691A (en) * 2022-06-07 2022-08-19 中广核新能源六安有限公司 Floating photovoltaic anchor on water
US20220373102A1 (en) * 2019-07-04 2022-11-24 Subsea 7 Limited Sliding Subsea Foundations
US20230203774A1 (en) * 2020-04-08 2023-06-29 Heerema Marine Contractors Nederland Se Devices and methods for installing piles into the ground or seabed
US12025242B2 (en) * 2019-07-04 2024-07-02 Subsea 7 Limited Sliding subsea foundations

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110500223A (en) * 2019-09-12 2019-11-26 上海交通大学 Using the tidal current energy water turbine jacket-type brace foundation of lateral tensioning auxiliary

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US645885A (en) * 1899-04-25 1900-03-20 William Bramwell Bonnell Piling.
US2354142A (en) * 1942-04-20 1944-07-18 Moran Proctor Freeman & Mueser Self-adjusting sealing edge for installation of piers
US2637978A (en) * 1946-04-25 1953-05-12 Stanolind Oil & Gas Co Marine drilling
US2675680A (en) * 1954-04-20 Construction of submerged
US2933898A (en) * 1955-11-16 1960-04-26 Raymond Int Inc Offshore platform structures
US3173271A (en) * 1960-05-11 1965-03-16 Gerard F Wittgenstein Underwater pipeline installation
US3347053A (en) * 1965-04-28 1967-10-17 Mobil Oil Corp Partially salvageable jacket-pile connection
US3992890A (en) * 1974-01-28 1976-11-23 Pynford Limited Method of forming foundations
US4304506A (en) * 1978-08-07 1981-12-08 A/S Hoyer-Ellefsen Marine structure
US4352595A (en) * 1979-05-29 1982-10-05 Saipem S.P.A Apparatus for and method of supporting pipe suspended over depressions in the sea bed
US4480944A (en) * 1981-04-30 1984-11-06 Raymond International Builders, Inc. Offshore drilling of large diameter holes in rock formations
JPS60233221A (en) * 1984-05-04 1985-11-19 Shimizu Constr Co Ltd Method of installing off-shore structure
US4753553A (en) * 1985-07-03 1988-06-28 Ingenirforretningen Atlas A/S Bearing structure and a floating vessel comprising such structure
JPH03275812A (en) * 1990-03-23 1991-12-06 Kajima Corp Foundation construction method for soft sea bottom ground
US6409433B1 (en) * 2000-01-27 2002-06-25 David A. Hubbell Foundation piles or similar load carrying elements
US7976245B2 (en) * 2005-08-12 2011-07-12 Sykei Pty. Ltd. Mooring
US20110318113A1 (en) * 2009-02-12 2011-12-29 Fraenkel Peter L Installing submerged support structures
US20120272614A1 (en) * 2009-10-30 2012-11-01 Norman Perner Tidal Power Plant and Method for the Creation Thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2895301A (en) * 1955-02-08 1959-07-21 California Research Corp Stabilization of submarine raft foundations
GB1492562A (en) * 1975-01-30 1977-11-23 Offshore Concrete Bv Semi-submergible submergible or sinkable structures
JPS5673725A (en) * 1979-11-20 1981-06-18 Kawasaki Steel Corp Construction of foundation under water
JPS6146791A (en) * 1984-08-10 1986-03-07 Agency Of Ind Science & Technol Mooring concrete weight for marine moorings
JP2002097651A (en) * 2000-09-25 2002-04-02 Kajima Corp Structure foundation
JP2004044200A (en) * 2002-07-11 2004-02-12 Mitsubishi Heavy Ind Ltd Jacket structure
JP2004044199A (en) * 2002-07-11 2004-02-12 Mitsubishi Heavy Ind Ltd Construction method for jacket structure and level adjusting apparatus
DE102005006988A1 (en) * 2005-02-15 2006-08-17 Ed. Züblin Ag Surface foundation, preferably dissolved, for offshore wind turbines
US20080112759A1 (en) * 2006-11-10 2008-05-15 Stewart Hardison Artificial reef anchor structure
EP1988219A1 (en) * 2007-05-04 2008-11-05 Anatoliusz Z. Jaroszewicz Monopile foundation

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2675680A (en) * 1954-04-20 Construction of submerged
US645885A (en) * 1899-04-25 1900-03-20 William Bramwell Bonnell Piling.
US2354142A (en) * 1942-04-20 1944-07-18 Moran Proctor Freeman & Mueser Self-adjusting sealing edge for installation of piers
US2637978A (en) * 1946-04-25 1953-05-12 Stanolind Oil & Gas Co Marine drilling
US2933898A (en) * 1955-11-16 1960-04-26 Raymond Int Inc Offshore platform structures
US3173271A (en) * 1960-05-11 1965-03-16 Gerard F Wittgenstein Underwater pipeline installation
US3347053A (en) * 1965-04-28 1967-10-17 Mobil Oil Corp Partially salvageable jacket-pile connection
US3992890A (en) * 1974-01-28 1976-11-23 Pynford Limited Method of forming foundations
US4304506A (en) * 1978-08-07 1981-12-08 A/S Hoyer-Ellefsen Marine structure
US4352595A (en) * 1979-05-29 1982-10-05 Saipem S.P.A Apparatus for and method of supporting pipe suspended over depressions in the sea bed
US4480944A (en) * 1981-04-30 1984-11-06 Raymond International Builders, Inc. Offshore drilling of large diameter holes in rock formations
JPS60233221A (en) * 1984-05-04 1985-11-19 Shimizu Constr Co Ltd Method of installing off-shore structure
US4753553A (en) * 1985-07-03 1988-06-28 Ingenirforretningen Atlas A/S Bearing structure and a floating vessel comprising such structure
JPH03275812A (en) * 1990-03-23 1991-12-06 Kajima Corp Foundation construction method for soft sea bottom ground
US6409433B1 (en) * 2000-01-27 2002-06-25 David A. Hubbell Foundation piles or similar load carrying elements
US7976245B2 (en) * 2005-08-12 2011-07-12 Sykei Pty. Ltd. Mooring
US20110318113A1 (en) * 2009-02-12 2011-12-29 Fraenkel Peter L Installing submerged support structures
US20120272614A1 (en) * 2009-10-30 2012-11-01 Norman Perner Tidal Power Plant and Method for the Creation Thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120272614A1 (en) * 2009-10-30 2012-11-01 Norman Perner Tidal Power Plant and Method for the Creation Thereof
US8801331B2 (en) * 2009-10-30 2014-08-12 Voith Patent Gmbh Tidal power plant and method for the creation thereof
US20130068924A1 (en) * 2010-03-24 2013-03-21 Børge Øllgaard Method of laying a foundation
US9080306B2 (en) * 2010-03-24 2015-07-14 Vestas Wind Systems A/S Method of laying a foundation of a tower construction
US20140300112A1 (en) * 2011-07-08 2014-10-09 SAMSUNG HEAVY IND. CO., LTD. a corporation Offshore wind power generator, lifting jig for transferring the offshore wind power generator, and method and system for installing the offshore wind power generator using the lifting jig
US9527554B2 (en) * 2011-07-08 2016-12-27 Samsung Heavy Ind. Co., Ltd. Offshore wind power generator, lifting jig for transferring the offshore wind power generator, and method and system for installing the offshore wind power generator using the lifting jig
US20220373102A1 (en) * 2019-07-04 2022-11-24 Subsea 7 Limited Sliding Subsea Foundations
US12025242B2 (en) * 2019-07-04 2024-07-02 Subsea 7 Limited Sliding subsea foundations
US20230203774A1 (en) * 2020-04-08 2023-06-29 Heerema Marine Contractors Nederland Se Devices and methods for installing piles into the ground or seabed
CN114919691A (en) * 2022-06-07 2022-08-19 中广核新能源六安有限公司 Floating photovoltaic anchor on water

Also Published As

Publication number Publication date
JP2013525629A (en) 2013-06-20
WO2011128006A1 (en) 2011-10-20
CA2796547A1 (en) 2011-10-20
DE102010015533B3 (en) 2011-05-05
JP5630929B2 (en) 2014-11-26
EP2558650B1 (en) 2016-08-24
KR20130060192A (en) 2013-06-07
EP2558650A1 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
NL2019701B1 (en) Off shore wind energy installation foundation system.
KR101399983B1 (en) Support structure for use in the offshore wind farm industry
US20130101359A1 (en) Anchoring element for a hydraulic engineering installation
CA2980959C (en) Gravity-based foundation for the installation of offshore wind turbines
US9238896B2 (en) Floating structure for supporting a wind turbine
DK3178996T3 (en) PILE FOR A OFFSHORE MONOPILE FOUNDATION
US10443207B2 (en) Pile foundations for supporting power transmission towers
CN101429761A (en) Deep sea bare rock pier protection barrel, positioning pile, underwater cofferdam integrated platform and construction method
US11713098B2 (en) Multiline ring anchor and installation method
WO2010143967A2 (en) Tripod foundation
GB2524460A (en) Offshore foundation
EP2796713B1 (en) Floating precast-concrete structure for supporting a wind turbine
NL2028088B1 (en) Concrete connector body for an offshore wind turbine.
WO2013044977A1 (en) A wall element system for an offshore power storage facility
GB2505192A (en) A pile sleeve connection for a monopole foundation
JP6105044B2 (en) Partially floating offshore platform for offshore wind power, bridges and offshore structures, and construction method
CN201292535Y (en) Abysmal sea naked rock pier protecting barrel, spud and underwater cofferdam integration platform
EP3385451B1 (en) Support structure for an offshore wind turbine
EP2840185B1 (en) Support construction
US20230160367A1 (en) Foundation device for a wind turbine tower and assembly method
EP2558647B1 (en) Offshore foundation structure, offshore foundation using such a structure and method of establishing an offshore foundation
RU53308U1 (en) MARINE SUBMERSIBLE PLATFORM
EP2189576A1 (en) Foundation system for marine structures in deep water

Legal Events

Date Code Title Description
AS Assignment

Owner name: VOITH PATENT GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAIER, WOLFGANG;REEL/FRAME:029335/0568

Effective date: 20121114

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION