US20130072439A1 - Peptidomimetic macrocycles - Google Patents

Peptidomimetic macrocycles Download PDF

Info

Publication number
US20130072439A1
US20130072439A1 US13/497,522 US201013497522A US2013072439A1 US 20130072439 A1 US20130072439 A1 US 20130072439A1 US 201013497522 A US201013497522 A US 201013497522A US 2013072439 A1 US2013072439 A1 US 2013072439A1
Authority
US
United States
Prior art keywords
amino acid
peptidomimetic macrocycle
peptidomimetic
macrocycle
independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/497,522
Other languages
English (en)
Inventor
Huw M. Nash
Rosana Kapeller-Libermann
Jia-Wen Han
Tomi K. Sawyer
Justin Noehre
Noriyuki Kawahata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aileron Therapeutics Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/497,522 priority Critical patent/US20130072439A1/en
Assigned to AILERON THERAPEUTICS, INC. reassignment AILERON THERAPEUTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAPELLER-LIBERMANN, ROSANA, HAN, JIA-WEN, NOEHRE, JUSTIN, NASH, HUW M., SAWYER, TOMI K.
Assigned to AILERON THERAPEUTICS, INC. reassignment AILERON THERAPEUTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAWAHATA, NORIYUKI
Publication of US20130072439A1 publication Critical patent/US20130072439A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • ⁇ -catenin is a subunit of the cadherin protein complex. ⁇ -catenin is critically required for cell adhesion and as an intracellular mediator of the Wnt pathway. The Wnt signaling pathway plays critical roles in embryonic development and tumorigenesis. A smaller pool of ⁇ -catenin in the nucleus and cytoplasm is regulated by Wnt signals. The Wnt signaling activates gene transcription through forming a complex between DNA-binding high monility group (HMG)-box proteins of the Tcf/LEF family and ⁇ -catenin. In unstimulated cells, cytosolic ⁇ -catenin is constitutively degraded by a ubiquitin ligase-proteosome system.
  • HMG high monility group
  • Wnt signaling inhibits this process, allowing ⁇ -catenin to accumulate and subsequently translocate to the nucleus where it forms a transcriptional activating complex with members of the TCF/LEF-1 family of transcription factors.
  • Tcf/LEF-1 proteins by themselves have no innate transcriptional activity and they repress transcription of Wnt target genes by recruiting corepressors to the promoter.
  • Transcriptional activation of target genes occurs when ⁇ -catenin binds the Tcf/LEF-1 factors and recruits transcription factors, such as p300/CBP and the TATA binding protein, to the promoter (Hecht, A. et. al. J. Biol. Chem. 274 (1999), pp. 18017-18025).
  • Wnt signaling pathway controls many processes in embryonic development in both vertebrates and invertebrates. Inappropriate activation of the Wnt intracellular pathway is associated with various human cancers, in particular colon cancer (K. W. Kinzler and B. Vogelstein, Cell 87 (1996), pp. 159-170). Key molecular lesions in colorectal, hepatocellular carcinoma (HCC), and other cancers are caused by ⁇ -catenin-dependent transactivation of T cell factor (TCF)-dependent genes, for example, c-myc, cyclin D1, VEGF, and others.
  • TCF T cell factor
  • ⁇ -catenin For tumorigenesis, formation of the complex between ⁇ -catenin and TCF is the critical step in the activation of Wnt target genes (M. Bienz and H. Clevers Cell 103 (2000), pp. 311-320). Mutations in the Adenomatous polyposis coli (APC) gene, a key regulator of cellular ⁇ -catenin levels, are found in most colorectal cancers. Targeting elements downstream of APC in the Wnt pathway, such as formation and activity of the Tcf4- ⁇ -catenin protein complex represents a potentially powerful means of treating common human cancers, and there is a strong need for therapeutic approaches targeting components of the Wnt signaling pathway such as the Tcf4- ⁇ -catenin complex.
  • APC Adenomatous polyposis coli
  • the present invention provides a peptidomimetic macrocycle comprising an amino acid sequence which is at least about 60%, 80%, 90%, or 95% identical to an amino acid sequence chosen from the group consisting of the amino acid sequences in Table 1.
  • an amino acid sequence of said peptidomimetic macrocycle is chosen from the group consisting of the amino acid sequences in Table 1.
  • the peptidomimetic macrocycle comprises a helix, such as an ⁇ -helix.
  • the peptidomimetic macrocycle comprises an ⁇ , ⁇ -disubstituted amino acid.
  • a peptidomimetic macrocycle of the invention may comprise a crosslinker linking the ⁇ -positions of at least two amino acids. At least one of said two amino acids may be an ⁇ , ⁇ -disubstituted amino acid.
  • the peptidomimetic macrocycle has the formula:
  • each A, C, D, and E is independently a natural or non-natural amino acid
  • B is a natural or non-natural amino acid, amino acid analog
  • R 1 and R 2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-;
  • R 3 is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R 5 ;
  • L is a macrocycle-forming linker of the formula -L 1 -L 2 -;
  • L 1 and L 2 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R 4 —K—R 4 —] n , each being optionally substituted with R 5 ;
  • each R 4 is alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;
  • each K is O, S, SO, SO 2 , CO, CO 2 , or CONR 3 ;
  • each R 5 is independently halogen, alkyl, —OR 6 , —N(R 6 ) 2 , —SR 6 , —SOR 6 , —SO 2 R 6 , —CO 2 R 6 , a fluorescent moiety, a radioisotope or a therapeutic agent;
  • each R 6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;
  • R 7 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R 5 , or part of a cyclic structure with a D residue;
  • R 8 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R 5 , or part of a cyclic structure with an E residue;
  • v and w are independently integers from 1-1000;
  • u, x, y and z are independently integers from 0-10;
  • n is an integer from 1-5.
  • the peptidomimetic macrocycle may comprise a crosslinker linking a backbone amino group of a first amino acid to a second amino acid within the peptidomimetic macrocycle.
  • the invention provides peptidomimetic macrocycles of the formula (IV) or (IVa):
  • each A, C, D, and E is independently a natural or non-natural amino acid
  • B is a natural or non-natural amino acid, amino acid analog
  • R 1 and R 2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-, or part of a cyclic structure with an E residue;
  • R 3 is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R 5 ;
  • L 1 and L 2 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R 4 —K—R 4 —] n , each being optionally substituted with R 5 ;
  • each R 4 is alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;
  • each K is O, S, SO, SO 2 , CO, CO 2 , or CONR 3 ;
  • each R 5 is independently halogen, alkyl, —OR 6 , —N(R 6 ) 2 , —SR 6 , —SOR E , —SO 2 R 6 , —CO 2 R 6 , a fluorescent moiety, a radioisotope or a therapeutic agent;
  • each R 6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;
  • R 7 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R 5 ;
  • v and w are independently integers from 1-1000;
  • u, x, y and z are independently integers from 0-10;
  • n is an integer from 1-5.
  • the invention provides a method of treating cancer in a subject comprising administering to the subject a peptidomimetic macrocycle of the invention. Also provided is a method of modulating the activity of ⁇ -catenin in a subject comprising administering to the subject a peptidomimetic macrocycle of the invention, or a method of antagonizing the interaction between ⁇ -catenin and TCF/LEF proteins in a subject comprising administering to the subject such a peptidomimetic macrocycle.
  • FIG. 1 illustrates a possible binding mode of a TCF peptidomimetic macrocycle precursor of the invention to ⁇ -catenin.
  • FIG. 2 illustrates a possible binding mode of a TCF peptidomimetic macrocycle precursor of the invention to ⁇ -catenin.
  • FIG. 3 illustrates a possible binding mode of a TCF peptidomimetic macrocycle precursor of the invention to ⁇ -catenin.
  • FIGS. 4 a - c show exemplary peptidomimetic macrocycles of the invention.
  • microcycle refers to a molecule having a chemical structure including a ring or cycle formed by at least 9 covalently bonded atoms.
  • peptidomimetic macrocycle or “crosslinked polypeptide” refers to a compound comprising a plurality of amino acid residues joined by a plurality of peptide bonds and at least one macrocycle-forming linker which forms a macrocycle between a first naturally-occurring or non-naturally-occurring amino acid residue (or analog) and a second naturally-occurring or non-naturally-occurring amino acid residue (or analog) within the same molecule.
  • Peptidomimetic macrocycle include embodiments where the macrocycle-forming linker connects the ⁇ carbon of the first amino acid residue (or analog) to the ⁇ carbon of the second amino acid residue (or analog).
  • the peptidomimetic macrocycles optionally include one or more non-peptide bonds between one or more amino acid residues and/or amino acid analog residues, and optionally include one or more non-naturally-occurring amino acid residues or amino acid analog residues in addition to any which form the macrocycle.
  • a “corresponding uncrosslinked polypeptide” when referred to in the context of a peptidomimetic macrocycle is understood to relate to a polypeptide of the same length as the macrocycle and comprising the equivalent natural amino acids of the wild-type sequence corresponding to the macrocycle.
  • compounds and structures referred to herein are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms.
  • compounds having the present structures wherein hydrogen is replaced by deuterium or tritium, or wherein carbon atom is replaced by 13 C- or 14 C-enriched carbon, or wherein a carbon atom is replaced by silicon are within the scope of this invention.
  • the compounds of the present invention may also contain unnatural proportions of atomic isotopes at one or more of atoms that constitute such compounds.
  • the compounds may be radiolabeled with radioactive isotopes, such as for example tritium ( 3 H), iodine-125 ( 125 I) or carbon-14 ( 14 C). All isotopic variations of the compounds of the present invention, whether radioactive or not, are encompassed within the scope of the present invention.
  • the term “stability” refers to the maintenance of a defined secondary structure in solution by a peptidomimetic macrocycle of the invention as measured by circular dichroism, NMR or another biophysical measure, or resistance to proteolytic degradation in vitro or in vivo.
  • Non-limiting examples of secondary structures contemplated in this invention are ⁇ -helices, ⁇ -turns, and ⁇ -pleated sheets.
  • helical stability refers to the maintenance of ⁇ helical structure by a peptidomimetic macrocycle of the invention as measured by circular dichroism or NMR.
  • the peptidomimetic macrocycles of the invention exhibit at least a 1.25, 1.5, 1.75 or 2-fold increase in ⁇ -helicity as determined by circular dichroism compared to a corresponding uncrosslinked macrocycle.
  • amino acid refers to a molecule containing both an amino group and a carboxyl group bound to a carbon which is designated the ⁇ -carbon.
  • Suitable amino acids include, without limitation, both the D- and L-isomers of the naturally-occurring amino acids, as well as non-naturally occurring amino acids prepared by organic synthesis or other metabolic routes. Unless the context specifically indicates otherwise, the term amino acid, as used herein, is intended to include amino acid analogs.
  • naturally occurring amino acid refers to any one of the twenty amino acids commonly found in peptides synthesized in nature, and known by the one letter abbreviations A, R, N, C, D, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y and V.
  • amino acid analog or “non-natural amino acid” refers to a molecule which is structurally similar to an amino acid and which can be substituted for an amino acid in the formation of a peptidomimetic macrocycle.
  • Amino acid analogs include, without limitation, compounds which are structurally identical to an amino acid, as defined herein, except for the inclusion of one or more additional methylene groups between the amino and carboxyl group (e.g., ⁇ -amino ⁇ -carboxy acids), or for the substitution of the amino or carboxy group by a similarly reactive group (e.g., substitution of the primary amine with a secondary or tertiary amine, or substitution or the carboxy group with an ester).
  • non-essential amino acid residue is a residue that can be altered from the wild-type sequence of a polypeptide without abolishing or substantially altering its essential biological or biochemical activity (e.g., receptor binding or activation).
  • essential amino acid residue is a residue that, when altered from the wild-type sequence of the polypeptide, results in abolishing or substantially abolishing the polypeptide's essential biological or biochemical activity.
  • a “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain.
  • Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., K, R, H), acidic side chains (e.g., D, E), uncharged polar side chains (e.g., G, N, Q, S, T, Y, C), nonpolar side chains (e.g., A, V, L, I, P, F, M, W), beta-branched side chains (e.g., T, V, I) and aromatic side chains (e.g., Y, F, W, H).
  • basic side chains e.g., K, R, H
  • acidic side chains e.g., D, E
  • uncharged polar side chains e.g., G, N, Q, S, T, Y, C
  • nonpolar side chains e.g., A, V, L
  • a predicted nonessential amino acid residue in a polypeptide is preferably replaced with another amino acid residue from the same side chain family.
  • Other examples of acceptable substitutions are substitutions based on isosteric considerations (e.g. norleucine for methionine) or other properties (e.g. 2-thienylalanine for phenylalanine).
  • member refers to the atoms that form or can form the macrocycle, and excludes substituent or side chain atoms.
  • cyclodecane, 1,2-difluoro-decane and 1,3-dimethyl cyclodecane are all considered ten-membered macrocycles as the hydrogen or fluoro substituents or methyl side chains do not participate in forming the macrocycle.
  • amino acid side chain refers to a moiety attached to the ⁇ -carbon in an amino acid.
  • amino acid side chain for alanine is methyl
  • amino acid side chain for phenylalanine is phenylmethyl
  • amino acid side chain for cysteine is thiomethyl
  • amino acid side chain for aspartate is carboxymethyl
  • amino acid side chain for tyrosine is 4-hydroxyphenylmethyl
  • Other non-naturally occurring amino acid side chains are also included, for example, those that occur in nature (e.g., an amino acid metabolite) or those that are made synthetically (e.g., an ⁇ , ⁇ di-substituted amino acid).
  • ⁇ , ⁇ di-substituted amino acid refers to a molecule or moiety containing both an amino group and a carboxyl group bound to a carbon (the ⁇ -carbon) that is attached to two natural or non-natural amino acid side chains.
  • polypeptide encompasses two or more naturally or non-naturally-occurring amino acids joined by a covalent bond (e.g., an amide bond).
  • Polypeptides as described herein include full length proteins (e.g., fully processed proteins) as well as shorter amino acid sequences (e.g., fragments of naturally-occurring proteins or synthetic polypeptide fragments).
  • microcyclization reagent or “macrocycle-forming reagent” as used herein refers to any reagent which may be used to prepare a peptidomimetic macrocycle of the invention by mediating the reaction between two reactive groups.
  • Reactive groups may be, for example, an azide and alkyne
  • macrocyclization reagents include, without limitation, Cu reagents such as reagents which provide a reactive Cu(I) species, such as CuBr, CuI or CuOTf, as well as Cu(II) salts such as Cu(CO 2 CH 3 ) 2 , CuSO 4 , and CuCl 2 that can be converted in situ to an active Cu(I) reagent by the addition of a reducing agent such as ascorbic acid or sodium ascorbate.
  • Macrocyclization reagents may additionally include, for example, Ru reagents known in the art such as Cp*RuCl(PPh 3 ) 2 , [Cp*RuCl] 4 or other Ru reagents which may provide a reactive Ru(II) species.
  • the reactive groups are terminal olefins.
  • the macrocyclization reagents or macrocycle-forming reagents are metathesis catalysts including, but not limited to, stabilized, late transition metal carbene complex catalysts such as Group VIII transition metal carbene catalysts.
  • such catalysts are Ru and Os metal centers having a +2 oxidation state, an electron count of 16 and pentacoordinated.
  • the reactive groups are thiol groups.
  • the macrocyclization reagent is, for example, a linker functionalized with two thiol-reactive groups such as halogen groups.
  • halo or halogen refers to fluorine, chlorine, bromine or iodine or a radical thereof.
  • alkyl refers to a hydrocarbon chain that is a straight chain or branched chain, containing the indicated number of carbon atoms. For example, C 1 -C 10 indicates that the group has from 1 to 10 (inclusive) carbon atoms in it. In the absence of any numerical designation, “alkyl” is a chain (straight or branched) having 1 to 20 (inclusive) carbon atoms in it.
  • alkylene refers to a divalent alkyl (i.e., —R—).
  • alkenyl refers to a hydrocarbon chain that is a straight chain or branched chain having one or more carbon-carbon double bonds.
  • the alkenyl moiety contains the indicated number of carbon atoms. For example, C 2 -C 10 indicates that the group has from 2 to 10 (inclusive) carbon atoms in it.
  • lower alkenyl refers to a C 2 -C 6 alkenyl chain. In the absence of any numerical designation, “alkenyl” is a chain (straight or branched) having 2 to 20 (inclusive) carbon atoms in it.
  • alkynyl refers to a hydrocarbon chain that is a straight chain or branched chain having one or more carbon-carbon triple bonds.
  • the alkynyl moiety contains the indicated number of carbon atoms.
  • C 2 -C 10 indicates that the group has from 2 to 10 (inclusive) carbon atoms in it.
  • lower alkynyl refers to a C 2 -C 6 alkynyl chain.
  • alkynyl is a chain (straight or branched) having 2 to 20 (inclusive) carbon atoms in it.
  • aryl refers to a 6-carbon monocyclic or 10-carbon bicyclic aromatic ring system wherein 0, 1, 2, 3, or 4 atoms of each ring are substituted by a substituent. Examples of aryl groups include phenyl, naphthyl and the like.
  • arylalkyl or the term “aralkyl” refers to alkyl substituted with an aryl.
  • arylalkoxy refers to an alkoxy substituted with aryl.
  • Arylalkyl refers to an aryl group, as defined above, wherein one of the aryl group's hydrogen atoms has been replaced with a C 1 -C 5 alkyl group, as defined above.
  • Representative examples of an arylalkyl group include, but are not limited to, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2-ethylphenyl, 3-ethylphenyl, 4-ethylphenyl, 2-propylphenyl, 3-propylphenyl, 4-propylphenyl, 2-butylphenyl, 3-butylphenyl, 4-butylphenyl, 2-pentylphenyl, 3-pentylphenyl, 4-pentylphenyl, 2-isopropylphenyl, 3-isopropylphenyl, 4-isopropylphenyl, 2-isobutylphenyl, 3-isobutylphenyl, 4-isopropylphenyl
  • Arylamido refers to an aryl group, as defined above, wherein one of the aryl group's hydrogen atoms has been replaced with one or more —C(O)NH 2 groups.
  • Representative examples of an arylamido group include 2-C(O)NH2-phenyl, 3-C(O)NH 2 -phenyl, 4-C(O)NH 2 -phenyl, 2-C(O)NH 2 -pyridyl, 3-C(O)NH 2 -pyridyl, and 4-C(O)NH 2 -pyridyl,
  • Alkylheterocycle refers to a C 1 -C 5 alkyl group, as defined above, wherein one of the C 1 -C 5 alkyl group's hydrogen atoms has been replaced with a heterocycle.
  • Representative examples of an alkylheterocycle group include, but are not limited to, —CH 2 CH 2 -morpholine, —CH 2 CH 2 -piperidine, —CH 2 CH 2 CH 2 -morpholine, and —CH 2 CH 2 CH 2 -imidazole.
  • Alkylamido refers to a C 1 -C 5 alkyl group, as defined above, wherein one of the C 1 -C 5 alkyl group's hydrogen atoms has been replaced with a —C(O)NH 2 group.
  • an alkylamido group include, but are not limited to, —CH 2 —C(O)NH 2 , —CH 2 CH 2 —C(O)NH 2 , —CH 2 CH 2 CH 2 C(O)NH 2 , —CH 2 CH 2 CH 2 CH 2 C(O)NH 2 , —CH 2 CH 2 CH 2 CH 2 C(O)NH 2 , —CH 2 CH(C(O)NH 2 )CH 3 , —CH 2 CH(C(O)NH 2 )CH 2 CH 3 , —CH(C(O)NH 2 )CH 2 CH 3 , —C(CH 3 ) 2 CH 2 C(O)NH 2 , —CH 2 —CH 2 —NH—C(O)—CH 3 , —CH 2 —CH 2 —NH—C(O)—CH 3 , —CH 2 —CH 2 —NH—C(O)—CH 3 , —CH 2 —CH 2 —NH—C(O)—CH 3
  • Alkanol refers to a C 1 -C 5 alkyl group, as defined above, wherein one of the C 1 -C 5 alkyl group's hydrogen atoms has been replaced with a hydroxyl group.
  • Representative examples of an alkanol group include, but are not limited to, —CH 2 OH, —CH 2 CH 2 OH, —CH 2 CH 2 CH 2 OH, —CH 2 CH 2 CH 2 CH 2 OH, —CH 2 CH 2 CH 2 CH 2 CH 2 OH, —CH 2 CH(OH)CH 3 , —CH 2 CH(OH)CH 2 CH 3 , —CH(OH)CH 3 and —C(CH 3 ) 2 CH 2 OH.
  • Alkylcarboxy refers to a C 1 -C 5 alkyl group, as defined above, wherein one of the C 1 -C 5 alkyl group's hydrogen atoms has been replaced with a—COOH group.
  • Representative examples of an alkylcarboxy group include, but are not limited to, —CH 2 COOH, —CH 2 CH 2 COOH, —CH 2 CH 2 CH 2 COOH, —CH 2 CH 2 CH 2 CH 2 COOH, —CH 2 CH(COOH)CH 3 , —CH 2 CH 2 CH 2 CH 2 COOH, —CH 2 CH(COOH)CH 2 CH 3 , —CH(COOH)CH 2 CH 3 and —C(CH 3 ) 2 CH 2 COOH.
  • cycloalkyl as employed herein includes saturated and partially unsaturated cyclic hydrocarbon groups having 3 to 12 carbons, preferably 3 to 8 carbons, and more preferably 3 to 6 carbons, wherein the cycloalkyl group additionally is optionally substituted.
  • Some cycloalkyl groups include, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, and cyclooctyl.
  • heteroaryl refers to an aromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of O, N, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein 0, 1, 2, 3, or 4 atoms of each ring are substituted by a substituent.
  • heteroaryl groups include pyridyl, furyl or furanyl, imidazolyl, benzimidazolyl, pyrimidinyl, thiophenyl or thienyl, quinolinyl, indolyl, thiazolyl, and the like.
  • heteroarylalkyl or the term “heteroaralkyl” refers to an alkyl substituted with a heteroaryl.
  • heteroarylalkoxy refers to an alkoxy substituted with heteroaryl.
  • heteroarylalkyl or the term “heteroaralkyl” refers to an alkyl substituted with a heteroaryl.
  • heteroarylalkoxy refers to an alkoxy substituted with heteroaryl.
  • heterocyclyl refers to a nonaromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of O, N, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein 0, 1, 2 or 3 atoms of each ring are substituted by a substituent.
  • heterocyclyl groups include piperazinyl, pyrrolidinyl, dioxanyl, morpholinyl, tetrahydrofuranyl, and the like.
  • substituted refers to a group replacing a second atom or group such as a hydrogen atom on any molecule, compound or moiety.
  • Suitable substituents include, without limitation, halo, hydroxy, mercapto, oxo, nitro, haloalkyl, alkyl, alkaryl, aryl, aralkyl, alkoxy, thioalkoxy, aryloxy, amino, alkoxycarbonyl, amido, carboxy, alkanesulfonyl, alkylcarbonyl, and cyano groups.
  • the compounds of this invention contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of these compounds are included in the present invention unless expressly provided otherwise.
  • the compounds of this invention are also represented in multiple tautomeric forms, in such instances, the invention includes all tautomeric forms of the compounds described herein (e.g., if alkylation of a ring system results in alkylation at multiple sites, the invention includes all such reaction products). All such isomeric forms of such compounds are included in the present invention unless expressly provided otherwise. All crystal forms of the compounds described herein are included in the present invention unless expressly provided otherwise.
  • the terms “increase” and “decrease” mean, respectively, to cause a statistically significantly (i.e., p ⁇ 0.1) increase or decrease of at least 5%.
  • variable is equal to any of the values within that range.
  • variable is equal to any integer value within the numerical range, including the end-points of the range.
  • variable is equal to any real value within the numerical range, including the end-points of the range.
  • a variable which is described as having values between 0 and 2 takes the values 0, 1 or 2 if the variable is inherently discrete, and takes the values 0.0, 0.1, 0.01, 0.001, or any other real values ⁇ 0 and ⁇ 2 if the variable is inherently continuous.
  • on average represents the mean value derived from performing at least three independent replicates for each data point.
  • biological activity encompasses structural and functional properties of a macrocycle of the invention.
  • Biological activity is, for example, structural stability, alpha-helicity, affinity for a target, resistance to proteolytic degradation, cell penetrability, intracellular stability, in vivo stability, or any combination thereof.
  • the peptide sequence is derived from proteins containing a ⁇ -catenin binding domain (CBD).
  • CBD a ⁇ -catenin binding domain
  • the primary structure of ⁇ -catenin includes an N-terminal region of ⁇ 130 residues that is required for its phosphorylation-dependent degradation, a C-terminal ⁇ 100-residue segment that recruits transcriptional coactivators and a central domain of 12 armadillo repeats spanning residues 134-668 (Peifer M. et. al, Cell 76, 789-791, 1994).
  • This core armadillo repeat region interacts with cadherins, APC and Tcf family transcription factors.
  • the crystal structure of this region reveals that each armadillo repeat consists of three helices; the 12 repeats stack to form a superhelix of helices.
  • the resulting rod-shaped structure has a long, positively charged surface that was postulated to be the binding site for acidic sequences in interacting proteins.
  • Tcf/LEF-1 family members bind ⁇ -catenin in the large central core of the protein, which contains 12 armadillo repeats. Each armadillo repeat consists of three ⁇ helices, and together the 12 repeats form a superhelix that features a long positively charged groove (A. H. Huber, W. J. Nelson and W. I. Weis, Cell 90 (1997), pp. 871-882).
  • the CBD of Tcf/LEF-1 family members which include TCF1, TCF3, and TCF4, corresponds to approximately 60 amino acids at the very N terminus of the protein (J. Behrens, et. al., Nature 382 (1996), pp. 638-642).
  • the structure of the Tcf4/ ⁇ -catenin complex reveals two distinct sites of interaction between the proteins: an extended region (residues 13-25 of Tcf4) that binds ⁇ -catenin armadillo repeats 4-9 and a C-terminal helix (residues 40-50) that binds armadillo repeats 3-5 (Poy F, et. al. Nat Structural Biol., vol. 8 no 12, 2001).
  • the extended portion of the Tcf4 (residues 13-25) peptide binds in a positively charged groove created by the twist between consecutive armadillo repeats.
  • Asp 16 and Glu 17 form salt bridge hydrogen bonds with ⁇ -catenin Lys 435 and Lys 508, respectively, which flank the bound peptide on either side of the recognition groove.
  • the C-terminal end of the extended region is also anchored by an electrostatic interaction, a salt bridge between Glu 24 in Tcf4 and Lys 312 in ⁇ -catenin.
  • Many of the intervening contacts are hydrophobic in nature; the side chains of Tcf4 residues Ile 19 and Phe 21 pack together into a cleft lined by ⁇ -catenin residues Cys 466, Pro 463 and the aliphatic portion of Arg 386.
  • Calorimetric studies have identified Asp 16 in Tcf4 as a crucial residue for high affinity binding.
  • Tcf4 residues Asp 40, Lys 45 and Ser 47 form polar and electrostatic interactions along the edge of the groove, contributing to recognition of the helix.
  • the side chain of Asp 40 extends between Arg 376 and Lys 335 in ⁇ -catenin, Lys 45 hydrogen bonds with His 260 and Asn 261, and Ser 47 hydrogen bonds with Lys 292. These interactions are also present in the XTcf3- ⁇ -catenin complex http://www.nature.com/nsmb/journal/v8/n12/full/nsb720.html-B19#B19 (Graham, T. A., Weaver, C., Mao, F., Kimelman, D. & Xu, W. Cell 103, 885-896 (2000)).
  • Tcf/LEF-1 family members also have a highly conserved HMG DNA binding domain, located within the C-terminal half of the protein.
  • XTcf3-CBD from Xenopus consists of, from N terminus to C terminus, a ⁇ hairpin module, an extended region that contains a 3 strand, and an ⁇ helix.
  • XTcf3-CBD wraps around the armadillo repeat region of ⁇ -catenin in an antiparallel fashion along the major axes of the superhelix (Graham T A et. al. Cell , Vol 1103 issue 6, 2000).
  • the helical region of XTcf3-CBD consists of residues Asp-40 to Glu-51.
  • the helix of XTcf3-CBD lies approximately antiparallel to the third helices of armadillo repeats 3 and 4 in ⁇ -catenin.
  • the XTcf3-CBD helix consists of the Tcf/LEF-1 family consensus sequence N′-DLAKSSLV-C′.
  • the side chains of Asp-40 and Lys-45 of the XTcf3-CBD coordinate with the side chains of Lys-335 and Asn-261 of ⁇ -catenin, respectively. These two interactions may act as tethers to stabilize the relative positioning of the helix.
  • the ⁇ -helical binding region of xTcf3 packs against the H3 helices of arm repeats 3 and 4 of ⁇ -catenin.
  • any novel structures of the CBD peptides generated by the method of the present invention are useful in preventing and/or treating various types of cancer in which Wnt pathway plays a role.
  • Such cancers include colorectal tumors, hepatocellular carcinoma, melanoma and other tumors with mutations in Wnt pathway components.
  • ⁇ -catenin/TCF interaction allows selective targeting of many types of cancers including but not limited to colorectal tumors, hepatocellular carcinoma, melanoma and other tumors with mutations in Wnt pathway components by inhibiting ⁇ -catenin/TCF complex.
  • the substantial overlap in the binding surfaces used by other Tcf family members, cadherins and likely APC itself represents a complication in drug development as inhibitors that disrupt ⁇ -catenin/TCF interaction might disrupt ⁇ -catenin/cadherin interaction or ⁇ -catenin/APC or axin interactions.
  • the present invention also provides a method of treating diseases including but not limited to cancer and hyperproliferative diseases comprising administering a TCF peptidomimetic macrocycle of the invention to ⁇ -catenin.
  • Table 1 shows ⁇ -catenin /TCF sequences suitable for synthesis of peptidomimetic macrocycles.
  • Space represents a non-peptide linker chain such as PEGn.
  • Table 1 shows ⁇ -catenin/TCF sequences suitable for synthesis of peptidomimetic macrocycles.
  • Space represents a non-peptide linker chain such as PEGn.
  • a peptidomimetic macrocycle of the invention has the Formula (I):
  • each A, C, D, and E is independently a natural or non-natural amino acid
  • B is a natural or non-natural amino acid, amino acid analog
  • R 1 and R 2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-;
  • R 3 is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R 5 ;
  • L is a macrocycle-forming linker of the formula -L 1 -L 2 -;
  • L 1 and L 2 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R 4 —K—R 4 —] n , each being optionally substituted with R 5 ;
  • each R 4 is alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;
  • each K is O, S, SO, SO 2 , CO, CO 2 , or CONR 3 ;
  • each R 5 is independently halogen, alkyl, —OR 6 , —N(R 6 ) 2 , —SR 6 , —SOR 6 , —SO 2 R 6 , —CO 2 R 6 , a fluorescent moiety, a radioisotope or a therapeutic agent;
  • each R 6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;
  • R 7 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R 5 , or part of a cyclic structure with a D residue;
  • R 8 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R 5 , or part of a cyclic structure with an E residue;
  • v and w are independently integers from 1-1000;
  • u, x, y and z are independently integers from 0-10;
  • n is an integer from 1-5.
  • At least one of R 1 and R 2 is alkyl, unsubstituted or substituted with halo-. In another example, both R 1 and R 2 are independently alkyl, unsubstituted or substituted with halo-. In some embodiments, at least one of R 1 and R 2 is methyl. In other embodiments, R 1 and R 2 are methyl.
  • x+y+z is at least 3. In other embodiments of the invention, x+y+z is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • Each occurrence of A, B, C, D or E in a macrocycle or macrocycle precursor of the invention is independently selected.
  • a sequence represented by the formula [A] X when x is 3, encompasses embodiments where the amino acids are not identical, e.g. Gln-Asp-Ala as well as embodiments where the amino acids are identical, e.g. Gln-Gln-Gln. This applies for any value of x, y, or z in the indicated ranges.
  • each compound of the invention may encompass peptidomimetic macrocycles which are the same or different.
  • a compound of the invention may comprise peptidomimetic macrocycles comprising different linker lengths or chemical compositions.
  • the peptidomimetic macrocycle of the invention comprises a secondary structure which is an ⁇ -helix and R 8 is —H, allowing intrahelical hydrogen bonding.
  • at least one of A, B, C, D or E is an ⁇ , ⁇ -disubstituted amino acid.
  • B is an ⁇ , ⁇ -disubstituted amino acid.
  • at least one of A, B, C, D or E is 2-aminoisobutyric acid.
  • at least one of A, B, C, D or E is
  • the length of the macrocycle-forming linker L as measured from a first C ⁇ to a second C ⁇ is selected to stabilize a desired secondary peptide structure, such as an ⁇ -helix formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first C ⁇ to a second C ⁇ .
  • the peptidomimetic macrocycle of Formula (I) is:
  • each R 1 and R 2 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-.
  • the peptidomimetic macrocycle of Formula (I) is:
  • the peptidomimetic macrocycle of Formula (I) is a compound of any of the formulas shown below:
  • AA represents any natural or non-natural amino acid side chain and “ ” is [D] v , [E] w as defined above, and n is an integer between 0 and 20, 50, 100, 200, 300, 400 or 500. In some embodiments, n is 0. In other embodiments, n is less than 50.
  • the peptidomimetic macrocycles of the invention have the Formula (II):
  • each A, C, D, and E is independently a natural or non-natural amino acid
  • B is a natural or non-natural amino acid, amino acid analog
  • R 1 and R 2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-;
  • R 3 is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R 5 ;
  • L is a macrocycle-forming linker of the formula
  • L 1 , L 2 and L 3 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R 4 —K—R 4 —] n , each being optionally substituted with R 5 ;
  • each R 4 is alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;
  • each K is O, S, SO, SO 2 , CO, CO 2 , or CONR 3 ;
  • each R 5 is independently halogen, alkyl, —OR 6 , —N(R 6 ) 2 , —SR 6 , —SOR E , —SO 2 R 6 , —CO 2 R 6 , a fluorescent moiety, a radioisotope or a therapeutic agent;
  • each R 6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;
  • R 7 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R 5 , or part of a cyclic structure with a D residue;
  • R 8 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R 5 , or part of a cyclic structure with an E residue;
  • v and w are independently integers from 1-1000;
  • u, x, y and z are independently integers from 0-10;
  • n is an integer from 1-5.
  • At least one of R 1 and R 2 is alkyl, unsubstituted or substituted with halo-. In another example, both R 1 and R 2 are independently alkyl, unsubstituted or substituted with halo-. In some embodiments, at least one of R 1 and R 2 is methyl. In other embodiments, R 1 and R 2 are methyl.
  • x+y+z is at least 3. In other embodiments of the invention, x+y+z is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • Each occurrence of A, B, C, D or E in a macrocycle or macrocycle precursor of the invention is independently selected.
  • a sequence represented by the formula [A] X when x is 3, encompasses embodiments where the amino acids are not identical, e.g. Gln-Asp-Ala as well as embodiments where the amino acids are identical, e.g. Gln-Gln-Gln. This applies for any value of x, y, or z in the indicated ranges.
  • the peptidomimetic macrocycle of the invention comprises a secondary structure which is an ⁇ -helix and R 8 is —H, allowing intrahelical hydrogen bonding.
  • at least one of A, B, C, D or E is an ⁇ , ⁇ -disubstituted amino acid.
  • B is an ⁇ , ⁇ -disubstituted amino acid.
  • at least one of A, B, C, D or E is 2-aminoisobutyric acid.
  • at least one of A, B, C, D or E is
  • the length of the macrocycle-forming linker L as measured from a first C ⁇ to a second C ⁇ is selected to stabilize a desired secondary peptide structure, such as an ⁇ -helix formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first C ⁇ to a second C ⁇ .
  • the invention provides peptidomimetic macrocycles of Formula (III):
  • each A, C, D, and E is independently a natural or non-natural amino acid
  • B is a natural or non-natural amino acid, amino acid analog
  • R 1 and R 2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-;
  • R 3 is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, unsubstituted or substituted with R 5 ;
  • L 1 , L 2 , L 3 and L 4 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene or [—R 4 —K—R 4 —]n, each being unsubstituted or substituted with R 5 ;
  • K is O, S, SO, SO 2 , CO, CO 2 , or CONR 3 ;
  • each R 4 is alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;
  • each R 5 is independently halogen, alkyl, —OR 6 , —N(R 6 ) 2 , —SR 6 , —SOR 6 , —SO 2 R 6 , —CO 2 R 6 , a fluorescent moiety, a radioisotope or a therapeutic agent;
  • each R 6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;
  • R 7 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, unsubstituted or substituted with R 5 , or part of a cyclic structure with a D residue;
  • R 8 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, unsubstituted or substituted with R 5 , or part of a cyclic structure with an E residue;
  • v and w are independently integers from 1-1000;
  • u, x, y and z are independently integers from 0-10;
  • n is an integer from 1-5.
  • At least one of R 1 and R 2 is alkyl, unsubstituted or substituted with halo-. In another example, both R 1 and R 2 are independently alkyl, unsubstituted or substituted with halo-. In some embodiments, at least one of R 1 and R 2 is methyl. In other embodiments, R 1 and R 2 are methyl.
  • x+y+z is at least 3. In other embodiments of the invention, x+y+z is 3, 4, 5, 6, 7, 8, 9 or 10.
  • Each occurrence of A, B, C, D or E in a macrocycle or macrocycle precursor of the invention is independently selected.
  • a sequence represented by the formula [A] x when x is 3, encompasses embodiments where the amino acids are not identical, e.g. Gln-Asp-Ala as well as embodiments where the amino acids are identical, e.g. Gln-Gln-Gln. This applies for any value of x, y, or z in the indicated ranges.
  • the peptidomimetic macrocycle of the invention comprises a secondary structure which is an ⁇ -helix and R 8 is —H, allowing intrahelical hydrogen bonding.
  • at least one of A, B, C, D or E is an ⁇ , ⁇ -disubstituted amino acid.
  • B is an ⁇ , ⁇ -disubstituted amino acid.
  • at least one of A, B, C, D or E is 2-aminoisobutyric acid.
  • at least one of A, B, C, D or E is
  • the length of the macrocycle-forming linker [-L 1 -S-L 2 -S-L 3 -] as measured from a first C ⁇ to a second C ⁇ is selected to stabilize a desired secondary peptide structure, such as an ⁇ -helix formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first C ⁇ to a second C ⁇ .
  • Macrocycles or macrocycle precursors are synthesized, for example, by solution phase or solid-phase methods, and can contain both naturally-occurring and non-naturally-occurring amino acids. See, for example, Hunt, “The Non-Protein Amino Acids” in Chemistry and Biochemistry of the Amino Acids , edited by G. C. Barrett, Chapman and Hall, 1985.
  • the thiol moieties are the side chains of the amino acid residues L-cysteine, D-cysteine, ⁇ -methyl-L cysteine, ⁇ -methyl-D-cysteine, L-homocysteine, D-homocysteine, ⁇ -methyl-L-homocysteine or ⁇ -methyl-D-homocysteine.
  • a bis-alkylating reagent is of the general formula X-L 2 -Y wherein L 2 is a linker moiety and X and Y are leaving groups that are displaced by —SH moieties to form bonds with L 2 .
  • X and Y are halogens such as I, Br, or Cl.
  • D and/or E in the compound of Formula I, II or III are further modified in order to facilitate cellular uptake.
  • lipidating or PEGylating a peptidomimetic macrocycle facilitates cellular uptake, increases bioavailability, increases blood circulation, alters pharmacokinetics, decreases immunogenicity and/or decreases the needed frequency of administration.
  • At least one of [D] and [E] in the compound of Formula I, II or III represents a moiety comprising an additional macrocycle-forming linker such that the peptidomimetic macrocycle comprises at least two macrocycle-forming linkers.
  • a peptidomimetic macrocycle comprises two macrocycle-forming linkers.
  • any of the macrocycle-forming linkers described herein may be used in any combination with any of the sequences shown in Tables 1-4 and also with any of the R-substituents indicated herein.
  • the peptidomimetic macrocycle comprises at least one ⁇ -helix motif.
  • A, B and/or C in the compound of Formula I, II or III include one or more ⁇ -helices.
  • ⁇ -helices include between 3 and 4 amino acid residues per turn.
  • the ⁇ -helix of the peptidomimetic macrocycle includes 1 to 5 turns and, therefore, 3 to 20 amino acid residues.
  • the ⁇ -helix includes 1 turn, 2 turns, 3 turns, 4 turns, or 5 turns.
  • the macrocycle-forming linker stabilizes an ⁇ -helix motif included within the peptidomimetic macrocycle.
  • the length of the macrocycle-forming linker L from a first C ⁇ to a second C ⁇ is selected to increase the stability of an ⁇ -helix.
  • the macrocycle-forming linker spans from 1 turn to 5 turns of the ⁇ -helix. In some embodiments, the macrocycle-forming linker spans approximately 1 turn, 2 turns, 3 turns, 4 turns, or 5 turns of the ⁇ -helix. In some embodiments, the length of the macrocycle-forming linker is approximately 5 ⁇ to 9 ⁇ per turn of the ⁇ -helix, or approximately 6 ⁇ to 8 ⁇ per turn of the ⁇ -helix.
  • the length is equal to approximately 5 carbon-carbon bonds to 13 carbon-carbon bonds, approximately 7 carbon-carbon bonds to 11 carbon-carbon bonds, or approximately 9 carbon-carbon bonds.
  • the length is equal to approximately 8 carbon-carbon bonds to 16 carbon-carbon bonds, approximately 10 carbon-carbon bonds to 14 carbon-carbon bonds, or approximately 12 carbon-carbon bonds.
  • the macrocycle-forming linker spans approximately 3 turns of an ⁇ -helix, the length is equal to approximately 14 carbon-carbon bonds to 22 carbon-carbon bonds, approximately 16 carbon-carbon bonds to 20 carbon-carbon bonds, or approximately 18 carbon-carbon bonds.
  • the length is equal to approximately 20 carbon-carbon bonds to 28 carbon-carbon bonds, approximately 22 carbon-carbon bonds to 26 carbon-carbon bonds, or approximately 24 carbon-carbon bonds.
  • the macrocycle-forming linker spans approximately 5 turns of an ⁇ -helix, the length is equal to approximately 26 carbon-carbon bonds to 34 carbon-carbon bonds, approximately 28 carbon-carbon bonds to 32 carbon-carbon bonds, or approximately 30 carbon-carbon bonds.
  • the linkage contains approximately 4 atoms to 12 atoms, approximately 6 atoms to 10 atoms, or approximately 8 atoms.
  • the linkage contains approximately 7 atoms to 15 atoms, approximately 9 atoms to 13 atoms, or approximately 11 atoms.
  • the linkage contains approximately 13 atoms to 21 atoms, approximately 15 atoms to 19 atoms, or approximately 17 atoms.
  • the linkage contains approximately 19 atoms to 27 atoms, approximately 21 atoms to 25 atoms, or approximately 23 atoms.
  • the linkage contains approximately 25 atoms to 33 atoms, approximately 27 atoms to 31 atoms, or approximately 29 atoms.
  • the resulting macrocycle forms a ring containing approximately 17 members to 25 members, approximately 19 members to 23 members, or approximately 21 members.
  • the macrocycle-forming linker spans approximately 2 turns of the ⁇ -helix, the resulting macrocycle forms a ring containing approximately 29 members to 37 members, approximately 31 members to 35 members, or approximately 33 members.
  • the resulting macrocycle forms a ring containing approximately 44 members to 52 members, approximately 46 members to 50 members, or approximately 48 members.
  • the resulting macrocycle forms a ring containing approximately 59 members to 67 members, approximately 61 members to 65 members, or approximately 63 members.
  • the macrocycle-forming linker spans approximately 5 turns of the ⁇ -helix, the resulting macrocycle forms a ring containing approximately 74 members to 82 members, approximately 76 members to 80 members, or approximately 78 members.
  • the invention provides peptidomimetic macrocycles of Formula (IV) or (IVa):
  • each A, C, D, and E is independently a natural or non-natural amino acid
  • B is a natural or non-natural amino acid, amino acid analog
  • R 1 and R 2 are independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-, or part of a cyclic structure with an E residue;
  • R 3 is hydrogen, alkyl, alkenyl, alkynyl, arylalkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R 5 ;
  • L is a macrocycle-forming linker of the formula -L 1 -L 2 -;
  • L 1 and L 2 are independently alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, heterocycloarylene, or [—R 4 —K—R 4 —] n , each being optionally substituted with R 5 ;
  • each R 4 is alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, arylene, or heteroarylene;
  • each K is O, S, SO, SO 2 , CO, CO 2 , or CONR 3 ;
  • each R 5 is independently halogen, alkyl, —OR 6 , —N(R 6 ) 2 , —SR 6 , —SOR E , —SO 2 R 6 , —CO 2 R 6 , a fluorescent moiety, a radioisotope or a therapeutic agent;
  • each R 6 is independently —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heterocycloalkyl, a fluorescent moiety, a radioisotope or a therapeutic agent;
  • R 7 is —H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroalkyl, cycloalkylalkyl, heterocycloalkyl, cycloaryl, or heterocycloaryl, optionally substituted with R 5 ;
  • v and w are independently integers from 1-1000;
  • u, x, y and z are independently integers from 0-10;
  • n is an integer from 1-5.
  • At least one of R 1 and R 2 is alkyl, unsubstituted or substituted with halo-. In another example, both R 1 and R 2 are independently alkyl, unsubstituted or substituted with halo-. In some embodiments, at least one of R 1 and R 2 is methyl. In other embodiments, R 1 and R 2 are methyl.
  • x+y+z is at least 1. In other embodiments of the invention, x+y+z is at least 2. In other embodiments of the invention, x+y+z is 3, 4, 5, 6, 7, 8, 9 or 10.
  • Each occurrence of A, B, C, D or E in a macrocycle or macrocycle precursor of the invention is independently selected.
  • a sequence represented by the formula [A], when x is 3, encompasses embodiments where the amino acids are not identical, e.g. Gln-Asp-Ala as well as embodiments where the amino acids are identical, e.g. Gln-Gln-Gln. This applies for any value of x, y, or z in the indicated ranges.
  • the peptidomimetic macrocycle of the invention comprises a secondary structure which is an ⁇ -helix and R 8 is —H, allowing intrahelical hydrogen bonding.
  • at least one of A, B, C, D or E is an ⁇ , ⁇ -disubstituted amino acid.
  • B is an ⁇ , ⁇ -disubstituted amino acid.
  • at least one of A, B, C, D or E is 2-aminoisobutyric acid.
  • at least one of A, B, C, D or E is
  • the length of the macrocycle-forming linker L as measured from a first C ⁇ to a second C ⁇ is selected to stabilize a desired secondary peptide structure, such as an ⁇ -helix formed by residues of the peptidomimetic macrocycle including, but not necessarily limited to, those between the first C ⁇ to a second C ⁇ .
  • Peptidomimetic macrocycles of the invention may be prepared by any of a variety of methods known in the art.
  • any of the residues indicated by “X” in Tables 1, 2, 3 or 4 may be substituted with a residue capable of forming a crosslinker with a second residue in the same molecule or a precursor of such a residue.
  • peptidomimetic macrocycles Various methods to effect formation of peptidomimetic macrocycles are known in the art. For example, the preparation of peptidomimetic macrocycles of Formula I is described in Schafineister et al., J. Am. Chem. Soc. 122:5891-5892 (2000); Schafineister & Verdin, J. Am. Chem. Soc. 122:5891 (2005); Walensky et al., Science 305:1466-1470 (2004); and U.S. Pat. No. 7,192,713.
  • the ⁇ , ⁇ -disubstituted amino acids and amino acid precursors disclosed in the cited references may be employed in synthesis of the peptidomimetic macrocycle precursor polypeptides.
  • the “S5 olefin amino acid” is (S)- ⁇ -(2′-pentenyl) alanine and the “R8 olefin amino acid” is (R)- ⁇ -(2′-octenyl) alanine.
  • the terminal olefins are reacted with a metathesis catalyst, leading to the formation of the peptidomimetic macrocycle.
  • the peptidomimetic macrocyles of the invention are of Formula W or IVa. Methods for the preparation of such macrocycles are described, for example, in U.S. Pat. No. 7,202,332.
  • the synthesis of these peptidomimetic macrocycles involves a multi-step process that features the synthesis of a peptidomimetic precursor containing an azide moiety and an alkyne moiety; followed by contacting the peptidomimetic precursor with a macrocyclization reagent to generate a triazole-linked peptidomimetic macrocycle.
  • a multi-step process that features the synthesis of a peptidomimetic precursor containing an azide moiety and an alkyne moiety; followed by contacting the peptidomimetic precursor with a macrocyclization reagent to generate a triazole-linked peptidomimetic macrocycle.
  • Macrocycles or macrocycle precursors are synthesized, for example, by solution phase or solid-phase methods, and can contain both naturally-occurring and non-naturally-occurring amino acids. See, for example, Hunt, “The Non-Protein Amino Acids” in Chemistry and Biochemistry of the Amino Acids , edited by
  • an azide is linked to the ⁇ -carbon of a residue and an alkyne is attached to the ⁇ -carbon of another residue.
  • the azide moieties are azido-analogs of amino acids L-lysine, D-lysine, alpha-methyl-L-lysine, alpha-methyl-D-lysine, L-ornithine, D-ornithine, alpha-methyl-L-ornithine or alpha-methyl-D-ornithine.
  • the alkyne moiety is L-propargylglycine.
  • the alkyne moiety is an amino acid selected from the group consisting of L-propargylglycine, D-propargylglycine, (S)-2-amino-2-methyl-4-pentynoic acid, (R)-2-amino-2-methyl-4-pentynoic acid, (S)-2-amino-2-methyl-5-hexynoic acid, (R)-2-amino-2-methyl-5-hexynoic acid, (S)-2-amino-2-methyl-6-heptynoic acid, (R)-2-amino-2-methyl-6-heptynoic acid, (S)-2-amino-2-methyl-7-octynoic acid, (R)-2-amino-2-methyl-7-octynoic acid, (S)-2-amino-2-methyl-8-nonynoic acid and (R)-2-amino-2-methyl-8-nonynoic acid.
  • the invention provides a method for synthesizing a peptidomimetic macrocycle, the method comprising the steps of contacting a peptidomimetic precursor of Formula V or Formula VI:
  • R 12 is —H when the macrocyclization reagent is a Cu reagent and R 12 is —H or alkyl when the macrocyclization reagent is a Ru reagent; and further wherein said contacting step results in a covalent linkage being formed between the alkyne and azide moiety in Formula III or Formula IV.
  • R 12 may be methyl when the macrocyclization reagent is a Ru reagent.
  • R 1 and R 2 are alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-.
  • both R 1 and R 2 are independently alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, cycloalkylalkyl, heteroalkyl, or heterocycloalkyl, unsubstituted or substituted with halo-.
  • At least one of A, B, C, D or E is an ⁇ , ⁇ -disubstituted amino acid.
  • B is an ⁇ , ⁇ -disubstituted amino acid.
  • at least one of A, B, C, D or E is 2-aminoisobutyric acid.
  • R 1 and R 2 are alkyl, unsubstituted or substituted with halo-. In another example, both R 1 and R 2 are independently alkyl, unsubstituted or substituted with halo-. In some embodiments, at least one of R 1 and R 2 is methyl. In other embodiments, R 1 and R 2 are methyl.
  • the macrocyclization reagent may be a Cu reagent or a Ru reagent.
  • the peptidomimetic precursor is purified prior to the contacting step.
  • the peptidomimetic macrocycle is purified after the contacting step.
  • the peptidomimetic macrocycle is refolded after the contacting step.
  • the method may be performed in solution, or, alternatively, the method may be performed on a solid support.
  • Also envisioned herein is performing the method of the invention in the presence of a target macromolecule that binds to the peptidomimetic precursor or peptidomimetic macrocycle under conditions that favor said binding.
  • the method is performed in the presence of a target macromolecule that binds preferentially to the peptidomimetic precursor or peptidomimetic macrocycle under conditions that favor said binding.
  • the method may also be applied to synthesize a library of peptidomimetic macrocycles.
  • the alkyne moiety of the peptidomimetic precursor of Formula V or Formula VI is a sidechain of an amino acid selected from the group consisting of L-propargylglycine, D-propargylglycine, (S)-2-amino-2-methyl-4-pentynoic acid, (R)-2-amino-2-methyl-4-pentynoic acid, (S)-2-amino-2-methyl-5-hexynoic acid, (R)-2-amino-2-methyl-5-hexynoic acid, (S)-2-amino-2-methyl-6-heptynoic acid, (R)-2-amino-2-methyl-6-heptynoic acid, (S)-2-amino-2-methyl-7-octynoic acid, (R)-2-amino-2-methyl-7-octynoic acid, (S)-2-amino-2-methyl-8-nonynoic acid, and (R)-2-amino-2-amino
  • the azide moiety of the peptidomimetic precursor of Formula V or Formula VI is a sidechain of an amino acid selected from the group consisting of ⁇ -azido-L-lysine, ⁇ -azido-D-lysine, ⁇ -azido- ⁇ -methyl-L-lysine, ⁇ -azido- ⁇ -methyl-D-lysine, ⁇ -azido- ⁇ -methyl-L-ornithine, and ⁇ -azido- ⁇ -methyl-D-ornithine.
  • x+y+z is 3, and A, B and C are independently natural or non-natural amino acids. In other embodiments, x+y+z is 6, and A, B and C are independently natural or non-natural amino acids.
  • the contacting step is performed in a solvent selected from the group consisting of protic solvent, aqueous solvent, organic solvent, and mixtures thereof.
  • the solvent may be chosen from the group consisting of H 2 O, THF, THF/H 2 O, tBuOH/H 2 O, DMF, DIPEA, CH 3 CN or CH 2 Cl 2 , ClCH 2 CH 2 Cl or a mixture thereof.
  • the solvent may be a solvent which favors helix formation.
  • peptidomimetic macrocycles of the invention are made, for example, by chemical synthesis methods, such as described in Fields et al., Chapter 3 in Synthetic Peptides: A User's Guide , ed. Grant, W.H. Freeman & Co., New York, N.Y., 1992, p. 77.
  • peptides are synthesized using the automated Merrifield techniques of solid phase synthesis with the amine protected by either tBoc or Fmoc chemistry using side chain protected amino acids on, for example, an automated peptide synthesizer (e.g., Applied Biosystems (Foster City, Calif.), Model 430A, 431, or 433).
  • One manner of producing the peptidomimetic precursors and peptidomimetic macrocycles described herein uses solid phase peptide synthesis (SPPS).
  • SPPS solid phase peptide synthesis
  • the C-terminal amino acid is attached to a cross-linked polystyrene resin via an acid labile bond with a linker molecule.
  • This resin is insoluble in the solvents used for synthesis, making it relatively simple and fast to wash away excess reagents and by-products.
  • the N-terminus is protected with the Fmoc group, which is stable in acid, but removable by base. Side chain functional groups are protected as necessary with base stable, acid labile groups.
  • peptidomimetic precursors are produced, for example, by conjoining individual synthetic peptides using native chemical ligation. Alternatively, the longer synthetic peptides are biosynthesized by well known recombinant DNA and protein expression techniques. Such techniques are provided in well-known standard manuals with detailed protocols.
  • To construct a gene encoding a peptidomimetic precursor of this invention the amino acid sequence is reverse translated to obtain a nucleic acid sequence encoding the amino acid sequence, preferably with codons that are optimum for the organism in which the gene is to be expressed.
  • a synthetic gene is made, typically by synthesizing oligonucleotides which encode the peptide and any regulatory elements, if necessary.
  • the synthetic gene is inserted in a suitable cloning vector and transfected into a host cell. The peptide is then expressed under suitable conditions appropriate for the selected expression system and host.
  • the peptide is purified and characterized by standard methods.
  • the peptidomimetic precursors are made, for example, in a high-throughput, combinatorial fashion using, for example, a high-throughput polychannel combinatorial synthesizer (e.g., Thuramed TETRAS multichannel peptide synthesizer from CreoSalus, Louisville, Ky. or Model Apex 396 multichannel peptide synthesizer from AAPPTEC, Inc., Louisville, Ky.).
  • a high-throughput polychannel combinatorial synthesizer e.g., Thuramed TETRAS multichannel peptide synthesizer from CreoSalus, Louisville, Ky. or Model Apex 396 multichannel peptide synthesizer from AAPPTEC, Inc., Louisville, Ky.
  • each R 1 , R 2 , R 7 and R 8 is —H; each L 1 is —(CH 2 ) 4 —; and each L 2 is —(CH 2 )—.
  • R 1 , R 2 , R 7 , R 8 , L 1 and L 2 can be independently selected from the various structures disclosed herein.
  • Synthetic Scheme 1 describes the preparation of several compounds of the invention.
  • Ni(II) complexes of Schiff bases derived from the chiral auxiliary (S)-2-[N—(N′-benzylprolyl)amino]benzophenone (BPB) and amino acids such as glycine or alanine are prepared as described in Belokon et al. (1998), Tetrahedron Asymm. 9:4249-4252.
  • the resulting complexes are subsequently reacted with alkylating reagents comprising an azido or alkynyl moiety to yield enantiomerically enriched compounds of the invention. If desired, the resulting compounds can be protected for use in peptide synthesis.
  • the peptidomimetic precursor contains an azide moiety and an alkyne moiety and is synthesized by solution-phase or solid-phase peptide synthesis (SPPS) using the commercially available amino acid N- ⁇ -Fmoc-L-propargylglycine and the N- ⁇ -Fmoc-protected forms of the amino acids (S)-2-amino-2-methyl-4-pentynoic acid, (S)-2-amino-6-heptynoic acid, (S)-2-amino-2-methyl-6-heptynoic acid, N-methyl- ⁇ -azido-L-lysine, and N-methyl- ⁇ -azido-D-lysine.
  • SPPS solution-phase or solid-phase peptide synthesis
  • the peptidomimetic precursor is then deprotected and cleaved from the solid-phase resin by standard conditions (e.g., strong acid such as 95% TFA).
  • the peptidomimetic precursor is reacted as a crude mixture or is purified prior to reaction with a macrocyclization reagent such as a Cu(I) in organic or aqueous solutions (Rostovtsev et al. (2002), Angew. Chem. Int. Ed. 41:2596-2599; Tornoe et al. (2002), J. Org. Chem. 67:3057-3064; Deiters et al. (2003), J. Am. Chem. Soc.
  • the triazole forming reaction is performed under conditions that favor ⁇ -helix formation.
  • the macrocyclization step is performed in a solvent chosen from the group consisting of H 2 O, THF, CH 3 CN, DMF, DIPEA, tBuOH or a mixture thereof.
  • the macrocyclization step is performed in DMF.
  • the macrocyclization step is performed in a buffered aqueous or partially aqueous solvent.
  • the peptidomimetic precursor contains an azide moiety and an alkyne moiety and is synthesized by solid-phase peptide synthesis (SPPS) using the commercially available amino acid N- ⁇ -Fmoc-L-propargylglycine and the N- ⁇ -Fmoc-protected forms of the amino acids (S)-2-amino-2-methyl-4-pentynoic acid, (S)-2-amino-6-heptynoic acid, (S)-2-amino-2-methyl-6-heptynoic acid, N-methyl- ⁇ -azido-L-lysine, and N-methyl- ⁇ -azido-D-lysine.
  • SPPS solid-phase peptide synthesis
  • the peptidomimetic precursor is reacted with a macrocyclization reagent such as a Cu(I) reagent on the resin as a crude mixture
  • a macrocyclization reagent such as a Cu(I) reagent
  • the resultant triazole-containing peptidomimetic macrocycle is then deprotected and cleaved from the solid-phase resin by standard conditions (e.g., strong acid such as 95% TFA).
  • the macrocyclization step is performed in a solvent chosen from the group consisting of CH 2 Cl 2 , ClCH 2 CH 2 Cl, DMF, THF, NMP, DIPEA, 2,6-lutidine, pyridine, DMSO, H 2 O or a mixture thereof.
  • the macrocyclization step is performed in a buffered aqueous or partially aqueous solvent.
  • the peptidomimetic precursor contains an azide moiety and an alkyne moiety and is synthesized by solution-phase or solid-phase peptide synthesis (SPPS) using the commercially available amino acid N- ⁇ -Fmoc-L-propargylglycine and the N- ⁇ -Fmoc-protected forms of the amino acids (S)-2-amino-2-methyl-4-pentynoic acid, (S)-2-amino-6-heptynoic acid, (S)-2-amino-2-methyl-6-heptynoic acid, N-methyl- ⁇ -azido-L-lysine, and N-methyl- ⁇ -azido-D-lysine.
  • SPPS solution-phase or solid-phase peptide synthesis
  • the peptidomimetic precursor is then deprotected and cleaved from the solid-phase resin by standard conditions (e.g., strong acid such as 95% TFA).
  • the peptidomimetic precursor is reacted as a crude mixture or is purified prior to reaction with a macrocyclization reagent such as a Ru(II) reagents, for example Cp*RuCl(PPh 3 ) 2 or [Cp*RuCl] 4 (Rasmussen et al. (2007), Org. Lett. 9:5337-5339; Zhang et al. (2005), J. Am. Chem. Soc. 127:15998-15999).
  • the macrocyclization step is performed in a solvent chosen from the group consisting of DMF, CH 3 CN and THF.
  • the peptidomimetic precursor contains an azide moiety and an alkyne moiety and is synthesized by solid-phase peptide synthesis (SPPS) using the commercially available amino acidN- ⁇ -Fmoc-L-propargylglycine and the N- ⁇ -Fmoc-protected forms of the amino acids (S)-2-amino-2-methyl-4-pentynoic acid, (S)-2-amino-6-heptynoic acid, (S)-2-amino-2-methyl-6-heptynoic acid, N-methyl- ⁇ -azido-L-lysine, and N-methyl- ⁇ -azido-D-lysine.
  • SPPS solid-phase peptide synthesis
  • the peptidomimetic precursor is reacted with a macrocyclization reagent such as a Ru(II) reagent on the resin as a crude mixture.
  • a macrocyclization reagent such as a Ru(II) reagent on the resin as a crude mixture.
  • the reagent can be Cp*RuCl(PPh 3 ) 2 or [Cp*RuCl] 4 (Rasmussen et al. (2007), Org. Lett. 9:5337-5339; Zhang et al. (2005), J. Am. Chem. Soc. 127:15998-15999).
  • the macrocyclization step is performed in a solvent chosen from the group consisting of CH 2 Cl 2 , ClCH 2 CH 2 Cl, CH 3 CN, DMF, and THF.
  • the present invention contemplates the use of non-naturally-occurring amino acids and amino acid analogs in the synthesis of the peptidomimetic macrocycles described herein.
  • Any amino acid or amino acid analog amenable to the synthetic methods employed for the synthesis of stable triazole containing peptidomimetic macrocycles can be used in the present invention.
  • L-propargylglycine is contemplated as a useful amino acid in the present invention.
  • other alkyne-containing amino acids that contain a different amino acid side chain are also useful in the invention.
  • L-propargylglycine contains one methylene unit between the ⁇ -carbon of the amino acid and the alkyne of the amino acid side chain.
  • the invention also contemplates the use of amino acids with multiple methylene units between the ⁇ -carbon and the alkyne.
  • the azido-analogs of amino acids L-lysine, D-lysine, alpha-methyl-L-lysine, and alpha-methyl-D-lysine are contemplated as useful amino acids in the present invention.
  • other terminal azide amino acids that contain a different amino acid side chain are also useful in the invention.
  • the azido-analog of L-lysine contains four methylene units between the ⁇ -carbon of the amino acid and the terminal azide of the amino acid side chain.
  • the invention also contemplates the use of amino acids with fewer than or greater than four methylene units between the ⁇ -carbon and the terminal azide. Table 2 shows some amino acids useful in the preparation of peptidomimetic macrocycles of the invention.
  • Table 2 shows exemplary amino acids useful in the preparation of peptidomimetic macrocycles of the invention.
  • the amino acids and amino acid analogs are of the D-configuration. In other embodiments they are of the L-configuration. In some embodiments, some of the amino acids and amino acid analogs contained in the peptidomimetic are of the D-configuration while some of the amino acids and amino acid analogs are of the L-configuration. In some embodiments the amino acid analogs are ⁇ , ⁇ -disubstituted, such as ⁇ -methyl-L-propargylglycine, ⁇ -methyl-D-propargylglycine, ⁇ -azido-alpha-methyl-L-lysine, and ⁇ -azido-alpha-methyl-D-lysine.
  • amino acid analogs are N-alkylated, e.g., N-methyl-L-propargylglycine, N-methyl-D-propargylglycine, N-methyl- ⁇ -azido-L-lysine, and N-methyl- ⁇ -azido-D-lysine.
  • the —NH moiety of the amino acid is protected using a protecting group, including without limitation -Fmoc and -Boc. In other embodiments, the amino acid is not protected prior to synthesis of the peptidomimetic macrocycle.
  • peptidomimetic macrocycles of Formula III are synthesized.
  • the preparation of such macrocycles is described, for example, in U.S. application Ser. No. 11/957,325, filed on Dec. 17, 2007.
  • the following synthetic schemes describe the preparation of such compounds.
  • the illustrative schemes depict amino acid analogs derived from L- or D-cysteine, in which L 1 and L 3 are both —(CH 2 )—.
  • L 1 and L 3 can be independently selected from the various structures disclosed herein.
  • the peptidomimetic precursor contains two —SH moieties and is synthesized by solid-phase peptide synthesis (SPPS) using commercially available N- ⁇ -Fmoc amino acids such as N- ⁇ -Fmoc-5-trityl-L-cysteine or N- ⁇ -Fmoc-5-trityl-D-cysteine.
  • SPPS solid-phase peptide synthesis
  • Alpha-methylated versions of D-cysteine or L-cysteine are generated by known methods (Seebach et al. (1996), Angew. Chem. Int. Ed. Engl.
  • N- ⁇ -Fmoc-5-trityl monomers by known methods (“ Bioorganic Chemistry: Peptides and Proteins ”, Oxford University Press, New York: 1998, the entire contents of which are incorporated herein by reference).
  • the precursor peptidomimetic is then deprotected and cleaved from the solid-phase resin by standard conditions (e.g., strong acid such as 95% TFA).
  • the precursor peptidomimetic is reacted as a crude mixture or is purified prior to reaction with X-L 2 -Y in organic or aqueous solutions.
  • the alkylation reaction is performed under dilute conditions (i.e.
  • the alkylation reaction is performed in organic solutions such as liquid NH 3 (Mosberg et al. (1985), J. Am. Chem. Soc. 107:2986-2987; Szewczuk et al. (1992), Int. J. Peptide Protein Res. 40:233-242), NH 3 /MeOH, or NH 3 /DMF (Or et al. (1991), J. Org. Chem. 56:3146-3149).
  • the alkylation is performed in an aqueous solution such as 6M guanidinium HCL, pH 8 (Brunel et al. (2005), Chem. Commun. (20):2552-2554).
  • the solvent used for the alkylation reaction is DMF or dichloroethane.
  • the precursor peptidomimetic contains two or more —SH moieties, of which two are specially protected to allow their selective deprotection and subsequent alkylation for macrocycle formation.
  • the precursor peptidomimetic is synthesized by solid-phase peptide synthesis (SPPS) using commercially available N- ⁇ -Fmoc amino acids such as N- ⁇ -Fmoc-S-p-methoxytrityl-L-cysteine or N- ⁇ -Fmoc-S-p-methoxytrityl-D-cysteine.
  • SPPS solid-phase peptide synthesis
  • Alpha-methylated versions of D-cysteine or L-cysteine are generated by known methods (Seebach et al. (1996), Angew. Chem. Int. Ed.
  • the alkylation reaction is performed in organic solutions such as liquid NH 3 (Mosberg et al. (1985), J. Am. Chem. Soc. 107:2986-2987; Szewczuk et al. (1992), Int. J. Peptide Protein Res. 40:233-242), NH 3 /MeOH or NH 3 /DMF (Or et al. (1991), J. Org. Chem. 56:3146-3149).
  • the alkylation reaction is performed in DMF or dichloroethane.
  • the peptidomimetic macrocycle is then deprotected and cleaved from the solid-phase resin by standard conditions (e.g., strong acid such as 95% TFA).
  • the peptidomimetic precursor contains two or more —SH moieties, of which two are specially protected to allow their selective deprotection and subsequent alkylation for macrocycle formation.
  • the peptidomimetic precursor is synthesized by solid-phase peptide synthesis (SPPS) using commercially available N- ⁇ -Fmoc amino acids such as N- ⁇ -Fmoc-S-p-methoxytrityl-L-cysteine, N- ⁇ -Fmoc-S-p-methoxytrityl-D-cysteine, N- ⁇ -Fmoc-S—S-t-butyl-L-cysteine, and N- ⁇ -Fmoc-S—S-t-butyl-D-cysteine.
  • SPPS solid-phase peptide synthesis
  • Alpha-methylated versions of D-cysteine or L-cysteine are generated by known methods (Seebach et al. (1996), Angew. Chem. Int. Ed. Engl. 35:2708-2748, and references therein) and then converted to the appropriately protected N- ⁇ -Fmoc-S-p-methoxytrityl or N- ⁇ -Fmoc-S—S-t-butyl monomers by known methods ( Bioorganic Chemistry: Peptides and Proteins , Oxford University Press, New York: 1998, the entire contents of which are incorporated herein by reference).
  • the S—S-tButyl protecting group of the peptidomimetic precursor is selectively cleaved by known conditions (e.g., 20% 2-mercaptoethanol in DMF, reference: Gauß et al. (2005), J. Comb. Chem. 7:174-177).
  • the precursor peptidomimetic is then reacted on the resin with a molar excess of X-L 2 -Y in an organic solution.
  • the reaction takes place in the presence of a hindered base such as diisopropylethylamine.
  • the Mmt protecting group of the peptidomimetic precursor is then selectively cleaved by standard conditions (e.g., mild acid such as 1% TFA in DCM).
  • the peptidomimetic precursor is then cyclized on the resin by treatment with a hindered base in organic solutions.
  • the alkylation reaction is performed in organic solutions such as NH 3 /MeOH or NH 3 /DMF (Or et al. (1991), J. Org. Chem. 56:3146-3149).
  • the peptidomimetic macrocycle is then deprotected and cleaved from the solid-phase resin by standard conditions (e.g., strong acid such as 95% TFA).
  • the peptidomimetic precursor contains two L-cysteine moieties.
  • the peptidomimetic precursor is synthesized by known biological expression systems in living cells or by known in vitro, cell-free, expression methods.
  • the precursor peptidomimetic is reacted as a crude mixture or is purified prior to reaction with X-L2-Y in organic or aqueous solutions.
  • the alkylation reaction is performed under dilute conditions (i.e. 0.15 mmol/L) to favor macrocyclization and to avoid polymerization.
  • the alkylation reaction is performed in organic solutions such as liquid NH 3 (Mosberg et al. (1985), J. Am. Chem. Soc.
  • the alkylation is performed in an aqueous solution such as 6M guanidinium HCL, pH 8 (Brunel et al. (2005), Chem. Commun. (20):2552-2554). In other embodiments, the alkylation is performed in DMF or dichloroethane.
  • the alkylation is performed in non-denaturing aqueous solutions, and in yet another embodiment the alkylation is performed under conditions that favor ⁇ -helical structure formation. In yet another embodiment, the alkylation is performed under conditions that favor the binding of the precursor peptidomimetic to another protein, so as to induce the formation of the bound ⁇ -helical conformation during the alkylation.
  • X and Y are envisioned which are suitable for reacting with thiol groups.
  • each X or Y is independently be selected from the general category shown in Table 5.
  • X and Y are halides such as —Cl, —Br or —I.
  • Any of the macrocycle-forming linkers described herein may be used in any combination with any of the sequences shown in Tables 1-4 and also with any of the R-substituents indicated herein.
  • the present invention contemplates the use of both naturally-occurring and non-naturally-occurring amino acids and amino acid analogs in the synthesis of the peptidomimetic macrocycles of Formula (III).
  • Any amino acid or amino acid analog amenable to the synthetic methods employed for the synthesis of stable bis-sulfhydryl containing peptidomimetic macrocycles can be used in the present invention.
  • cysteine is contemplated as a useful amino acid in the present invention.
  • sulfur containing amino acids other than cysteine that contain a different amino acid side chain are also useful.
  • cysteine contains one methylene unit between the ⁇ -carbon of the amino acid and the terminal —SH of the amino acid side chain.
  • the invention also contemplates the use of amino acids with multiple methylene units between the ⁇ -carbon and the terminal —SH.
  • Non-limiting examples include ⁇ -methyl-L-homocysteine and ⁇ -methyl-D-homocysteine.
  • the amino acids and amino acid analogs are of the D-configuration. In other embodiments they are of the L-configuration.
  • some of the amino acids and amino acid analogs contained in the peptidomimetic are of the D-configuration while some of the amino acids and amino acid analogs are of the L-configuration.
  • the amino acid analogs are ⁇ , ⁇ -disubstituted, such as ⁇ -methyl-L-cysteine and ⁇ -methyl-D-cysteine.
  • the invention includes macrocycles in which macrocycle-forming linkers are used to link two or more —SH moieties in the peptidomimetic precursors to form the peptidomimetic macrocycles of the invention.
  • the macrocycle-forming linkers impart conformational rigidity, increased metabolic stability and/or increased cell penetrability.
  • the macrocycle-forming linkages stabilize the ⁇ -helical secondary structure of the peptidomimetic macrocyles.
  • the macrocycle-forming linkers are of the formula X-L 2 -Y, wherein both X and Y are the same or different moieties, as defined above.
  • Both X and Y have the chemical characteristics that allow one macrocycle-forming linker -L 2 - to bis alkylate the bis-sulfhydryl containing peptidomimetic precursor.
  • the linker -L 2 - includes alkylene, alkenylene, alkynylene, heteroalkylene, cycloalkylene, heterocycloalkylene, cycloarylene, or heterocycloarylene, or —R 4 —K—R 4 —, all of which can be optionally substituted with an R 5 group, as defined above.
  • one to three carbon atoms within the macrocycle-forming linkers -L 2 -, other than the carbons attached to the —SH of the sulfhydryl containing amino acid, are optionally substituted with a heteroatom such as N, S or O.
  • the L 2 component of the macrocycle-forming linker X-L 2 -Y may be varied in length depending on, among other things, the distance between the positions of the two amino acid analogs used to form the peptidomimetic macrocycle. Furthermore, as the lengths of L 1 and/or L 3 components of the macrocycle-forming linker are varied, the length of L 2 can also be varied in order to create a linker of appropriate overall length for forming a stable peptidomimetic macrocycle. For example, if the amino acid analogs used are varied by adding an additional methylene unit to each of L 1 and L 3 , the length of L 2 are decreased in length by the equivalent of approximately two methylene units to compensate for the increased lengths of L 1 and L 3 .
  • L 2 is an alkylene group of the formula —(CH 2 ) n —, where n is an integer between about 1 and about 15. For example, n is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10. In other embodiments, L 2 is an alkenylene group. In still other embodiments, L 2 is an aryl group.
  • Table 4 shows additional embodiments of X-L 2 -Y groups.
  • aminoacid precursors are used containing an additional substituent R— at the alpha position.
  • Such aminoacids are incorporated into the macrocycle precursor at the desired positions, which may be at the positions where the crosslinker is substituted or, alternatively, elsewhere in the sequence of the macrocycle precursor. Cyclization of the precursor is then effected according to the indicated method.
  • peptidomimetic macrocycles of the invention are assayed, for example, by using the methods described below.
  • a peptidomimetic macrocycle of the invention has improved biological properties relative to a corresponding polypeptide lacking the substituents described herein.
  • polypeptides with ⁇ -helical domains will reach a dynamic equilibrium between random coil structures and ⁇ -helical structures, often expressed as a “percent helicity”.
  • unmodified alpha-helical domains are predominantly random coils in solution, with ⁇ -helical content usually under 25%.
  • Peptidomimetic macrocycles with optimized linkers possess, for example, an alpha-helicity that is at least two-fold greater than that of a corresponding uncrosslinked polypeptide.
  • macrocycles of the invention will possess an alpha-helicity of greater than 50%.
  • Circular dichroism (CD) spectra are obtained on a spectropolarimeter (e.g., Jasco J-710) using standard measurement parameters (e.g. temperature, 20° C.; wavelength, 190-260 nm; step resolution, 0.5 nm; speed, 20 nm/sec; accumulations, 10; response, 1 sec; bandwidth, 1 nm; path length, 0.1 cm).
  • standard measurement parameters e.g. temperature, 20° C.; wavelength, 190-260 nm; step resolution, 0.5 nm; speed, 20 nm/sec; accumulations, 10; response, 1 sec; bandwidth, 1 nm; path length, 0.1 cm).
  • the ⁇ -helical content of each peptide is calculated by dividing the mean residue ellipticity (e.g. [ ⁇ ]222 obs) by the reported value for a model helical decapeptide (Yang et al. (1986), Methods Enzymol. 130:208)).
  • a peptidomimetic macrocycle of the invention comprising a secondary structure such as an ⁇ -helix exhibits, for example, a higher melting temperature than a corresponding uncrosslinked polypeptide.
  • peptidomimetic macrocycles of the invention exhibit Tm of >60° C. representing a highly stable structure in aqueous solutions.
  • Tm is determined by measuring the change in ellipticity over a temperature range (e.g.
  • spectropolarimeter e.g., Jasco J-710
  • standard parameters e.g. wavelength 222 nm; step resolution, 0.5 nm; speed, 20 nm/sec; accumulations, 10; response, 1 sec; bandwidth, 1 nm; temperature increase rate: 1° C./min; path length, 0.1 cm.
  • the amide bond of the peptide backbone is susceptible to hydrolysis by proteases, thereby rendering peptidic compounds vulnerable to rapid degradation in vivo. Peptide helix formation, however, typically buries the amide backbone and therefore may shield it from proteolytic cleavage.
  • the peptidomimetic macrocycles of the present invention may be subjected to in vitro trypsin proteolysis to assess for any change in degradation rate compared to a corresponding uncrosslinked polypeptide.
  • the peptidomimetic macrocycle and a corresponding uncrosslinked polypeptide are incubated with trypsin agarose and the reactions quenched at various time points by centrifugation and subsequent HPLC injection to quantitate the residual substrate by ultraviolet absorption at 280 nm.
  • the peptidomimetic macrocycle and peptidomimetic precursor (5 mcg) are incubated with trypsin agarose (Pierce) (S/E ⁇ 125) for 0, 10, 20, 90, and 180 minutes. Reactions are quenched by tabletop centrifugation at high speed; remaining substrate in the isolated supernatant is quantified by HPLC-based peak detection at 280 nm.
  • Peptidomimetic macrocycles with optimized linkers possess, for example, an ex vivo half-life that is at least two-fold greater than that of a corresponding uncrosslinked polypeptide, and possess an ex vivo half-life of 12 hours or more.
  • assays may be used. For example, a peptidomimetic macrocycle and a corresponding uncrosslinked polypeptide (2 mcg) are incubated with fresh mouse, rat and/or human serum (2 mL) at 37° C. for 0, 1, 2, 4, 8, and 24 hours.
  • the samples are extracted by transferring 100 ⁇ l of sera to 2 ml centrifuge tubes followed by the addition of 10 ⁇ L of 50% formic acid and 500 ⁇ L acetonitrile and centrifugation at 14,000 RPM for 10 min at 4 ⁇ 2° C. The supernatants are then transferred to fresh 2 ml tubes and evaporated on Turbovap under N 2 ⁇ 10 psi, 37° C. The samples are reconstituted in 100 ⁇ L of 50:50 acetonitrile:water and submitted to LC-MS/MS analysis.
  • FPA fluorescence polarization assay
  • fluoresceinated peptidomimetic macrocycles (25 nM) are incubated with the acceptor protein (25-1000 nM) in binding buffer (140 mM NaCl, 50 mM Tris-HCL, pH 7.4) for 30 minutes at room temperature. Binding activity is measured, for example, by fluorescence polarization on a luminescence spectrophotometer (e.g. Perkin-Elmer LS50B). Kd values may be determined by nonlinear regression analysis using, for example, Graphpad Prism software (GraphPad Software, Inc., San Diego, Calif.).
  • a peptidomimetic macrocycle of the invention shows, in some instances, similar or lower Kd than a corresponding uncrosslinked polypeptide.
  • a fluorescence polarization assay utilizing a fluoresceinated peptidomimetic macrocycle derived from a peptidomimetic precursor sequence is used, for example.
  • the FPA technique measures the molecular orientation and mobility using polarized light and fluorescent tracer.
  • fluorescent tracers e.g., FITC
  • FITC-labeled peptides bound to a large protein When excited with polarized light, fluorescent tracers (e.g., FITC) attached to molecules with high apparent molecular weights (e.g. FITC-labeled peptides bound to a large protein) emit higher levels of polarized fluorescence due to their slower rates of rotation as compared to fluorescent tracers attached to smaller molecules (e.g. FITC-labeled peptides that are free in solution).
  • a compound that antagonizes the interaction between the fluoresceinated peptidomimetic macrocycle and an acceptor protein will be detected in a competitive binding FPA experiment
  • putative antagonist compounds (1 nM to 1 mM) and a fluoresceinated peptidomimetic macrocycle (25 nM) are incubated with the acceptor protein (50 nM) in binding buffer (140 mM NaCl, 50 mM Tris-HCL, pH 7.4) for 30 minutes at room temperature.
  • Antagonist binding activity is measured, for example, by fluorescence polarization on a luminescence spectrophotometer (e.g. Perkin-Elmer LS50B).
  • Kd values may be determined by nonlinear regression analysis using, for example, Graphpad Prism software (GraphPad Software, Inc., San Diego, Calif.).
  • Any class of molecule such as small organic molecules, peptides, oligonucleotides or proteins can be examined as putative antagonists in this assay.
  • an affinity-selection mass spectrometry assay is used, for example.
  • Protein-ligand binding experiments are conducted according to the following representative procedure outlined for a system-wide control experiment using 1 ⁇ M peptidomimetic macrocycle plus 5 ⁇ M target protein.
  • a 1 ⁇ L DMSO aliquot of a 40 ⁇ M stock solution of peptidomimetic macrocycle is dissolved in 19 ⁇ L of PBS (Phosphate-buffered saline: 50 mM, pH 7.5 Phosphate buffer containing 150 mM NaCl).
  • PBS Phosphate-buffered saline: 50 mM, pH 7.5 Phosphate buffer containing 150 mM NaCl.
  • the resulting solution is mixed by repeated pipetting and clarified by centrifugation at 10 000 g for 10 min.
  • the SEC column eluate is monitored using UV detectors to confirm that the early-eluting protein fraction, which elutes in the void volume of the SEC column, is well resolved from unbound components that are retained on the column.
  • the peak containing the protein and protein-ligand complexes elutes from the primary UV detector, it enters a sample loop where it is excised from the flow stream of the SEC stage and transferred directly to the LC-MS via a valving mechanism.
  • the (M+3H) 3+ ion of the peptidomimetic macrocycle is observed by ESI-MS at the expected m/z, confirming the detection of the protein-ligand complex.
  • Protein-ligand K d titrations experiments are conducted as follows: 2 ⁇ L DMSO aliquots of a serially diluted stock solution of titrant peptidomimetic macrocycle (5, 2.5, . . . , 0.098 mM) are prepared then dissolved in 38 ⁇ L of PBS. The resulting solutions are mixed by repeated pipetting and clarified by centrifugation at 10 000 g for 10 min. To 4.0 ⁇ L aliquots of the resulting supernatants is added 4.0 ⁇ L of 10 ⁇ M target protein in PBS.
  • Each 8.0 ⁇ L experimental sample thus contains 40 pmol (1.5 ⁇ g) of protein at 5.0 ⁇ M concentration in PBS, varying concentrations (125, 62.5, . . . , 0.24 ⁇ M) of the titrant peptide, and 2.5% DMSO.
  • Duplicate samples thus prepared for each concentration point are incubated at room temperature for 30 min, then chilled to 4° C. prior to SEC-LC-MS analysis of 2.0 ⁇ L injections.
  • an affiinity selection mass spectrometry assay is performed, for example.
  • a mixture of ligands at 40 ⁇ M per component is prepared by combining 2 ⁇ L aliquots of 400 ⁇ M stocks of each of the three compounds with 14 ⁇ L of DMSO. Then, 1 ⁇ L aliquots of this 40 ⁇ M per component mixture are combined with 1 ⁇ L DMSO aliquots of a serially diluted stock solution of titrant peptidomimetic macrocycle (10, 5, 2.5, . . . , 0.078 mM). These 2 ⁇ L samples are dissolved in 38 ⁇ L of PBS.
  • the resulting solutions were mixed by repeated pipetting and clarified by centrifugation at 10 000 g for 10 min.
  • To 4.0 ⁇ L aliquots of the resulting supernatants is added 4.0 ⁇ L of 10 ⁇ M target protein in PBS.
  • Each 8.0 ⁇ L experimental sample thus contains 40 pmol (1.5 ⁇ g) of protein at 5.0 ⁇ M concentration in PBS plus 0.5 ⁇ M ligand, 2.5% DMSO, and varying concentrations (125, 62.5, . . . , 0.98 ⁇ M) of the titrant peptidomimetic macrocycle.
  • Duplicate samples thus prepared for each concentration point are incubated at room temperature for 60 min, then chilled to 4° C.
  • FITC-labeled fluoresceinated compounds
  • lysis buffer 50 mM Tris [pH 7.6], 150 mM NaCl, 1% CHAPS and protease inhibitor cocktail
  • Extracts are centrifuged at 14,000 rpm for 15 minutes and supernatants collected and incubated with 10 ⁇ l goat anti-FITC antibody for 2 hrs, rotating at 4° C. followed by further 2 hrs incubation at 4° C. with protein A/G Sepharose (50 ⁇ l of 50% bead slurry). After quick centrifugation, the pellets are washed in lysis buffer containing increasing salt concentration (e.g., 150, 300, 500 mM). The beads are then re-equilibrated at 150 mM NaCl before addition of SDS-containing sample buffer and boiling.
  • increasing salt concentration e.g. 150, 300, 500 mM
  • the supernatants are optionally electrophoresed using 4%-12% gradient Bis-Tris gels followed by transfer into Immobilon-P membranes. After blocking, blots are optionally incubated with an antibody that detects FITC and also with one or more antibodies that detect proteins that bind to the peptidomimetic macrocycle.
  • a peptidomimetic macrocycle is, for example, more cell penetrable compared to a corresponding uncrosslinked macrocycle.
  • Peptidomimetic macrocycles with optimized linkers possess, for example, cell penetrability that is at least two-fold greater than a corresponding uncrosslinked macrocycle, and often 20% or more of the applied peptidomimetic macrocycle will be observed to have penetrated the cell after 4 hours.
  • peptidomimetic macrocycles and corresponding uncrosslinked macrocycle To measure the cell penetrability of peptidomimetic macrocycles and corresponding uncrosslinked macrocycle, intact cells are incubated with fluoresceinated peptidomimetic macrocycles or corresponding uncrosslinked macrocycle (10 ⁇ M) for 4 hrs in serum free media at 37° C., washed twice with media and incubated with trypsin (0.25%) for 10 min at 37° C. The cells are washed again and resuspended in PBS. Cellular fluorescence is analyzed, for example, by using either a FACSCalibur flow cytometer or Cellomics' KineticScan® HCS Reader.
  • the efficacy of certain peptidomimetic macrocycles is determined, for example, in cell-based killing assays using a variety of tumorigenic and non-tumorigenic cell lines and primary cells derived from human or mouse cell populations. Cell viability is monitored, for example, over 24-96 hrs of incubation with peptidomimetic macrocycles (0.5 to 50 ⁇ M) to identify those that kill at EC50 ⁇ 10 ⁇ M.
  • peptidomimetic macrocycles 0.5 to 50 ⁇ M
  • Several standard assays that measure cell viability are commercially available and are optionally used to assess the efficacy of the peptidomimetic macrocycles.
  • assays that measure Annexin V and caspase activation are optionally used to assess whether the peptidomimetic macrocycles kill cells by activating the apoptotic machinery.
  • the Cell Titer-glo assay is used which determines cell viability as a function of intracellular ATP concentration.
  • the compounds are, for example, administered to mice and/or rats by IV, IP, PO or inhalation routes at concentrations ranging from 0.1 to 50 mg/kg and blood specimens withdrawn at 0′, 5′, 15′, 30′, 1 hr, 4 hrs, 8 hrs and 24 hours post-injection. Levels of intact compound in 25 ⁇ L of fresh serum are then measured by LC-MS/MS as above.
  • the compounds are, for example, given alone (IP, IV, PO, by inhalation or nasal routes) or in combination with sub-optimal doses of relevant chemotherapy (e.g., cyclophosphamide, doxorubicin, etoposide).
  • relevant chemotherapy e.g., cyclophosphamide, doxorubicin, etoposide.
  • 5 ⁇ 10 6 RS4; 11 cells (established from the bone marrow of a patient with acute lymphoblastic leukemia) that stably express luciferase are injected by tail vein in NOD-SCID mice 3 hrs after they have been subjected to total body irradiation. If left untreated, this form of leukemia is fatal in 3 weeks in this model.
  • the leukemia is readily monitored, for example, by injecting the mice with D-luciferin (60 mg/kg) and imaging the anesthetized animals (e.g., Xenogen In Vivo Imaging System, Caliper Life Sciences, Hopkinton, Mass.). Total body bioluminescence is quantified by integration of photonic flux (photons/sec) by Living Image Software (Caliper Life Sciences, Hopkinton, Mass.).
  • D-luciferin 60 mg/kg
  • Imaging the anesthetized animals e.g., Xenogen In Vivo Imaging System, Caliper Life Sciences, Hopkinton, Mass.
  • Total body bioluminescence is quantified by integration of photonic flux (photons/sec) by Living Image Software (Caliper Life Sciences, Hopkinton, Mass.).
  • Peptidomimetic macrocycles alone or in combination with sub-optimal doses of relevant chemotherapeutics agents are, for example, administered to leukemic mice (10 days after injection/day 1 of experiment, in bioluminescence range of 14-16) by tail vein or IP routes at doses ranging from 0.1 mg/kg to 50 mg/kg for 7 to 21 days.
  • the mice are imaged throughout the experiment every other day and survival monitored daily for the duration of the experiment.
  • Expired mice are optionally subjected to necropsy at the end of the experiment.
  • Another animal model is implantation into NOD-SCID mice of DoHH2, a cell line derived from human follicular lymphoma, that stably expresses luciferase. These in vivo tests optionally generate preliminary pharmacokinetic, pharmacodynamic and toxicology data.
  • peptidomimetic macrocycles of the invention are selected and separated in treatment and one or more control groups, wherein the treatment group is administered a peptidomimetic macrocycle of the invention, while the control groups receive a placebo or a known anti-cancer drug.
  • the treatment safety and efficacy of the peptidomimetic macrocycles of the invention can thus be evaluated by performing comparisons of the patient groups with respect to factors such as survival and quality-of-life.
  • the patient group treated with a peptidomimetic macrocycle show improved long-term survival compared to a patient control group treated with a placebo.
  • the peptidomimetic macrocycles of the invention also include pharmaceutically acceptable derivatives or prodrugs thereof.
  • a “pharmaceutically acceptable derivative” means any pharmaceutically acceptable salt, ester, salt of an ester, pro-drug or other derivative of a compound of this invention which, upon administration to a recipient, is capable of providing (directly or indirectly) a compound of this invention.
  • Particularly favored pharmaceutically acceptable derivatives are those that increase the bioavailability of the compounds of the invention when administered to a mammal (e.g., by increasing absorption into the blood of an orally administered compound) or which increases delivery of the active compound to a biological compartment (e.g., the brain or lymphatic system) relative to the parent species.
  • Some pharmaceutically acceptable derivatives include a chemical group which increases aqueous solubility or active transport across the gastrointestinal mucosa.
  • the peptidomimetic macrocycles of the invention are modified by covalently or non-covalently joining appropriate functional groups to enhance selective biological properties.
  • modifications include those which increase biological penetration into a given biological compartment (e.g., blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism, and alter rate of excretion.
  • Pharmaceutically acceptable salts of the compounds of this invention include those derived from pharmaceutically acceptable inorganic and organic acids and bases.
  • suitable acid salts include acetate, adipate, benzoate, benzenesulfonate, butyrate, citrate, digluconate, dodecylsulfate, formate, fumarate, glycolate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, lactate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, palmoate, phosphate, picrate, pivalate, propionate, salicylate, succinate, sulfate, tartrate, tosylate and undecanoate.
  • Salts derived from appropriate bases include alkali metal (e.g., sodium), alkaline earth metal (e.g., magnesium), ammonium and N
  • pharmaceutically acceptable carriers include either solid or liquid carriers.
  • Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules.
  • a solid carrier can be one or more substances, which also acts as diluents, flavoring agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material. Details on techniques for formulation and administration are well described in the scientific and patent literature, see, e.g., the latest edition of Remington's Pharmaceutical Sciences, Maack Publishing Co, Easton Pa.
  • the carrier is a finely divided solid, which is in a mixture with the finely divided active component.
  • the active component is mixed with the carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired.
  • Suitable solid excipients are carbohydrate or protein fillers include, but are not limited to sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; and gums including arabic and tragacanth; as well as proteins such as gelatin and collagen.
  • disintegrating or solubilizing agents are added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate.
  • Liquid form preparations include solutions, suspensions, and emulsions, for example, water or water/propylene glycol solutions.
  • liquid preparations can be formulated in solution in aqueous polyethylene glycol solution.
  • the pharmaceutical preparation is preferably in unit dosage form.
  • the preparation is subdivided into unit doses containing appropriate quantities of the active component.
  • the unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules.
  • the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.
  • compositions of this invention comprise a combination of a peptidomimetic macrocycle and one or more additional therapeutic or prophylactic agents
  • both the compound and the additional agent should be present at dosage levels of between about 1 to 100%, and more preferably between about 5 to 95% of the dosage normally administered in a monotherapy regimen.
  • the additional agents are administered separately, as part of a multiple dose regimen, from the compounds of this invention.
  • those agents are part of a single dosage form, mixed together with the compounds of this invention in a single composition.
  • the present invention provides novel peptidomimetic macrocycles that are useful in competitive binding assays to identify agents which bind to the natural ligand(s) of the proteins or peptides upon which the peptidomimetic macrocycles are modeled.
  • labeled peptidomimetic macrocycles based on CBD peptides of TCF can be used in a ⁇ -catenin binding assay along with small molecules that competitively bind to ⁇ -catenin.
  • Competitive binding studies allow for rapid in vitro evaluation and determination of drug candidates specific for the TCF/ ⁇ -catenin system. Such binding studies may be performed with any of the peptidomimetic macrocycles disclosed herein and their binding partners.
  • the invention further provides for the generation of antibodies against the peptidomimetic macrocycles.
  • these antibodies specifically bind both the peptidomimetic macrocycle and the precursor peptides, such as TCF-CBD, to which the peptidomimetic macrocycles are related.
  • Such antibodies for example, disrupt the native protein-protein interaction, for example, binding between TCF and ⁇ -catenin.
  • the present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant (e.g., insufficient or excessive) expression or activity of the molecules including ⁇ -catenin.
  • a disorder is caused, at least in part, by an abnormal level of ⁇ -catenin, (e.g., over or under expression), or by the presence of ⁇ -catenin exhibiting abnormal activity.
  • an abnormal level of ⁇ -catenin e.g., over or under expression
  • the reduction in the level and/or activity of the ⁇ -catenin, or the enhancement of the level and/or activity of ⁇ -catenin, by peptidomimetic macrocycles derived from a CBD-containing protein such as TCF is used, for example, to ameliorate or reduce the adverse symptoms of the disorder.
  • the present invention provides methods for treating or preventing a disease including hyperproliferative disease and inflammatory disorder by interfering with the interaction or binding between binding partners, for example, between TCF and ⁇ -catenin. These methods comprise administering an effective amount of a compound of the invention to a warm blooded animal, including a human. In some embodiments, the administration of the compounds of the present invention induces cell growth arrest or apoptosis.
  • treatment is defined as the application or administration of a therapeutic agent to a patient, or application or administration of a therapeutic agent to an isolated tissue or cell line from a patient, who has a disease, a symptom of disease or a predisposition toward a disease, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve or affect the disease, the symptoms of disease or the predisposition toward disease.
  • the peptidomimetics macrocycles of the invention is used to treat, prevent, and/or diagnose cancers and neoplastic conditions.
  • cancer hyperproliferative and neoplastic refer to cells having the capacity for autonomous growth, i.e., an abnormal state or condition characterized by rapidly proliferating cell growth.
  • hyperproliferative and neoplastic disease states may be categorized as pathologic, i.e., characterizing or constituting a disease state, or may be categorized as non-pathologic, i.e., a deviation from normal but not associated with a disease state.
  • metastatic tumor can arise from a multitude of primary tumor types, including but not limited to those of breast, lung, liver, colon and ovarian origin.
  • Primary tumor types including but not limited to those of breast, lung, liver, colon and ovarian origin.
  • “Pathologic hyperproliferative” cells occur in disease states characterized by malignant tumor growth. Examples of non-pathologic hyperproliferative cells include proliferation of cells associated with wound repair. Examples of cellular proliferative and/or differentiative disorders include cancer, e.g., carcinoma, sarcoma, or metastatic disorders.
  • the peptidomimetics macrocycles are novel therapeutic agents for controlling breast cancer, ovarian cancer, colon cancer, lung cancer, metastasis of such cancers and the like.
  • cancers or neoplastic conditions include, but are not limited to, a fibrosarcoma, myosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, gastric cancer, esophageal cancer, rectal cancer, pancreatic cancer, ovarian cancer, prostate cancer, uterine cancer, cancer of the head and neck, skin cancer, brain cancer, squamous cell carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinoma, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile
  • proliferative disorders examples include hematopoietic neoplastic disorders.
  • hematopoietic neoplastic disorders includes diseases involving hyperplastic/neoplastic cells of hematopoietic origin, e.g., arising from myeloid, lymphoid or erythroid lineages, or precursor cells thereof.
  • the diseases arise from poorly differentiated acute leukemias, e.g., erythroblastic leukemia and acute megakaryoblastic leukemia.
  • myeloid disorders include, but are not limited to, acute promyeloid leukemia (APML), acute myelogenous leukemia (AML) and chronic myelogenous leukemia (CML) (reviewed in Vaickus (1991), Crit. Rev. Oncol./Hemotol. 11:267-97); lymphoid malignancies include, but are not limited to acute lymphoblastic leukemia (ALL) which includes B-lineage ALL and T-lineage ALL, chronic lymphocytic leukemia (CLL), prolymphocytic leukemia (PLL), hairy cell leukemia (HLL) and Waldenstrom's macroglobulinemia (WM).
  • ALL acute lymphoblastic leukemia
  • ALL chronic lymphocytic leukemia
  • PLL prolymphocytic leukemia
  • HLL hairy cell leukemia
  • malignant lymphomas include, but are not limited to non-Hodgkin lymphoma and variants thereof, peripheral T cell lymphomas, adult T cell leukemia/lymphoma (ATL), cutaneous T-cell lymphoma (CTCL), large granular lymphocytic leukemia (LGF), Hodgkin's disease and Reed-Stemberg disease.
  • proliferative breast disease including, e.g., epithelial hyperplasia, sclerosing adenosis, and small duct papillomas
  • tumors e.g., stromal tumors such as fibroadenoma, phyllodes tumor, and sarcomas, and epithelial tumors such as large duct papilloma
  • carcinoma of the breast including in situ (noninvasive) carcinoma that includes ductal carcinoma in situ (including Paget's disease) and lobular carcinoma in situ, and invasive (infiltrating) carcinoma including, but not limited to, invasive ductal carcinoma, invasive lobular carcinoma, medullary carcinoma, colloid (mucinous) carcinoma, tubular carcinoma, and invasive papillary carcinoma, and miscellaneous malignant neoplasms.
  • Disorders in the male breast include, but are not limited to, gyn
  • Examples of cellular proliferative and/or differentiative disorders of the lung include, but are not limited to, bronchogenic carcinoma, including paraneoplastic syndromes, bronchioloalveolar carcinoma, neuroendocrine tumors, such as bronchial carcinoid, miscellaneous tumors, and metastatic tumors; pathologies of the pleura, including inflammatory pleural effusions, noninflammatory pleural effusions, pneumothorax, and pleural tumors, including solitary fibrous tumors (pleural fibroma) and malignant mesothelioma.
  • bronchogenic carcinoma including paraneoplastic syndromes, bronchioloalveolar carcinoma, neuroendocrine tumors, such as bronchial carcinoid, miscellaneous tumors, and metastatic tumors
  • pathologies of the pleura including inflammatory pleural effusions, noninflammatory pleural effusions, pneumothorax, and pleural tumors, including solitary fibrous tumors (pleural fibro
  • Examples of cellular proliferative and/or differentiative disorders of the colon include, but are not limited to, non-neoplastic polyps, adenomas, familial syndromes, colorectal carcinogenesis, colorectal carcinoma, and carcinoid tumors.
  • Examples of cellular proliferative and/or differentiative disorders of the liver include, but are not limited to, nodular hyperplasias, adenomas, and malignant tumors, including primary carcinoma of the liver and metastatic tumors.
  • ovarian tumors such as, tumors of coelomic epithelium, serous tumors, mucinous tumors, endometrioid tumors, clear cell adenocarcinoma, cystadenofibroma, Brenner tumor, surface epithelial tumors; germ cell tumors such as mature (benign) teratomas, monodermal teratomas, immature malignant teratomas, dysgerminoma, endodermal sinus tumor, choriocarcinoma; sex cord-stomal tumors such as, granulosa-theca cell tumors, thecomafibromas, androblastomas, hill cell tumors, and gonadoblastoma; and metastatic tumors such as Krukenberg tumors.
  • ovarian tumors such as, tumors of coelomic epithelium, serous tumors, mucinous tumors, endometrioid tumors, clear cell adenocarcinoma, cystadeno
  • the peptidomimetics macrocycles described herein are used to treat, prevent or diagnose conditions characterized by overactive cell death or cellular death due to physiologic insult, etc.
  • conditions characterized by premature or unwanted cell death are or alternatively unwanted or excessive cellular proliferation include, but are not limited to hypocellular/hypoplastic, acellular/aplastic, or hypercellular/hyperplastic conditions.
  • Some examples include hematologic disorders including but not limited to fanconi anemia, aplastic anemia, thalaessemia, congenital neutropenia, and myelodysplasia.
  • the peptidomimetics macrocycles of the invention that act to decrease apoptosis are used to treat disorders associated with an undesirable level of cell death.
  • the anti-apoptotic peptidomimetics macrocycles of the invention are used to treat disorders such as those that lead to cell death associated with viral infection, e.g., infection associated with infection with human immunodeficiency virus (HIV).
  • HIV human immunodeficiency virus
  • a wide variety of neurological diseases are characterized by the gradual loss of specific sets of neurons.
  • One example is Alzheimer's disease (AD). Alzheimer's disease is characterized by loss of neurons and synapses in the cerebral cortex and certain subcortical regions. This loss results in gross atrophy of the affected regions.
  • amyloid plaques and neurofibrillary tangles are visible in brains of those afflicted by AD.
  • Alzheimer's disease has been identified as a protein misfolding disease, due to the accumulation of abnormally folded A-beta and tau proteins in the brain.
  • Plaques are made up of ⁇ -amyloid.
  • ⁇ -amyloid is a fragment from a larger protein called amyloid precursor protein (APP).
  • APP amyloid precursor protein
  • APP amyloid precursor protein
  • AD an unknown process causes APP to be cleaved into smaller fragments by enzymes through proteolysis.
  • One of these fragments is fibrils of ⁇ -amyloid, which form clumps that deposit outside neurons in dense formations known as senile plaques.
  • the anti-apoptotic peptidomimetics macrocycles of the invention are used, in some embodiments, in the treatment of AD and other neurological disorders associated with cell apoptosis.
  • Such neurological disorders include Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS) retinitis pigmentosa, spinal muscular atrophy, and various forms of cerebellar degeneration.
  • ALS amyotrophic lateral sclerosis
  • the cell loss in these diseases does not induce an inflammatory response, and apoptosis appears to be the mechanism of cell death.
  • hematologic diseases are associated with a decreased production of blood cells. These disorders include anemia associated with chronic disease, aplastic anemia, chronic neutropenia, and the myelodysplastic syndromes.
  • disorders of blood cell production such as myelodysplastic syndrome and some forms of aplastic anemia, are associated with increased apoptotic cell death within the bone marrow. These disorders could result from the activation of genes that promote apoptosis, acquired deficiencies in stromal cells or hematopoietic survival factors, or the direct effects of toxins and mediators of immune responses.
  • Two common disorders associated with cell death are myocardial infarctions and stroke.
  • the anti-apoptotic peptidomimetics macrocycles of the invention are used to treat all such disorders associated with undesirable cell death.
  • neurologic disorders that are treated with the peptidomimetics macrocycles described herein include but are not limited to Alzheimer's Disease, Down's Syndrome, Dutch Type Hereditary Cerebral Hemorrhage Amyloidosis, Reactive Amyloidosis, Familial Amyloid Nephropathy with Urticaria and Deafness, Muckle-Wells Syndrome, Idiopathic Myeloma; Macroglobulinemia-Associated Myeloma, Familial Amyloid Polyneuropathy, Familial Amyloid Cardiomyopathy, Isolated Cardiac Amyloid, Systemic Senile Amyloidosis, Adult Onset Diabetes, Insulinoma, Isolated Atrial Amyloid, Medullary Carcinoma of the Thyroid, Familial Amyloidosis, Hereditary Cerebral Hemorrhage With Amyloidosis, Familial Amyloidotic Polyneuropathy, Scrapie, Creutzfeldt-Jacob Disease, Gerstmann Straussler-Scheinker Syndrome
  • the peptidomimetics macrocycles described herein are used to treat, prevent or diagnose inflammatory disorders.
  • inflammatory disorders include autoimmune diseases.
  • Autoimmune diseases arise from an overactive immune response of the body against substances and tissues normally present in the body, i.e. self antigens. In other words, the immune system attacks its own cells.
  • Autoimmune diseases are a major cause of immune-mediated diseases.
  • Rheumatoid arthritis is an example of an autoimmune disease, in which the immune system attacks the joints, where it causes inflammation (i.e. arthritis) and destruction. It can also damage some organs, such as the lungs and skin.
  • Rheumatoid arthritis can lead to substantial loss of functioning and mobility.
  • Rheumatoid arthritis is diagnosed with blood tests especially the rheumatoid factor test.
  • autoimmune diseases that are treated with the peptidomimetics macrocycles described herein include, but are not limited to, acute disseminated encephalomyelitis (ADEM), Addison's disease, ankylosing spondylitis, antiphospholipid antibody syndrome (APS), autoimmune hemolytic anemia, autoimmune hepatitis, autoimmune inner ear disease, Bechet's disease, bullous pemphigoid, coeliac disease, Chagas disease, Churg-Strauss syndrome, chronic obstructive pulmonary disease (COPD), Crohn's disease, dermatomyositis, diabetes mellitus type 1, endometriosis, Goodpasture's syndrome, Graves' disease, Guillain-Barré syndrome (GBS), Hashimoto's disease, Hidradenitis
  • Some examples of other types of inflammatory disorders that are treated with the peptidomimetics macrocycles described herein include, but are not limited to, allergy including allergic rhinitis/sinusitis, skin allergies (urticaria/hives, angioedema, atopic dermatitis), food allergies, drug allergies, insect allergies, and rare allergic disorders such as mastocytosis, asthma, arthritis including osteoarthritis, rheumatoid arthritis, and spondyloarthropathies, primary angitis of the CNS, sarcoidosis, organ transplant rejection, fibromyalgia, fibrosis, pancreatitis, and pelvic inflammatory disease.
  • cardiovascular disorders e.g., inflammatory disorders
  • cardiovascular disorders include, but are not limited to, aortic valve stenosis, atherosclerosis, myocardial infarction, stroke, thrombosis, aneurism, heart failure, ischemic heart disease, angina pectoris, sudden cardiac death, hypertensive heart disease; non-coronary vessel disease, such as arteriolosclerosis, small vessel disease, nephropathy, hypertriglyceridemia, hypercholesterolemia, hyperlipidemia, xanthomatosis, asthma, hypertension, emphysema and chronic pulmonary disease; or a cardiovascular condition associated with interventional procedures (“procedural vascular trauma”), such as restenosis following angioplasty, placement of a shunt, stent, synthetic or natural excision grafts, indwelling catheter, valve or other implantable devices.
  • Preferred cardiovascular disorders include atherosclerosis, myocardial in
  • a peptidomimetic macrocycle of the invention is prepared, for example, starting with the sequence RDLADVKSSLVNES by replacing the 4 th and 8 th amino acids with an alpha, alpha-disubstituted amino acid (e.g. the S5 olefin amino acid).
  • An olefin metathesis reaction is performed resulting in a peptidomimetic macrocycle comprising an i to i+4 crosslink.
  • ⁇ -helical crosslinked polypeptides are synthesized, purified and analyzed as previously described (Schafineister et al. (2000), J. Am. Chem. Soc.
  • ⁇ , ⁇ -disubstituted amino acids and amino acid precursors disclosed in the cited references may be employed in synthesis of the peptidomimetic macrocycle precursor polypeptides.
  • Alpha,alpha-disubstituted non-natural amino acids containing olefinic side chains are synthesized according to Williams et al. (1991) J. Am. Chem. Soc. 113:9276; and Schafineister et al. (2000) J. Am. Chem. Soc. 122:5891.
  • Crosslinked polypeptides are designed by replacing two naturally occurring amino acids (see above) with the corresponding synthetic amino acids. Substitutions are made at i and i+4 positions and at i and i+7 positions. Additional peptidomimetic macrocycles are synthesized as shown in FIGS. 4 a - c.
  • Nle represents norleucine
  • Ac represents N-terminal acetyl
  • NH2 represents C-terminal amide
  • PEG3 represents a NH-(PEG) 3 -COOH (16 atoms) linker (Novabiochem cat #01-63-0199)
  • PEG4 represents a NH-(PEG) 4 -COOH (19 atoms) linker (Novabiochem cat #01-63-0200)
  • PEG5 represents a NH-(PEG) 5 -COOH (22 atoms) linker (Novabiochem cat #01-63-0204).
  • the amino acid represented as $ is (S)- ⁇ -(2′-pentenyl) alanine (“55-olefin amino acid”) connected by an all-carbon crosslinker comprising one double bond.
  • the amino acids represented as $r8 is (R)- ⁇ -(2′-octenyl) alanine (“R8 olefin amino acid”), connected by an all-carbon crosslinker comprising one double bond.
  • the non-natural amino acids are characterized by nuclear magnetic resonance (NMR) spectroscopy (Varian Mercury 400) and mass spectrometry (Micromass LCT). Peptide synthesis is performed either manually or on an automated peptide synthesizer (Applied Biosystems, model 433A), using solid phase conditions, rink amide AM resin (Novabiochem), and Fmoc main-chain protecting group chemistry.
  • an assay buffer is prepared composed of 25 mM Tris-Hcl pH 7.5, 200 mM Sodium Chloride, and 5 mM CHAPS.
  • 1M DTT is added to assay buffer to a final concentration of 2 mM.
  • An aliquot of C-terminally, 6 ⁇ Histidine-tagged Beta-Catenin (aa 134-668, 59 KD, see Poy F. et al, Nature Structure Bio., 8, 1053 (2001)) (50.8 ⁇ M stock) is thawed on ice and diluted to a final concentration of 125 nM in assay buffer.
  • Test competitor peptides are diluted from 1 mM DMSO stocks to 2 ⁇ working stocks in assay buffer. Further dilutions are made in assay buffer-DMSO as to maintain a constant DMSO concentration in all wells. The dilution is carried out such that the peptides have a working concentration range of 40 ⁇ M-0.7 ⁇ M (2 ⁇ ).
  • a linear, non-crosslinked peptide competitor is prepared as above but with a working concentration range of 13-0.7 ⁇ M.
  • Fifty ⁇ l of the competitor 2 ⁇ stocks are added to the 40 ⁇ l of protein solution previously transferred into the assay 96 well plate.
  • a 10 ⁇ stock of the fluorescent probe is prepared.
  • the probe is identical to the linear benchmark peptide except for the n-terminal conjugation of a FAM fluorophore with Beta-Alanine spacer.
  • a 1 mM DMSO stock of the probe is serially diluted to a final concentration of 25 nM (10 ⁇ ) and 10 ⁇ l of this stock is added to all wells except for those that will serve as the blank.
  • the assay plate is stored in the dark and the reaction is allowed to run at room temperature for three hours.
  • the reaction is then read on a Biotek Synergy 2 with the following settings: 100 ms delay, 40 measurements per well, with excitation filters of 485/20 nM, and emission filters of 528/20 nM. Data is then analyzed in Graphpad Prism.
  • Peptidomimetic macrocycles were tested for binding ability to beta-catenin as shown in Table 5.
  • HEK-293T cells cultured in DMEM/10% FBS media supplemented with 1% antimycotic-antibiotic suspension are seeded at the density of 4 million cells per 100 mm dish a day prior to transfections. Cells are allowed to attain about 60% confluency overnight in incubators at 37° C., 5% CO 2 .
  • the complex is formed at room temperature for 30 min under serum-free conditions and added to cells in DMEM-10% FBS media (without antibiotics or selection agents). Plates are returned to incubators for 24 h. A mock transfection plate, in which no DNA is used for transfection, is kept as negative control. At 24 h post transfection, cells are harvested, washed and counted. Cells are then seeded in 96-well plates at the density of 20,000 cells/60 ⁇ l per well in either OptiMem (serum-free) or a specified % of FBS added to OptiMem. Peptidomimetic macrocycles are diluted from 10 mM DMSO stocks to 8 ⁇ working stock in sterile water.
  • the TCF activity reporter is measured on Synergy Multiplate reader at 24 h &/or 48 h post macrocycle treatment using Dual-Glo Luciferase assay system (Promega, catalog #E2940) as per manufacturer's instructions Inhibition of the reporter activity is calculated against the DMSO treated cells stimulated with Bio.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
US13/497,522 2009-09-22 2010-09-22 Peptidomimetic macrocycles Abandoned US20130072439A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/497,522 US20130072439A1 (en) 2009-09-22 2010-09-22 Peptidomimetic macrocycles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US24481909P 2009-09-22 2009-09-22
US13/497,522 US20130072439A1 (en) 2009-09-22 2010-09-22 Peptidomimetic macrocycles
PCT/US2010/049892 WO2011038049A1 (fr) 2009-09-22 2010-09-22 Macrocycles peptidomimétiques

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/049892 A-371-Of-International WO2011038049A1 (fr) 2009-09-22 2010-09-22 Macrocycles peptidomimétiques

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/349,478 Continuation US10300109B2 (en) 2009-09-22 2016-11-11 Peptidomimetic macrocycles

Publications (1)

Publication Number Publication Date
US20130072439A1 true US20130072439A1 (en) 2013-03-21

Family

ID=43796193

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/497,522 Abandoned US20130072439A1 (en) 2009-09-22 2010-09-22 Peptidomimetic macrocycles
US15/349,478 Active US10300109B2 (en) 2009-09-22 2016-11-11 Peptidomimetic macrocycles
US15/711,576 Abandoned US20180085426A1 (en) 2009-09-22 2017-09-21 Peptidomimetic macrocycles

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/349,478 Active US10300109B2 (en) 2009-09-22 2016-11-11 Peptidomimetic macrocycles
US15/711,576 Abandoned US20180085426A1 (en) 2009-09-22 2017-09-21 Peptidomimetic macrocycles

Country Status (7)

Country Link
US (3) US20130072439A1 (fr)
EP (1) EP2480565A4 (fr)
JP (1) JP2013505300A (fr)
CN (1) CN102712675A (fr)
AU (1) AU2010298338A1 (fr)
CA (1) CA2774973A1 (fr)
WO (1) WO2011038049A1 (fr)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9096684B2 (en) 2011-10-18 2015-08-04 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US9175056B2 (en) 2006-12-14 2015-11-03 Alleron Therapeutics, Inc. Bis-sulfhydryl macrocyclization systems
US9175045B2 (en) 2008-09-22 2015-11-03 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
WO2016112295A1 (fr) * 2015-01-09 2016-07-14 Warp Drive Bio, Inc. Composés participant à une liaison de coopérativité et leurs utilisations
US9458202B2 (en) 2008-11-24 2016-10-04 Aileron Therapeutics, Inc. Peptidomimetic macrocycles with improved properties
US9493509B2 (en) 2007-02-23 2016-11-15 Aileron Therapeutics, Inc. Triazole macrocycle systems
US9505804B2 (en) 2012-02-15 2016-11-29 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
WO2017004548A1 (fr) * 2015-07-01 2017-01-05 Aileron Therapeutics, Inc. Macrocycles peptidomimétiques
US9604919B2 (en) 2012-11-01 2017-03-28 Aileron Therapeutics, Inc. Disubstituted amino acids and methods of preparation and use thereof
US20170266254A1 (en) * 2009-09-22 2017-09-21 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US9957299B2 (en) 2010-08-13 2018-05-01 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US9989535B2 (en) 2015-10-01 2018-06-05 Warp Drive Bio, Inc. Methods and reagents for analyzing protein-protein interfaces
US10023613B2 (en) 2015-09-10 2018-07-17 Aileron Therapeutics, Inc. Peptidomimetic macrocycles as modulators of MCL-1
US10022422B2 (en) 2009-01-14 2018-07-17 Alleron Therapeutics, Inc. Peptidomimetic macrocycles
US10039839B2 (en) 2015-01-09 2018-08-07 Warp Drive Bio, Inc. Compounds that participate in cooperative binding and uses thereof
US10203323B2 (en) 2010-12-28 2019-02-12 Warp Drive Bio, Inc. Identifying new therapeutic agents
US10227380B2 (en) 2012-02-15 2019-03-12 Aileron Therapeutics, Inc. Triazole-crosslinked and thioether-crosslinked peptidomimetic macrocycles
US10253067B2 (en) 2015-03-20 2019-04-09 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
US10301351B2 (en) 2007-03-28 2019-05-28 President And Fellows Of Harvard College Stitched polypeptides
US10471120B2 (en) 2014-09-24 2019-11-12 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
US10907188B2 (en) 2016-04-12 2021-02-02 Ginkgo Bioworks, Inc. Compositions and methods for the production of compounds
US10905739B2 (en) 2014-09-24 2021-02-02 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and formulations thereof
US11479797B2 (en) 2016-10-28 2022-10-25 Ginkgo Bioworks, Inc. Compositions and methods for the production of compounds
US11566007B2 (en) 2019-11-04 2023-01-31 Revolution Medicines, Inc. Ras inhibitors
US11608346B2 (en) 2019-11-04 2023-03-21 Revolution Medicines, Inc. Ras inhibitors
US11690915B2 (en) 2020-09-15 2023-07-04 Revolution Medicines, Inc. Ras inhibitors
US11739074B2 (en) 2019-11-04 2023-08-29 Revolution Medicines, Inc. Ras inhibitors

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2118123E (pt) 2007-01-31 2016-02-10 Harvard College Péptidos de p53 estabilizados e suas utilizações
WO2013064913A2 (fr) * 2011-10-19 2013-05-10 Hiroyuki Kouji Méthode de traitement des diabètes de type i et de type ii
JP2015509503A (ja) * 2012-02-22 2015-03-30 ニューヨーク・ユニバーシティ 可逆的に架橋されたヘリックス状水素結合サロゲート大環状分子
WO2014138429A2 (fr) 2013-03-06 2014-09-12 Aileron Therapeutics, Inc. Macrocycles peptidomimétiques et leur utilisation dans la régulation de hif1alpha
JP6642887B2 (ja) * 2014-04-02 2020-02-12 ユニバーシティー オブ ロチェスター アルファヘリックスを模倣した大環状ペプチドミメティック
WO2020023502A1 (fr) 2018-07-23 2020-01-30 Aileron Therapeutics, Inc. Macrocycles peptidomimétiques et utilisations associées
CN110833549B (zh) * 2018-08-15 2023-05-02 广西梧州制药(集团)股份有限公司 吡唑并嘧啶衍生物在治疗慢性盆腔炎的用途
CN113557030A (zh) * 2018-11-21 2021-10-26 恩多梅特生物科学公司 用于治疗子宫内膜异位症的组合物和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851775A (en) * 1997-03-20 1998-12-22 Johns Hopkins University β-catenin, Tcf-4, and APC interact to prevent cancer
US6031072A (en) * 1996-07-12 2000-02-29 Mcgill University Compounds and methods for modulating cell adhesion
US20070117154A1 (en) * 1999-10-04 2007-05-24 Pierre Deslongchamps Combinatorial Synthesis of Libraries of Macrocyclic Compounds Useful in Drug Discovery
WO2009099677A2 (fr) * 2008-02-08 2009-08-13 Aileron Therapeutics, Inc. Macrocycles peptidomimétiques thérapeutiques

Family Cites Families (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000259A (en) 1975-06-16 1976-12-28 American Home Products Corporation Cyclic dodecapeptide analogs of somatostatin and intermediates
US4191754A (en) 1979-02-28 1980-03-04 Merck & Co., Inc. Bicyclic somatostatin analogs
US4270537A (en) 1979-11-19 1981-06-02 Romaine Richard A Automatic hypodermic syringe
AU550730B2 (en) 1982-03-09 1986-04-10 Commonwealth Of Australia, The Automated metal detection
US4596556A (en) 1985-03-25 1986-06-24 Bioject, Inc. Hypodermic injection apparatus
US4730006A (en) 1986-01-27 1988-03-08 Merrell Dow Pharmaceuticals Inc. Derivatives of 2,6-diamino-3-haloheptanedioic acid
CA1283827C (fr) 1986-12-18 1991-05-07 Giorgio Cirelli Dispositif pour l'injection de formules liquides
GB8704027D0 (en) 1987-02-20 1987-03-25 Owen Mumford Ltd Syringe needle combination
US4941880A (en) 1987-06-19 1990-07-17 Bioject, Inc. Pre-filled ampule and non-invasive hypodermic injection device assembly
US4790824A (en) 1987-06-19 1988-12-13 Bioject, Inc. Non-invasive hypodermic injection device
US4940460A (en) 1987-06-19 1990-07-10 Bioject, Inc. Patient-fillable and non-invasive hypodermic injection device assembly
US5339163A (en) 1988-03-16 1994-08-16 Canon Kabushiki Kaisha Automatic exposure control device using plural image plane detection areas
WO1989009233A1 (fr) 1988-03-24 1989-10-05 Terrapin Technologies, Inc. Barres moleculaires regulant la conformation de proteines
FR2638359A1 (fr) 1988-11-03 1990-05-04 Tino Dalto Guide de seringue avec reglage de la profondeur de penetration de l'aiguille dans la peau
US5120859A (en) 1989-09-22 1992-06-09 Genentech, Inc. Chimeric amino acid analogues
US5650133A (en) 1990-01-19 1997-07-22 Nycomed Salutar Macrocyclic polyaza dichelates linked through ring nitrogens via an amide or ester functionality
US5712418A (en) 1989-10-23 1998-01-27 Research Corporation Technologies, Inc. Synthesis and use of amino acid fluorides as peptide coupling reagents
US5064413A (en) 1989-11-09 1991-11-12 Bioject, Inc. Needleless hypodermic injection device
US5312335A (en) 1989-11-09 1994-05-17 Bioject Inc. Needleless hypodermic injection device
US5245009A (en) 1990-03-23 1993-09-14 The Salk Institute For Biological Studies CRF antagonists
CA2047042A1 (fr) 1990-07-19 1992-01-20 John Hannah Peptides cycliques neutralisant le vih
US5190521A (en) 1990-08-22 1993-03-02 Tecnol Medical Products, Inc. Apparatus and method for raising a skin wheal and anesthetizing skin
EP0488258B1 (fr) 1990-11-27 1996-04-17 Fuji Photo Film Co., Ltd. Dérivés de propenamide, leur polymères, copolymères et leur emploi
US5527288A (en) 1990-12-13 1996-06-18 Elan Medical Technologies Limited Intradermal drug delivery device and method for intradermal delivery of drugs
US5364851A (en) 1991-06-14 1994-11-15 International Synthecon, Llc Conformationally restricted biologically active peptides, methods for their production and uses thereof
CA2072249C (fr) 1991-06-28 2003-06-17 Saiko Hosokawa Anticorps monoclonal humain liant specifiquement a la surface d'un antigene des membranes des cellules cancereuses
GB9114949D0 (en) 1991-07-11 1991-08-28 Smithkline Beecham Plc Novel compounds
GB9118204D0 (en) 1991-08-23 1991-10-09 Weston Terence E Needle-less injector
SE9102652D0 (sv) 1991-09-13 1991-09-13 Kabi Pharmacia Ab Injection needle arrangement
US5328483A (en) 1992-02-27 1994-07-12 Jacoby Richard M Intradermal injection device with medication and needle guard
EP1253156A3 (fr) 1992-04-03 2004-01-07 California Institute Of Technology Composé ruthénium et osmium métal-carbène avec haute activité de la méthathèse d'oléfines, et leur préparation et utilisation
US5411860A (en) 1992-04-07 1995-05-02 The Johns Hopkins University Amplification of human MDM2 gene in human tumors
US5383851A (en) 1992-07-24 1995-01-24 Bioject Inc. Needleless hypodermic injection device
US5569189A (en) 1992-09-28 1996-10-29 Equidyne Systems, Inc. hypodermic jet injector
US5334144A (en) 1992-10-30 1994-08-02 Becton, Dickinson And Company Single use disposable needleless injector
WO1994025482A1 (fr) 1993-04-23 1994-11-10 Evans Herbert J Polypeptides comprenant des groupes contraignant la conformation qui sont adjacents a un site d'interaction proteine-proteine
US5446128A (en) 1993-06-18 1995-08-29 The Board Of Trustees Of The University Of Illinois Alpha-helix mimetics and methods relating thereto
US5622852A (en) 1994-10-31 1997-04-22 Washington University Bcl-x/Bcl-2 associated cell death regulator
US5536814A (en) 1993-09-27 1996-07-16 La Jolla Cancer Research Foundation Integrin-binding peptides
US6287787B1 (en) 1993-11-24 2001-09-11 Torrey Pines Institute For Molecular Studies Dimeric oligopeptide mixture sets
WO1995024176A1 (fr) 1994-03-07 1995-09-14 Bioject, Inc. Dispositif de remplissage d'ampoule
US5466220A (en) 1994-03-08 1995-11-14 Bioject, Inc. Drug vial mixing and transfer device
US5824483A (en) 1994-05-18 1998-10-20 Pence Inc. Conformationally-restricted combinatiorial library composition and method
IL109943A (en) 1994-06-08 2006-08-01 Develogen Israel Ltd Conformationally constrained backbone cyclized peptide analogs
US6407059B1 (en) 1994-06-08 2002-06-18 Peptor Limited Conformationally constrained backbone cyclized peptide analogs
US7553929B2 (en) 1994-06-13 2009-06-30 Vanderbilt University Cell permeable peptides for inhibition of inflammatory reactions and methods of use
US5807746A (en) 1994-06-13 1998-09-15 Vanderbilt University Method for importing biologically active molecules into cells
US5770377A (en) 1994-07-20 1998-06-23 University Of Dundee Interruption of binding of MDM2 and P53 protein and therapeutic application thereof
BR9508959A (pt) 1994-09-19 1997-12-30 Ricardo J Moro "Detecção e tratamento de cancer"
US5599302A (en) 1995-01-09 1997-02-04 Medi-Ject Corporation Medical injection system and method, gas spring thereof and launching device using gas spring
US6169073B1 (en) 1995-02-16 2001-01-02 Bayer Corporation Peptides and peptidomimetics with structural similarity to human p53 that activate p53 function
EP0729972A1 (fr) 1995-02-28 1996-09-04 F. Hoffmann-La Roche Ag Dérivés peptidique de tétrahydronaphthalène
US5675001A (en) 1995-03-14 1997-10-07 Hoffman/Barrett, L.L.C. Heteroatom-functionalized porphyrazines and multimetallic complexes and polymers derived therefrom
US6054556A (en) 1995-04-10 2000-04-25 The Arizona Board Of Regents On Behalf Of The University Of Arizona Melanocortin receptor antagonists and agonists
US5731408A (en) 1995-04-10 1998-03-24 Arizona Board Of Regents On Behalf Of The University Of Arizona Peptides having potent antagonist and agonist bioactivities at melanocortin receptors
US5672584A (en) 1995-04-25 1997-09-30 The University Of Kansas Cyclic prodrugs of peptides and peptide nucleic acids having improved metabolic stability and cell membrane permeability
US6184344B1 (en) 1995-05-04 2001-02-06 The Scripps Research Institute Synthesis of proteins by native chemical ligation
ATE203248T1 (de) 1995-05-04 2001-08-15 Scripps Research Inst Proteinsynthese mittels nativer chemischer ligation (07.01.97)
US5730723A (en) 1995-10-10 1998-03-24 Visionary Medical Products Corporation, Inc. Gas pressured needle-less injection device and method
US5817789A (en) 1995-06-06 1998-10-06 Transkaryotic Therapies, Inc. Chimeric proteins for use in transport of a selected substance into cells
US6051554A (en) 1995-06-07 2000-04-18 Peptor Limited Conformationally constrained backbone cyclized somatostatin analogs
US5811515A (en) 1995-06-12 1998-09-22 California Institute Of Technology Synthesis of conformationally restricted amino acids, peptides, and peptidomimetics by catalytic ring closing metathesis
US5840833A (en) 1995-10-27 1998-11-24 Molecumetics, Ltd Alpha-helix mimetics and methods relating thereto
US5849954A (en) 1996-01-18 1998-12-15 Research Corporation Technologies, Inc. Method of peptide synthesis
US5849691A (en) 1996-02-20 1998-12-15 The United States Of America As Represented By The Department Of Health And Human Services Peptidomimetic inhibitors of cathepsin D and plasmepsins I and II
GB9607549D0 (en) 1996-04-11 1996-06-12 Weston Medical Ltd Spring-powered dispensing device
US5817752A (en) 1996-06-06 1998-10-06 La Jolla Pharmaceutical Company Cyclic polypeptides comprising a thioether linkage and methods for their preparation
US5663316A (en) 1996-06-18 1997-09-02 Clontech Laboratories, Inc. BBC6 gene for regulation of cell death
CA2259149A1 (fr) 1996-07-05 1998-01-15 Novartis Ag Inhibiteurs de l'interaction entre p53 et mdm2
US7083983B2 (en) 1996-07-05 2006-08-01 Cancer Research Campaign Technology Limited Inhibitors of the interaction between P53 and MDM2
US5955593A (en) 1996-09-09 1999-09-21 Washington University BH3 interacting domain death agonist
US20020064546A1 (en) 1996-09-13 2002-05-30 J. Milton Harris Degradable poly(ethylene glycol) hydrogels with controlled half-life and precursors therefor
US5965703A (en) 1996-09-20 1999-10-12 Idun Pharmaceuticals Human bad polypeptides, encoding nucleic acids and methods of use
US5856445A (en) 1996-10-18 1999-01-05 Washington University Serine substituted mutants of BCL-XL /BCL-2 associated cell death regulator
US6271198B1 (en) 1996-11-06 2001-08-07 Genentech, Inc. Constrained helical peptides and methods of making same
AU734337B2 (en) 1996-11-21 2001-06-14 Promega Corporation Alkyl peptide amides and applications
CA2281204A1 (fr) 1997-02-20 1998-08-27 Yeda Research And Development Co., Ltd. Peptides synthetiques antipathogenes et compositions les contenant
US6849428B1 (en) 1997-03-05 2005-02-01 New England Biolabs, Inc. Intein-mediated protein ligation of expressed proteins
WO1998046631A1 (fr) 1997-04-11 1998-10-22 Eli Lilly And Company Echantillotheques combinatoires de macrocycles peptidomimetiques et procedes correspondants
US5993412A (en) 1997-05-19 1999-11-30 Bioject, Inc. Injection apparatus
JP2001524301A (ja) 1997-09-17 2001-12-04 ザ・ワルター・アンド・エリザ・ホール・インスティテュート・オヴ・メディカル・リサーチ 新規治療用分子
US6165732A (en) 1997-10-14 2000-12-26 Washington University Method for identifying apoptosis modulating compounds
US6875594B2 (en) 1997-11-13 2005-04-05 The Rockefeller University Methods of ligating expressed proteins
PT1053019E (pt) 1998-01-07 2004-04-30 Debio Rech Pharma Sa Acrilatos de poli(etileno-glicol) heterobifuncional degradaveis e geles e conjugados derivados dos mesmos
IT1298087B1 (it) 1998-01-08 1999-12-20 Fiderm S R L Dispositivo per il controllo della profondita' di penetrazione di un ago, in particolare applicabile ad una siringa per iniezioni
US6030997A (en) 1998-01-21 2000-02-29 Eilat; Eran Acid labile prodrugs
CA2357015A1 (fr) * 1998-02-21 1999-08-26 Max-Delbruck-Centrum Fur Molekulare Medizin Moyen de traitement de pathologies humaines a partir de la .beta.-catenine, et son utilisation
AU767185B2 (en) 1998-03-23 2003-11-06 President And Fellows Of Harvard College Synthesis of compounds and libraries of compounds
IL138338A0 (en) 1998-04-15 2001-10-31 Aventis Pharm Prod Inc Process for the preparation of resin-bound cyclic peptides
US6277824B1 (en) * 1998-07-10 2001-08-21 Adherex Technologies Compounds and methods for modulating adhesion molecule function
US6326354B1 (en) 1998-08-19 2001-12-04 Washington University Modulation of apoptosis with bid
US7173005B2 (en) 1998-09-02 2007-02-06 Antyra Inc. Insulin and IGF-1 receptor agonists and antagonists
US6572856B1 (en) 1998-09-10 2003-06-03 The University Of Virginia Patent Foundation Methods for the prevention and treatment of cancer using anti-C3b(i) antibodies
JP2003503008A (ja) 1999-03-01 2003-01-28 バリアジェニックス インコーポレーテッド Rna分子をターゲティングする方法
EP1165613B1 (fr) 1999-03-29 2008-04-30 The Procter & Gamble Company Ligands du recepteur de melanocortine
US6713280B1 (en) 1999-04-07 2004-03-30 Thomas Jefferson University Enhancement of peptide cellular uptake
US7192713B1 (en) 1999-05-18 2007-03-20 President And Fellows Of Harvard College Stabilized compounds having secondary structure motifs
US6348558B1 (en) 1999-12-10 2002-02-19 Shearwater Corporation Hydrolytically degradable polymers and hydrogels made therefrom
AU2001231154A1 (en) * 2000-01-24 2001-07-31 Adherex Technologies Inc. Peptidomimetic modulators of cell adhesion
DE10009341A1 (de) 2000-02-22 2001-09-06 Florian Kern Verfahren zur antigen-spezifischen Stimulation von T-Lymphozyten
US6495674B1 (en) 2000-02-25 2002-12-17 The Salk Institute For Biological Studies Evectins and their use
US7049290B2 (en) 2000-07-28 2006-05-23 Universität Zürich Essential downstream component of the wingless signaling pathway and therapeutic and diagnostic applications based thereon
US6703382B2 (en) 2000-08-16 2004-03-09 Georgetown University Medical Center Small molecule inhibitors targeted at Bcl-2
WO2002044378A2 (fr) * 2000-11-28 2002-06-06 Curis, Inc. Procedes de dosage de la signalisation wnt et utilisations de ces derniers
JP2004530422A (ja) 2000-12-19 2004-10-07 ザ ジョンズ ホプキンス ユニバーシティ 急速なアポトーシスを誘導するjfy1蛋白質
US20050054770A1 (en) 2001-03-09 2005-03-10 Spatola Arno F. Helicomimetics and stabilized lxxll peptidomimetics
US20040106548A1 (en) 2001-09-07 2004-06-03 Schmidt Michelle A Conformationally constrained labeled peptides for imaging and therapy
AU2002364364A1 (en) 2001-12-31 2003-07-24 Dana-Farber Cancer Institute, Inc. Method of treating apoptosis and compositions thereof
IL162604A0 (en) 2002-01-03 2005-11-20 Yissum Res Dev Co Conformationally constrained c-backbone cyclic peptides
WO2003070892A2 (fr) 2002-02-15 2003-08-28 The Regents Of The University Of Michigan Inhibiteurs des proteines rgs
US20030166138A1 (en) 2002-02-21 2003-09-04 Todd Kinsella Cyclic peptides and analogs useful to treat allergies
RU2004133894A (ru) 2002-04-22 2005-04-20 Юниверсити Оф Флорида (Us) Функционализированные наночастицы и способы их применения
ES2566761T3 (es) 2002-05-30 2016-04-15 The Scripps Research Institute Ligación de azidas y acetilenos catalizada por cobre
SE0201863D0 (en) 2002-06-18 2002-06-18 Cepep Ab Cell penetrating peptides
EP1541692A1 (fr) 2002-09-06 2005-06-15 Kaneka Corporation Procede pour produire un derive de l-$g(a)-methylcysteine
AU2003267124A1 (en) 2002-09-09 2004-03-29 Dana-Farber Cancer Institute, Inc. Bh3 peptides and method of use thereof
EP2135867B1 (fr) 2002-11-07 2013-09-25 Kosan Biosciences Incorporated Trans-9, 10-dehydroepothilone C et trans-9, 10-dehydroepothilone D, analogues associés et leurs procédés de fabrication
KR100699614B1 (ko) 2002-11-08 2007-03-23 에프. 호프만-라 로슈 아게 퍼옥시좀 증식자 활성화된 수용체 작용제로서의 치환된4-알콕시옥사졸 유도체
US7166575B2 (en) 2002-12-17 2007-01-23 Nastech Pharmaceutical Company Inc. Compositions and methods for enhanced mucosal delivery of peptide YY and methods for treating and preventing obesity
WO2004058804A1 (fr) 2002-12-24 2004-07-15 Walter And Eliza Hall Institute Of Medical Research Peptides et utilisations therapeutiques de ceux-ci
EP1452868A2 (fr) 2003-02-27 2004-09-01 Pepscan Systems B.V. Procédé pour sélectionner un médicament d'intérêt potentiel
AU2003902743A0 (en) 2003-06-02 2003-06-19 Promics Pty Limited Process for the preparation of cyclic peptides
WO2005007675A2 (fr) 2003-07-09 2005-01-27 The Scripps Research Institute Acides amino triazole-$g(e)
GB0317815D0 (en) 2003-07-30 2003-09-03 Amersham Health As Imaging agents
US7829597B2 (en) 2003-10-03 2010-11-09 Merck, Sharp & Dohme, Inc. Benzylether and benzylamino beta-secretase inhibitors for the treatment of alzheimer's disease
US20070207947A1 (en) 2003-10-16 2007-09-06 Aplagen Gmbh Stabilized Peptides
PL1680443T3 (pl) 2003-11-05 2014-02-28 Dana Farber Cancer Inst Inc Stabilizowane alfa-helikalne peptydy i ich zastosowanie
GB0404731D0 (en) 2004-03-03 2004-04-07 Indp Administrative Inst Nims Method and products for the selective degradation of proteins
US8193310B2 (en) 2004-03-19 2012-06-05 The University Of Queensland Alpha helical mimics, their uses and methods for their production
WO2005118620A2 (fr) 2004-05-27 2005-12-15 New York University Procedes de preparation de peptides et de peptidomimetiques a contrainte interne
WO2005118634A2 (fr) 2004-06-04 2005-12-15 The Brigham And Women's Hospital, Inc. Composes peptidomimetiques helicoidaux a activite amelioree
EP1602663A1 (fr) 2004-06-04 2005-12-07 Chiralix B.V. Glycopeptides et/ou glycoaminoacides liés par une liaison triazole
CN100335467C (zh) 2004-06-04 2007-09-05 中国科学院上海有机化学研究所 一锅法区域选择性合成5-碘代-1,4-二取代-1,2,3-三氮唑化合物
WO2006050034A1 (fr) 2004-10-29 2006-05-11 Schering Corporation Pyrazoles a substitution 5-carboxyamide et [1,2,4]triazoles utilises en tant qu'agents antiviraux
WO2006069001A2 (fr) 2004-12-20 2006-06-29 Baylor College Of Medicine Criteres structuraux pour le recrutement et la liaison de stat3 aux ligands de la phosphototyrosine
EP1844337B1 (fr) 2005-01-24 2013-07-03 Pepscan Systems B.V. Composes liants, composes immunogenes et composes peptidomimetiques
WO2006103666A2 (fr) 2005-03-28 2006-10-05 Yeda Research And Development Co. Ltd. Polypeptides bid isoles, polynucleotides les codant et anticorps diriges contre ces polypeptides, methodes d'utilisation pour induire l'arret du cycle cellulaire ou l'apoptose
US20070020620A1 (en) 2005-07-14 2007-01-25 Finn M G Compositions and methods for coupling a plurality of compounds to a scaffold
US20070161544A1 (en) 2006-01-06 2007-07-12 Peter Wipf Selective targeting agents for mitcochondria
US7745573B2 (en) 2006-02-17 2010-06-29 Polychip Pharmaceuticals Pty Ltd. Conotoxin analogues and methods for synthesis of intramolecular dicarba bridge-containing peptides
US7538190B2 (en) 2006-02-17 2009-05-26 Polychip Pharmaceuticals Pty Ltd Methods for the synthesis of two or more dicarba bridges in organic compounds
GB0611405D0 (en) 2006-06-09 2006-07-19 Univ Belfast FKBP-L: A novel inhibitor of angiogenesis
US20080213175A1 (en) 2006-09-15 2008-09-04 Kolb Hartmuth C Click chemistry-derived cyclic peptidomimetics as integrin markers
US7897394B2 (en) 2006-09-21 2011-03-01 Intrexon Corporation Endoplasmic reticulum localization signals
CA2669696A1 (fr) 2006-11-15 2008-05-22 Dana-Farber Cancer Institute, Inc. Peptides maml stabilises et leurs utilisations
CA2686827C (fr) 2006-12-14 2014-09-16 Aileron Therapeutics, Inc. Systemes de macrocyclisation bis-sulfhydryle
US7981998B2 (en) 2006-12-14 2011-07-19 Aileron Therapeutics, Inc. Bis-sulfhydryl macrocyclization systems
PT2118123E (pt) 2007-01-31 2016-02-10 Harvard College Péptidos de p53 estabilizados e suas utilizações
AU2008218116B2 (en) 2007-02-23 2012-04-05 Aileron Therapeutics, Inc. Triazole macrocycle systems
ES2430067T3 (es) 2007-03-28 2013-11-18 President And Fellows Of Harvard College Polipéptidos cosidos
CA2685568A1 (fr) 2007-05-02 2008-11-13 Dana-Farber Cancer Institute, Inc. Methodes de traitement du diabete au moyen d'un peptide de domaine bad bh3
WO2009042237A2 (fr) 2007-09-26 2009-04-02 Dana Farber Cancer Institute Procédés et compositions pour moduler des polypeptides de la famille bcl-2
WO2009110952A2 (fr) 2007-12-31 2009-09-11 New York University Contrôle de la fusion de membrane hôte virale avec des hélices artificielles à base de succédané de liaison hydrogène
EP3663318A1 (fr) 2008-01-07 2020-06-10 Amgen Inc. Procédé de fabrication de molécules hétérodimères fc d'anticorps utilisant les effets de conduite électrostatique
US20110144303A1 (en) 2008-04-08 2011-06-16 Aileron Therapeutics, Inc. Biologically Active Peptidomimetic Macrocycles
WO2009126292A2 (fr) 2008-04-08 2009-10-15 Aileron Therapeutics, Inc. Macrocycles peptidomimétiques biologiquement actifs
EP2285970A4 (fr) 2008-06-03 2011-10-12 Aileron Therapeutics Inc Compositions et procédés pour améliorer le transport cellulaire de biomolécules
WO2010011313A2 (fr) 2008-07-23 2010-01-28 President And Fellows Of Harvard College Ligature de polypeptides agrafés
CA2737614A1 (fr) 2008-09-18 2010-03-25 New York University Inhibition de l'interaction entre hif-1.alpha. et p300/cbp avec des helices a base de succedanes de liaison hydrogene
EP2334697A1 (fr) 2008-09-22 2011-06-22 Aileron Therapeutics, Inc. Macrocycles peptidomimétiques
CA2737921C (fr) 2008-09-22 2019-01-15 Aileron Therapeutics, Inc. Methodes de preparation de compositions de macrocycles peptidomimetiques alpha-helicoidaux purifies ayant des taux faibles de ppm de metal
CN102197046A (zh) 2008-09-22 2011-09-21 爱勒让治疗公司 拟肽大环化合物
US20120115793A1 (en) 2008-09-22 2012-05-10 Alleron therapeutics, Inc Peptidomimetic macrocycles
AU2009294877C1 (en) 2008-09-22 2015-05-07 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US20120101047A1 (en) 2008-09-22 2012-04-26 Aileron Therapetics Inc. Peptidomimetic macrocycles
US9458202B2 (en) 2008-11-24 2016-10-04 Aileron Therapeutics, Inc. Peptidomimetic macrocycles with improved properties
EP3549951A3 (fr) 2008-12-09 2019-11-20 Dana Farber Cancer Institute, Inc. Procédés et compositions pour la modulation spécifique de mcl-1
AU2010204648B2 (en) 2009-01-14 2016-09-01 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US9163330B2 (en) 2009-07-13 2015-10-20 President And Fellows Of Harvard College Bifunctional stapled polypeptides and uses thereof
EP2480565A4 (fr) * 2009-09-22 2014-01-01 Aileron Therapeutics Inc Macrocycles peptidomimétiques
WO2011047215A1 (fr) 2009-10-14 2011-04-21 Aileron Therapeutics, Inc. Macrocycles peptidomimétiques améliorés
WO2011163423A2 (fr) 2010-06-22 2011-12-29 University Of Central Florida Research Foundation, Inc. Procédés et compositions pour inhibiteur de stat3 capable de perméation cellulaire
WO2012021874A1 (fr) 2010-08-13 2012-02-16 Aileron Therapeutics, Inc. Macrocycles peptidomimétiques à coupleurs thioéther
US8957026B2 (en) 2010-09-22 2015-02-17 President And Fellows Of Harvard College Beta-catenin targeting peptides and uses thereof
WO2012122059A1 (fr) 2011-03-04 2012-09-13 New York University Macrocycles auxiliaires à liaison hydrogène formant des modulateurs de ras
WO2012173846A2 (fr) 2011-06-06 2012-12-20 Aileron Therapeutics, Inc. Macrocycles peptidomimétiques
JP2014520120A (ja) 2011-06-17 2014-08-21 プレジデント アンド フェローズ オブ ハーバード カレッジ 安定化した変異型mamlペプチドおよびその使用
US9487562B2 (en) 2011-06-17 2016-11-08 President And Fellows Of Harvard College Stabilized polypeptides as regulators of RAB GTPase function
US20130123196A1 (en) 2011-08-31 2013-05-16 New York University Thioether-, ether-, and alkylamine-linked hydrogen bond surrogate peptidomimetics
WO2013059530A2 (fr) 2011-10-18 2013-04-25 Aileron Therapeutics, Inc. Macrocycles peptidomimétiques
BR112014009418A2 (pt) 2011-10-18 2017-04-18 Aileron Therapeutics Inc macrociclos peptidomiméticos
US8796257B2 (en) 2011-12-02 2014-08-05 Naeja Pharmaceutical Inc. Bicyclic compounds and their use as antibacterial agents and β-lactamase inhibitors
AU2013221432B2 (en) 2012-02-15 2018-01-18 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
EP2819688A4 (fr) 2012-02-15 2015-10-28 Aileron Therapeutics Inc Macrocycles peptidomimétiques réticulés par triazole et par thioéther
PT2920197T (pt) 2012-09-26 2021-06-11 Harvard College Péptidos agrafados com bloqueio de prolina e suas utilizações
US20150225471A1 (en) 2012-10-01 2015-08-13 President And Fellows Of Harvard College Stabilized polypeptide insulin receptor modulators
JP6526563B2 (ja) 2012-11-01 2019-06-05 エイルロン セラピューティクス,インコーポレイテッド 二置換アミノ酸ならびにその調製および使用の方法
WO2014138429A2 (fr) 2013-03-06 2014-09-12 Aileron Therapeutics, Inc. Macrocycles peptidomimétiques et leur utilisation dans la régulation de hif1alpha
US20170037086A1 (en) 2014-04-09 2017-02-09 Aileron Therapeutics, Inc. Peptidomimetic macrocycles with pth activity
EP3197477A4 (fr) 2014-09-24 2018-07-04 Aileron Therapeutics, Inc. Macrocycles peptidomimétiques et formulations de ceux-ci
CA2961258A1 (fr) 2014-09-24 2016-03-31 Aileron Therapeutics, Inc. Macrocycles peptidomimetiques et leurs utilisations
CN107614003A (zh) 2015-03-20 2018-01-19 艾瑞朗医疗公司 拟肽大环化合物及其用途
US10059741B2 (en) 2015-07-01 2018-08-28 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
WO2017004591A2 (fr) 2015-07-02 2017-01-05 Dana-Farber Cancer Institute, Inc. Peptides stabilisés anti-microbiens
WO2017023933A2 (fr) 2015-08-03 2017-02-09 Aileron Therapeutics, Inc. Macrocycles peptidomimétiques
CA2996685A1 (fr) 2015-09-03 2017-03-09 Aileron Therapeutics, Inc. Macrocycles peptidomimetiques et leurs utilisations
JP2018528217A (ja) 2015-09-10 2018-09-27 エルロン・セラピューティクス・インコーポレイテッドAileron Therapeutics,Inc. Mcl−1のモジュレーターとしてのペプチド模倣大環状分子
WO2017165299A2 (fr) 2016-03-21 2017-09-28 Aileron Therapeutics, Inc. Outil de diagnostic compagnon pour macrocycles peptidomimétiques
WO2017205786A1 (fr) 2016-05-27 2017-11-30 Aileron Therapeutics, Inc. Macrocycles peptidomimétiques perméables aux cellules
US20170360881A1 (en) 2016-06-17 2017-12-21 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031072A (en) * 1996-07-12 2000-02-29 Mcgill University Compounds and methods for modulating cell adhesion
US5851775A (en) * 1997-03-20 1998-12-22 Johns Hopkins University β-catenin, Tcf-4, and APC interact to prevent cancer
US20070117154A1 (en) * 1999-10-04 2007-05-24 Pierre Deslongchamps Combinatorial Synthesis of Libraries of Macrocyclic Compounds Useful in Drug Discovery
WO2009099677A2 (fr) * 2008-02-08 2009-08-13 Aileron Therapeutics, Inc. Macrocycles peptidomimétiques thérapeutiques
US20090275519A1 (en) * 2008-02-08 2009-11-05 Aileron Therapeutics, Inc. Therapeutic peptidomimetic macrocycles

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9175056B2 (en) 2006-12-14 2015-11-03 Alleron Therapeutics, Inc. Bis-sulfhydryl macrocyclization systems
US10328117B2 (en) 2006-12-14 2019-06-25 Aileron Therapeutics, Inc. Bis-sulfhydryl macrocyclization systems
US9675661B2 (en) 2006-12-14 2017-06-13 Aileron Therapeutics, Inc. Bis-sulfhydryl macrocyclization systems
US10030049B2 (en) 2007-02-23 2018-07-24 Aileron Therapeutics, Inc. Triazole macrocycle systems
US9493509B2 (en) 2007-02-23 2016-11-15 Aileron Therapeutics, Inc. Triazole macrocycle systems
US9957296B2 (en) 2007-02-23 2018-05-01 Aileron Therapeutics, Inc. Triazole macrocycle systems
US10301351B2 (en) 2007-03-28 2019-05-28 President And Fellows Of Harvard College Stitched polypeptides
US9175045B2 (en) 2008-09-22 2015-11-03 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US9458202B2 (en) 2008-11-24 2016-10-04 Aileron Therapeutics, Inc. Peptidomimetic macrocycles with improved properties
US10022422B2 (en) 2009-01-14 2018-07-17 Alleron Therapeutics, Inc. Peptidomimetic macrocycles
US10300109B2 (en) * 2009-09-22 2019-05-28 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US20170266254A1 (en) * 2009-09-22 2017-09-21 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US10703780B2 (en) 2010-08-13 2020-07-07 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US11008366B2 (en) 2010-08-13 2021-05-18 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US9957299B2 (en) 2010-08-13 2018-05-01 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US10203323B2 (en) 2010-12-28 2019-02-12 Warp Drive Bio, Inc. Identifying new therapeutic agents
US11644460B2 (en) 2010-12-28 2023-05-09 Revolution Medicines, Inc. Identifying new therapeutic agents
US10989710B2 (en) 2010-12-28 2021-04-27 Revolution Medicines, Inc. Identifying new therapeutic agents
US10308699B2 (en) 2011-10-18 2019-06-04 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US9096684B2 (en) 2011-10-18 2015-08-04 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US9522947B2 (en) 2011-10-18 2016-12-20 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US10213477B2 (en) 2012-02-15 2019-02-26 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US10227380B2 (en) 2012-02-15 2019-03-12 Aileron Therapeutics, Inc. Triazole-crosslinked and thioether-crosslinked peptidomimetic macrocycles
US9505804B2 (en) 2012-02-15 2016-11-29 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US9845287B2 (en) 2012-11-01 2017-12-19 Aileron Therapeutics, Inc. Disubstituted amino acids and methods of preparation and use thereof
US10669230B2 (en) 2012-11-01 2020-06-02 Aileron Therapeutics, Inc. Disubstituted amino acids and methods of preparation and use thereof
US9604919B2 (en) 2012-11-01 2017-03-28 Aileron Therapeutics, Inc. Disubstituted amino acids and methods of preparation and use thereof
US10471120B2 (en) 2014-09-24 2019-11-12 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
US10905739B2 (en) 2014-09-24 2021-02-02 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and formulations thereof
US11987590B2 (en) 2015-01-09 2024-05-21 Revolution Medicines, Inc. Compounds that participate in cooperative binding and uses thereof
US10039839B2 (en) 2015-01-09 2018-08-07 Warp Drive Bio, Inc. Compounds that participate in cooperative binding and uses thereof
US10533016B2 (en) 2015-01-09 2020-01-14 Revolution Medicines, Inc. Compounds that participate in cooperative binding and uses thereof
US11059830B2 (en) 2015-01-09 2021-07-13 Revolution Medicines, Inc. Compounds that participate in cooperative binding and uses thereof
WO2016112295A1 (fr) * 2015-01-09 2016-07-14 Warp Drive Bio, Inc. Composés participant à une liaison de coopérativité et leurs utilisations
US10253067B2 (en) 2015-03-20 2019-04-09 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
US10059741B2 (en) 2015-07-01 2018-08-28 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
WO2017004548A1 (fr) * 2015-07-01 2017-01-05 Aileron Therapeutics, Inc. Macrocycles peptidomimétiques
US10023613B2 (en) 2015-09-10 2018-07-17 Aileron Therapeutics, Inc. Peptidomimetic macrocycles as modulators of MCL-1
US9989535B2 (en) 2015-10-01 2018-06-05 Warp Drive Bio, Inc. Methods and reagents for analyzing protein-protein interfaces
US10466249B2 (en) 2015-10-01 2019-11-05 Revolution Medicines, Inc. Methods and reagents for analyzing protein-protein interfaces
US10948495B2 (en) 2015-10-01 2021-03-16 Revolution Medicines, Inc. Methods and reagents for analyzing protein-protein interfaces
US11447810B2 (en) 2016-04-12 2022-09-20 Ginkgo Bioworks, Inc. Compositions and methods for the production of compounds
US10907188B2 (en) 2016-04-12 2021-02-02 Ginkgo Bioworks, Inc. Compositions and methods for the production of compounds
US11479797B2 (en) 2016-10-28 2022-10-25 Ginkgo Bioworks, Inc. Compositions and methods for the production of compounds
US11566007B2 (en) 2019-11-04 2023-01-31 Revolution Medicines, Inc. Ras inhibitors
US11608346B2 (en) 2019-11-04 2023-03-21 Revolution Medicines, Inc. Ras inhibitors
US11739074B2 (en) 2019-11-04 2023-08-29 Revolution Medicines, Inc. Ras inhibitors
US11952352B2 (en) 2019-11-04 2024-04-09 Revolution Medicines, Inc. Ras inhibitors
US11690915B2 (en) 2020-09-15 2023-07-04 Revolution Medicines, Inc. Ras inhibitors

Also Published As

Publication number Publication date
US20180085426A1 (en) 2018-03-29
US10300109B2 (en) 2019-05-28
EP2480565A4 (fr) 2014-01-01
CN102712675A (zh) 2012-10-03
CA2774973A1 (fr) 2011-03-31
WO2011038049A1 (fr) 2011-03-31
AU2010298338A1 (en) 2012-04-12
US20170266254A1 (en) 2017-09-21
JP2013505300A (ja) 2013-02-14
EP2480565A1 (fr) 2012-08-01

Similar Documents

Publication Publication Date Title
US10300109B2 (en) Peptidomimetic macrocycles
US11008366B2 (en) Peptidomimetic macrocycles
US20190071469A1 (en) Therapeutic peptidomimetic macrocycles
US9493509B2 (en) Triazole macrocycle systems
US20120115793A1 (en) Peptidomimetic macrocycles
US9175045B2 (en) Peptidomimetic macrocycles
US20120178700A1 (en) Peptidomimetic macrocycles
US20120101047A1 (en) Peptidomimetic macrocycles
US20160052970A1 (en) Peptidomimetic macrocycles and use thereof in regulating hif1alpha
US20120115783A1 (en) Peptidomimetic macrocycles

Legal Events

Date Code Title Description
AS Assignment

Owner name: AILERON THERAPEUTICS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KAWAHATA, NORIYUKI;REEL/FRAME:028893/0442

Effective date: 20120601

Owner name: AILERON THERAPEUTICS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NASH, HUW M.;SAWYER, TOMI K.;NOEHRE, JUSTIN;AND OTHERS;SIGNING DATES FROM 20120601 TO 20120606;REEL/FRAME:028893/0377

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION