US20120128314A1 - D1451 methods for formulating radiation curable supercoatings for optical fiber - Google Patents
D1451 methods for formulating radiation curable supercoatings for optical fiber Download PDFInfo
- Publication number
- US20120128314A1 US20120128314A1 US13/388,726 US201013388726A US2012128314A1 US 20120128314 A1 US20120128314 A1 US 20120128314A1 US 201013388726 A US201013388726 A US 201013388726A US 2012128314 A1 US2012128314 A1 US 2012128314A1
- Authority
- US
- United States
- Prior art keywords
- supercoatings
- optical fiber
- primary
- primary coating
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 208
- 238000000034 method Methods 0.000 title claims abstract description 88
- 230000005855 radiation Effects 0.000 title claims abstract description 77
- 238000000576 coating method Methods 0.000 claims description 180
- 239000011248 coating agent Substances 0.000 claims description 145
- 239000011247 coating layer Substances 0.000 claims description 94
- 239000010410 layer Substances 0.000 claims description 78
- 239000000203 mixture Substances 0.000 claims description 73
- 238000009472 formulation Methods 0.000 claims description 44
- 238000012360 testing method Methods 0.000 claims description 27
- 239000011521 glass Substances 0.000 claims description 24
- 239000002131 composite material Substances 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 11
- 230000032683 aging Effects 0.000 claims description 10
- 239000008199 coating composition Substances 0.000 claims description 10
- 238000011065 in-situ storage Methods 0.000 claims description 10
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 3
- 239000010408 film Substances 0.000 description 51
- 239000000835 fiber Substances 0.000 description 42
- 238000001723 curing Methods 0.000 description 38
- 239000000178 monomer Substances 0.000 description 31
- 230000035945 sensitivity Effects 0.000 description 31
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 28
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 27
- 229920005862 polyol Polymers 0.000 description 26
- 150000003077 polyols Chemical class 0.000 description 26
- 239000000463 material Substances 0.000 description 24
- 125000003118 aryl group Chemical group 0.000 description 21
- 230000008901 benefit Effects 0.000 description 21
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 20
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 19
- 229910052753 mercury Inorganic materials 0.000 description 19
- -1 vinyl ether Chemical compound 0.000 description 19
- 230000001590 oxidative effect Effects 0.000 description 18
- 230000002209 hydrophobic effect Effects 0.000 description 17
- 230000003993 interaction Effects 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 16
- 238000004383 yellowing Methods 0.000 description 16
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 15
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 15
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 15
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 15
- 239000012975 dibutyltin dilaurate Substances 0.000 description 15
- 230000035882 stress Effects 0.000 description 15
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 14
- 125000001931 aliphatic group Chemical group 0.000 description 14
- 239000003054 catalyst Substances 0.000 description 14
- 230000008859 change Effects 0.000 description 14
- 239000003085 diluting agent Substances 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 238000001228 spectrum Methods 0.000 description 13
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 12
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 12
- 238000006116 polymerization reaction Methods 0.000 description 12
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 11
- 239000012948 isocyanate Substances 0.000 description 11
- 239000000654 additive Substances 0.000 description 10
- 239000003963 antioxidant agent Substances 0.000 description 10
- 230000003078 antioxidant effect Effects 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 10
- 238000010998 test method Methods 0.000 description 10
- VFBJXXJYHWLXRM-UHFFFAOYSA-N 2-[2-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]ethylsulfanyl]ethyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCCSCCOC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 VFBJXXJYHWLXRM-UHFFFAOYSA-N 0.000 description 9
- 239000005058 Isophorone diisocyanate Substances 0.000 description 9
- 150000002513 isocyanates Chemical class 0.000 description 9
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 9
- 230000009021 linear effect Effects 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 8
- 125000004122 cyclic group Chemical group 0.000 description 8
- 230000003301 hydrolyzing effect Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 235000013305 food Nutrition 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- 239000000049 pigment Substances 0.000 description 7
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 7
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 6
- 229920002176 Pluracol® Polymers 0.000 description 6
- 239000004721 Polyphenylene oxide Substances 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 125000005442 diisocyanate group Chemical group 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- 229920000570 polyether Polymers 0.000 description 6
- 229920001296 polysiloxane Polymers 0.000 description 6
- 229920002554 vinyl polymer Polymers 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- 229920001451 polypropylene glycol Polymers 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- VNTDZUDTQCZFKN-UHFFFAOYSA-L zinc 2,2-dimethyloctanoate Chemical compound [Zn++].CCCCCCC(C)(C)C([O-])=O.CCCCCCC(C)(C)C([O-])=O VNTDZUDTQCZFKN-UHFFFAOYSA-L 0.000 description 5
- AZYRZNIYJDKRHO-UHFFFAOYSA-N 1,3-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=CC(C(C)(C)N=C=O)=C1 AZYRZNIYJDKRHO-UHFFFAOYSA-N 0.000 description 4
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 4
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 238000001308 synthesis method Methods 0.000 description 4
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 4
- PJAKWOZHTFWTNF-UHFFFAOYSA-N (2-nonylphenyl) prop-2-enoate Chemical compound CCCCCCCCCC1=CC=CC=C1OC(=O)C=C PJAKWOZHTFWTNF-UHFFFAOYSA-N 0.000 description 3
- QVCUKHQDEZNNOC-UHFFFAOYSA-N 1,2-diazabicyclo[2.2.2]octane Chemical compound C1CC2CCN1NC2 QVCUKHQDEZNNOC-UHFFFAOYSA-N 0.000 description 3
- ZDQNWDNMNKSMHI-UHFFFAOYSA-N 1-[2-(2-prop-2-enoyloxypropoxy)propoxy]propan-2-yl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(C)COCC(C)OC(=O)C=C ZDQNWDNMNKSMHI-UHFFFAOYSA-N 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- WJIOHMVWGVGWJW-UHFFFAOYSA-N 3-methyl-n-[4-[(3-methylpyrazole-1-carbonyl)amino]butyl]pyrazole-1-carboxamide Chemical compound N1=C(C)C=CN1C(=O)NCCCCNC(=O)N1N=C(C)C=C1 WJIOHMVWGVGWJW-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000002318 adhesion promoter Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 3
- BSDOQSMQCZQLDV-UHFFFAOYSA-N butan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] BSDOQSMQCZQLDV-UHFFFAOYSA-N 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- UNMJLQGKEDTEKJ-UHFFFAOYSA-N (3-ethyloxetan-3-yl)methanol Chemical compound CCC1(CO)COC1 UNMJLQGKEDTEKJ-UHFFFAOYSA-N 0.000 description 2
- GIWQSPITLQVMSG-UHFFFAOYSA-N 1,2-dimethylimidazole Chemical compound CC1=NC=CN1C GIWQSPITLQVMSG-UHFFFAOYSA-N 0.000 description 2
- BSKSXTBYXTZWFI-UHFFFAOYSA-M 1-butyl-3-methylimidazol-3-ium;acetate Chemical compound CC([O-])=O.CCCC[N+]=1C=CN(C)C=1 BSKSXTBYXTZWFI-UHFFFAOYSA-M 0.000 description 2
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 2
- OXBLVCZKDOZZOJ-UHFFFAOYSA-N 2,3-Dihydrothiophene Chemical compound C1CC=CS1 OXBLVCZKDOZZOJ-UHFFFAOYSA-N 0.000 description 2
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 2
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 2
- IJEFAHUDTLUXDY-UHFFFAOYSA-J 7,7-dimethyloctanoate;zirconium(4+) Chemical compound [Zr+4].CC(C)(C)CCCCCC([O-])=O.CC(C)(C)CCCCCC([O-])=O.CC(C)(C)CCCCCC([O-])=O.CC(C)(C)CCCCCC([O-])=O IJEFAHUDTLUXDY-UHFFFAOYSA-J 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- FHLPGTXWCFQMIU-UHFFFAOYSA-N [4-[2-(4-prop-2-enoyloxyphenyl)propan-2-yl]phenyl] prop-2-enoate Chemical class C=1C=C(OC(=O)C=C)C=CC=1C(C)(C)C1=CC=C(OC(=O)C=C)C=C1 FHLPGTXWCFQMIU-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000003926 acrylamides Chemical class 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- 150000008366 benzophenones Chemical class 0.000 description 2
- 229960004217 benzyl alcohol Drugs 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 125000006267 biphenyl group Chemical group 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- ABBZJHFBQXYTLU-UHFFFAOYSA-N but-3-enamide Chemical compound NC(=O)CC=C ABBZJHFBQXYTLU-UHFFFAOYSA-N 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000003066 decision tree Methods 0.000 description 2
- 125000004386 diacrylate group Chemical group 0.000 description 2
- 239000002355 dual-layer Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000012949 free radical photoinitiator Substances 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 2
- 231100001261 hazardous Toxicity 0.000 description 2
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920000847 nonoxynol Polymers 0.000 description 2
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical class CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 2
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 2
- 229950000688 phenothiazine Drugs 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- CNHDIAIOKMXOLK-UHFFFAOYSA-N toluquinol Chemical compound CC1=CC(O)=CC=C1O CNHDIAIOKMXOLK-UHFFFAOYSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 239000003039 volatile agent Substances 0.000 description 2
- 150000003752 zinc compounds Chemical class 0.000 description 2
- IFNXAMCERSVZCV-UHFFFAOYSA-L zinc;2-ethylhexanoate Chemical compound [Zn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O IFNXAMCERSVZCV-UHFFFAOYSA-L 0.000 description 2
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 1
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 description 1
- VZXPHDGHQXLXJC-UHFFFAOYSA-N 1,6-diisocyanato-5,6-dimethylheptane Chemical compound O=C=NC(C)(C)C(C)CCCCN=C=O VZXPHDGHQXLXJC-UHFFFAOYSA-N 0.000 description 1
- YTSDTJNDMGOTFN-UHFFFAOYSA-M 1-butyl-4-methylpyridin-1-ium;chloride Chemical compound [Cl-].CCCC[N+]1=CC=C(C)C=C1 YTSDTJNDMGOTFN-UHFFFAOYSA-M 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- MXRGSJAOLKBZLU-UHFFFAOYSA-N 3-ethenylazepan-2-one Chemical compound C=CC1CCCCNC1=O MXRGSJAOLKBZLU-UHFFFAOYSA-N 0.000 description 1
- QJRVOJKLQNSNDB-UHFFFAOYSA-N 4-dodecan-3-ylbenzenesulfonic acid Chemical compound CCCCCCCCCC(CC)C1=CC=C(S(O)(=O)=O)C=C1 QJRVOJKLQNSNDB-UHFFFAOYSA-N 0.000 description 1
- CGLVZFOCZLHKOH-UHFFFAOYSA-N 8,18-dichloro-5,15-diethyl-5,15-dihydrodiindolo(3,2-b:3',2'-m)triphenodioxazine Chemical compound CCN1C2=CC=CC=C2C2=C1C=C1OC3=C(Cl)C4=NC(C=C5C6=CC=CC=C6N(C5=C5)CC)=C5OC4=C(Cl)C3=NC1=C2 CGLVZFOCZLHKOH-UHFFFAOYSA-N 0.000 description 1
- LVGFPWDANALGOY-UHFFFAOYSA-N 8-methylnonyl prop-2-enoate Chemical compound CC(C)CCCCCCCOC(=O)C=C LVGFPWDANALGOY-UHFFFAOYSA-N 0.000 description 1
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- XVZXOLOFWKSDSR-UHFFFAOYSA-N Cc1cc(C)c([C]=O)c(C)c1 Chemical group Cc1cc(C)c([C]=O)c(C)c1 XVZXOLOFWKSDSR-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 1
- 229920003266 Leaf® Polymers 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical class C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 241001074085 Scophthalmus aquosus Species 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- PSGCQDPCAWOCSH-BREBYQMCSA-N [(1r,3r,4r)-4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl] prop-2-enoate Chemical compound C1C[C@@]2(C)[C@H](OC(=O)C=C)C[C@@H]1C2(C)C PSGCQDPCAWOCSH-BREBYQMCSA-N 0.000 description 1
- VZTQQYMRXDUHDO-UHFFFAOYSA-N [2-hydroxy-3-[4-[2-[4-(2-hydroxy-3-prop-2-enoyloxypropoxy)phenyl]propan-2-yl]phenoxy]propyl] prop-2-enoate Chemical compound C=1C=C(OCC(O)COC(=O)C=C)C=CC=1C(C)(C)C1=CC=C(OCC(O)COC(=O)C=C)C=C1 VZTQQYMRXDUHDO-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- TUQRJVHQQXIPMN-UHFFFAOYSA-K bis(2,2-dimethyloctanoyloxy)bismuthanyl 2,2-dimethyloctanoate Chemical compound CCCCCCC(C)(C)C(=O)O[Bi](OC(=O)C(C)(C)CCCCCC)OC(=O)C(C)(C)CCCCCC TUQRJVHQQXIPMN-UHFFFAOYSA-K 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- MSODWKQDERPZOY-UHFFFAOYSA-N bis[2-(2-hydroxycyclohexyl)phenyl]methanone Chemical compound OC1CCCCC1C1=CC=CC=C1C(=O)C1=CC=CC=C1C1C(O)CCCC1 MSODWKQDERPZOY-UHFFFAOYSA-N 0.000 description 1
- NSPSPMKCKIPQBH-UHFFFAOYSA-K bismuth;7,7-dimethyloctanoate Chemical compound [Bi+3].CC(C)(C)CCCCCC([O-])=O.CC(C)(C)CCCCCC([O-])=O.CC(C)(C)CCCCCC([O-])=O NSPSPMKCKIPQBH-UHFFFAOYSA-K 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000001055 blue pigment Substances 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000012952 cationic photoinitiator Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229940120693 copper naphthenate Drugs 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- SEVNKWFHTNVOLD-UHFFFAOYSA-L copper;3-(4-ethylcyclohexyl)propanoate;3-(3-ethylcyclopentyl)propanoate Chemical compound [Cu+2].CCC1CCC(CCC([O-])=O)C1.CCC1CCC(CCC([O-])=O)CC1 SEVNKWFHTNVOLD-UHFFFAOYSA-L 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- XXKOQQBKBHUATC-UHFFFAOYSA-N cyclohexylmethylcyclohexane Chemical compound C1CCCCC1CC1CCCCC1 XXKOQQBKBHUATC-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- NJDNXYGOVLYJHP-UHFFFAOYSA-L disodium;2-(3-oxido-6-oxoxanthen-9-yl)benzoate Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=CC(=O)C=C2OC2=CC([O-])=CC=C21 NJDNXYGOVLYJHP-UHFFFAOYSA-L 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000013551 empirical research Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- UNUJZVUJPIOMGH-UHFFFAOYSA-N ethoxyphosphonoylbenzene Chemical compound CCOP(=O)C1=CC=CC=C1 UNUJZVUJPIOMGH-UHFFFAOYSA-N 0.000 description 1
- JZMPIUODFXBXSC-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.CCOC(N)=O JZMPIUODFXBXSC-UHFFFAOYSA-N 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229940119177 germanium dioxide Drugs 0.000 description 1
- MUTGBJKUEZFXGO-UHFFFAOYSA-N hexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21 MUTGBJKUEZFXGO-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N hydroquinone methyl ether Natural products COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- TZUAKKVHNFEFBG-UHFFFAOYSA-N methyl n-[[2-(furan-2-ylmethylideneamino)phenyl]carbamothioyl]carbamate Chemical compound COC(=O)NC(=S)NC1=CC=CC=C1N=CC1=CC=CO1 TZUAKKVHNFEFBG-UHFFFAOYSA-N 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- ZDHCZVWCTKTBRY-UHFFFAOYSA-N omega-Hydroxydodecanoic acid Natural products OCCCCCCCCCCCC(O)=O ZDHCZVWCTKTBRY-UHFFFAOYSA-N 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 239000006223 plastic coating Substances 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- WSFQLUVWDKCYSW-UHFFFAOYSA-M sodium;2-hydroxy-3-morpholin-4-ylpropane-1-sulfonate Chemical compound [Na+].[O-]S(=O)(=O)CC(O)CN1CCOCC1 WSFQLUVWDKCYSW-UHFFFAOYSA-M 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 125000005409 triarylsulfonium group Chemical group 0.000 description 1
- PYVOHVLEZJMINC-UHFFFAOYSA-N trihexyl(tetradecyl)phosphanium Chemical compound CCCCCCCCCCCCCC[P+](CCCCCC)(CCCCCC)CCCCCC PYVOHVLEZJMINC-UHFFFAOYSA-N 0.000 description 1
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- WLNWJZARHGYNBL-UHFFFAOYSA-L zinc;2-ethyl-2,5-dimethylhexanoate Chemical compound [Zn+2].CCC(C)(C([O-])=O)CCC(C)C.CCC(C)(C([O-])=O)CCC(C)C WLNWJZARHGYNBL-UHFFFAOYSA-L 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/40—Distributing applied liquids or other fluent materials by members moving relatively to surface
- B05D1/42—Distributing applied liquids or other fluent materials by members moving relatively to surface by non-rotary members
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/104—Coating to obtain optical fibres
- C03C25/1065—Multiple coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/12—General methods of coating; Devices therefor
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/24—Coatings containing organic materials
- C03C25/26—Macromolecular compounds or prepolymers
- C03C25/32—Macromolecular compounds or prepolymers obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/62—Surface treatment of fibres or filaments made from glass, minerals or slags by application of electric or wave energy; by particle radiation or ion implantation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4866—Polyethers having a low unsaturation value
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/67—Unsaturated compounds having active hydrogen
- C08G18/671—Unsaturated compounds having only one group containing active hydrogen
- C08G18/672—Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
- C09D175/14—Polyurethanes having carbon-to-carbon unsaturated bonds
- C09D175/16—Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/045—Light guides
- G02B1/046—Light guides characterised by the core material
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02395—Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2933—Coated or with bond, impregnation or core
Definitions
- the present invention relates to radiation curable coatings for optical fiber.
- An optical fiber is a glass fiber that carries light along its length.
- Optical fibers are widely used in fiber-optic communications, which permits transmission over longer distances and at higher bandwidths (data rates) than other forms of communications. Fibers are used instead of metal wires because signals travel along them with less loss, and they are also immune to electromagnetic interference.
- MMF multi-mode fibers
- SMF single-mode fibers
- Attenuation in fiber optics also known as transmission loss, is defined as the reduction in intensity of the light beam (or signal) with respect to distance traveled through a transmission medium.
- Attenuation loss coefficients in optical fibers usually are reported using units of decibels per kilometer, abbreviated dB/km.
- Attenuation is an important factor limiting the transmission of a digital signal across large distances. Thus, much research has gone into both limiting the attenuation and maximizing the amplification of the optical signal. Empirical research has shown that attenuation in optical fiber is caused primarily by both scattering and absorption.
- Microbends are sharp but microscopic curvatures in an optical fiber involving local axial displacements of a few micrometers and spatial wavelengths of a few millimeters. Microbends can be induced by thermal stresses and/or mechanical lateral forces. When present, microbeads attenuate the signal transmission capability of the coated optical fiber. Thus for the success of a telecommunications network it is known each telecommunications system has a limit to the amount of tolerable increase in attenuation for optical fiber and that to avoid reaching that limit it is well to reduce microbending overall because reducing microbending, reduces the increase in attenuation.
- optical fiber coating technology One of the critical driving forces for the development of optical fiber coating technology is increased user demands on videos.
- 2G network application is sufficient.
- future networks such as 3G, 4G, and IPTV, high definition television (HDTV), video conferencing and other high bandwidth applications will impose a higher requirement for the performance of optical fiber, therefore the requirement of performance of the optical fiber coating will become higher and higher.
- the Supercoatings comprise at least two layers, wherein the first layer is a Primary Coating that is in contact with the outer surface of the optical fiber and the second layer is a Secondary Coating in contact with the outer surface of the Primary Coating,
- the cured Primary Coating on the optical fiber has the following properties after initial cure and after one month aging at 85° C. and 85% relative humidity:
- Tube Tg of from about ⁇ 25° C. to about ⁇ 55° C.
- the cured Secondary Coating on the optical fiber has the following properties after initial cure and after one month aging at 85° C. and 85% relative humidity:
- Tube Tg of from about 50° C. to about 80° C.
- the first aspect of the instant claimed invention is a method of formulating radiation curable Supercoatings for application to an optical fiber used in a telecommunications network, wherein said Supercoatings comprise at least two layers, the first layer being a primary coating that is in contact with the outer layer surface of the optical fiber and the second layer being a secondary coating in contact with the outer surface of the primary coating, wherein the cured primary coating on the optical fiber has the following properties after initial cure and after at least one month aging at 85° C. and 85% relative humidity:
- the second aspect of the instant claimed invention is the Method of the first aspect, in which the Three-Dimensional Laced Methodology includes using a Multi-Layer Film Drawdown method to evaluate composite fused Primary Coating Layer and Secondary Coating Layer of Radiation curable Supercoatings.
- composition of the Secondary Coating layer, prior to curing is selected from the group
- composition of the Primary Coating layer, prior to curing is selected from the group
- composition of the Secondary Coating layer, prior to curing is selected from the group
- FIG. 1 is a diagram of historical depiction of formulation diagram for how typical formulating for optical fiber coatings has been done—illustrating the prior art. This is a comparative example, not an example of the instant claimed invention.
- FIG. 2 is the first embodiment illustrating the three-dimensional laced methodology for formulating radiation curable Supercoatings for Optical Fiber.
- FIG. 3 is the second embodiment illustrating the three-dimensional laced methodology for formulating radiation curable Supercoatings for Optical Fiber.
- FIG. 4 is the third embodiment illustrating the three-dimensional laced methodology for formulating radiation curable Supercoatings for Optical Fiber.
- FIG. 5 is an illustration of the results of the Multi-Layer Film Drawdown method showing a colored photograph of a Supercoatings Primary Layer, drawn down with a 1.5 mil bar, then a candidate for Supercoatings Secondary layer, observed as a brown layer, is drawn down over the primary with a 3 mil bar, and the whole plate cured.
- FIG. 6 is Spectra “all”, which shows 4 spectra with a comparable appearance to two sets of two sitting on top of each other.
- FIG. 7 is Spectra “Brown” shows the colored secondary portion only, and the top of the dual drawdown portion. The two spectra match up quite well.
- FIG. 8 is Spectra “for the Supercoatings Primary Layer from Example 1PC1” shows the glass side of the dual layer, and the glass side of a single 3 mil, Example 1PC1 Supercoatings Primary Layer drawdown. Again the spectra match up very well.
- FIG. 9 is a DMA plot of a Flat Film Drawdown of Primary PMoct Supercoatings Candidate, this is a Comparative Example, not an Example of the Instant Claimed Test Method.
- FIG. 10 is a DMA plot of a Flat Film Drawdown of Secondary PMoct, Supercoatings Candidate, this is a Comparative Example, not an Example of the Instant Claimed Test Method.
- FIG. 11 is a DMA plot of a Tube of Secondary PMoct, Supercoatings Candidate over Primary PMoct Supercoatings as put on wire using the Draw Tower Simulator; this is a Comparative Example, not an Example of the Instant Claimed Test Method.
- FIG. 12 is a Dynamic Mechanical Analysis (“DMA”) plot of composite film of PMoct Primary (Example 1PB3) covered by PMoct Secondary (Example 2SB3) applied Wet-on-Wet (abbreviated W-O-W).
- DMA Dynamic Mechanical Analysis
- FIG. 13 is a DMA plot of composite film of PMoct Primary (Example 1PB3) covered by PMoct Secondary (Example 2SB3) applied Wet on Dry (abbreviated W-O-D).
- the first aspect of the instant claimed invention is a method of formulating radiation curable Supercoatings for application to an optical fiber used in a telecommunications network, wherein said Supercoatings comprise at least two layers, the first layer being a primary coating that is in contact with the outer layer surface of the optical fiber and the second layer being a secondary coating in contact with the outer surface of the primary coating, wherein the cured primary coating on the optical fiber has the following properties after initial cure and after at least one month aging at 85° C. and 85% relative humidity:
- the cured secondary coating on the optical fiber has the following properties after initial cure and after at least one month aging at 85° C. and 85% relative humidity:
- said method comprising the steps of:
- step f) using the results from step e)i) and step e)ii) to finalize the selection of Supercoatings to achieve the Maximum Acceptable Increase in Attenuation of the coated optical fiber.
- the first step in the process is determining the Maximum Acceptable Increase in Attenuation requirements for the telecommunications network where the optical fiber will be installed. Determining the attenuation requirements for the telecommunications network involves the design criteria for the Optical Fiber Network. Some considerations in the design include: an understanding of how much of the network is straight line installation of multi-mode optical fiber as compared to how much of the network is Fiber-to-the-Home (abbreviated FFTH) installation of single mode optical fiber. There are many other design criteria for an Optical Fiber network that are known to people of ordinary skill in the art of designing Optical Fiber Networks.
- Telecommunications Industry Association TIA
- ICT information and communications technology
- USTAG United States Technical Advisory Groups
- IEC International Electrotechnical Commission
- IEC International Electrotechnical Commission
- Telcordia is a U.S. based corporation that provides fiber optic media & components analysis & consulting services. They also write and keep a library of Generic Requirements for Optical Fiber.
- Method A Expandable Drum calls for at least 400 m of fiber to be wound with minimal tension around an expandable drum with material of fixed roughness on the drum surface.
- Method B Fixed-Diameter Drum calls for at least 400 m of fiber to be wound with 3N tension around a fixed-diameter drum with material of fixed roughness on the drum surface.
- Method C Wire Mesh calls for application of wire mesh (under load) to the fiber under Test.
- Method D Baseketweave calls for 2.5 km of fiber to be applied to a fixed diameter drum via a “basketweave” wrap.
- Method D specifically describes a procedure to measure the microbending sensitivity of fibers as a function of temperature and provides the microbending sensitivity over a wide temperature range and suggests that temperature cycling could include lower temperatures such as ⁇ 60° C.
- microbending sensitivity using test Method D Baseweave will be spoken of in terms of a dB/Km number, at a specified wavelength and temperature.
- Method D measured Microbending Sensitivity will be discussed and reported in units of attenuation which will be spoken of in terms of a dB/Km number, at a specified wavelength and temperature. It is understood that whatever Microbending Sensitivity is given, that the number given is the Maximum Acceptable Increase in Attenuation permissible for that optical fiber in a given telecommunications network.
- Method D specifically describes a procedure to measure the Microbending Sensitivity of fibers as a function of temperature and provides the Microbending Sensitivity over a wide temperature range and suggests that temperature cycling could include lower temperatures such as ⁇ 60° C.
- Microbending Sensitivity as a change in attenuation from a baseline per the IEC procedure; this procedure requires the reporting of change in attenuation be reported at specific wavelengths and a temperature of ⁇ 60° C. Applicants believe that reporting Microbending Sensitivity data at these extreme temperature conditions will provide a type of “worst case scenario” possibility for Microbending Sensitivity of the coated optical fiber in the field.
- Microbending Sensitivity testing it may or may not be possible to identify the difference in Microbending Sensitivity between an Optical Fiber coated with a standard, “non-Supercoatings” coating, because neither Supercoatings or a non-Supercoatings is anywhere near their glass transition temperature (Tg) for the primary coating layer at room temperature.
- Tg glass transition temperature
- the Telecommunications network generally requests that Optical Fiber be supplied with a known maximum attenuation at 1310 nm and room temperature. This highest tolerable level of attenuation is known to people of ordinary skill in the art of design criteria for Telecommunications networks.
- Optical Fibers coated with Radiation curable Supercoatings it is possible and desirable to report Microbending Sensitivity at three separate wavelengths and at a very cold ( ⁇ 60° C.) temperature. This data can then be used by the Network designer to understand the limits, and be able to predict failure modes for the network. It is applicants' position that a network containing Optical Fibers coated with standard, “non-Supercoatings” will have much less tolerance to the stress involved from the cable environment of temperature extremes and mechanical forces than will a network containing Optical Fibers coated with Radiation curable Supercoatings.
- the next step in the process is determining the Field Application Environment of the Supercoatings requirements for the telecommunications network where the optical fiber will be installed.
- the Field Application Environment involves the understanding of four factors:
- Optical Fiber is known to have standard grades for installation of long haul straight cable. Recently various grades of “bend resistant” Optical Fiber have been developed by Optical Fiber Suppliers such as Corning and Draka and OFS and YOFC and others. These bend resistant Optical Fibers are being deployed in Fiber to the Node (FTTX) and Fiber to the Home (FTTH) applications.
- FTTX Node
- FTTH Fiber to the Home
- Current commercial Optical Fiber available for sale include: Corning® InfiniCor® optical fibers, Corning® ClearCurve® OM2/OM3/OM4 multimode optical fiber, Corning® ClearCurve® single-mode optical fiber, Corning® SMF-28e® XB optical fiber, Corning® SMF-28® ULL optical fiber,
- BB Draka BendBright SingleMode
- TM Draka TeraLight Singlemode
- TU Draka TeraLight Ultra Singlemode
- BX Draka BendBright-XS
- LA Draka Enhanced Single Mode
- NZDSF-LA Singlemode Draka NZDSF-LA Singlemode
- OFS HCS®, OFS FiberWire®, and OFS PYROCOAT® brand technologies YOFC HiBand GIMM fiber, YOFC High Temperature Fibre (HTF) Series, YOFC HiBand Graded-Index Multimode Optical Fiber (50/125 & 62.5/125 um) and others.
- the formulator of Supercoatings in order to produce an optical fiber with the desired attenuation properties it is desirable, optionally even necessary, for the formulator of Supercoatings to have an understanding of the details of the optical fiber production process. These details include the type of glass, the processing temperature, the atmosphere surrounding the application of coating(s), the line speed, the type of radiation source, typically described as a “curing lamp”, and the location and number of curing lamps along the processing line and whether the secondary coating is applied over the primary coating wet on wet or wet on dry. These types of mechanical aspects to the glass processing have, in the past, not been of interest to the formulator of the Optical Fiber coatings because the formulator focused on the Optical Fiber coatings and the glass manufacturer focused on the glass.
- UV mercury arc lamps emit light by using an electric arc to excite mercury that resides inside an inert gas (e.g., Argon) environment to generate ultraviolet light which effectuates curing.
- inert gas e.g., Argon
- microwave energy can also be used to excite mercury lamps in an inert gas medium to generate the ultraviolet light.
- arc excited and microwave excited mercury lamp, plus various additives (ferrous metal, Gallium, etc.) modified forms of these mercury lamps are identified as mercury lamps.
- Conventional ultraviolet mercury arc lamps are the “state-of-the-art” when it comes to curing of radiation curable coatings for optical fiber.
- ultraviolet mercury lamps as a radiation source suffers from several disadvantages including environmental concerns from mercury and the generation of ozone as a by-product. Further, mercury lamps typically have lower energy conversion ratio, require warm-up time, generate heat during operation, and consume a large amount of energy when compared with Lights that are generated by Light Emitting Diodes “LED”.
- LEDs In contrast to ultraviolet mercury lamps, light emitting diodes (LEDs) are semiconductor devices which use the phenomenon of electroluminescence to generate light. LEDs consist of a semiconducting material doped with impurities to create a p-n junction capable of emitting light as positive holes join with negative electrons when voltage is applied. The wavelength of emitted light is determined by the materials used in the active region of the semiconductor. Typical materials used in semiconductors of LEDs include, for example, elements from Groups 13 (III) and 15 (V) of the periodic table. These semiconductors are referred to as III-V semiconductors and include, for example, GaAs, GaP, GaAsP, AlGaAs, InGaAsP, AlGaInP, and InGaN semiconductors. Other examples of semiconductors used in LEDs include compounds from Group 14 (IV-IV semiconductor) and Group 12-16 (II-VI). The choice of materials is based on multiple factors including desired wavelength of emission, performance parameters, and cost.
- LEDs used gallium arsenide (GaAs) to emit infrared (IR) radiation and low intensity red light. Advances in materials science have led to the development of LEDs capable of emitting light with higher intensity and shorter wavelengths, including other colors of visible light and UV light. It is possible to create LEDs that emit light anywhere from a low of about 100 nm to a high of about 900 nm.
- known LED UV light sources emit light at wavelengths between about 300 and about 475 nm, with 365 nm, 390 nm and 395 nm being common peak spectral outputs. See textbook, “Light-Emitting Diodes” by E. Fred Schubert, 2 nd Edition, ⁇ E. Fred Schubert 2006, published by Cambridge University Press.
- LED lamps offer advantages over conventional mercury lamps in curing applications. For example, LED lamps do not use mercury to generate UV light and are typically less bulky than mercury UV arc lamps. In addition, LED lamps are instant on/off sources requiring no warm-up time, which contributes to LED lamps' low energy consumption. LED lamps also generate much less heat, with higher energy conversion efficiency, have longer lamp lifetimes, and are essentially monochromatic emitting a desired wavelength of light which is governed by the choice of semiconductor materials employed in the LED.
- LED lamps for commercial curing applications. For example, Phoseon Technology, Summit UV Honle UV America, Inc., IST Metz GmbH, Jenton International Ltd., Lumios Solutions Ltd., Solid UV Inc., Seoul Optodevice Co., Ltd, Spectronics Corporation, Luminus Devices Inc., and Clearstone Technologies, are some of the manufacturers currently offering LED lamps for curing ink-jet printing compositions, PVC floor coating compositions, metal coating compositions, plastic coating composition, and adhesive compositions.
- FIG. 1 is a diagram of historical depiction of formulation diagram for how typical formulating for optical fiber coatings has been done—illustrating the prior art.
- Decision Chart 10 shows the two-dimensional Prior Art approach to formulating optical fiber coatings.
- desirable functional property A is illustrated by circle A
- Review Point B represents the test to determine whether the liquid optical fiber coating or the cured coating, either in the form of a flat film or in the form of a tubular coating on the optical fiber, has the desired functional property. If the optical fiber coating does have the desired functional property than the decision tree goes to yes and the inquiry is over. If the optical Fiber coating does not have the desired functional property, the formulator reviews the formulation and determines the change to make, as represented by parallelogram D, and then in rectangle C, the formulation is changed. The functional property is retested at Review Point B, and if the desired functional property is obtained then the inquiry is over.
- the decision tree goes back to the top and other reformulating options by the formulator are considered until the next possible formulation is determined and then the formulation is changed and then the desired functional property is retested. This continues until the desired physical property is obtained.
- Table 1A, 1B, 1C, 1D, 1E, 2A, 2B, 2C, 2D, 2E, 1F, 2F, 1G, 2G, 1H, 2H, 1J, and 2J which summarize the state-of-the-art understanding of the ingredients that may or may not be used in formulating Primary and Secondary Radiation Curable Coatings for optical fiber with respect to creating formulations with physical properties of the Primary Coating Layers and Secondary Coating Layers on the Optical Fiber that meet the rigorous criteria of Supercoatings.
- additional information may be found in issued patents, published patent applications, scientific papers and other information commonly known to people of ordinary skill in the art of Radiation Curable Coatings for Optical Fiber.
- vinyl ether many polyols and acids available, hydrolytic stability, (meth)acrylamide, vinyl amide oxidative stability more difficult to manufacture 3.
- hydrocarbon e.g. other UV-curable end-groups very low Tg, hydrophobic, hydrolytic poorer oxidative polybutadiene
- vinyl ether stability, low viscosity stability, poorer (meth)acrylate (meth)acrylamide, vinyl amide solubility, lipophilic 5.
- thiol-ene various enes including, strong network structure, low odor, shelf stability norbornene, vinyl ether, vinyl viscosity, good cured stability ester, vinyl amide, allyl ether, allyl ester, allyl amide, styrene, alkenes (aliphatic enes are used for low Tg) Chemistry of Oligomer 7.
- UV-curable end-groups or copolymer e.g. vinyl ether, (meth) acrylamide, vinyl amide 8.
- cationic epoxy various cationically curable low shrinkage, good adhesion, low slower cure speed, post groups including glycidyl viscosity, stability curing effect, lower ether, glycidyl ester, vinyl elongation ether, oxetane, hydroxyl (aliphatic materials are used for low Tg)
- silicone aliphatic, aromatic, linear, hydrophobic and lipophobic, expensive, refractive branched stability, low viscosity index may be too low 6.
- fluorocarbon aliphatic, aromatic, linear, hydrophobic and lipophobic, expensive, refractive branched stability, low viscosity index may be too low 7.
- DESMODUR ® W* bis(4- Polyurethane resins based on non-homogenous isomer isocyanotocyclohexyl) *Desmodur ® W diisocyanate have blending may lead to methane a high degree of flexibility coupled reproducibility issues for also known as PICM, with good mechanical strength.
- HMDI hydrogenated MDI
- a unique feature of lead to unexpected dicyclohexylmethane *Desmodur ® W diisocyanate is its performance properties of diisocyanate ability to form optically clear formulated coating polyurethanes when combined with suitable polyol coreactants.
- TDI toluene diisocyanate
- MDI is methylenebis(phenyl isocyanate)
- Methyl Di-P-Phenylene Isocyanate IPDI is isophorone diisocyanate
- HDI is Hexamethylene diisocyanate
- TMDI is Trimethyl hexamethylene diisocyanate
- TMXDI is TMXDI ® (Meta) Aliphatic Isocyanate, available from Cytec Industries Inc.
- vinyl ether good chemical resistance generally high viscosity (meth)acrylamide, vinyl amide 7.
- thiol-ene various enes including, strong network structure, low odor, shelf stability norbornene, vinyl ether, vinyl viscosity, good cured stability ester, vinyl amide, allyl ether, allyl ester, allyl amide, styrene, alkenes (aromatic or cyclic enes for higher Tg) 8.
- cationic epoxy various cationically curable low shrinkage, good adhesion, slower cure speed, post groups including glycidyl low viscosity, stability curing effect, lower ether, glycidyl ester, vinyl elongation ether, oxetane, hydroxyl (aromatic materials for higher Tg)
- alkyl (meth)acrylate generally low Tg, hydrophobic, good odor, slower cure speed, may be crystalline, stability, low cost, good diluent (generally volatile under high heat output of conventional monofunctional monomer used for lower mercury UV lights crosslink density and modulus)
- aryl or cyclic (meth)acrylate generally higher Tg, hydrophobic may be volatile or crystalline 3.
- ether (meth)acrylate generally low Tg, fast cure speed, generally more hydrophilic, poorer oxidative stability good diluent, aromatics have good dry adhesion (generally monofunctional monomer used for lower crosslink density and modulus) 4.
- hydroxyl-functional, acid- good dry adhesion, fast cure speed generally higher Tg, more hydrophilic, can react functional, and other polar (generally monofunctional monomer used with other coating components monomers for lower crosslink density and modulus) 5.
- (meth)acrylamides and vinyl good dry adhesion, fast cure speed generally higher Tg, more hydrophilic amides (generally monofunctional monomer used for lower crosslink density and modulus)
- phenoxy ethyl (generally multifunctional monomer used acrylate, are volatile under high heat output for higher crosslink density and modulus) of conventional mercury UV lights or crystalline; therefore when an aryl reactive diluent monomer is present that has a molecular weight less than about 300, it should be present at no more than about 10 wt. % of the total formulation 3.
- ether (meth)acrylate good stress-relaxation if branched, fast cure more hydrophilic, poorer oxidative stability speed, generally good diluent (generally multifunctional monomer used for higher crosslink density and modulus) 4.
- FIG. 2 illustrates step 2 is the first aspect of the instant claimed invention method for formulating Supercoatings for Optical Fiber.
- FIG. 2 shows six Decision Charts, 10 , 20 , 30 , 40 , 50 and 60 linked together in a three dimensional model by linking lace 307 .
- Linking Lace 307 illustrates that any formulation change made in either the Primary Coating Layer or the Secondary Coating Layer of an Optical Fiber Supercoatings means that the other desired properties of an Optical Fiber Supercoatings must be tested after the initial change has been made, in order to be certain that one or more changes in the formulation don't lead to a negative influence on one or more functional properties of the Primary Coating Layer and Secondary Coating Layer.
- the cured Primary Coating on the optical fiber has the following properties after initial cure and after one month aging at 85° C. and 85% relative humidity:
- Tube Tg of from about ⁇ 25° C. to about ⁇ 55° C.
- the cured Secondary Coating on the optical fiber has the following properties after initial cure and after one month aging at 85° C. and 85% relative humidity:
- Tube Tg of from about 50° C. to about 80° C.
- Step ii) of the instant claimed invention shows that any formulation change made to affect one of these six properties, means that all of the other five functional properties must be tested as well, to make sure that changing one aspect of the Supercoatings does not affect the other five aspects.
- FIG. 3 shows the second embodiment of step ii) of the instant claimed method for formulating Supercoatings for Optical Fiber.
- the possible changes involving reformulation of a Primary Coating Layer or Secondary Coating Layer of Supercoatings must be tested against each other to see if one change to achieve a desired functional property could also cause other changes that would negate a desired functional property.
- FIG. 4 shows the third embodiment of step ii) of the instant claimed method for formulating Supercoatings for Optical Fiber.
- the possible changes are linked by linking laces both horizontally and vertically amongst the six necessary functional Supercoatings properties. This linkage of properties is the essence of what makes Supercoatings for Optical Fibers different from simply a primary coating covered by a secondary coating layer.
- the reality is that instead of formulating the Primary and Secondary coating layers separately from each other, that any formulation change in one of the layers, must be tested against all the properties required of the Supercoatings.
- the second aspect of the instant claimed invention is the Method of the first aspect of the instant claimed invention, in which the Three-Dimensional Laced Methodology includes using a Multi-Layer Film Drawdown method to evaluate composite fused Primary Coating Layer and Secondary Coating Layer of Radiation curable Supercoatings.
- FIG. 5 shows one such Film.
- the Multi-Layer Film Drawdown method flat plate substrate method for evaluation of layers of potential Radiation curable Supercoatings-Primary and Secondary Layers comprises the following steps:
- test coatings are most typically inner primary coatings.
- a second drawdown is made over the top and wide enough to cover the edges of the first drawdown films.
- This second drawdown is also made with a Bird type bar calibrated to deposit a film of typically 75 ⁇ to 254 ⁇ .
- One such Bird type bar for the second layer has a film deposit height of 3.0 mils.
- the glass plate with the two drawdowns and the consequent composite films is exposed to suitable actinic radiation to achieve the desired degree of cure. This method is known as the wet-on-wet method.
- wet-on-dry method A similar method known as wet-on-dry method, is conducted in the same manner as the wet-on-wet method described above; except the first drawdown films are exposed to actinic radiation to effectuate the cure of the Primary Coating Layer. After this radiant exposure the second drawdown is made and the plate is then further exposed to radiation to effectuate the cure of the Secondary Layer and the Primary Layer into a Fused Composite film.
- the method is used to apply some small dots of primary to a glass plate and drawdown with a 1 mil or 1.5 mil Bird Bar. While the primary is still uncured, a second drawdown of a colored secondary coating layer is made over the primary coating layer but with a 3 mil bar. The result is observed to be acceptably uniform as can be seen in FIG. 5 .
- the Supercoatings Primary Layer is drawn down with a 1.5 mil bar, then a candidate for Supercoatings Secondary layer, observed as a brown layer, Example 3SA3 Color twoH, ⁇ Color 2HBrown ⁇ is drawn down over the Supercoatings Primary with a 3 mil bar. After this wet-on-wet application, the plate is exposed to radiation sufficient to effectuate the cure of both the Primary Coating Layer and the Secondary Coating Layer into a Fused Composite Film.
- the Fused Composite film appears to be very uniform with the darker areas being 3 mil of colored secondary, and the lighter areas 1.5 mil each of primary and colored secondary over the top.
- the Fused Composite film is easily removable and hand able for measurements of thickness and % RAUs, a critical measurement for both layers of Supercoatings for Optical Fiber.
- FIGS. 7 , 8 and 9 The lack of mixing of the layers is further illustrated in FIGS. 7 , 8 and 9 .
- FIG. 7 is Spectra “all”, which shows 4 spectra with a comparable appearance to two sets of two sitting on top of each other.
- FIG. 8 is Spectra “Brown” showing the colored secondary portion only, and the top of the dual drawdown portion. The two spectra match up quite well.
- FIG. 9 is Spectra “formulation Option A for the Supercoatings Primary Layer from Example 3SA3 Color twoH, ⁇ Color 2HBrown ⁇ ” showing the glass side of the dual layer, and the glass side of a single 3 mil Example 3 Supercoatings Primary Layer drawdown. Again the spectra match up very well.
- This method permits the investigation of the properties of primary and secondary as a composite Supercoatings film in ways not available in the past. With this method it is now possible to conduct feasibility studies of Supercoatings Candidate Secondary Layers over Supercoatings Candidate Primary Layers for tensile properties, DMA characteristics, environmental durability, etc., with easily handled films instead of having to use the Draw Tower Simulator.
- the Multi-layer Film Drawdown method including, but not limited to the following: the film drawdown takes away the line speed as a factor in coatings functionality to allow for more basic analysis; it also allows the formulator to evaluate the migration of materials from layer to layer during the wet on dry and wet on wet processing steps.
- Multi-Layer Film Drawdown method Another advantage of the Multi-Layer Film Drawdown method is that it is critical for both wet on wet processing and wet on dry processing that sufficient through cure is possible to cure the primary coating to the requisite percentage RAU when the coating is applied to wire or optical fiber.
- the primary coating may be undercured to achieve line speed with the expectations that the cure will be finished in the primary coating when the radiation is applied to the secondary coating. Therefore use of the Multi-Layer Film Drawdown method is helpful to simulate wet on wet application as compared to wet on dry application and testing the % RAU to determination of cure of primary through the secondary. The simulation allows the formulator to quickly evaluate the efficacy of different photoinitiators.
- Multi-layer film drawdown method Another benefit of the Multi-layer film drawdown method is approximating the composite behavior of the cured secondary coating layer over the cured primary coating that can be correlated with Primary and Secondary characteristics that can be defined in SUPERCOATINGS. It is possible to evaluate the functional properties of each coating layer by analyzing film using solid film rheology testing, otherwise known as DMA (dynamic Mechanical Analysis)
- CN-120Z epoxy diacrylate available from Sartomer.
- DBTDL dibutyl tin dilaurate available from OMG Americas.
- HEA hydroxyethyl acrylate available from BASF HHPA hexahydrophthalic anhydride, available from Milliken Chemical.
- SR-506 isobornyl Acrylate, available as from Sartomer.
- the present invention is further illustrated with a number of examples.
- dB/Km less than about 0.15 at 1625 nm and ⁇ 60° C.
- the radiation curable Radiation curable Supercoatings is applied Wet on Dry.
- the curing lights available are: 600 w/10 inch D Lamps.
- the line speed at which the Supercoatings will be applied is about 1400 m/minute.
- Each Primary Coating Formulator selects the raw materials for their starting Oligomer, then the photoinitiator(s), antioxidant, one or more diluent monomers and other additives based on information available.
- the oligomer synthesis is carried out as follows:
- Oligomers suitable for coating compositions of the invention are prepared by reaction of at least one polyether polyol, at least one diisocyanate, at least one hydroxyl terminated acrylate or (meth)acrylate, and optionally an alcohol.
- the following oligomer synthesis methods illustrate two different methods for synthesizing the oligomer. However, it will be appreciated by the skilled artisan that other synthesis methods also can be used so long as the oligomer comprises a urethane-backbone, with at least one terminal unsaturated group such as an alkenyl group or vinyl group.
- Method A is also known as an “outside-in” method that first reacts the isocyanate with hydroxyl terminated acrylate or methacrylate, followed by the reaction with polyol.
- Method B is also known as an “inside-out” method that first reacts the isocyanate with polyol, followed by the reaction with hydroxyl terminated acrylate or methacrylate.
- Catalyst is added to a mixture of diisocyanate, polyol and inhibitor. The mixture is allowed to react at 60° C. for 2 h, so that the desired NCO content is reached. Then, HEA is added, and the mixture is allowed to react at 85° C. for 1 h or longer, until the NCO content is not greater than 0.05.
- Polyether polyols suitable for preparing oligomers in accordance with the invention preferably are selected from the group consisting of a polyethylene glycol and a polypropylene glycol.
- the polyether polyol is a polypropylene glycol.
- Catalysts for synthesizing urethane based oligomers for use in radiation curable coatings for optical fiber are known in the art.
- the catalyst is selected from the group consisting of copper naphthenate, cobalt naphthenate, zinc naphthenate, triethylamine, triethylenediamine, 2-methyltriethyleneamine, dibutyl tin dilaurate (DBTDL); metal carboxylates, including, but not limited to: organobismuth catalysts such as bismuth neodecanoate, CAS 34364-26-6; zinc neodecanoate, CAS 27253-29-8; zirconium neodecanoate, CAS 39049-04-2; and zinc 2-ethylhexanoate, CAS 136-53-8; sulfonic acids, including but not limited to dodecylbenzene sulfonic acid, CAS 27176-87-0; and methane s
- Type I photoinitiators undergo a uni-molecular bond cleavage upon irradiation to yield free radicals
- Type II photoinitiators undergo a bimolecular reaction where the excited state of the photoinitiator interacts with a second molecule (a co-initiator) to generate free radicals.
- UV photoinitiators of both Type I and Type II are available.
- Each Secondary Coating Formulator selects the raw materials for their starting Oligomer, then the photoinitiator(s), antioxidant, one or more diluent monomers and other additives based on information available.
- each Secondary Coating Formulator takes into account the following: TDI Type II is inexpensive, and is a fast reacting isocyanate. Further to the selection of TDI Type II for use in Secondary Coatings, group contribution theory (takes the characteristics of each part of the group and contributes) teaches that the aromatic group in the isocyanate contributes to high Tg and high modulus in the secondary, which is a technical reason why aromatic isocyanates would be favored for secondary coatings.
- BHT Food Grade Antioxidant scavenges free radicals ⁇ which is important because HEA (inhibited by methyl hydroquinone) can self-polymerize ⁇ ; therefore a synthetic chemist plans the synthesis to have the BHT in the reaction mixture before the HEA
- the scavenging reaction also requires the presence of oxygen—it is known that the oxygen in normal ambient air is typically sufficient for this purpose.
- 2-HEA (2-hydroxy ethyl acrylate) is a simple acrylate which historically has yielded very good cure rates in formulated radiation curable coatings for optical fiber.
- HBA hydroxy butyl acrylate
- HPA hydroxylethyl acrylate
- Both the Primary Coating Formulators and the Secondary Coating Formulators are aware of the following as they formulate; the polymerization of the secondary coating layer causes shrinkage of that layer and the shrinkage of the secondary coating layer puts pressure on the primary coating layer, whether the primary coating layer is already cured or is in the process of being cured when the secondary coating layer is being cured. Stress relaxation is a measure of the relief of stress on the primary caused by the shrinkage of the secondary coating as the secondary coating polymerizes.
- the temperature of the polymerization of the Secondary Coating Layer of a Supercoating has to be above the Tg for fast relief of that shrinkage.
- the fiber cabler desires that the optical fiber is in a relaxed state before the optical fiber is manipulated further during the cabling process.
- the formulators select materials that are more flexible in the secondary coating; however, these flexible materials must be selected in such a way that the additional flexibility does not negatively interfere with targeted physical properties of high Tg and high strength.
- composition of the Primary Coating layer, prior to curing is selected from the group
- composition of the Secondary Coating layer, prior to curing is selected from the group
- the Single Mode Optical Fiber is of the most modern type, able to resist Microbending.
- dB/Km less than about 0.05 at 1625 nm and ⁇ 60° C.
- the Single Mode Optical Fiber is of the most modern type, able to resist Microbending
- the radiation curable Radiation curable Supercoatings is applied Wet on Dry.
- the number of curing lights are: from 1 to 3 in the Primary Coatings area,
- the type of curing lights for the secondary coating are: 600 w/10 inch D Lamps
- the line speed at which the Supercoatings will be applied is approximately 1300 m/min.
- the fourth aspect of the instant claimed invention is a single-mode optical fiber coated with Supercoatings, wherein said Supercoatings comprise,
- composition of the Primary Coating layer, prior to curing is selected from the group consisting of the formulations of Examples 1PA2, 1PB3, 1PC1, 2Alpha, 2Beta; and wherein the composition of the Secondary Coating layer, prior to curing, is selected from the group consisting of the formulations of Examples 2SA4 and 2SB3 and 5SA1.
- dB/Km less than about 0.09 at 1625 nm and ⁇ 60° C.
- the Single Mode Optical Fiber is of the most modern type, able to resist Microbending
- the radiation curable Radiation curable Supercoatings is applied Wet on Wet.
- the number of curing lights is: 3 lamps/20 inch.
- a Multilayer Film DrawDown is made of a Primary Coating Layer and a Colored Secondary made of the Clear Secondary Coating and Colorant.
- Oligomer M3 ⁇ is an Oligomer.
- the ingredients combined to make Oligomer M3 include the following:
- Oligomer M3 Material description Wt. % TDI Type ll 21.26 BHT Food Grade 0.05 2-HEA 14.18 Dibutyltin Dilaurate 0.05 Pluracol P1010 64.46 Total (due to rounding of significant 100.00 figures may be +/ ⁇ 0.10 wt.
- the MULTI-Mode Optical Fiber is of the most modern type, able to resist Microbending
- the radiation curable Secondary Coating is applied Wet on Wet Primary Coating.
- the line speed at which the Primary Coating and Secondary Coating will be applied is about 200 meters/minute.
- the Secondary Coating is a Clear Secondary.
- the type of curing lights are: 600 w/ D Lamps.
- an Oligomer is selected, along with a photoinitiator, antioxidant, two diluent monomers and other additives based on information available to make a Multi-Mode Coating.
- an Oligomer Blend is selected, along with a photoinitiator, antioxidant, two diluent monomers and other additives based on information available to formulate a Clear Secondary Coating for Multi-Mode Coating.
- the fifth aspect of the instant claimed invention is a multi-mode optical fiber coated with radiation
- curable coatings comprising a Primary Coating Layer and a Secondary Coating Layer
- composition of the Secondary Coating layer, prior to curing is selected from the group
- This Supercoatings Secondary is formulated from an existing Supercoatings Secondary to meet the needs of a customer that is requesting a product with a higher refractive index to enable them to use installed equipment to ascertain concentricity in their finished coated fiber.
- the changes from the earlier coating are as follows:
- Example Example Example 5SA1 5SA2 5SA3 Function in Wt. % in Wt. % in Wt. % in Formula COMPONENT formula formula formula formula oligomer Oligomer M3 ⁇ 28.1 25.1 35.0 epoxy acrylate CN-110 37.4 39.4 37.4 acrylate monomer HDDA 5.2 5.2 5.2 acrylate monomer SR-601 10.3 10.3 10.3 acrylate monomer PEA 14.75 15.75 7.85 Photo initator TPO 0.75 0.75 0.75 Photo initiator Chivacure 184 2.5 2.5 2.5 2.5 Stabilizer Irgacure 1035 0.5 0.5 0.5 silicon surfactant DC-190 0.33 0.33 0.33 Silicon Surfactant DC-57 0.17 0.17 0.17 Total (due to 100 100 100 rounding of significant figures may be +/ ⁇ 0.10 wt. %)
- Oligomer M3 ⁇ is an Oligomer.
- the ingredients combined to make Oligomer M3 include the following:
- Oligomer M3 Material description Wt. % TDI Type ll 21.26 BHT Food Grade 0.05 2-HEA 14.18 Dibutyltin Dilaurate 0.05 Pluracol P1010 64.46 Total (due to rounding of significant 100.00 figures may be +/ ⁇ 0.10 wt. %)
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- General Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/388,726 US20120128314A1 (en) | 2009-10-09 | 2010-10-08 | D1451 methods for formulating radiation curable supercoatings for optical fiber |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US27259609P | 2009-10-09 | 2009-10-09 | |
| US25032909P | 2009-10-09 | 2009-10-09 | |
| US28756709P | 2009-12-17 | 2009-12-17 | |
| US36396510P | 2010-07-13 | 2010-07-13 | |
| PCT/US2010/002720 WO2011043825A2 (en) | 2009-10-09 | 2010-10-08 | D1451 methods for formulating radiation curable supercoatings for optical fiber |
| US13/388,726 US20120128314A1 (en) | 2009-10-09 | 2010-10-08 | D1451 methods for formulating radiation curable supercoatings for optical fiber |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2010/002720 A-371-Of-International WO2011043825A2 (en) | 2009-10-09 | 2010-10-08 | D1451 methods for formulating radiation curable supercoatings for optical fiber |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/797,908 Continuation US8731366B2 (en) | 2009-10-09 | 2013-03-12 | D1451 radiation curable supercoatings for single mode optical fiber |
| US13/797,935 Continuation US8724956B2 (en) | 2009-10-09 | 2013-03-12 | D1451 radiation curable supercoatings for multi-mode optical fiber |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20120128314A1 true US20120128314A1 (en) | 2012-05-24 |
Family
ID=43478250
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/388,726 Abandoned US20120128314A1 (en) | 2009-10-09 | 2010-10-08 | D1451 methods for formulating radiation curable supercoatings for optical fiber |
| US13/797,866 Abandoned US20130196069A1 (en) | 2009-10-09 | 2013-03-12 | D1451 multi-layer film drawdown method |
| US13/797,908 Active US8731366B2 (en) | 2009-10-09 | 2013-03-12 | D1451 radiation curable supercoatings for single mode optical fiber |
| US13/797,935 Active US8724956B2 (en) | 2009-10-09 | 2013-03-12 | D1451 radiation curable supercoatings for multi-mode optical fiber |
Family Applications After (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/797,866 Abandoned US20130196069A1 (en) | 2009-10-09 | 2013-03-12 | D1451 multi-layer film drawdown method |
| US13/797,908 Active US8731366B2 (en) | 2009-10-09 | 2013-03-12 | D1451 radiation curable supercoatings for single mode optical fiber |
| US13/797,935 Active US8724956B2 (en) | 2009-10-09 | 2013-03-12 | D1451 radiation curable supercoatings for multi-mode optical fiber |
Country Status (9)
| Country | Link |
|---|---|
| US (4) | US20120128314A1 (cg-RX-API-DMAC7.html) |
| EP (4) | EP2479156A1 (cg-RX-API-DMAC7.html) |
| JP (4) | JP5493157B2 (cg-RX-API-DMAC7.html) |
| KR (4) | KR101395483B1 (cg-RX-API-DMAC7.html) |
| CN (4) | CN103755130A (cg-RX-API-DMAC7.html) |
| BR (1) | BR112012007660A2 (cg-RX-API-DMAC7.html) |
| IN (1) | IN2012DN00921A (cg-RX-API-DMAC7.html) |
| RU (4) | RU2504522C2 (cg-RX-API-DMAC7.html) |
| WO (1) | WO2011043825A2 (cg-RX-API-DMAC7.html) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013181600A3 (en) * | 2012-06-01 | 2014-01-23 | Bioformix Inc. | Optical material and articles formed therefrom |
| US20140308015A1 (en) * | 2013-04-15 | 2014-10-16 | Corning Incorporated | Low diameter optical fiber |
| WO2014179404A1 (en) * | 2013-05-02 | 2014-11-06 | Corning Incorporated | Optical fiber with large mode field diameter and low microbending losses |
| US20160297105A1 (en) * | 2013-12-03 | 2016-10-13 | Ocv Interllectual Capital, Llc | Uv-curable glass fiber sizing compositions |
| EP4177283A4 (en) * | 2020-07-02 | 2023-12-20 | Sumitomo Electric Industries, Ltd. | RESIN COMPOSITION, OPTICAL FIBER AND OPTICAL FIBER PRODUCTION METHOD |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| IN2012DN00921A (cg-RX-API-DMAC7.html) | 2009-10-09 | 2015-04-03 | Dsm Ip Assets Bv | |
| US9810838B2 (en) * | 2013-09-12 | 2017-11-07 | Corning Incorporated | Fiber coatings with low young's modulus and high tear strength |
| US10370557B2 (en) | 2014-11-19 | 2019-08-06 | Dsm Ip Assets B.V. | D1563 radiation curable secondary coating for optical fibers |
| US10197471B2 (en) | 2015-09-21 | 2019-02-05 | Corning Incorporated | Methods and devices for measuring properties of coatings on optical fibers |
| ES2905275T3 (es) * | 2016-03-10 | 2022-04-07 | Owens Corning Intellectual Capital Llc | Fibra compuesta revestida con sílice para el refuerzo de hormigón |
| JP6699493B2 (ja) | 2016-10-03 | 2020-05-27 | 住友電気工業株式会社 | 光ファイバ心線 |
| JP2018077303A (ja) * | 2016-11-08 | 2018-05-17 | 住友電気工業株式会社 | 光ファイバ心線 |
| WO2019026356A1 (ja) * | 2017-07-31 | 2019-02-07 | 住友電気工業株式会社 | 光ファイバ及び光ファイバの製造方法 |
| JP2019045517A (ja) * | 2017-08-29 | 2019-03-22 | 住友電気工業株式会社 | 光ファイバ |
| US11028214B2 (en) | 2018-01-22 | 2021-06-08 | Corning Incorporated | Synthesis of oligomer for optical fiber coating |
| US11360260B2 (en) * | 2018-02-20 | 2022-06-14 | Sumitomo Electric Industries, Ltd. | Optical fiber manufacturing method and optical fiber |
| WO2019221248A1 (ja) * | 2018-05-16 | 2019-11-21 | 住友電気工業株式会社 | 光ファイバ |
| KR20210092211A (ko) * | 2018-10-19 | 2021-07-23 | 더 리전트 오브 더 유니버시티 오브 캘리포니아 | 광경화성 수지 조성물, 광경화성 수지 물품, 및 상기 물품의 제조 방법 |
| WO2020256019A1 (ja) * | 2019-06-19 | 2020-12-24 | 住友電気工業株式会社 | 光ファイバケーブル |
| US11822117B2 (en) * | 2019-10-08 | 2023-11-21 | Corning Incorporated | Primary coating compositions with improved microbending performance |
| WO2022075050A1 (ja) * | 2020-10-05 | 2022-04-14 | 住友電気工業株式会社 | 樹脂組成物、光ファイバ及び光ファイバの製造方法 |
Citations (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4896928A (en) * | 1988-08-29 | 1990-01-30 | Coherent, Inc. | Chromatically invariant multilayer dielectric thin film coating |
| US4973611A (en) * | 1988-04-04 | 1990-11-27 | Uvexs Incorporated | Optical fiber buffer coating with Tg |
| EP0431283A2 (en) * | 1989-11-21 | 1991-06-12 | International Business Machines Corporation | Manufacturing process optimization |
| EP0445640A2 (en) * | 1990-03-09 | 1991-09-11 | International Business Machines Corporation | Computer integrated manufacturing |
| US5104433A (en) * | 1989-05-15 | 1992-04-14 | At&T Bell Laboratories | Method of making optical fiber |
| US5155677A (en) * | 1989-11-21 | 1992-10-13 | International Business Machines Corporation | Manufacturing process optimizations |
| US5257339A (en) * | 1992-07-29 | 1993-10-26 | At&T Bell Laboratories | Package of optical fiber suitable for high speed payout |
| US5508091A (en) * | 1992-12-04 | 1996-04-16 | Photran Corporation | Transparent electrodes for liquid cells and liquid crystal displays |
| US5558937A (en) * | 1990-11-28 | 1996-09-24 | Loctite Corporation | Optical fiber primary coatings and fibers coated therewith |
| US5985356A (en) * | 1994-10-18 | 1999-11-16 | The Regents Of The University Of California | Combinatorial synthesis of novel materials |
| US20020025380A1 (en) * | 2000-05-24 | 2002-02-28 | Luc Vanmaele | Combinatorial coating for developing novel materials |
| US6362885B1 (en) * | 1997-05-09 | 2002-03-26 | Nippon Paint Co., Ltd. | Method of determining the formulating ratio of a metallic or pearlescent pigment to a colorant or the formulating amount of a metallic or pearlescent pigment in the computer-aided color matching of a metallic or pearlescent paint |
| US20020069674A1 (en) * | 2000-12-13 | 2002-06-13 | Guy Patricia C. | Methods and apparatus for automated manufacture of optical fiber |
| US20030061860A1 (en) * | 2001-10-01 | 2003-04-03 | Zhicheng Hu | Exhaust articles for internal combustion engines |
| US20030223060A1 (en) * | 2002-05-30 | 2003-12-04 | General Electric Company | Method, system and computer product for formulating a bi-directional color match |
| US20050226582A1 (en) * | 2002-04-24 | 2005-10-13 | Nagelvoort Sandra J | Radiation curable coating composition for optical fiber with reduced attenuation loss |
| US7094607B1 (en) * | 1999-10-29 | 2006-08-22 | Avery Dennison Corporation | Apparatus for high-throughput production of coat material arrays, and analytical methods using such arrays |
| US20080226911A1 (en) * | 2006-12-14 | 2008-09-18 | Xiaosong Wu | D1378 ca radiation curable primary coating for optical fiber |
| US20080226913A1 (en) * | 2006-12-14 | 2008-09-18 | Wendell Wayne Cattron | D1369 d radiation curable secondary coating for optical fiber |
| US20080226916A1 (en) * | 2006-12-14 | 2008-09-18 | Paulus Antonius Maria Steeman | D1363 bt radiation curable primary coatings on optical fiber |
| US20080226912A1 (en) * | 2006-12-14 | 2008-09-18 | Norlin Tyson Dean | D1365 bj radiation curable primary coating for optical fiber |
| US20080233397A1 (en) * | 2006-12-14 | 2008-09-25 | Wendell Wayne Cattron | D1370 r radiation curable secondary coating for optical fiber |
| US20080241535A1 (en) * | 2006-12-14 | 2008-10-02 | Wendell Wayne Cattron | D1364 bt secondary coatings on optical fiber |
| US20100020840A1 (en) * | 2007-03-05 | 2010-01-28 | Fujitsu Limited | Optical semiconductor device |
Family Cites Families (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4950049A (en) * | 1989-02-28 | 1990-08-21 | At&T Bell Laboratories | Stable package of elongated optical fiber strand material |
| US5219896A (en) * | 1989-09-06 | 1993-06-15 | Stamicarbon, B.V. | Primary coatings for optical glass fibers including poly(carbonate-urethane) acrylates |
| JPH06258557A (ja) * | 1993-03-04 | 1994-09-16 | Sumitomo Electric Ind Ltd | 被覆光ファイバユニット |
| US5958584A (en) * | 1996-07-22 | 1999-09-28 | Dsm Nv | Radiation-curable, optical glass fiber coating composition and optical glass fiber drawing method |
| DE69736297T2 (de) * | 1996-11-08 | 2007-07-26 | Dsm Ip Assets B.V. | Strahlungshärtbare optische glasfaserbeschichtungszusammensetzungen, beschichtete optische glasfasern und optische glasfaserzusammenstellungen |
| KR100460366B1 (ko) * | 1997-01-20 | 2004-12-08 | 스미토모덴키고교가부시키가이샤 | 피복된 광섬유 및 이의 제조방법 |
| WO1998033081A1 (en) | 1997-01-24 | 1998-07-30 | Borden Chemical, Inc. | Coated optical fibers having strippable primary coatings and processes for making and using same |
| WO1998039374A1 (en) * | 1997-03-07 | 1998-09-11 | Dsm N.V. | Radiation-curable composition having high cure speed |
| DE69816426T2 (de) * | 1997-03-18 | 2004-05-06 | Dsm N.V. | Verfahren zum härten von optikfaserbeschichtungen und druckfarben mittels elektronenstrahlung niedriger energie |
| CN1175036C (zh) * | 1997-04-22 | 2004-11-10 | Dsm有限公司 | 液态可固化树脂组合物 |
| US6197422B1 (en) * | 1997-05-06 | 2001-03-06 | Dsm, N.V. | Ribbon assemblies and radiation-curable ink compositions for use in forming the ribbon assemblies |
| CN100519674C (zh) * | 1997-05-06 | 2009-07-29 | Dsm;Ip;财产有限公司 | 油墨涂层组合物、其固化方法、光导玻璃纤维和带状组件 |
| US6323255B1 (en) * | 1998-09-30 | 2001-11-27 | Dsm N.V. | Radiation-curable composition |
| KR20020067056A (ko) * | 1999-12-30 | 2002-08-21 | 코닝 인코포레이티드 | 1차 광섬유 코팅의 급속 경화방법 |
| US6438306B1 (en) * | 2000-04-07 | 2002-08-20 | Dsm N.V. | Radiation curable resin composition |
| US6775451B1 (en) * | 1999-12-30 | 2004-08-10 | Corning Incorporated | Secondary coating composition for optical fibers |
| US6436540B1 (en) * | 2000-02-18 | 2002-08-20 | Omnova Solutions Inc. | Co-mingled polyurethane-polyvinyl ester polymer compositions and laminates |
| US6587753B2 (en) | 2000-05-01 | 2003-07-01 | Ondeo Nalco Company | Use of control matrix for boiler control |
| US6315909B1 (en) | 2000-05-01 | 2001-11-13 | Nalco Chemical Company | Use of control matrix for cooling water systems control |
| US6808934B2 (en) * | 2000-09-25 | 2004-10-26 | Picoliter Inc. | High-throughput biomolecular crystallization and biomolecular crystal screening |
| US6849684B2 (en) * | 2000-10-20 | 2005-02-01 | E. I. Du Pont De Nemours And Company | Molded soft elastomer/hard polyester composition with noise damping properties |
| US7706659B2 (en) * | 2000-11-22 | 2010-04-27 | Dsm Ip Assets B.V. | Coated optical fibers |
| US20030002845A1 (en) * | 2001-01-12 | 2003-01-02 | Chawla Chander P. | Radiation curable compositions comprising alkoxylated aliphatic diluents |
| US20050227000A1 (en) * | 2004-04-13 | 2005-10-13 | Saint-Gobain Ceramics & Plastics, Inc. | Surface coating solution |
| EP1650174B1 (en) * | 2002-04-24 | 2012-06-27 | Prysmian S.p.A. | Optical fiber |
| US20040022511A1 (en) * | 2002-04-24 | 2004-02-05 | Eekelen Jan Van | Coated optical fibers |
| DE10226932A1 (de) * | 2002-06-17 | 2003-12-24 | Bayer Ag | Strahlenhärtende Beschichtungsmittel |
| US6991679B2 (en) * | 2003-02-28 | 2006-01-31 | Fitel Usa Corporation | Multiple feed applicator assembly for coating optical fibers |
| US20040179799A1 (en) * | 2003-03-10 | 2004-09-16 | Kariofilis Konstadinidis | Fiber optic cable comprising a core surrounded by coating having a radially-varying elastic modulus |
| FR2867184A1 (fr) * | 2004-03-04 | 2005-09-09 | Cit Alcatel | Fibre optique a revetement denudable et procede de denudage d'une telle fibre |
| EP1616921B1 (en) * | 2004-07-15 | 2007-10-31 | Agfa Graphics N.V. | Novel radiation curable compositions |
| JP2006249264A (ja) * | 2005-03-11 | 2006-09-21 | Jsr Corp | 液状硬化性樹脂組成物 |
| US8652705B2 (en) * | 2005-09-26 | 2014-02-18 | W.L. Gore & Associates, Inc. | Solid polymer electrolyte and process for making same |
| US7423105B2 (en) * | 2005-09-30 | 2008-09-09 | Corning Incorporated | Fast curing primary optical fiber coatings |
| DE602007012755D1 (de) | 2006-12-14 | 2011-04-07 | Dsm Ip Assets Bv | Strahlungshärtbare d1379-grundierbeschichtung für optische fasern |
| JP5663769B2 (ja) * | 2006-12-14 | 2015-02-04 | ディーエスエム アイピー アセッツ ビー.ブイ. | D1381光ファイバのためのスーパーコーティング |
| CN101535198B (zh) * | 2006-12-14 | 2012-06-27 | 帝斯曼知识产权资产管理有限公司 | 用于光纤的d1368 cr可辐射固化初级涂层 |
| GB0719464D0 (en) * | 2007-10-04 | 2007-11-14 | Sun Chemical Bv | An ink jet and a method of ink jet printing |
| IN2012DN00921A (cg-RX-API-DMAC7.html) | 2009-10-09 | 2015-04-03 | Dsm Ip Assets Bv |
-
2010
- 2010-10-08 IN IN921DEN2012 patent/IN2012DN00921A/en unknown
- 2010-10-08 JP JP2012523611A patent/JP5493157B2/ja not_active Expired - Fee Related
- 2010-10-08 RU RU2012112926/03A patent/RU2504522C2/ru active
- 2010-10-08 KR KR1020127008622A patent/KR101395483B1/ko not_active Expired - Fee Related
- 2010-10-08 KR KR1020127013780A patent/KR101494057B1/ko not_active Expired - Fee Related
- 2010-10-08 CN CN201310713755.1A patent/CN103755130A/zh active Pending
- 2010-10-08 CN CN201310713753.2A patent/CN103787591A/zh active Pending
- 2010-10-08 BR BR112012007660A patent/BR112012007660A2/pt not_active IP Right Cessation
- 2010-10-08 KR KR1020127013778A patent/KR101450413B1/ko not_active Expired - Fee Related
- 2010-10-08 EP EP12162213A patent/EP2479156A1/en not_active Withdrawn
- 2010-10-08 CN CN201310713970.1A patent/CN103755158A/zh active Pending
- 2010-10-08 EP EP12162207.0A patent/EP2479155B1/en not_active Not-in-force
- 2010-10-08 KR KR1020127013783A patent/KR101494058B1/ko not_active Expired - Fee Related
- 2010-10-08 EP EP12162235A patent/EP2484647A1/en not_active Withdrawn
- 2010-10-08 EP EP10768627A patent/EP2470484A2/en not_active Ceased
- 2010-10-08 US US13/388,726 patent/US20120128314A1/en not_active Abandoned
- 2010-10-08 RU RU2013132677/03A patent/RU2539444C1/ru active
- 2010-10-08 CN CN201080034768.0A patent/CN102548924B/zh not_active Expired - Fee Related
- 2010-10-08 WO PCT/US2010/002720 patent/WO2011043825A2/en not_active Ceased
-
2013
- 2013-03-12 US US13/797,866 patent/US20130196069A1/en not_active Abandoned
- 2013-03-12 US US13/797,908 patent/US8731366B2/en active Active
- 2013-03-12 US US13/797,935 patent/US8724956B2/en active Active
- 2013-07-15 RU RU2013132675/05A patent/RU2013132675A/ru not_active Application Discontinuation
- 2013-07-15 RU RU2013132679/03A patent/RU2013132679A/ru not_active Application Discontinuation
-
2014
- 2014-01-10 JP JP2014003659A patent/JP2014097925A/ja active Pending
- 2014-01-10 JP JP2014003656A patent/JP2014097924A/ja active Pending
- 2014-01-10 JP JP2014003653A patent/JP5691066B2/ja not_active Expired - Fee Related
Patent Citations (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4973611A (en) * | 1988-04-04 | 1990-11-27 | Uvexs Incorporated | Optical fiber buffer coating with Tg |
| US4896928A (en) * | 1988-08-29 | 1990-01-30 | Coherent, Inc. | Chromatically invariant multilayer dielectric thin film coating |
| US5104433A (en) * | 1989-05-15 | 1992-04-14 | At&T Bell Laboratories | Method of making optical fiber |
| EP0431283A2 (en) * | 1989-11-21 | 1991-06-12 | International Business Machines Corporation | Manufacturing process optimization |
| US5155677A (en) * | 1989-11-21 | 1992-10-13 | International Business Machines Corporation | Manufacturing process optimizations |
| EP0445640A2 (en) * | 1990-03-09 | 1991-09-11 | International Business Machines Corporation | Computer integrated manufacturing |
| US5558937A (en) * | 1990-11-28 | 1996-09-24 | Loctite Corporation | Optical fiber primary coatings and fibers coated therewith |
| US5257339A (en) * | 1992-07-29 | 1993-10-26 | At&T Bell Laboratories | Package of optical fiber suitable for high speed payout |
| US5508091A (en) * | 1992-12-04 | 1996-04-16 | Photran Corporation | Transparent electrodes for liquid cells and liquid crystal displays |
| US5985356A (en) * | 1994-10-18 | 1999-11-16 | The Regents Of The University Of California | Combinatorial synthesis of novel materials |
| US6362885B1 (en) * | 1997-05-09 | 2002-03-26 | Nippon Paint Co., Ltd. | Method of determining the formulating ratio of a metallic or pearlescent pigment to a colorant or the formulating amount of a metallic or pearlescent pigment in the computer-aided color matching of a metallic or pearlescent paint |
| US7094607B1 (en) * | 1999-10-29 | 2006-08-22 | Avery Dennison Corporation | Apparatus for high-throughput production of coat material arrays, and analytical methods using such arrays |
| US20020025380A1 (en) * | 2000-05-24 | 2002-02-28 | Luc Vanmaele | Combinatorial coating for developing novel materials |
| US6562411B2 (en) * | 2000-05-24 | 2003-05-13 | Agfa-Gevaert | Combinatorial coating for developing novel materials |
| US20020069674A1 (en) * | 2000-12-13 | 2002-06-13 | Guy Patricia C. | Methods and apparatus for automated manufacture of optical fiber |
| US20030061860A1 (en) * | 2001-10-01 | 2003-04-03 | Zhicheng Hu | Exhaust articles for internal combustion engines |
| US20050226582A1 (en) * | 2002-04-24 | 2005-10-13 | Nagelvoort Sandra J | Radiation curable coating composition for optical fiber with reduced attenuation loss |
| US20030223060A1 (en) * | 2002-05-30 | 2003-12-04 | General Electric Company | Method, system and computer product for formulating a bi-directional color match |
| US20080226911A1 (en) * | 2006-12-14 | 2008-09-18 | Xiaosong Wu | D1378 ca radiation curable primary coating for optical fiber |
| US20080226913A1 (en) * | 2006-12-14 | 2008-09-18 | Wendell Wayne Cattron | D1369 d radiation curable secondary coating for optical fiber |
| US20080226916A1 (en) * | 2006-12-14 | 2008-09-18 | Paulus Antonius Maria Steeman | D1363 bt radiation curable primary coatings on optical fiber |
| US20080226912A1 (en) * | 2006-12-14 | 2008-09-18 | Norlin Tyson Dean | D1365 bj radiation curable primary coating for optical fiber |
| US20080233397A1 (en) * | 2006-12-14 | 2008-09-25 | Wendell Wayne Cattron | D1370 r radiation curable secondary coating for optical fiber |
| US20080241535A1 (en) * | 2006-12-14 | 2008-10-02 | Wendell Wayne Cattron | D1364 bt secondary coatings on optical fiber |
| US20120003474A1 (en) * | 2006-12-14 | 2012-01-05 | Dsm Ip Assets B.V. | D 1364 bt secondary coatings on optical fiber |
| US20100020840A1 (en) * | 2007-03-05 | 2010-01-28 | Fujitsu Limited | Optical semiconductor device |
| US7983318B2 (en) * | 2007-03-05 | 2011-07-19 | Fujitsu Limited | Optical semiconductor device |
Non-Patent Citations (2)
| Title |
|---|
| Joint National Fibre Facility, available at http://www2.eet.unsw.edu.au/photonics/News-Tower.html. * |
| Potyrailo et al., Combinatorial and High-Throughput Development of Sensing Materials: The First 10 Years, Chem. Rev. 2008, 108, 770-813.. * |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013181600A3 (en) * | 2012-06-01 | 2014-01-23 | Bioformix Inc. | Optical material and articles formed therefrom |
| US9995874B2 (en) * | 2013-04-15 | 2018-06-12 | Corning Incorporated | Low diameter optical fiber |
| US9057817B2 (en) * | 2013-04-15 | 2015-06-16 | Corning Incorporated | Low diameter optical fiber |
| US20140308015A1 (en) * | 2013-04-15 | 2014-10-16 | Corning Incorporated | Low diameter optical fiber |
| US11009655B2 (en) | 2013-04-15 | 2021-05-18 | Corning Incorporated | Low diameter optical fiber |
| US11009656B2 (en) | 2013-04-15 | 2021-05-18 | Corning Incorporated | Low diameter optical fiber |
| US11150403B2 (en) | 2013-04-15 | 2021-10-19 | Corning Incorporated | Low diameter optical fiber |
| WO2014179404A1 (en) * | 2013-05-02 | 2014-11-06 | Corning Incorporated | Optical fiber with large mode field diameter and low microbending losses |
| US9383511B2 (en) | 2013-05-02 | 2016-07-05 | Corning Incorporated | Optical fiber with large mode field diameter and low microbending losses |
| US10094973B2 (en) | 2013-05-02 | 2018-10-09 | Corning Incorporated | Optical fiber with large mode field diameter and low microbending losses |
| US20160297105A1 (en) * | 2013-12-03 | 2016-10-13 | Ocv Interllectual Capital, Llc | Uv-curable glass fiber sizing compositions |
| US10035284B2 (en) * | 2013-12-03 | 2018-07-31 | Ocv Intellectual Capital, Llc | UV-curable glass fiber sizing compositions |
| EP4177283A4 (en) * | 2020-07-02 | 2023-12-20 | Sumitomo Electric Industries, Ltd. | RESIN COMPOSITION, OPTICAL FIBER AND OPTICAL FIBER PRODUCTION METHOD |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8724956B2 (en) | D1451 radiation curable supercoatings for multi-mode optical fiber | |
| DK2473455T3 (en) | Radiation-curable COATING FOR OPTICAL FIBER | |
| EP1828277B1 (en) | Radiation curable coating composition | |
| KR20160039567A (ko) | 작은 직경 광 섬유 | |
| CN113728259A (zh) | 耐穿刺的直径减小的多模光纤 | |
| US20130236709A1 (en) | D1381 supercoatings for optical fiber | |
| CN113711096A (zh) | 包层厚度减小的多模光纤 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: DSM IP ASSETS B.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WU, XIAOSONG;SCHMID, STEVEN ROBERT;BISHOP, TIMOTHY EDWARD;AND OTHERS;SIGNING DATES FROM 20120206 TO 20120308;REEL/FRAME:027854/0946 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |