US20120122785A1 - Combination of a leucine source and an omega- 3 unsaturated fatty acid source for use in the treatment of hypercalcaemia - Google Patents

Combination of a leucine source and an omega- 3 unsaturated fatty acid source for use in the treatment of hypercalcaemia Download PDF

Info

Publication number
US20120122785A1
US20120122785A1 US13/322,730 US201013322730A US2012122785A1 US 20120122785 A1 US20120122785 A1 US 20120122785A1 US 201013322730 A US201013322730 A US 201013322730A US 2012122785 A1 US2012122785 A1 US 2012122785A1
Authority
US
United States
Prior art keywords
leucine
composition
combination
fatty acid
use according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/322,730
Other languages
English (en)
Inventor
Klaske van Norren
Joyce Faber
Adrianus Lambertus Bertholdus van Helvoort
Robert Johan Joseph Hageman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nutricia NV
Original Assignee
Nutricia NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41397536&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20120122785(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nutricia NV filed Critical Nutricia NV
Assigned to N.V. NUTRICIA reassignment N.V. NUTRICIA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FABER, JOYCE, HAGEMAN, ROBERT JOHAN JOSEPH, VAN HELVOORT, ADRIANUS LAMBERTUS BERTHOLDUS, VAN NORREN, KLASKE
Publication of US20120122785A1 publication Critical patent/US20120122785A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/202Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • A23L33/12Fatty acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/175Amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/702Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/02Peptides of undefined number of amino acids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/08Drugs for disorders of the alimentary tract or the digestive system for nausea, cinetosis or vertigo; Antiemetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/14Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/02Nutrients, e.g. vitamins, minerals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/12Drugs for disorders of the metabolism for electrolyte homeostasis
    • A61P3/14Drugs for disorders of the metabolism for electrolyte homeostasis for calcium homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the invention is directed to a specific combination of at least two components for treatment of hypercalcaemia, for reducing or avoiding a reduction in bone mineral density in a subject, or for in vivo regulating of the blood plasma calcium homeostasis.
  • Hypercalcemia is defined at plasma calcium levels above 2.8 mmol/L in men or above 2.5 mmol/L in women (Bradley & Hoskin, 2006, Hypercalcaemia in head and neck squamous cell carcinoma. Curr Opin Otolaryngol Head Neck Surg., 14, 51-4).
  • hypercalcaemic patients are related to the physiological and neuro/muscular function of calcium and include: fatigue, nausea, vomiting, constipation, mental decline, renal failure, coma, head ache and altered sensorium.
  • Hypercalcaemia most commonly occurs in association with malignant disorders or primary hyperparathyroidism.
  • neoplasms e.g. lung cancer, breast cancer, kidney cancer, lymphoblastic leukaemia, multiple myeloma cancer or head and neck cancer develop hypercalcaemia.
  • Calcium levels in blood have been reported to be an independent predictor of quality of life in multiple myeloma patients. Moreover, a correlation between calcium levels and physical functioning scores of these patients has been reported. Apart from fatigue, other quality of life parameters have been reported to be correlated to calcium levels. A significant relationship between calcium and appetite loss at diagnosis was reported. Moreover, serum calcium was related to nausea and vomiting. It was mentioned as a predictor of pain and a relation with cognitive function was suggested.
  • Serum calcium is an independent predictor of quality of life in multiple myeloma ( Eur J. Haematol., 78, 29-34. Epub 2006 Oct. 13.).
  • the calcium level in blood is an independent predictor of quality of life in multiple myeloma.
  • 32% of the 686 patients were hypercalcaemic.
  • Insulin resistance is a major problem in different kind of chronic diseases like COPD, HIV, Alzheimer, cancer, renal failure, heart failure, and a disease state characterized by a high plasma and/or serum level of pro-inflammatory cytokines.
  • anthracyclines are widely used to treat solid tumours and haematological malignancies. Patients suffering from these types of cancers are also at risk of developing hypercalcaemia (Higdon, M. L. & Higdon, J. A. (2006). Treatment of oncologic emergencies. Am Fam Physician., 74, 1873-80).
  • Direct effects of the anthracycline doxorubicin on calcium homeostasis in skeletal muscle might contribute to chemotherapy induced fatigue (van Norren, K. et al. (2009), “Direct effects of doxorubicin on skeletal muscle contribute to fatigue” Br J.
  • the patient group suffering from solid tumours and haematological malignancies and treated with anthracyclines or other another form of chemotherapy might even be more susceptible to sustained exhaustion as a result of impaired muscle function due to elevated calcium levels. Also irradiation can increase or initiate bone breakdown.
  • WO 01/60355 relates to the use of compounds that are an activator of or a ligand to peroxisome proliferator-activated receptors for the treatment or prophylaxis of bone disease, e.g. a cancer which results in hypercalcaemia.
  • a cancer which results in hypercalcaemia.
  • unsaturated fatty acids are mentioned, which apparently may contribute to bone anabolic activity.
  • no experimental results are shown specifically directed at the treatment of subjects suffering from hypercalcaemia.
  • no effect of unsaturated fatty acids on plasma calcium levels is shown or suggested.
  • mice have found that the use of unsaturated fatty acid (in a vegetable oil, a fish oil or a mixture thereof) alone may be insufficient to have a significant effect on plasma calcium levels in tumour bearing mice, see the examples below. Further, no significant effect of unsaturated fatty acid (in a vegetable oil, a fish oil or a mixture thereof) alone on a reduction of bone catabolism (resulting in an increased bone density) was observed in the mice.
  • the present invention relates to a combination of a leucine source and at least one ⁇ -3 polyunsaturated fatty acid, for prophylactic or therapeutic treatment of hypercalcaemia.
  • the invention relates to a combination of a leucine source and at least one ⁇ -3 polyunsaturated fatty acid, for reducing a loss in bone mineral density or avoiding a reduction in bone mineral density in a subject.
  • the invention relates to a combination of a leucine source and at least one ⁇ -3 polyunsaturated fatty acid, for in vivo regulating of the blood plasma calcium homeostasis.
  • the invention relates to a combination of a leucine source and at least one ⁇ -3 polyunsaturated fatty acid source for improving appetite and/or for increasing total voluntary food intake per day and/or for reducing nausea and/or for reducing vomiting urges.
  • Loss of appetite, nausea and urges to vomit are symptoms that may be associated with abnormal blood plasma calcium levels.
  • the invention relates to a nutritional composition, a pharmaceutical composition or a nutraceutical composition comprising a combination of leucine and at least one ⁇ -3 polyunsaturated fatty acid for prophylactic or therapeutic treatment of hypercalcaemia, for reducing a loss in bone mineral density or avoiding a reduction in bone mineral density in a subject, for in vivo regulating of the blood plasma calcium homeostasis, for improving appetite, for reducing nausea or reducing vomiting urges.
  • the combination or composition of the invention is for prophylactic or therapeutic treatment of excessive calcium release from bone and/or skeletal muscle; and/or excessive calcium accumulation due to kidney failure or hyperparathyroidism.
  • This accumulation or excessive release might be associated with fatigue, tiredness, loss of initiative, loss of muscle function, heart arrhythmia, osteopenia, osteoporoses, bone diseases, nausea, vomiting or loss of appetite, and can result in polyuria, oligouria and kidney damage.
  • a combination of a leucine source and a ⁇ -3 polyunsaturated fatty acid has a beneficial effect on bone mineral density and/or on calcium levels in blood plasma in subjects suffering from hypercalcaemia. It is noted that a treatment with a combination of a leucine source and a ⁇ -3 polyunsaturated fatty acid source in accordance with the invention the calcium level in blood plasma does not have to lead to a reduction to a normal calcium level, in all circumstances.
  • the calcium levels may be brought to or maintained at a normal vale or slightly elevated level (up to about 2.8 mM in humans), whereby the occurrence of an a medical emergency due to severe hypercalcaemia (calcium level in blood plasma exceeding 3.75 mM), which may result in coma or cardiac arrest, may be avoided.
  • the subject may benefit from one or more advantageous effects, such as improved muscle function (e.g. higher maximum force), less fatigue, increased physical activity, reduced cachexia, and/or addressing one or more of the symptoms like nausea, vomiting, constipation, mental decline, renal failure, head ache, altered sensorium, loss of appetite.
  • FIG. 1 shows the effect of leucine, ⁇ -3 polyunsaturated fatty acid (from fish oil) or the combination thereof on bone mineral density and plasma calcium levels.
  • C control
  • TB tumour-bearing mice receiving control diet
  • leu leucine
  • fo fish oil.
  • FIG. 2 shows the effect of the total specific combination of leucine, (part bound in protein, part in free form) ⁇ -3 polyunsaturated fatty acid (from fish oil) and oligosaccharides on plasma calcium levels.
  • CON mice receiving control diet B
  • TB-CON tumour-bearing mice receiving control diet B
  • TB-SNC tumour-bearing mice receiving the specific nutritional combination.
  • FIG. 3 shows correlations of muscle function parameters with calcium levels.
  • Data labels represent a Pearson correlation factor R with p ⁇ 0.05.
  • Contr2*relaxation/mg the square root of the contraction time corrected for muscle mass times the maximal relaxation velocity corrected for muscle mass.
  • FIG. 4 shows representative examples of individual force curves (the curve of animals with max force data best fitting to the curve of the mean).
  • CON mice receiving control diet B
  • TB-CON tumour-bearing mice receiving control diet B
  • TB-SNC tumour-bearing mice receiving the specific nutritional combination.
  • FIG. 5 shows measurement of fatigue during repetitive stimulation, a model mimicking exercise. Data presented are: cumulative loss per 10 repeats in muscle corrected maximal force divided by the muscle mass corrected maximal force at repeat 1.
  • FIG. 6 shows distribution of relative loss in maximal force during repetitive stimulation, a model mimicking exercise.
  • Data presented are: muscle corrected maximal force at time repeat x ⁇ maximal force at time repeat (x ⁇ 20) divided by the muscle mass corrected maximal force at repeat 1.
  • CON mice receiving control diet B
  • TB-CON tumour-bearing mice receiving control diet B
  • TB-SNC tumour-bearing
  • FIG. 7 shows correlations of muscle function parameters during exercise with calcium levels.
  • Data labels represent a Pearson correlation factor R with p ⁇ 0.05.
  • Two data points represented as open labels had a p value of 0.077 and 0.074 respectively.
  • FIG. 8 shows daily activity per mouse when compared to activity per mouse at day 2.
  • CON mice receiving control diet B
  • TB-CON tumour-bearing mice receiving control diet B
  • TB-SNC tumour-bearing mice receiving the specific nutritional combination.
  • a combination of a leucine source and an ⁇ -3 polyunsaturated fatty acid source for a specific purpose it is meant that both leucine (provided by that leucine source) and ⁇ -3 polyunsaturated fatty acid (provided by that ⁇ -3 polyunsaturated fatty acid source) are intended to be used for that purpose in combination.
  • the leucine source and ⁇ -3 polyunsaturated fatty acid source may be administered together in a single formulation (such as a food, a nutraceutical or a pharmaceutical composition), administered simultaneously in separate formulations or subsequently in separate formulations. If administered subsequently, the formulations are usually administered shortly after each other, i.e. in case of oral/enteral administration the later administered formulation is then usually administered before the earlier administered formulation has been absorbed by the body.
  • a combination or composition according to the invention may be used for treatment of any vertebrate, in particular any mammal, more in particular any human.
  • the subject may be male of female.
  • the subject may be a child, an adolescent or an adult.
  • Hypercalcaemia can be diagnosed in a manner known per se, by determining the blood plasma calcium level.
  • a human male is considered to be hypercalcaemic at plasma calcium levels above 2.8 mmol/L
  • a human female is considered to be hypercalcaemic at plasma at calcium levels above 2.5 mmol/L.
  • the combination or composition is for treatment of an elderly person.
  • an elderly person is a human of the age of 50 or more, in particular of the age of 55 or more, more in particular of the age of 60 or more, more in particular of the age of 65 or more.
  • This rather broad definition takes into account the fact that the average age varies between different populations, on different continents, etc.
  • Most developed world countries have accepted the chronological age of 65 years as a definition of ‘elderly’ or older person (associated with the age at which one may begin to receive pension benefits), but like many westernized concepts, this does not adapt well to e.g. the situation in Africa.
  • any form of hypercalcaemia may be treated in accordance with the invention, in particular hypercalcaemia at least partially caused by excessive skeletal calcium release and/or by decreased renal calcium excretion.
  • the subject to be treated with a combination of composition according to the invention may suffer from hypercalcaemia (in which case the treatment may be referred to as ‘thereapeutic’), or the subject may be treated in order to avoid developing a hypercalcaemic state or at least reduce one or more symptoms resulting from hypercalcaemia, should hypercalcaemia develop after all.
  • a prophylactic treatment may in particular be useful for any subject having a serious risk of developing hypercalcemia.
  • a serious risk exists for subjects suffering from a disorder or condition, wherein hypercalcaemia is (statistically) known to develop in considerable cases.
  • the subject to be treated prophylactically or therapeutically may be selected from the group of subjects suffering from a cancer. It is contemplated that in particular subjects also treated with chemotherapy or radiotherapy, e.g. with an anthracycline, may also benefit from a treatment with a combination of composition of the invention.
  • the cancer may in particular be selected from the group of neoplasms. More in particular the cancer may be selected from lung cancer, breast cancer, kidney cancer, multiple myeloma cancer, and head and neck cancer. Further, in particular subjects suffering from a hematologic malignancy (multiple myeloma, lymphoma, leukaemia), vitamin-D related disorders that can result in hypercalcaemia (hypervitaminosis D), disorders/conditions related to high bone-turnover rates (hyperthyroidism, prolonged immobilisation, Paget's disease of the bone), renal failure, intoxication with specific substances that may result in hypercalcaemia (e.g. aluminium, intoxication, vitamin A intoxication) may benefit from a prophylactic or therapeutic treatment in accordance with the invention.
  • a hematologic malignancy multiple myeloma, lymphoma, leukaemia
  • vitamin-D related disorders that can result in hypercalcaemia hypercalcaemia
  • any food-grade lipid or mixture of lipids comprising free ⁇ -3 polyunsaturated fatty acid or fatty-acid derivative may serve as ⁇ -3 polyunsaturated fatty acid source.
  • fatty acids this is meant to include the corresponding fatty acid residues in derivatives thereof that provide the fatty acid when digested, such as triglycerides, diglycerides, monoglycerides and phospholipids of said fatty acids.
  • the ⁇ -3 polyunsaturated fatty acid for a treatment in accordance with the invention is usually selected from the group of long chain ⁇ -3 polyunsaturated fatty acids.
  • the term “long chain” is used herein for ⁇ -3 polyunsaturated fatty acids having at least 18 carbon atoms, in particular for C18-C26 ⁇ -3 polyunsaturated fatty acids.
  • Preferred ⁇ -3 polyunsaturated fatty acids in particular include eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), eicosatetraenoic acid (ETA) and docosapentaenoic acid (DPA). Of these, in particular good results have been achieved with a mixture comprising EPA and DHA. Further examples of ⁇ -3 polyunsaturated fatty acid, for use in accordance with the invention, include alpha-linolenic acid and stearidonic acid.
  • the ⁇ -3 polyunsaturated fatty acid content, in particular the long chain ⁇ -3 polyunsaturated fatty acid, in a composition of the invention preferably is at least 15 g/kg, in particular at least 20 g/kg, based on total weight of macronutrients of the composition.
  • the ⁇ -3 polyunsaturated fatty acid content, in particular the long chain ⁇ -3 polyunsaturated fatty acid is usually 50 g/kg or less, in particular 40 g/kg or less, based on total weight of macronutrients of the composition.
  • total weight of macronutrients the total content of proteineous matter, lipids, carbohydrate plus dietary fibres is meant.
  • a composition according to the invention may further comprise one or more other fatty acids in addition to the ⁇ -3 polyunsaturated fatty acid, which other fatty acid(s) which may be saturated or unsaturated.
  • the composition comprises 300 g/kg or less total fatty acids, in particular 200 g/kg or less, more in particular 180 g/kg or less, based on total weight of macronutrients of the composition.
  • the total fatty acid content of a composition according to the invention may in particular be at least 50 g/kg, based on total weight of macronutrients of the composition, more in particular at least 100 g/kg based on total weight of macronucrients of the composition.
  • the total ⁇ -3 polyunsaturated fatty acid content in particular the long chain ⁇ -3 polyunsaturated fatty acid, usually is at least 12 wt. %, preferably at least 15 wt. %, in particular at least 20 wt. %, more in particular at least 24 wt. %, based on total fatty acids.
  • the ⁇ -3 polyunsaturated fatty acid content, in particular the long chain ⁇ -3 polyunsaturated fatty acid usually is 75 wt. % or less, in particular 50 wt. % or less, more in particular 40 wt. % or less, based on total fatty acids.
  • a combination of leucine and a mixture of PUFA's which mixture comprises DHA and EPA, the DHA and EPA preferably providing at least 5 wt. %, in particular at least 14 wt. % of total fatty acids.
  • the weight to weight ratio DHA to EPA may in particular be in the range of 1:9 to 9:1, more in particular in the range of 2:8 to 8:2, or in the range of 3:7 1:1.
  • the weight to weight ratio DPA to EPA may in particular be in the range of 1:20 to 1:4, more in particular in the range of 1:15 to 1:8.
  • fatty acid(s) As sources for the fatty acid(s) various oils are commercially available, e.g. various oils from cereals and other plants.
  • Marine oil such as fish oil, oil from plankton or oil from algae is particular suitable as a source for ⁇ -3 polyunsaturated fatty acids.
  • at least 70 wt. % of the ⁇ 3-polyunsaturated fatty acid content originates from marine oil, in particular from fish oil or from oil from algae.
  • a daily dosage for an adult subject, e.g. weighing 70 kg, in particular an adult human
  • the combination or composition is usually administered to provide a daily ⁇ 3-polyunsaturated long chain fatty acid dosage, in particular a long chain ⁇ -3 polyunsaturated fatty acid dosage, of at least 3.5 g/day.
  • the upper limit may be determined based on a maximum recommended daily dosage, according to general dietary principles. In particular, said dosage may be 25 g/day or less or 20 g/day or less.
  • said daily ⁇ -3 polyunsaturated fatty acid dosage is preferably in the range of 3.5 to 6 g/day.
  • said daily ⁇ -3 polyunsaturated fatty acid dosage is preferably in the range of 10 to 20 g/day.
  • Leucine generally forms part of a group of molecules that may be referred to herein as ‘proteinaceous matter’.
  • Proteinaceous matter is formed by moieties formed from amino acids.
  • amino acids as used herein includes amino-acid residues (e.g. in peptides).
  • proteinaceous matter includes free amino acids, amino acid salts, amino acid esters, the amino acid residues bound to conjugating molecules and peptides, including proteins.
  • a specific amino acid e.g. leucine
  • this is meant to include the specific amino acid (residues) present as a salt, in a bound form, as well as the free specific amino acid.
  • leucine source is used for any compound that provides leucine when properly administered to the body, in particular that provides leucine, upon digestion of the source.
  • the leucine source may in particular comprise at least one of the following compounds: leucine in the form of a free acid (including its zwitter ionic state); leucine salts; peptides comprising one or more leucine residues; proteins comprising one or more leucine residues; and conjugates of leucine with a conjugating compound other than an amino acid, a protein, or a peptide, which conjugate is capable of being split into the free amino acid (or salt thereof), preferably in the gut or stomach or after absorption in the enterocytes or liver.
  • leucine may be present as a D-isomer or an L-isomer, preferably the leucine is L-leucine
  • leucine in any form is meant, i.e. including not only the free amino acid (acid/salt) but also leucine in any bound form.
  • a peptide is meant a combination of two or more amino acids, connected via one or more peptidic bonds.
  • amino acids are named amino-acid residues.
  • Peptides include oligopeptides and polypeptides, including proteins.
  • polypeptide a peptide chain comprising 14 or more amino-acid residues.
  • oligopeptide a peptide chain comprising 2 to 13 amino-acid residues.
  • Chiral amino acids present in a combination or composition of the invention may be in the L-form or the D-form, usually in the L-form.
  • the proteineceous matter may comprise one or more proteins, which protein(s) or part thereof may have been modified, in particular by (partial) hydrolysis, usually to the extent that up to 20% of the protein is hydrolysed to free amino acids, preferably to the extent that up to 10% of the protein is hydrolysed to free amino acids.
  • An advantage of (partially) hydrolysed protein is an advantageous amino-acid release behaviour, when enterally administered.
  • the peptide content (oligopeptide, polypeptide, protein) based on proteinaceous matter is usually at least 50 wt %, at least 60 wt %, or at least 75.
  • the wt % of peptide, based on proteinaceous matter is usually 99.5 wt % or less, preferably up 94 wt % or less.
  • the proteinaceaous matter preferably comprises at least one protein having at least 9 g of leucine per 100 g amino acids.
  • the proteinaceous matter (providing leucine) preferably comprises at least one protein selected from the group of whey proteins, casein, caseinate, soy proteins and wheat proteins, preferably from the group of whey proteins and casein.
  • whey proteins are meant globular proteins that can be isolated from whey.
  • globular whey proteins can be selected from beta-lactoglobulin, alpha-lactalbumin and serum albumin, including mixtures thereof.
  • mixtures that comprise whey proteins are whey isolate and whey concentrate.
  • the proteinaceous matter comprises whey protein, in particular at least 10 wt. % based upon the proteinaceous matter, preferably at least 15 wt. % based upon the proteinaceous matter.
  • the whey protein fraction is 50 wt. % or less based on proteinaceous matter, in particular 40 wt. % or less based on proteinaceous matter.
  • the concentration of denaturated whey protein preferably does not exceed 35 wt. % based upon the proteinaceous matter. This is advantageous with respect to avoiding the risk of gelation during storage.
  • the presence of a whey protein may offer a number of advantages.
  • the whey shows an advantageous release behaviour both in terms of release rate of the amino acids and the tendency to make the amino acids available for uptake by the body, essentially at the same time.
  • part of the whey protein is (partially) hydrolysed, in particular up to 50 wt % of the whey protein may be (slightly) hydrolysed, in particular 10-50 wt %.
  • a whey fraction is chosen comprising less that 20 wt % casein glycomacropeptide (GMP), more preferably less than 10 wt %.
  • the beta-lactoglobulin content preferably is larger than 40 wt %, more preferably 46-80 wt %. This is advantageous because beta-lactoglobulin has a relatively high leucine content.
  • the casein When used as intact protein, the casein preferably comprises a high concentration of beta casein, in particular more than 36 g/100 g casein, more in particular 38-70 g/100 g casein.
  • all or part of the leucine is present in the form of free amino acids, a salt thereof or as a conjugate with a conjugating molecule other than a protein or peptide, which conjugate is capable of being split in the free amino acid (or salt thereof) and the conjugating compound under the influence of a bile constituent and/or a pancreas excretia in duodenum and/or the ileum.
  • the amount of leucine in such form, in particular in the form of a salt or the free form is at least 1 wt. %, in particular at least 10 wt. %, more in particular at least 25 wt. %, based on total leucine.
  • the amount of leucine in such form, in particular in the form of a salt or the free form is up to 90 wt. %, in particular up to 75 wt. % more in particular up to 60 wt. %.
  • a composition according to the invention usually comprises 15 g/kg leucine or more, preferably at least 25 g/kg leucine, in particular 30 to 70 g/kg leucine, more in particular 40 to 60 g/kg leucine, (including bound leucine) based on total weight of the macronutrients of the composition.
  • the composition comprises at least 15 g/kg free leucine, based on total weight of proteinaceous matter, fat, carbohydrates plus dietary fibres, of the composition, in particular 22 to 35 g/kg freeleucine, more in particular 30 to 35 g/kg free leucine.
  • leucine is usually to be administered in a dosage of at least 5 g/day, preferably at least 7 g/day.
  • the dosage may in particular be up to 50 g/day, more in particular up to 35 g/day.
  • the amount of leucine as a percentage of total proteinaceaous matter is at least 12 wt. %
  • the amount of leucine as a percentage of total proteinaceous matter is at least 15 wt. %, in particular at least 18 wt. %, more in particular at least 19 wt. %.
  • Said amount is usually 30 wt. % or less, in particular 25 wt. % or less.
  • the combination or composition may further comprise one or more additional ingredients, in particular one or more ingredients selected from the group of digestible carbohydrates, indigestible carbohydrates and other dietary fibres, trace elements, minerals, vitamins, proteinaceous matter other than proteinaceous matter providing leucine (such as one or more free amino acids other than leucine), other lipids than the (poly)unsaturated fatty acid for treatment in accordance with the invention, and other typical additives for nutritional compositions, nutraceutical compositions or pharmaceutical compositions (such as antioxidants, flavourings, stabilising agent, or—in case of a pharmaceutical: a pharmaceutically acceptable carrier).
  • additional ingredients are, e.g., described in WO2003/041701 (N.V.
  • Nutricia and WO2007/073178 (N.V. Nutricia).
  • additional ingredients of which one or more may be present in a composition for use in accordance with the invention, in particular for a nutritional composition in particular include sodium, potassium, chloride, fluoride, iodide, phosphorous, magnesium, vitamin A, vitamin D3, vitamin E, vitamin K, vitamin B1, vitamin B2, vitamin B3, vitamin B5, vitamin B6, folic acid, vitamin B12, biotin, vitamin C, lipoic acid, zinc, iron, copper, manganese, molybdenum selenium and chromium.
  • Such components may be present in a concentration up to the daily recommended dose per daily serving.
  • compositions additionally comprising indigestible carbohydrate additionally comprising indigestible carbohydrate.
  • indigestible carbohydrate in combination with ( ⁇ 3-poly) unsaturated fatty acid, in particular DHA and/or EPA, and leucine may have an additional advantageous effect on the calcium level in plasma, via a reduction of systemic inflammatory cytokine levels.
  • indigestible carbohydrate, in particular indigestible oligosaccharide may be beneficial with respect to immune function.
  • one or more indigestible oligosaccharides may be present, such as one or more oligosaccharides selected from the group of galactooligosaccharides (GOS) and fructooligosaccharides (FOS).
  • GOS galactooligosaccharides
  • FOS fructooligosaccharides
  • an oligosaccharide is meant a chain comprising 2 to 25 saccharide residues.
  • the indigestible carbohydrate content may in particular be about 20-70 g/kg, more in particular 40-60 g/kg, based on weight of the macronutrients.
  • a daily dosage for an adult, e.g. about 70 kg
  • dietary intervention with a low glycemic index diet is advantageous with respect to treatment of hypercalcaemia, reducing of bone mineral loss or avoiding a reduction in bone mineral density in a subject or the in vivo regulating of the blood plasma calcium homeostasis.
  • a low glycemic index diet may affect the serum calcium levels in a positive manner because dietary intervention with a low glycemic index diet may have a positive effect on calcium serum levels, which effect may be associated to improved insulin sensitivity, as a result of intervention with the low glycemic index diet.
  • the composition is a nutritional composition with a low glycemic index.
  • the glycemic index will always be above zero, and usually be at least 1, in particular at least 5. Details on how to determine the glycemic index of a composition are provided in the Examples, herein below.
  • the skilled person will be able to formulate a composition with a relatively low glycemic index based on the information disclosed herein and common general knowledge.
  • the glycemic index of a composition is decreased.
  • Preferred examples of carbohydrates which are digested more slowly than glucose are isomaltulose, fructose, galactose, lactose, trehalose.
  • carbohydrates which are digested more slowly than glucose are isomaltulose, fructose, galactose, lactose, trehalose.
  • sugar and fibre can slow down gastric emptying.
  • fibres can form a physical barrier in the intestine, reducing absorption rate.
  • Amino acids from protein can increase insulin release (especially leucine), and thereby increase glucose uptake by the cells. All these mechanisms can contribute to a reduction in glycemic index.
  • the composition is a nutritional composition.
  • a nutritional composition is meant a composition that comprises naturally occurring components, preferably found in the food supply, that can be sold over the counter, as supplements, functional foods or food ingredients i.e. without a physician's or veterinarian's prescription.
  • a nutritional composition may also be a medical food, intended for the dietary management of a disease or condition for mammals under the supervision of a physician or veterinarian.
  • a nutritional composition according to the invention may be in the form of a liquid, e.g. a drink, in the form of a semi-liquid, e.g. a yoghurt or a custard, in the form of a gel, e.g. jelly cake or in the form of a solid, e.g. a candy bar or an ice-cream.
  • a liquid e.g. a drink
  • a semi-liquid e.g. a yoghurt or a custard
  • a gel e.g. jelly cake
  • a solid e.g. a candy bar or an ice-cream.
  • the composition of the invention is a sip feed.
  • the sip feed comprises 1.5-2.5 g/100 ml total leucine and 0.8-2 g/100 ml ⁇ -3 polyunsaturated fatty acid.
  • the composition of the invention is a tube feed.
  • the tube feed comprises 0.4-0.9 g/100 ml total leucine and 0.4-1 g/100 ml ⁇ -3 polyunsaturated fatty acid.
  • a liquid composition is prepared from a concentrate, e.g. from a liquid (e.g. with a viscosity of less than about 80 mPa ⁇ s), a semi-liquid (e.g. with a viscosity of more than about 80 mPa ⁇ s and less than about 400 mPa ⁇ s), a gel or a solid.
  • a concentrate e.g. from a liquid (e.g. with a viscosity of less than about 80 mPa ⁇ s), a semi-liquid (e.g. with a viscosity of more than about 80 mPa ⁇ s and less than about 400 mPa ⁇ s), a gel or a solid.
  • water may be used to dilute the concentrate.
  • such preparation occurs just before administration of the composition, e.g. in an instant-fashion.
  • a specific embodiment of the invention is a nutritional composition comprising proteinaceous matter, a lipid, and a digestible carbohydrate, wherein
  • the energetic value of a compound is based on the energy provided by the digestible part (in particular in a human) of the compound.
  • the energetic value is based on the contribution of proteinaceous matter, lipids and digestible carbohydrates, using the following calculation factors: 4 kcal/g for digestible carbohydrates and proteinaceous matter and 9 kcal/g for lipids.
  • the total energetic value of a liquid composition in accordance with the invention may be chosen within wide limits, e.g. from 0.2 to 4 kcal/ml. Usually the total energetic value is at least 0.3 kcal/ml, in particular at least 0.8 kcal/ml, more in particular at least 1.2 kcal/ml. Usually, the total energetic value is 3.0 kcal/ml or less, in particular 2.6 kcal/ml or less, more in particular 2.4 kcal/ml or less.
  • a liquid composition according to the invention has an energetic value in the range of 0.3 to 3.0 kcal/ml, preferably of 0.8 to 2.6 kcal/ml, more preferably of 1.2 to 2.4 kcal/ml.
  • the liquid composition in accordance with the invention has an energetic value in the range of 0.2 to 1.0 kcal/ml, preferably of 0.4 to 0.9 kcal/ml.
  • Such composition may in particular for use by elderly people.
  • Factors that play a role in determining a desirable energetic value include the ease of achieving a higher en % proteinaceous matter on the one hand and a fast emptying of the stomach (increasing anabolic response) on the other hand.
  • the combination or composition of the invention may be administered under the supervision of a medical specialist, or may be self-administered.
  • composition or combination may be administered enterally (by tube feeding) or orally.
  • Nutritional composition sip feed preferred range specific formulation (g/100 ml) (g/100 ml proteinaceous matter 9-12 10.1 containing total leucine 1.5-2.5 1.95 of which free leucine 0.9-1.5 1.1 carbohydrates (digestible) 10-25 17.4 fat 2-6 5.3 of which unsaturated 2-6 4.2 of which ⁇ 3-PUFA 0.8-2 1.1 dietary fibre (soluble) 1-4 2
  • Nutritional composition tube feed preferred range specific formulation (g/100 ml) (g/100 ml proteinaceous matter 6-10 7.8 containing total leucine 1.0-2.0 1.5 of which free leucine 0.4-0.9 0.8 carbohydrates (digestible) 10-25 17 fat 2-6 5.4 of which unsaturated 2-6 4.5 of which ⁇ 3-PUFA 0.4-1 0.8 dietary fibre 1-4 1.5
  • mice at 6-7 weeks of age were individually housed in a climate-controlled room (12:12 dark-light cycle with a constant room temperature of 21 ⁇ 1° C.). After acclimatization for one week mice were divided into weight-matched groups: (1) control receiving control chow, (2) tumour-bearing receiving control chow, and (3) tumour-bearing receiving experimental diets. Data shown are derived from the combination of several experimental runs with identical animal characteristics and experimental procedures (unless stated otherwise) and differ only in the experimental diets used. All experimental procedures were approved by the Animal Ethical Committee (DEC consult, Bilthoven, The Netherlands) and complied with the principles of good laboratory animal care.
  • the AIN93-M high protein control diet in the experiments in which the effect of single ingredients was tested contained per kg feed: 151 g protein (100% casein), 702 g carbohydrates and 40 g fat (100% soy oil) (Research Diet Services, Wijk bij Duurstede, the Netherlands). Experimental diets in this category were adjusted to control diets by partly replacing the carbohydrates and/or soy oil by leucine (151 g casein/kg and 16 g leucine/kg feed; leu), fish oil (151 g casein/kg and 22 g fish oil/kg feed; fo), or leucine and fish oil (151 g casein/kg, 16 g leucine/kg and 22 g fish oil/kg food; leu+fo).
  • the 22 g fish oil contained 6.9 g EPA and 3.1 g DHA resulting in a EPA:DHA ratio of 2.2:1.
  • control diet contained per kg feed 126 g protein (casein), 53 g fat (corn oil), and 699 g carbohydrates.
  • the iso-caloric experimental diet contained per kg feed: 210 g protein (189 g intact protein of which 68% casein and 32% whey and 21 g free leucine), 53 g fat (20,1 g corn oil, 10,2 g canola oil, and 22,2 g fish oil), 561 g carbohydrates, 18 g galacto-oligosaccharides and 2 g fructo-oligosaccharides.
  • SNC Specific Nutritional Composition
  • Murine C-26 adenocarcinoma cells were cultured in vitro with RPMI 1640 supplemented with 5% fetal calf serum and 1% penicillin-streptomycin (31). Tumour cells were trypsinized in a sub-confluent state and, after washing, suspended in Hanks' balanced salt solution (HBSS) at a concentration of 2.5 ⁇ 10 6 cells L ⁇ 1 . Under general anaesthesia (isoflurane/N2O/O 2 ), tumour cells (5 ⁇ 10 5 cells in 0.2 mL) were inoculated subcutaneously into the right inguinal flank of the mice. Control (C) animals received a sham injection with 0.2 mL HBSS.
  • HBSS Hanks' balanced salt solution
  • tumour cells or HBSS body mass, food intake and tumour size (length and width) were measured three times a week. Only in the category B experiment, daily activity in the home cage was monitored. In all experiments, animals were anaesthetized and weighted at day 20 after tumour inoculation. Skeletal muscles (e.g. m. Tibialis Anterior (mTA), m. Gastrocnemius (mG), m. Extensor Digitorum Longus (mEDL) and M. Soleus (mS)), the tumour, spleen, kidneys, liver, epididymal fat, thymus, lungs and heart were dissected and weighed. Carcass mass was calculated by subtracting tumour mass from body mass. In addition, muscle function was tested ex vivo in the category B experiment.
  • Skeletal muscles e.g. m. Tibialis Anterior (mTA), m. Gastrocnemius (mG), m. Extensor Digitorum Longus (mEDL)
  • Activity was calculated for each mouse separately and was expressed relative to its own total activity on day 2, to correct for differences in the individual sensitivity of sensors. The activities of two subsequent days were averaged, to dampen the day to day variability. In order to determine changes in activity pattern throughout the experiment, hourly and dark-light activity were expressed as percentage of total daily activity and translated into an actogram.
  • muscles were allowed to stabilize in the organ bath for 30 min, after which optimal stimulation current and strength were determined. Then force-frequency characteristics (10 to 167 Hz, 250 ms) were determined and after replenishing the organ buffer and a resting period of 5 min, muscles were subjected to an exercise protocol (83 Hz, 250 ms every 1000 ms). This protocol represents a moderate load, comparable with normal daily activity. At the frequency used, complete tetanus of the muscle is reached. Isometric force signals of the force-frequency curve were analyzed for maximal and total force and for maximal contraction and relaxation velocity.
  • Bone mineral density was decreased in tumour-bearing mice (TB) compared to control mice (C) ( FIG. 1A ).
  • Addition of either leucine or ⁇ -3 polyunsaturated fatty acid (from fish oil) did not result in significant changes compared to TB.
  • the combination of ⁇ -3 polyunsaturated fatty acid and leucine resulted in a significant increase of bone mineral density compared to TB.
  • the presence of a tumour induced an increase in plasma calcium levels of about 75% ( FIG. 1B ).
  • Supplementation with single ingredients (TB-leu or TB-fo) had no effect on calcium levels of the tumour bearing animals.
  • the muscles from control animals showed a higher maximal force, maximal contraction velocity and maximal relaxation velocity when compared to TB control mice.
  • the specific nutritional combination of ⁇ -3 polyunsaturated fatty acid, leucine (part free leucine, part bound in protein) and oligosaccharides corrected this in part both for muscle mass dependent as for muscle mass independent differences.
  • the same experiment was used to study in more detail the correlation of calcium levels with muscle performance parameters. For all frequencies at which tetanus could be obtained (>83 Hz), muscle function parameters (maximal force, maximal contraction velocity and maximal relaxation velocity) correlated negatively with the calcium levels (R below ⁇ 0.7 and p ⁇ 0.05) ( FIG. 3 ). When the muscle function parameters, maximal force, maximal contraction velocity and maximal relaxation velocity were corrected for muscle mass, negative correlations remained (R between ⁇ 0.4 and ⁇ 0.7) ( FIG. 3 ).
  • muscle function parameter correlated best with calcium levels throughout the complete repetitive stimulation it was determined which muscle function parameter correlated best with calcium levels throughout the complete repetitive stimulation.
  • the muscle function parameters are shown that show a correlation factor of less than ⁇ 0.35 and p ⁇ 0.05 for at least 50 repeats.
  • muscle mass corrected relaxation velocity showed the most stringent negative correlation with calcium levels.
  • muscle mass corrected maximal force correlated best negatively with the calcium levels.
  • muscle mass correlation factors were similar.
  • the glycemic index (GI) of a carbohydrate provides a measure of its ability to raise postprandial glucose concentrations. High GI foods give higher postprandial blood glucose levels than those with a low GI. The GI of a carbohydrate also predicts the insulin response to that food.
  • the GI of a carbohydrate is calculated by assessing a 25 g two-hourglycaemic response with that of a subsequent 25 g carbohydrate standard glucose:
  • GI equals ‘Incremental area under blood glucose response curve for a test food containing 25 g of carbohydrate’ divided by ‘Corresponding area after equivalent carbohydrate portion of glucose’
  • Available carbohydrate is defined for GI testing purposes as: Total carbohydrate minus the indigestible carbohydrates (soluble and insoluble) that are from a physiological point dietary fibres (e.g. inulin, FOS, type 3 resistant starch).
  • a physiological point dietary fibres e.g. inulin, FOS, type 3 resistant starch.
  • the samples provided should be representative of the product as available to the consumer in the market place.
  • All foods submitted for testing are tested in vivo, that is, in 10 human subjects consuming amounts containing the equivalent of 25 g available carbohydrate. They are healthy subjects with no chronic diseases, diabetes or glucose impairment. Subjects have a BMI between 18.5-27 kg/m 2 .
  • Reference food The reference food is 25 g glucose powder dissolved in 250 mls water. Each person tests the reference food at least twice.
  • Test foods The test foods are prepared according to manufacturer's instructions, representing the food as normally consumed. The test foods are consumed once only on separate occasions as a portion providing 25 g of available carbohydrate, defined as above.
  • Protocol Subjects Subjects are tested in the morning after a 10-12 h overnight fast. Two fasting blood samples are taken ( ⁇ 5 & 0) 5 minutes apart after which subjects consume the test meal or reference food at an even rate over 15 minutes. Further blood samples are taken at 15, 30, 45, 60, 90 and 120 minutes after the beginning of the meal. The test meal and reference food should be consumed with a 250 mls drink of water. This remains constant for each of the tests in the series.
  • Subjects must have an evening meal based on a carbohydrate-rich food, such as rice, pasta, bread, potatoes and not too much fat. This meal should not include beans, pulses or legumes (to avoid a second meal effect the next morning). It is important that they eat dinner and not fast for more than 18 hours. Subjects are asked to be in a similar state each time they come in for a session. After they have eaten their evening meal, subjects fast for at least 10 hours overnight before the start of their test session the next morning. They can drink only water during the fasting period.
  • a carbohydrate-rich food such as rice, pasta, bread, potatoes and not too much fat. This meal should not include beans, pulses or legumes (to avoid a second meal effect the next morning). It is important that they eat dinner and not fast for more than 18 hours. Subjects are asked to be in a similar state each time they come in for a session. After they have eaten their evening meal, subjects fast for at least 10 hours overnight before the start of their test session the next morning. They can drink only water during
  • Blood sampling Blood will be obtained by finger pricking.
  • Blood is collected without clotting inhibitors (heparin, EDTA).
  • Glucose assay Whole capillary blood or is measured by an automatic glucose analyzer. In this case, Hemocue glucose analysers are used.
  • the blood glucose concentrations are G0, G1, . . . Gn, respectively:
  • Ax the AUC for the xth time interval (ie. between tx-1 and tx).
  • the GI value is the iAUC for each food expressed as a percentage of the mean iAUC of the two reference foods (glucose).
  • the GI of the test food is the mean GI ⁇ SEM of the 10 subjects.
  • Up to two outliers (an outlier is an individual whose GI differs from the mean by more than two SD) may be excluded from the data set. SEM should be within 20% of the mean.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nutrition Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Immunology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rheumatology (AREA)
  • Toxicology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Endocrinology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Otolaryngology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
US13/322,730 2009-05-27 2010-05-27 Combination of a leucine source and an omega- 3 unsaturated fatty acid source for use in the treatment of hypercalcaemia Abandoned US20120122785A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NLPCT/NL2009/050297 2009-05-27
PCT/NL2009/050297 WO2010137944A1 (fr) 2009-05-27 2009-05-27 Traitement de l'hypercalcémie
PCT/NL2010/050319 WO2010137979A2 (fr) 2009-05-27 2010-05-27 Hypercalcémie

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/NL2010/050319 A-371-Of-International WO2010137979A2 (fr) 2009-05-27 2010-05-27 Hypercalcémie

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/341,106 Division US9867796B2 (en) 2009-05-27 2014-07-25 Combination of a leucine source and an omega-3 unsaturated fatty acid source for use in the treatment of hypercalcaemia

Publications (1)

Publication Number Publication Date
US20120122785A1 true US20120122785A1 (en) 2012-05-17

Family

ID=41397536

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/322,730 Abandoned US20120122785A1 (en) 2009-05-27 2010-05-27 Combination of a leucine source and an omega- 3 unsaturated fatty acid source for use in the treatment of hypercalcaemia
US14/341,106 Active US9867796B2 (en) 2009-05-27 2014-07-25 Combination of a leucine source and an omega-3 unsaturated fatty acid source for use in the treatment of hypercalcaemia

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/341,106 Active US9867796B2 (en) 2009-05-27 2014-07-25 Combination of a leucine source and an omega-3 unsaturated fatty acid source for use in the treatment of hypercalcaemia

Country Status (12)

Country Link
US (2) US20120122785A1 (fr)
EP (2) EP2435039B2 (fr)
CN (2) CN104257646A (fr)
BR (1) BRPI1012077B8 (fr)
DK (1) DK2435039T4 (fr)
ES (1) ES2555860T5 (fr)
HU (1) HUE028295T2 (fr)
MX (1) MX2011012573A (fr)
PL (1) PL2435039T5 (fr)
PT (1) PT2435039E (fr)
RU (1) RU2555359C2 (fr)
WO (2) WO2010137944A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TN2010000251A1 (fr) 2010-06-03 2011-11-11 Rekik Raouf N-acetyl-dl-leucine medicament neuro et retino protecteur
WO2012141575A1 (fr) 2011-04-14 2012-10-18 N.V.Nutricia Combinaison d'epa, de dpa et/ou de dha avec un agent chimiothérapeutique
JP2014511890A (ja) * 2011-04-18 2014-05-19 ネステク ソシエテ アノニム α−HICA及びα−ケトグルタル酸を含有する栄養組成物
WO2015002527A1 (fr) 2013-07-05 2015-01-08 N.V. Nutricia Composition d'acides aminés destinée à être utilisée dans le traitement d'un trouble envahissant du développement
US9616292B2 (en) * 2015-01-09 2017-04-11 Nolan Orfield Exercise tracker
US11197917B2 (en) 2017-12-01 2021-12-14 ByHeart, Inc. Formulations for nutritional support in subjects in need thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004026294A1 (fr) * 2002-09-20 2004-04-01 Novartis Ag Compositions nutritionnelles enrichies aux leucines
WO2010002257A1 (fr) * 2008-07-02 2010-01-07 N.V. Nutricia Composition nutritionnelle pour améliorer la fonction musculaire et l'activité quotidienne

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05178758A (ja) * 1991-03-22 1993-07-20 Suntory Ltd トリペプチドを有効成分とする骨疾患の予防および治療剤
EP0504938A3 (en) * 1991-03-22 1993-04-14 Suntory Limited Prophylactic and therapeutic agent for bone diseases comprising di- or tripeptide derivative as active ingredient
JPH05140063A (ja) * 1991-11-19 1993-06-08 Suntory Ltd ジペプチド誘導体及びそれを有効成分とする骨疾患の予防及び治療剤
US6077828A (en) * 1996-04-25 2000-06-20 Abbott Laboratories Method for the prevention and treatment of cachexia and anorexia
US20070037777A1 (en) * 2005-08-12 2007-02-15 Immunopath Profile, Inc. Lipid-containing compositions and methods of using them
GB0003310D0 (en) 2000-02-15 2000-04-05 Univ Sheffield Bone formation
NL1019368C2 (nl) 2001-11-14 2003-05-20 Nutricia Nv Preparaat voor het verbeteren van receptorwerking.
US20040171692A1 (en) * 2003-02-28 2004-09-02 Scutt Andrew Modulation of bone formation
WO2004082402A1 (fr) 2003-03-18 2004-09-30 Novartis Ag Compositions comprenant des acides gras et des acides amines
WO2004112507A1 (fr) * 2003-06-23 2004-12-29 Nestec S.A. Preparation pour nourrissons et jeunes enfants
JP4702678B2 (ja) * 2004-06-07 2011-06-15 環境創研株式会社 競走馬用飼料添加材
DE602005010086D1 (de) 2004-07-28 2008-11-13 Abbott Lab Nahrungszusammensetzungen und verfahren zur behandlung oder vorbeugung von osteoporose
PT1800675E (pt) 2005-12-23 2011-08-30 Nutricia Nv COMPOSIÇÃO CONTENDO ÁCIDOS GORDOS POLI-INSATURADOS, PROTEÍNAS E MANGANjS E/OU MOLIBDÉNIO PARA O MELHORAMENTO DA COMPOSIÇÃO DA MEMBRANA
GB0624879D0 (en) * 2006-12-14 2007-01-24 Shs Int Ltd Treatment of pervasive development disorders
US20080171791A1 (en) * 2007-01-11 2008-07-17 Mdr Fitness Corp. Compositions and Method for Losing Weight
US20080200425A1 (en) * 2007-02-16 2008-08-21 Kurtz Seymour J Methods and compositions for regulating bone mineral density
WO2008147228A1 (fr) * 2007-05-31 2008-12-04 Fonterra Corporate Research And Development Limited Traitement ou prévention de maladies osseuses
US7893067B2 (en) * 2007-06-27 2011-02-22 Medivir Ab Cysteine protease inhibitors
EP2025248A1 (fr) * 2007-07-31 2009-02-18 Fresenius Kabi Deutschland GmbH Supplément pour la prévention de l'émaciation
CN101314031A (zh) * 2008-07-14 2008-12-03 王冰 一种改善骨营养的制剂

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004026294A1 (fr) * 2002-09-20 2004-04-01 Novartis Ag Compositions nutritionnelles enrichies aux leucines
WO2010002257A1 (fr) * 2008-07-02 2010-01-07 N.V. Nutricia Composition nutritionnelle pour améliorer la fonction musculaire et l'activité quotidienne

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ordman, AGE, 2008, 30, 201-208, published online on 4/3/2008. *

Also Published As

Publication number Publication date
US9867796B2 (en) 2018-01-16
EP2435039A2 (fr) 2012-04-04
BRPI1012077B8 (pt) 2022-09-20
ES2555860T3 (es) 2016-01-11
ES2555860T5 (es) 2019-07-12
CN104257646A (zh) 2015-01-07
DK2435039T4 (da) 2019-05-06
WO2010137979A2 (fr) 2010-12-02
PT2435039E (pt) 2016-01-08
EP2435039B1 (fr) 2015-09-09
US20150018277A1 (en) 2015-01-15
EP2987485B1 (fr) 2020-02-26
CN102458390A (zh) 2012-05-16
DK2435039T3 (en) 2015-12-21
WO2010137944A1 (fr) 2010-12-02
RU2555359C2 (ru) 2015-07-10
WO2010137979A8 (fr) 2011-11-17
PL2435039T3 (pl) 2016-02-29
MX2011012573A (es) 2011-12-14
WO2010137979A3 (fr) 2011-04-14
RU2011152873A (ru) 2013-07-10
BRPI1012077A2 (pt) 2018-03-20
EP2435039B2 (fr) 2019-02-27
HUE028295T2 (en) 2016-12-28
EP2987485A1 (fr) 2016-02-24
CN102458390B (zh) 2014-10-29
BRPI1012077B1 (pt) 2021-05-18
PL2435039T5 (pl) 2019-09-30

Similar Documents

Publication Publication Date Title
US9950013B2 (en) Nutritional composition for improving muscle function and daily activity
US10449248B2 (en) Nutritional composition for improving the mammalian immune system
US9867796B2 (en) Combination of a leucine source and an omega-3 unsaturated fatty acid source for use in the treatment of hypercalcaemia
JP5574561B2 (ja) 総合経腸栄養組成物
US8703209B2 (en) Composition and method for modulating hydrogen ion physiology
KR20100094485A (ko) 아미노산 조성물을 함유하는 피로 방지제
WO2014204382A1 (fr) Administration d'un produit de type composition alimentaire
Challem Context and Applications

Legal Events

Date Code Title Description
AS Assignment

Owner name: N.V. NUTRICIA, NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAN NORREN, KLASKE;FABER, JOYCE;VAN HELVOORT, ADRIANUS LAMBERTUS BERTHOLDUS;AND OTHERS;REEL/FRAME:027616/0483

Effective date: 20120110

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION