US20120010824A1 - Non-Invasive Method for Assessing Liver Fibrosis Progression - Google Patents
Non-Invasive Method for Assessing Liver Fibrosis Progression Download PDFInfo
- Publication number
- US20120010824A1 US20120010824A1 US13/257,456 US201013257456A US2012010824A1 US 20120010824 A1 US20120010824 A1 US 20120010824A1 US 201013257456 A US201013257456 A US 201013257456A US 2012010824 A1 US2012010824 A1 US 2012010824A1
- Authority
- US
- United States
- Prior art keywords
- fibrosis
- progression
- age
- liver
- score
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 64
- 208000019425 cirrhosis of liver Diseases 0.000 title claims abstract description 41
- 206010016654 Fibrosis Diseases 0.000 claims abstract description 177
- 230000004761 fibrosis Effects 0.000 claims abstract description 168
- 208000019423 liver disease Diseases 0.000 claims description 82
- 108010003415 Aspartate Aminotransferases Proteins 0.000 claims description 47
- 102000004625 Aspartate Aminotransferases Human genes 0.000 claims description 47
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 claims description 45
- 108010082126 Alanine transaminase Proteins 0.000 claims description 45
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 claims description 28
- 229920002674 hyaluronan Polymers 0.000 claims description 28
- 229960003160 hyaluronic acid Drugs 0.000 claims description 28
- 102100033312 Alpha-2-macroglobulin Human genes 0.000 claims description 27
- 210000004185 liver Anatomy 0.000 claims description 25
- 102100027378 Prothrombin Human genes 0.000 claims description 22
- 108010094028 Prothrombin Proteins 0.000 claims description 22
- 238000012417 linear regression Methods 0.000 claims description 22
- 229940039716 prothrombin Drugs 0.000 claims description 22
- 102000006734 Beta-Globulins Human genes 0.000 claims description 21
- 108010087504 Beta-Globulins Proteins 0.000 claims description 21
- 101710107035 Gamma-glutamyltranspeptidase Proteins 0.000 claims description 19
- 101710173228 Glutathione hydrolase proenzyme Proteins 0.000 claims description 19
- 108010015078 Pregnancy-Associated alpha 2-Macroglobulins Proteins 0.000 claims description 19
- 102000006640 gamma-Glutamyltransferase Human genes 0.000 claims description 19
- BPYKTIZUTYGOLE-IFADSCNNSA-N Bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 claims description 12
- 108010088751 Albumins Proteins 0.000 claims description 11
- 102000009027 Albumins Human genes 0.000 claims description 11
- 108010074605 gamma-Globulins Proteins 0.000 claims description 11
- 238000007477 logistic regression Methods 0.000 claims description 11
- 102000002260 Alkaline Phosphatase Human genes 0.000 claims description 10
- 108020004774 Alkaline Phosphatase Proteins 0.000 claims description 10
- 238000004458 analytical method Methods 0.000 claims description 10
- 102000001187 Collagen Type III Human genes 0.000 claims description 8
- 108010069502 Collagen Type III Proteins 0.000 claims description 8
- 101000883515 Homo sapiens Chitinase-3-like protein 1 Proteins 0.000 claims description 8
- 102000000424 Matrix Metalloproteinase 2 Human genes 0.000 claims description 8
- 108010016165 Matrix Metalloproteinase 2 Proteins 0.000 claims description 8
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 8
- 238000007620 mathematical function Methods 0.000 claims description 8
- 210000001519 tissue Anatomy 0.000 claims description 8
- 150000003626 triacylglycerols Chemical class 0.000 claims description 8
- -1 TGFβ1 Proteins 0.000 claims description 7
- 239000004202 carbamide Substances 0.000 claims description 7
- 102000008857 Ferritin Human genes 0.000 claims description 6
- 108050000784 Ferritin Proteins 0.000 claims description 6
- 238000008416 Ferritin Methods 0.000 claims description 6
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 claims description 6
- 206010003445 Ascites Diseases 0.000 claims description 5
- 206010069729 Collateral circulation Diseases 0.000 claims description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 5
- 102000000380 Matrix Metalloproteinase 1 Human genes 0.000 claims description 5
- 108010016113 Matrix Metalloproteinase 1 Proteins 0.000 claims description 5
- 206010041660 Splenomegaly Diseases 0.000 claims description 5
- 201000010099 disease Diseases 0.000 claims description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 5
- 231100000304 hepatotoxicity Toxicity 0.000 claims description 5
- 239000003112 inhibitor Substances 0.000 claims description 5
- 208000008338 non-alcoholic fatty liver disease Diseases 0.000 claims description 5
- 229910052708 sodium Inorganic materials 0.000 claims description 5
- 239000011734 sodium Substances 0.000 claims description 5
- 102000005666 Apolipoprotein A-I Human genes 0.000 claims description 4
- 108010059886 Apolipoprotein A-I Proteins 0.000 claims description 4
- 108010074051 C-Reactive Protein Proteins 0.000 claims description 4
- 102100032752 C-reactive protein Human genes 0.000 claims description 4
- 102100038196 Chitinase-3-like protein 1 Human genes 0.000 claims description 4
- 102000054350 human CHI3L1 Human genes 0.000 claims description 4
- 230000002503 metabolic effect Effects 0.000 claims description 4
- 238000007619 statistical method Methods 0.000 claims description 4
- MXBCYQUALCBQIJ-RYVPXURESA-N (8s,9s,10r,13s,14s,17r)-13-ethyl-17-ethynyl-11-methylidene-1,2,3,6,7,8,9,10,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-17-ol;(8r,9s,13s,14s,17r)-17-ethynyl-13-methyl-7,8,9,11,12,14,15,16-octahydro-6h-cyclopenta[a]phenanthrene-3,17-diol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1.C1CC[C@@H]2[C@H]3C(=C)C[C@](CC)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 MXBCYQUALCBQIJ-RYVPXURESA-N 0.000 claims description 3
- 208000023275 Autoimmune disease Diseases 0.000 claims description 3
- 206010057212 Hepatitis viral infections Diseases 0.000 claims description 3
- 235000012000 cholesterol Nutrition 0.000 claims description 3
- 108050005077 Haptoglobin Proteins 0.000 claims description 2
- 206010030209 Oesophageal varices Diseases 0.000 claims description 2
- 201000007270 liver cancer Diseases 0.000 claims description 2
- 208000014018 liver neoplasm Diseases 0.000 claims description 2
- 102100025255 Haptoglobin Human genes 0.000 claims 1
- 230000003612 virological effect Effects 0.000 description 39
- 230000001476 alcoholic effect Effects 0.000 description 33
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 18
- 241000700605 Viruses Species 0.000 description 18
- 210000004369 blood Anatomy 0.000 description 16
- 239000008280 blood Substances 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- 238000005259 measurement Methods 0.000 description 12
- 238000001574 biopsy Methods 0.000 description 9
- 230000007882 cirrhosis Effects 0.000 description 9
- 238000009534 blood test Methods 0.000 description 8
- 230000002596 correlated effect Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 6
- 238000010191 image analysis Methods 0.000 description 6
- WCDDVEOXEIYWFB-VXORFPGASA-N (2s,3s,4r,5r,6r)-3-[(2s,3r,5s,6r)-3-acetamido-5-hydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,5,6-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@@H]1C[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O)[C@H](O)[C@H]1O WCDDVEOXEIYWFB-VXORFPGASA-N 0.000 description 5
- 208000005176 Hepatitis C Diseases 0.000 description 5
- 230000001684 chronic effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 208000010710 hepatitis C virus infection Diseases 0.000 description 5
- 229940014041 hyaluronate Drugs 0.000 description 5
- 238000012317 liver biopsy Methods 0.000 description 5
- 208000006154 Chronic hepatitis C Diseases 0.000 description 4
- 230000003510 anti-fibrotic effect Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 230000000750 progressive effect Effects 0.000 description 4
- 206010003827 Autoimmune hepatitis Diseases 0.000 description 3
- 206010013654 Drug abuse Diseases 0.000 description 3
- 208000002672 hepatitis B Diseases 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 238000007431 microscopic evaluation Methods 0.000 description 3
- 208000011117 substance-related disease Diseases 0.000 description 3
- 206010002368 Anger Diseases 0.000 description 2
- 208000008439 Biliary Liver Cirrhosis Diseases 0.000 description 2
- 208000033222 Biliary cirrhosis primary Diseases 0.000 description 2
- 101100381481 Caenorhabditis elegans baz-2 gene Proteins 0.000 description 2
- 208000018565 Hemochromatosis Diseases 0.000 description 2
- 208000002972 Hepatolenticular Degeneration Diseases 0.000 description 2
- 208000012654 Primary biliary cholangitis Diseases 0.000 description 2
- 101100372762 Rattus norvegicus Flt1 gene Proteins 0.000 description 2
- YIQKLZYTHXTDDT-UHFFFAOYSA-H Sirius red F3B Chemical compound C1=CC(=CC=C1N=NC2=CC(=C(C=C2)N=NC3=C(C=C4C=C(C=CC4=C3[O-])NC(=O)NC5=CC6=CC(=C(C(=C6C=C5)[O-])N=NC7=C(C=C(C=C7)N=NC8=CC=C(C=C8)S(=O)(=O)[O-])S(=O)(=O)[O-])S(=O)(=O)O)S(=O)(=O)O)S(=O)(=O)[O-])S(=O)(=O)[O-].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+] YIQKLZYTHXTDDT-UHFFFAOYSA-H 0.000 description 2
- 208000018839 Wilson disease Diseases 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 208000029650 alcohol withdrawal Diseases 0.000 description 2
- 238000000540 analysis of variance Methods 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 238000011158 quantitative evaluation Methods 0.000 description 2
- 239000004248 saffron Substances 0.000 description 2
- 230000007863 steatosis Effects 0.000 description 2
- 231100000240 steatosis hepatitis Toxicity 0.000 description 2
- 208000022309 Alcoholic Liver disease Diseases 0.000 description 1
- 208000007848 Alcoholism Diseases 0.000 description 1
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 1
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 1
- 208000000419 Chronic Hepatitis B Diseases 0.000 description 1
- 208000015943 Coeliac disease Diseases 0.000 description 1
- 108010001237 Cytochrome P-450 CYP2D6 Proteins 0.000 description 1
- 102100021704 Cytochrome P450 2D6 Human genes 0.000 description 1
- COEUAZATLPFHIB-UHFFFAOYSA-N FF.FF Chemical compound FF.FF COEUAZATLPFHIB-UHFFFAOYSA-N 0.000 description 1
- 208000004930 Fatty Liver Diseases 0.000 description 1
- 102000014702 Haptoglobin Human genes 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 241000711549 Hepacivirus C Species 0.000 description 1
- 206010019668 Hepatic fibrosis Diseases 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 208000037262 Hepatitis delta Diseases 0.000 description 1
- 241000724709 Hepatitis delta virus Species 0.000 description 1
- 206010019799 Hepatitis viral Diseases 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 108010050808 Procollagen Proteins 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 206010001584 alcohol abuse Diseases 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 208000025746 alcohol use disease Diseases 0.000 description 1
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 1
- 102000015395 alpha 1-Antitrypsin Human genes 0.000 description 1
- 208000006682 alpha 1-Antitrypsin Deficiency Diseases 0.000 description 1
- 229940024142 alpha 1-antitrypsin Drugs 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 206010002022 amyloidosis Diseases 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 239000003114 blood coagulation factor Substances 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000000546 chi-square test Methods 0.000 description 1
- 208000020403 chronic hepatitis C virus infection Diseases 0.000 description 1
- 229940109239 creatinine Drugs 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009552 doppler ultrasonography Methods 0.000 description 1
- 230000000550 effect on aging Effects 0.000 description 1
- 238000001839 endoscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 210000005161 hepatic lobe Anatomy 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000013188 needle biopsy Methods 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 208000007232 portal hypertension Diseases 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 208000010157 sclerosing cholangitis Diseases 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000003144 traumatizing effect Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 201000001862 viral hepatitis Diseases 0.000 description 1
- 239000002676 xenobiotic agent Substances 0.000 description 1
- 230000002034 xenobiotic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57438—Specifically defined cancers of liver, pancreas or kidney
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B5/00—ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/576—Immunoassay; Biospecific binding assay; Materials therefor for hepatitis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6893—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4164—1,3-Diazoles
- A61K31/4178—1,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/21—Interferons [IFN]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/46—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
- G01N2333/47—Assays involving proteins of known structure or function as defined in the subgroups
- G01N2333/4701—Details
- G01N2333/4713—Plasma globulins, lactoglobulin
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/475—Assays involving growth factors
- G01N2333/495—Transforming growth factor [TGF]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/78—Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2400/00—Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
- G01N2400/10—Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
- G01N2400/38—Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence, e.g. gluco- or galactomannans, Konjac gum, Locust bean gum or Guar gum
- G01N2400/40—Glycosaminoglycans, i.e. GAG or mucopolysaccharides, e.g. chondroitin sulfate, dermatan sulfate, hyaluronic acid, heparin, heparan sulfate, and related sulfated polysaccharides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/08—Hepato-biliairy disorders other than hepatitis
- G01N2800/085—Liver diseases, e.g. portal hypertension, fibrosis, cirrhosis, bilirubin
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/52—Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/60—Complex ways of combining multiple protein biomarkers for diagnosis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/70—Mechanisms involved in disease identification
- G01N2800/7052—Fibrosis
Definitions
- the present invention relates to the field of hepatology and in particular to a non-invasive method for assessing the liver fibrosis progression, especially in alcohol or viral or metabolic chronic liver disease.
- Liver fibrosis refers to the accumulation of fibrous scar tissue in the liver.
- various techniques can be used.
- One of these techniques is the liver needle biopsy (LNB), leading to a classification based on observation of lesions in the liver, particularly in the hepatic lobe.
- LNB liver needle biopsy
- Metavir classification which classifies liver fibrosis into five stages from F0 to F4. According to the Metavir classification, an F ⁇ 2 stage means that fibrosis is clinically significant, whereas a F4 stage corresponds to the ultimate stage, namely cirrhosis.
- Fibrosis score such as for example FibrometerTM
- OAF area of fibrosis
- quantitative image analysis can also be used alone or in combination with LNB or Metavir classification, in order to determine with more accuracy the extent of liver fibrosis in an individual.
- liver fibrosis progression rate of the fibrosis differs from an individual to another.
- assessment of liver fibrosis progression would be a very important and useful tool in clinical practice for both prognostic and therapeutic reasons.
- liver fibrosis progression depends on various genetic and host factors, it may indeed be useful to determine ahead of time whether it is reasonable to expect that liver fibrosis will progress towards cirrhosis during the patient's lifetime and if it does, at what rate will this progression occur.
- assessing the progression rate of liver fibrosis can also be useful in order to help physicians decide whether or not to treat a patient or in order to help them monitor patients who are already following a treatment regimen.
- physicians relied mostly on fibrosis staging (ex. Metavir stage ⁇ F2) in order to justify an antiviral treatment for chronic viral hepatitis.
- fibrosis staging ex. Metavir stage ⁇ F2
- it would be very useful to know early on, such as for example but not limited to patients showing a stage F0 or F1 whether his liver fibrosis will evolve rapidly or not into clinically significant fibrosis or cirrhosis, in order for the physicians to anticipate the treatment.
- WO 03/064687 discloses a method for assessing a patient's risk of development and progression of liver cirrhosis, said method comprising the step of determining the patient's genotype or phenotype for a coagulation factor.
- WO 2006/003654 discloses methods and kits for determining the predisposition of an individual affected by chronic hepatitis C infection to develop a fast progression rate of liver fibrosis. This method essentially consists in determining the presence or absence, in the CYP2D6 locus of the individual, of at least one fast progression liver fibrosis associated genotype.
- EP 1887362A1 discloses a hepatic disease-evaluating method comprising a step of calculating an index indicating the degree of hepatic fibrosis from amino acid concentration data.
- “Score” is a combination of markers (or variables) aimed at predicting a clinical event or a lesion such as fibrosis degree.
- the score ranges from 0 (0% risk) to 1 (100% risk), i.e. the probability of the diagnostic target.
- the score relies on multiple linear regression, the score produces a result in the same units as the diagnostic target.
- the main scores are derived from multiple linear regression and measure a progression rate of fibrosis, i.e. expressed as a fibrosis unit per time unit.
- “Progression” means the evolution of the fibrosis level over time.
- Regularly means at regular intervals, such as for example, every 10-day, every month, or every year, etc.
- Sample means a biological fluid of an individual, such as for example blood, serum, plasma, urine or saliva of an individual.
- Non-invasive means that no tissue is taken from the body of an individual (blood is not considered as a tissue).
- “Individual” means a woman, a man or an animal, young or old, healthy or susceptible of being affected or clearly affected by a hepatic pathology, such as a liver fibrosis of viral origin, of alcohol origin, a chronic liver steatosis or by any other pathology.
- “Cause” means the risk factor that induces the lesions and the ensuing pathology.
- “Cause duration” is the time between the age when the cause started (“start age”) and the age at inclusion when fibrosis level was measured (“inclusion age”).
- Fibrosis level is reflected by a Fibrosis Score, AOF or fractal dimension, preferably fibrosis level is a fibrosis score or an AOF score or a fractal dimension score.
- Fibrometer may refer to a fibrosis score or to a AOF score.
- the present invention proposes a solution to the technical issue of assessing the progression rate of fibrosis in all and any condition or disease involving fibrosis.
- This invention results in a very accurate diagnosis of fibrosis progression and in the ability of distinguishing slow, medium and fast fibrosers.
- condition or disease is alcohol or viral chronic liver disease (CLD).
- CLD chronic liver disease
- OEF area of fibrosis
- the liver fibrosis progression is assessed by calculating the ratio fibrosis level/cause duration.
- fibrosis level is measured by a non-invasive method.
- the fibrosis level is a fibrosis score, preferably FibrometerTM, AOF score or fractal dimension score.
- the liver fibrosis progression is assessed by measuring, at two different intervals t 1 and t 2 , the fibrosis levels FL(t 1 ) and FL(t 2 ) and calculating the ratio FL(t 2 ) ⁇ FL(t 1 ) to (t 2 ⁇ t 1 ).
- t 1 is the time at which a first measure is performed in an individual and a first fibrosis level FL(t 1 ) is determined;
- t 2 is the time at which a second measure is performed in the same individual and a second fibrosis level FL(t 2 ) is determined;
- t 2 ⁇ t 1 is a period of time of at least 10 days; in an embodiment, t 2 ⁇ t 1 is a period of 1 to 6 months; in another embodiment, t 2 ⁇ t 1 is a period of 1 year.
- the fibrosis level is a fibrosis score, AOF score or fractal dimension score.
- Fibrosis Score is a score obtained by measuring in a sample of an individual and combining in a logistic or linear regression function at least three, preferably 6 to 8, markers selected in the group consisting of ⁇ -2 macroglobulin (A2M), hyaluronic acid (HA or hyaluronate), apoliprotein A1 (ApoA1), N-terminal propeptide of type III procollagen (P3P), gamma-glutamyltranspeptidase (GGT), bilirubin, gamma-globulins (GLB), platelet count (PLT), prothrombin index (PI), aspartate amino-transferase (AST), alanine amino-transferase (ALT), urea, sodium (NA), glycemia (GLY), triglycerides (TG), albumin (ALB), alkaline phosphatases (ALP), human cartilage glycoprotein 39 (YKL-40), tissue inhibitor of matrix metall
- the Fibrosis Score is measured by combining the levels of at least three markers selected from the group consisting of glycemia (GLY), aspartate aminotransferase (AST), alanine amino-transferase (ALT), ferritin, hyaluronic acid (HA), triglycerides (TG), prothrombin index (PI) gamma-globulins (GLB), platelet count (PLT), weight, age and sex.
- GLY glycemia
- AST aspartate aminotransferase
- ALT alanine amino-transferase
- ferritin ferritin
- HA hyaluronic acid
- TG triglycerides
- PI prothrombin index
- GLB platelet count
- weight age and sex.
- the Fibrosis score is established by combining in a binary linear regression function, the levels of four to eight markers, preferably selected from the group consisting of Alpha2 macroglobulin (A2M), hyaluronic acid or hyaluronate (AH), Prothrombin index (PI) Platelets (PLQ), ASAT, Urea, GGT, Age and Sex.
- A2M Alpha2 macroglobulin
- AH hyaluronic acid or hyaluronate
- PI Prothrombin index
- PQ Prothrombin index
- ASAT FibrometerTM or FibrotestTM or FibrospectTM or Hepascore.
- the markers of the score may be selected depending on the fact that the liver condition is of viral or alcoholic origin.
- “Area Of Fibrosis” may be determined by image analysis, or by a non invasive method wherein a score is obtained by measuring in a sample of said patient and then combining in a logistic or linear regression function, preferably in a multiple linear regression function, at least two, preferably 3, more preferably 6 to 8 variables selected from the group consisting of ⁇ -2 macroglobulin (A2M), hyaluronic acid (HA or hyaluronate), apoliprotein A1 (ApoA1), procollagen Type III-N-terminal propeptide (P3P), gamma-glutamyltranspeptidase (GGT), bilirubin, gamma-globulins (GLB), platelet count (PLT), prothrombin index (PI), aspartate amino-transférase (AST), alanine amino-transferase (ALT), urea, sodium (NA), glycemia, triglycerides, albumin (ALB), alkaline
- “Fractal dimension” reflects the liver architecture and may be obtained by image analysis or by a non invasive method wherein a score is obtained by measuring in a sample of an individual and combining in a logistic or linear regression function (preferably a multiple linear regression function) at least three, preferably 4 markers selected in the group comprising or consisting of ⁇ -2 macroglobulin (A2M), albumine (ALB), Prothrombin index (PI), hyaluronic acide (HA ou hyaluronate), alanine amino-transferase (ALAT), aspartate amino-transferase (ASAT) and age.
- A2M macroglobulin
- ALB albumine
- PI Prothrombin index
- HA ou hyaluronate alanine amino-transferase
- ASAT aspartate amino-transferase
- the fibrosis level is selected from the scores set forth in the table below:
- This invention also relates to a non-invasive method for assessing whether or not an individual is a fast fibroser, including measuring the liver progression of said individual by using a non-invasive method here above described, preferably by calculating FL/cause duration and/or FL(t2) ⁇ FL (t 1 )/t 2 ⁇ t 1 , wherein FL preferably is a fibrosis score, an AOF score or a fractal dimension score.
- the fast fibroser is identified with reference to statistical data as having an increased AOF, younger inclusion age and older start age (or cause duration replacing the two previous variables) by stepwise binary logistic regression. According the Applicant experiments, the diagnostic accuracy seems to be of 100.0% by stepwise binary logistic regression.
- This invention also relates to a non-invasive method for assessing if an individual is a slow, medium or fast fibroser using discriminant analyses with reference to a population of fibrosers, ranked from their fibrosis progression rate in three categories, i.e. slow, medium and fast fibrosers: first, a method of assessing the fibrosis progression, preferably by AOF progression, as described above, is implemented, and the individual is ranked in slow, medium, fast fibrosers categories determined by statistical analysis.
- the non-invasive method here above described is preferably FL/cause duration or FL(t2) ⁇ FL(t1)/t2 ⁇ t1, wherein FL preferably is AOF score.
- liver fibrosis progression is assessed by a score.
- the invention relates to a non-invasive method for assessing liver fibrosis progression in an individual, said method comprising the steps of:
- the method includes combining at least two biological variables or at least two scores, and at least one clinical variable selected from cause duration, especially Chronic Liver Disease duration and age at first contact with cause (also named “start age”).
- the at least one clinical variable is cause duration.
- the at least one clinical variable is age at first contact with cause (“start age”).
- the method includes two clinical variables.
- the two clinical variables are cause duration and start age.
- the at least one score is selected from the group consisting of Area of Fibrosis (AOF) and/or the Fibrosis Score and/or Fractal dimension.
- AOF Area of Fibrosis
- the liver fibrosis progression is assessed by measuring Metavir F progression, said Metavir F progression being established by measuring the following:
- variable sex is not selected.
- the variables are:
- the variables are:
- the variables are:
- the liver fibrosis progression is assessed by measuring the area of fibrosis (AOF) progression, said AOF progression being established by measuring the following:
- the variables are:
- the variables are:
- the variables are:
- the variables are:
- the variables are:
- the non-invasive method of the invention includes at least two fibrosis scores, measured at regular intervals, such as for example, every 10-day, every month, or every year.
- the individual may be at risk of suffering or is suffering from a condition selected from the group consisting of a chronic liver disease, a hepatitis viral infection, an hepatoxicity, a liver cancer, a non alcoholic fatty liver disease (NAFLD), an autoimmune disease, a metabolic liver disease and a disease with secondary involvement of the liver.
- a condition selected from the group consisting of a chronic liver disease, a hepatitis viral infection, an hepatoxicity, a liver cancer, a non alcoholic fatty liver disease (NAFLD), an autoimmune disease, a metabolic liver disease and a disease with secondary involvement of the liver.
- a condition selected from the group consisting of a chronic liver disease, a hepatitis viral infection, an hepatoxicity, a liver cancer, a non alcoholic fatty liver disease (NAFLD), an autoimmune disease, a metabolic liver disease and a disease with secondary involvement of the liver.
- NAFLD non alcoholic fatty liver disease
- Hepatitis viral infection may be caused by a virus selected from the group consisting of hepatitis C virus, hepatitis B virus and hepatitis D virus.
- Hepatoxicity may be alcohol induced hepatoxicity and/or drug-induced hepatoxicity (i.e. any xenobiotic like alcohol or drug).
- autoimmune disease is selected from the group consisting of autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC).
- Metabolic liver disease may be selected from the group consisting of Hemochromatosis, Wilson's disease and alpha 1 anti trypsin. Secondary involvement of the liver may be celiac disease or amyloidosis.
- FIGS. 1-7 are to be read with regard to Example 1.
- r s is the coefficient of correlation of Spearman
- r p is the coefficient of correlation of Pearson.
- FIG. 2 is a graph showing the progression rate of fibrosis as a function of Metavir F stage.
- FIG. 3 is a graph showing the fibrosis progression rates for Metavir F (3A) and AOF (3B) in alcoholic and viral chronic liver disease (CLD). Transition lines are drawn only to show the differences between patient groups.
- FIG. 4 is a graph showing the AOF as a function of cause duration according to CLD cause (alcoholic in black and viral in grey) and to Metavir F stage.
- FIG. 5 is the AOF progression rate as a function of cause duration according to Metavir fibrosis (F) stage.
- the curve has an inverse shape (1/x) by definition.
- FIG. 6 is the relationship between fibrosis progression rate, Metavir fibrosis stage (6A) and AOF (6B) and age at 1st contact. Lines are provided by polynomial regression. The axis of AOF progression was truncated at 3.
- FIG. 7 is the effects of antifibrotic treatment on area of fibrosis and Metavir F stage. Box plots indicate median, quartiles and extremes.
- FIGS. 8-16 are to be read with regard to Example 2.
- FIG. 8 is a graph showing the correlation between Metavir fibrosis (F) stage and area of fibrosis (AOF) progression in populations 1 (panel a) and 2 (panel b) of Example2 Lines depict linear regression.
- FIG. 9 is a graph showing relationship between Metavir fibrosis (F) stage (left panels) or area of fibrosis (AOF) progression (right panels), during cause duration, as a function of Metavir fibrosis (F) stage at inclusion age in populations 1 (top panels) and 2 (bottom panels).
- FIG. 10 is a graph showing the correlation between Metavir fibrosis (F) stage (left panels) or area of fibrosis (AOF) progression (right panels) and respective predicted progression in populations 1 (top panels, alcoholic CLD only) and 2 (bottom panels, viral CLD).
- FIG. 11 shows the relationship between Metavir fibrosis (F) stage (left panels) or area of fibrosis (AOF) (right panels) and cause duration in populations 1 (top panels) and 2 (bottom panels). Curves depict Lowess regression.
- FIG. 12 shows the Relationship between Metavir fibrosis (F) stage (left panels) or area of fibrosis (AOF) (right panels) progression and start age in populations 1 (top panels) and 2 (bottom panels). Curves depict Lowess regression.
- FIG. 13 shows the relationship between Metavir fibrosis (F) stage (left panels) or area of fibrosis (AOF) (right panels) and start age in populations 1 (top panels) and 2 (bottom panels). Curves depict Lowess regression.
- FIG. 14 shows the relationship between Metavir fibrosis (F) stage progression (left panels) or area of fibrosis progression (medium panels) or area of fibrosis (right panels) and inclusion age in populations 1 (top panels) and 2 (bottom panels). Curves depict Lowess regression.
- FIG. 15 shows the relationship between fibrosis characteristics and cause duration showing different fibrosers as a function of fibrosis progression in population 2. Curves depict Lowess regression.
- FIG. 16 shows the impact of special patient subgroups on curves of Metavir fibrosis (F) stage as a function of different times in population 2. The impact was determined according to the method shown in FIG. 11 a.
- a 1 st population of 185 patients (all of which had been subjected to one liver biopsy) was selected according to the availability of an estimation of the contact date (or exposure) to the risk factor (or cause) of CLD. The difference between inclusion date and contact date is herein called “duration of cause”.
- a 2 nd population of 16 patients (all of which had been subjected to two liver biopsies) was selected.
- the 185 patients included in this population were admitted for alcoholic liver disease, or for chronic viral hepatitis B or C. Patients were included who had drunk at least 50 g of alcohol per day for the past five years or were positive for serum hepatitis B surface antigen or C antibodies. None of the patient had clinical, biological, echographic or histological evidence of other causes of chronic liver disease (Wilson's disease, hemochromatosis, ⁇ 1-antitrypsin deficiency, biliary disease, auto-immune hepatitis, hepatocellular carcinoma). Blood samples were taken at entry and a transcostal (suction needle) or transjugular (cutting needle) liver biopsy was performed within one week.
- Analyses of blood samples provided the following measurements: hemoglobin, mean corpuscular volume, lymphocyte count, platelet count, cholesterol, urea, creatinine, sodium (NA), bilirubin, ⁇ -glutamyltranspeptidase (GGT), alkaline phosphatases (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), albumin (ALB), ⁇ 1 and ⁇ 2-globulins, ⁇ -globulins, ⁇ -globulins, ⁇ -block, prothrombin index (PI), apolipoprotein A1 (ApoA1). Some of them are indirect blood markers of fibrosis (1).
- the direct blood markers of fibrosis used in this study were the following: ⁇ -2-macroglobulin (A 2 M), the N-terminal peptide of type III procollagen (P3P), hyaluronic acid (HA), TGF ⁇ 1, and laminin.
- the following blood tests were calculated: AST/ALT ratio, PGA score (2), PGAA score (3), APRI (4), different FibroMeters (5), and Hepascore (6).
- Sera were kept at ⁇ 80° C. for a maximum of 48 months for assay.
- Biopsy specimens were fixed in a formalin-alcohol-acetic solution and embedded in paraffin; 5 ⁇ m thick sections were stained with haematoxylin-eosin-saffron and 0.1% picrosirius red solution.
- Fibrosis was staged by two independent pathologists according to the Metavir staging (7).
- the Metavir staging is also well adapted to the semi-quantitative evaluation of fibrosis in alcoholic CLD since porto-septal fibrosis is more frequent and developed than centrolobular fibrosis (8). Observers were blinded for patient characteristics. When the pathologists did not agree, the specimens were re-examined under a double-headed microscope to analyse discrepancies and reach a consensus. All specimens were also evaluated according to the following grades: Metavir activity (7), steatosis and centrolobular fibrosis (CLF) as previously described (9).
- AOF was measured on the same sections as the microscopic analysis using a Leica Quantimet Q570 image processor as previously described (9). Fractal dimension of fibrosis was also measured in population 2 (10).
- Quantitative variables were expressed as mean ⁇ SD, unless otherwise specified.
- the Pearson's rank correlation coefficient (r p ) was used for correlations between continuous variables or Spearman correlation coefficient (r s ) when necessary.
- r p Pearson's rank correlation coefficient
- r s binary logistic regression coefficient
- the predictive performance of each model is expressed by the adjusted R 2 coefficient ( a R 2 ) and by the diagnostic accuracy, i.e. true positives and negatives, respectively.
- a ⁇ risk ⁇ 5% for a two-sided test was considered statistically significant.
- the statistical software used was SPSS version 11.5.1 (SPSS Inc., Chicago, Ill., USA).
- PR progression rate
- AST/ALT 0.5412244415007 with limits of confidence interval at 95%: 2.07804027617.e-006 & 0.3283727153579,
- ⁇ -globulins 0.1594071294621 with limits of confidence interval at 95%: 0.001915414369681 & 0.06022006972876,
- FibroMeterTM 1.15299980586 with limits of confidence interval at 95%: 0.002487655344947 & 0.4161078148282.
- Metavir unit (MU) per year, ranged from 0 to 2.0 MU/yr for Metavir F (mean: 0.22 ⁇ 0.29, median: 0.13) and from 0.1 to 17.2%/yr for the area of fibrosis (mean: 1.8 ⁇ 2.6, median: 1.0).
- FIG. 3 shows a progressive but irregular increase in fibrosis rate as a function of Metavir F stage.
- FIG. 3 shows a rather stable progression rate of area of fibrosis from F stage 0 to 3 and a dramatic increase in patients with cirrhosis whereas the increase was progressive through all F stages for progression rate of Metavir F stage.
- FIG. 4 shows that the area of fibrosis as a function of cause duration markedly varied among patients, so patients might develop cirrhosis within a short period and others after a prolonged period. However, all patients with the fastest rate, as expected, and those with the longest follow-up, as less expected, had cirrhosis. A short cause duration was surprising in cirrhosis, however this was mainly observed in alcoholic CLD.
- FIG. 5 The graph of AOF progression plotted against cause duration ( FIG. 5 ) clearly shows that individual patients had different patterns of progression rate of area of fibrosis within each F stage.
- previous multivariate analyses indicated that “cause duration” or “age at 1 st contact” was the main clinical independent predictor of Metavir F or area of fibrosis progression.
- FIG. 6 shows that the F progression dramatically increased by 40 years in viral and alcoholic CLD.
- the AOF progression displayed a linear increase over age in alcoholic CLD whereas there was a plateau followed by a linear increase by 40 years in viral CLD.
- Fibrosis progression was calculated as the ratio fibrosis level/cause duration, with fibrosis level indicating stage or amount AOF. So, this is a mean value as a function of time.
- LB reference for fibrosis level determination
- the progression rate is a mean as a function of cause duration, cause duration being the time between the age when the cause started (“start age”) and the age at inclusion when fibrosis level was measured (“inclusion age”). Progression course is the trend as a function of time (increase, stability, decrease).
- start age the age when the cause started
- inclusion age the age at inclusion when fibrosis level was measured
- Progression course is the trend as a function of time (increase, stability, decrease).
- fibrosis determination LB or non-invasive test
- duration recording retrospective/transversal or prospective/longitudinal
- Populations 1 and 2 were selected according to the availability of estimation of the age when the cause started (“start age”). The period between start age and age at inclusion when fibrosis level was measured (“inclusion age”), was called “cause duration”.
- Start age The period between start age and age at inclusion when fibrosis level was measured (“inclusion age”), was called “cause duration”.
- Population 1 provided comparison between alcoholic and viral CLD.
- Population 2 with viral CLD had a sufficient high number of patients to validate the previous viral subpopulation and to allow subgroup analysis.
- Population 3 was a large population with viral CLD providing a validation of inclusion age effect.
- Population 4 allowed validating in patients with 2 LB the previous progression estimated with 1 LB.
- population 5 was used to validate the progression calculated with two blood tests.
- Image analysis was measured on the same sections as the microscopic analysis using either a Leica Quantimet Q570 image processor as previously described from 1996 to 2006 (10) or an Aperio digital slide scanner (Scanscope® CS System, Aperio Technologies, Vista Calif. 92081, USA) image processor providing high quality images of 30,000 ⁇ 30,000 pixels and a resolution of 0.5 ⁇ m/pixel (magnification ⁇ 20) since 2007.
- a binary image (white and black) was obtained via an automatic thresholding technique using an algorithm developed in our laboratory.
- Quantitative variables were expressed as mean ⁇ SD, unless otherwise specified.
- the Pearson's rank correlation coefficient (r p ) was used for correlations between continuous variables or the Spearman correlation coefficient (r s ) when necessary.
- the Lowess regression by weighted least squares was used to determine the average trend of relationships between variables, mainly the progression course (18). The line rupture observed in these curves were checked by cut-offs determined according to maximum Youden index and diagnostic accuracy (data not shown). The curve shape was evaluated by corresponding test, e.g. quadratic trend test. To assess independent predictors, multiple linear regression for quantitative dependent variables, binary logistic regression for qualitative dependent variables and discriminant analysis for ordered variables were used with forward stepwise addition of variables.
- each model is expressed by the adjusted R 2 coefficient ( a R 2 ) and/or by the diagnostic accuracy, i.e. true positives and negatives, respectively.
- An ⁇ risk ⁇ 5% for a two-sided test was considered statistically significant.
- the statistical software used was SPSS version 11.5.1 (SPSS Inc., Chicago, Ill., USA).
- FIG. 12 a shows that the F progression dramatically increased by 30-40 years of start age in alcoholic ( ⁇ 40 years) and viral ( ⁇ 30 years) CLD (population 1).
- the latter figure was confirmed in population 2 especially in men ( FIG. 12 c ).
- the AOF progression displayed an almost linear increase over start age in alcoholic CLD whereas there was a plateau followed by a linear increase by ⁇ 40 years of start age in viral CLD (population 1) ( FIG. 12 b ). This was confirmed in population 2 especially in men ( FIG.
- AOF progression did not depend on the inclusion age in alcoholic CLD ( FIG. 14 b ) whereas there was a late increase in viral CLD ( FIGS. 14 b and 14 e ). Consequently, the AOF level linearly increased with age in alcoholic CLD ( FIG. 14 c ) whereas this occurred by age 50 yr in viral CLD (FIG. 14 f ).
- Sex We state here the particular relationship between sexes and CLD cause since sex effect has been already mentioned in viral CLD. Whereas there was a global parallelism between males and females in viral CLD, females in alcoholic CLD had two particularities: a slowdown between 30-50 yr and a late increase in fibrosis progression and level by 50 yr of start age (data not shown). The same differences were observed for inclusion age at the difference that the slowdown was observed later between 45-50 yr, as expected.
- the start age increased with fibroser degree: 25.2 ⁇ 10.5, 28.7 ⁇ 10.8 and 33.0 ⁇ 13.6 yr, respectively (p ⁇ 10 ⁇ 3 ).
- fibrosers were predicted by Metavir F, AOF, F progression and cause duration (diagnostic accuracy: 91.4%).
- the fast fibrosers were predicted by increased AOF, younger inclusion age and older start age with diagnostic accuracy: 100.0% by stepwise binary logistic regression.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Biotechnology (AREA)
- Medical Informatics (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Gastroenterology & Hepatology (AREA)
- Oncology (AREA)
- Theoretical Computer Science (AREA)
- Hospice & Palliative Care (AREA)
- Bioinformatics & Computational Biology (AREA)
- Communicable Diseases (AREA)
- Biophysics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physiology (AREA)
- Evolutionary Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/257,456 US20120010824A1 (en) | 2009-03-19 | 2010-03-18 | Non-Invasive Method for Assessing Liver Fibrosis Progression |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16147409P | 2009-03-19 | 2009-03-19 | |
US13/257,456 US20120010824A1 (en) | 2009-03-19 | 2010-03-18 | Non-Invasive Method for Assessing Liver Fibrosis Progression |
PCT/EP2010/053548 WO2010106140A1 (en) | 2009-03-19 | 2010-03-18 | Non-invasive method for assessing liver fibrosis progression |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16147409P Division | 2009-03-19 | 2009-03-19 | |
PCT/EP2010/053548 A-371-Of-International WO2010106140A1 (en) | 2009-03-19 | 2010-03-18 | Non-invasive method for assessing liver fibrosis progression |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/608,287 Continuation-In-Part US10861582B2 (en) | 2009-03-19 | 2017-05-30 | Non-invasive method for assessing liver fibrosis progression |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120010824A1 true US20120010824A1 (en) | 2012-01-12 |
Family
ID=42227782
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/257,456 Abandoned US20120010824A1 (en) | 2009-03-19 | 2010-03-18 | Non-Invasive Method for Assessing Liver Fibrosis Progression |
US15/608,287 Active 2031-10-20 US10861582B2 (en) | 2009-03-19 | 2017-05-30 | Non-invasive method for assessing liver fibrosis progression |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/608,287 Active 2031-10-20 US10861582B2 (en) | 2009-03-19 | 2017-05-30 | Non-invasive method for assessing liver fibrosis progression |
Country Status (7)
Country | Link |
---|---|
US (2) | US20120010824A1 (zh) |
EP (1) | EP2409154B1 (zh) |
JP (1) | JP5612067B2 (zh) |
CN (2) | CN102439456B (zh) |
BR (1) | BRPI1009461B1 (zh) |
ES (1) | ES2644725T3 (zh) |
WO (1) | WO2010106140A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120177260A1 (en) * | 2011-01-10 | 2012-07-12 | The Regents Of The University Of Michigan | System and methods for detecting liver disease |
WO2014011925A3 (en) * | 2012-07-11 | 2015-07-16 | University Of Mississippi Medical Center | Detection and staging of liver fibrosis |
US20160012583A1 (en) * | 2013-03-01 | 2016-01-14 | Universite D' Angers | Automatic measurement of lesions on medical images |
WO2018024748A1 (en) * | 2016-08-01 | 2018-02-08 | Centre Hospitalier Universitaire D'angers | Multi-targeted fibrosis tests |
CN109111451A (zh) * | 2017-06-26 | 2019-01-01 | 广东东阳光药业有限公司 | 二氢嘧啶类化合物及其在药物中的应用 |
US10165987B2 (en) | 2014-08-01 | 2019-01-01 | Centre Hospitalier Universitaire D'angers | Method for displaying medical images |
CN111279195A (zh) * | 2017-10-16 | 2020-06-12 | 生物预测公司 | 原发性肝癌的预后和随访方法 |
CN112250769A (zh) * | 2020-09-30 | 2021-01-22 | 四川携光生物技术有限公司 | Ftcd和cyp2d6融合蛋白及其构建方法、应用 |
WO2024102976A1 (en) * | 2022-11-11 | 2024-05-16 | The Board Of Regents Of The University Of Texas System | Molecular signatures to predict long-term liver fibrosis progression |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2815416A1 (en) * | 2010-10-21 | 2012-04-26 | Vertex Pharmaceuticals Incorporated | Biomarkers for hcv infected patients |
BR112013033595A2 (pt) * | 2011-06-29 | 2017-01-24 | Inner Mongolia Furui Medical Science Co Ltd | aparelhagem e sistema de detecção de fibrose hepática |
US9002656B2 (en) | 2011-10-17 | 2015-04-07 | Daxor Corporation | Automated total body albumin analyzer |
US9710908B2 (en) | 2013-01-08 | 2017-07-18 | Agency For Science, Technology And Research | Method and system for assessing fibrosis in a tissue |
EP2930515A1 (en) * | 2014-04-08 | 2015-10-14 | Universite D'angers | Prognostic tests for hepatic disorders |
CN105092855B (zh) * | 2014-05-23 | 2017-10-03 | 杭州普望生物技术有限公司 | 一种用于肝纤维化和肝硬化检测的试剂盒 |
WO2016061621A1 (en) * | 2014-10-21 | 2016-04-28 | Jeffrey Gary Peter | Liver test |
CN104887243B (zh) * | 2015-07-02 | 2017-08-01 | 郭璐 | 一种血小板指数测评快查计算滑动尺 |
CN107368689B (zh) * | 2017-07-31 | 2019-11-19 | 董云鹏 | 人体数据采集和分析系统 |
CN110237263B (zh) * | 2018-03-07 | 2022-06-17 | 昆山新蕴达生物科技有限公司 | HFn包载阿霉素的方法及其产物 |
CN108931645A (zh) * | 2018-07-26 | 2018-12-04 | 北京大学第医院 | 一种hcv清除后肝纤维化评估系统及评估方法 |
CN109473175A (zh) * | 2018-11-07 | 2019-03-15 | 中山大学附属第三医院(中山大学肝脏病医院) | 一种针对肝纤维化的非侵入性血清学评分模型及其设计方法 |
US11166976B2 (en) | 2018-11-08 | 2021-11-09 | Aligos Therapeutics, Inc. | S-antigen transport inhibiting oligonucleotide polymers and methods |
TWI685854B (zh) * | 2019-02-01 | 2020-02-21 | 中國醫藥大學附設醫院 | 肝纖維化評估模型、肝纖維化評估系統及肝纖維化評估方法 |
US20220257717A1 (en) * | 2019-07-12 | 2022-08-18 | Primegen Biotech, Llc | Methods of Treatment Using Encapsulated Cells |
JP2023514837A (ja) * | 2020-02-19 | 2023-04-11 | ヘピオン ファーマシューティカルズ インコーポレイテッド | 線維症を治療するためのシクロスポリン類似体の使用 |
CN111783792B (zh) * | 2020-05-31 | 2023-11-28 | 浙江大学 | 一种提取b超图像显著纹理特征的方法及其应用 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7668661B2 (en) * | 2000-04-28 | 2010-02-23 | Siemens Healthcare Diagnostics Inc. | Liver disease-related methods and systems |
AU6738001A (en) | 2000-04-28 | 2001-11-20 | Bayer Aktiengesellschaft | Assessment of liver fibrosis scoring with serum marker algorithms |
GB0202213D0 (en) | 2002-01-31 | 2002-03-20 | Imp College Innovations Ltd | Methods |
US6986995B2 (en) | 2002-02-28 | 2006-01-17 | Prometheus Laboratories, Inc. | Methods of diagnosing liver fibrosis |
PT1583968E (pt) | 2003-01-14 | 2015-09-14 | Vzw Vib | Um marcador sérico para medição da fibrose hepática |
JP2007505893A (ja) * | 2003-09-16 | 2007-03-15 | ハダシット メディカル リサーチ サービシーズ アンド ディベロップメント リミテッド | 免疫調節剤として使用される酢酸グラチラマー |
FR2870348B1 (fr) | 2004-05-14 | 2010-08-27 | Univ Angers | Methode pour diagnostiquer la presence et/ou la severite d'une pathologie hepathique chez un sujet |
US20080299094A1 (en) | 2004-07-01 | 2008-12-04 | Medical Research Fund Of Tel Aviv | Methods and Kits for Predicting Liver Fibrosis Progression Rate in Chronic Hepatitis C Patients |
ES2282780T3 (es) * | 2004-08-12 | 2007-10-16 | F. Hoffmann-La Roche Ag | Metodo para el diagnostico de la fibrosis hepatica. |
JPWO2006129513A1 (ja) | 2005-05-30 | 2008-12-25 | 味の素株式会社 | 肝疾患評価装置、肝疾患評価方法、肝疾患評価システム、肝疾患評価プログラムおよび記録媒体 |
US20070037224A1 (en) * | 2005-08-11 | 2007-02-15 | Hamer Peter J | Quantitative assays for PDGFR-beta in body fluids |
JP2010529470A (ja) * | 2007-06-14 | 2010-08-26 | フラームス・インテルウニフェルシタイル・インステイチュート・フォール・ビオテヒノロヒー・ヴェーゼットウェー(ヴェーイーベー・ヴェーゼットウェー) | 早期段階肝臓癌の検出のための診断試験 |
US20100049029A1 (en) | 2008-08-20 | 2010-02-25 | Hong Kong Applied Science And Technology Research Institute Co., Ltd. | Piezoelectric magnetic resonance elastograph (mre) driver system |
-
2010
- 2010-03-18 WO PCT/EP2010/053548 patent/WO2010106140A1/en active Application Filing
- 2010-03-18 ES ES10712036.2T patent/ES2644725T3/es active Active
- 2010-03-18 BR BRPI1009461-0A patent/BRPI1009461B1/pt active IP Right Grant
- 2010-03-18 CN CN201080021790.1A patent/CN102439456B/zh not_active Expired - Fee Related
- 2010-03-18 JP JP2012500256A patent/JP5612067B2/ja not_active Expired - Fee Related
- 2010-03-18 CN CN201610887218.2A patent/CN107014996A/zh active Pending
- 2010-03-18 EP EP10712036.2A patent/EP2409154B1/en active Active
- 2010-03-18 US US13/257,456 patent/US20120010824A1/en not_active Abandoned
-
2017
- 2017-05-30 US US15/608,287 patent/US10861582B2/en active Active
Non-Patent Citations (1)
Title |
---|
Baker et al. "Metalloproteinase Inhibitors: Biological Actions and Therapeutic Opportunities," Journal of Cell Science (2002) volume 115, number 19, pages 3719-3727. * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9036883B2 (en) * | 2011-01-10 | 2015-05-19 | The Regents Of The University Of Michigan | System and methods for detecting liver disease |
US20120177260A1 (en) * | 2011-01-10 | 2012-07-12 | The Regents Of The University Of Michigan | System and methods for detecting liver disease |
WO2014011925A3 (en) * | 2012-07-11 | 2015-07-16 | University Of Mississippi Medical Center | Detection and staging of liver fibrosis |
US10130295B2 (en) | 2012-07-11 | 2018-11-20 | University Of Mississippi Medical Center | Method for the detection and staging of liver fibrosis from image acquired data |
US20160012583A1 (en) * | 2013-03-01 | 2016-01-14 | Universite D' Angers | Automatic measurement of lesions on medical images |
US9830699B2 (en) * | 2013-03-01 | 2017-11-28 | Universite D'angers | Automatic measurement of lesions on medical images |
US20180075600A1 (en) * | 2013-03-01 | 2018-03-15 | Universite D'angers | Automatic measurement of lesions on medical images |
US10269118B2 (en) * | 2013-03-01 | 2019-04-23 | Universite D'angers | Automatic measurement of lesions on medical images |
US10165987B2 (en) | 2014-08-01 | 2019-01-01 | Centre Hospitalier Universitaire D'angers | Method for displaying medical images |
US11605460B2 (en) | 2016-01-08 | 2023-03-14 | Centre Hospitalier Universitaire D'angers | Multi-targeted fibrosis tests |
WO2018024748A1 (en) * | 2016-08-01 | 2018-02-08 | Centre Hospitalier Universitaire D'angers | Multi-targeted fibrosis tests |
CN109111451A (zh) * | 2017-06-26 | 2019-01-01 | 广东东阳光药业有限公司 | 二氢嘧啶类化合物及其在药物中的应用 |
CN109111451B (zh) * | 2017-06-26 | 2020-08-11 | 广东东阳光药业有限公司 | 二氢嘧啶类化合物及其在药物中的应用 |
CN111279195A (zh) * | 2017-10-16 | 2020-06-12 | 生物预测公司 | 原发性肝癌的预后和随访方法 |
CN112250769A (zh) * | 2020-09-30 | 2021-01-22 | 四川携光生物技术有限公司 | Ftcd和cyp2d6融合蛋白及其构建方法、应用 |
WO2024102976A1 (en) * | 2022-11-11 | 2024-05-16 | The Board Of Regents Of The University Of Texas System | Molecular signatures to predict long-term liver fibrosis progression |
Also Published As
Publication number | Publication date |
---|---|
US20170337322A1 (en) | 2017-11-23 |
EP2409154A1 (en) | 2012-01-25 |
WO2010106140A1 (en) | 2010-09-23 |
US10861582B2 (en) | 2020-12-08 |
ES2644725T3 (es) | 2017-11-30 |
CN107014996A (zh) | 2017-08-04 |
JP2012520995A (ja) | 2012-09-10 |
BRPI1009461A8 (pt) | 2017-09-12 |
JP5612067B2 (ja) | 2014-10-22 |
BRPI1009461B1 (pt) | 2019-08-20 |
CN102439456B (zh) | 2016-11-02 |
CN102439456A (zh) | 2012-05-02 |
BRPI1009461A2 (pt) | 2016-03-01 |
EP2409154B1 (en) | 2017-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120010824A1 (en) | Non-Invasive Method for Assessing Liver Fibrosis Progression | |
Corpechot et al. | Assessment of biliary fibrosis by transient elastography in patients with PBC and PSC | |
Marcellin et al. | Non‐invasive assessment of liver fibrosis by stiffness measurement in patients with chronic hepatitis B | |
Schütte et al. | Markers for predicting severity and progression of acute pancreatitis | |
Pereira et al. | Serum markers of hepatic fibrogenesis in cystic fibrosis liver disease | |
US20110313276A1 (en) | Non-invasive in vitro method for quantifying liver lesions | |
US11041864B2 (en) | Method for prediction of prognosis of sepsis | |
CN101023356A (zh) | 诊断肝纤维化的方法 | |
US20190265241A1 (en) | Method of diagnosis of non-alcoholic fatty liver diseases | |
Kawamura et al. | Influence of liver stiffness heterogeneity on staging fibrosis in patients with nonalcoholic fatty liver disease | |
Yan et al. | Serum S100 calcium binding protein A4 improves the diagnostic accuracy of transient elastography for assessing liver fibrosis in hepatitis B | |
Cho et al. | Point shear wave elastography predicts fibrosis severity and steatohepatitis in alcohol-related liver disease | |
US11605460B2 (en) | Multi-targeted fibrosis tests | |
CN105021827A (zh) | 检测血清血管生成素样蛋白2含量的物质在制备检测肝脏炎症和纤维化程度产品中的应用 | |
Suk et al. | Diagnostic accuracy of biomarkers measured in the hepatic vein and peripheral vein in the prediction of advanced fibrosis in patients with chronic viral hepatitis | |
Huang et al. | An albumin, collagen IV, and longitudinal diameter of spleen scoring system superior to APRI for assessing liver fibrosis in chronic hepatitis B patients | |
Arain et al. | Serum hyaluronic acid level does not reliably differentiate minimal and significant liver disease in chronic hepatitis C | |
Gorka-Dynysiewicz et al. | Accurate prediction of significant liver fibrosis using the Pentra score model in patients with chronic hepatitis C | |
Park et al. | Noninvasive markers to diagnose cirrhosis in patients with HBeAg positive chronic hepatitis: Do new biomarkers improve the accuracy? | |
Jeffers et al. | Prospective evaluation of FIBROSpect II for fibrosis detection in hepatitis C and B patients undergoing laparoscopic biopsy | |
WO2017011929A1 (zh) | 检测血清血管生成素样蛋白2含量的物质在制备检测肝脏炎症和纤维化程度产品中的应用 | |
Tsuge et al. | Naoyuki Ueda1, 2, Tomokazu Kawaoka3, Michio Imamura3, Hiroshi Aikata3, Takashi Nakahara3, Eisuke Murakami3 | |
WO2024105154A1 (en) | Non-invasive methods of diagnosing or monitoring steatohepatitis | |
Srygley IV et al. | Noninvasive assessment of liver fibrosis in chronic hepatitis C infection | |
Yamasaki et al. | Agglutinin-Positive Human Mac-2 Binding Protein Predict the Development of Hepatocellular Carcinoma in Hepatitis C Patients |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNIVERSITE D'ANGERS, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CALES, PAUL;REEL/FRAME:028975/0191 Effective date: 20120702 Owner name: CENTRE HOSPITALIER UNIVERSITAIRE D'ANGERS, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CALES, PAUL;REEL/FRAME:028975/0191 Effective date: 20120702 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |