US20120010824A1 - Non-Invasive Method for Assessing Liver Fibrosis Progression - Google Patents

Non-Invasive Method for Assessing Liver Fibrosis Progression Download PDF

Info

Publication number
US20120010824A1
US20120010824A1 US13/257,456 US201013257456A US2012010824A1 US 20120010824 A1 US20120010824 A1 US 20120010824A1 US 201013257456 A US201013257456 A US 201013257456A US 2012010824 A1 US2012010824 A1 US 2012010824A1
Authority
US
United States
Prior art keywords
fibrosis
progression
age
liver
score
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/257,456
Inventor
Paul Cales
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite dAngers
Centre Hospitalier Universitaire dAngers
Original Assignee
Universite dAngers
Centre Hospitalier Universitaire dAngers
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite dAngers, Centre Hospitalier Universitaire dAngers filed Critical Universite dAngers
Priority to US13/257,456 priority Critical patent/US20120010824A1/en
Publication of US20120010824A1 publication Critical patent/US20120010824A1/en
Assigned to UNIVERSITE D'ANGERS, CENTRE HOSPITALIER UNIVERSITAIRE D'ANGERS reassignment UNIVERSITE D'ANGERS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CALES, PAUL
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57438Specifically defined cancers of liver, pancreas or kidney
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/576Immunoassay; Biospecific binding assay; Materials therefor for hepatitis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41781,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4713Plasma globulins, lactoglobulin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/475Assays involving growth factors
    • G01N2333/495Transforming growth factor [TGF]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2400/00Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
    • G01N2400/10Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • G01N2400/38Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence, e.g. gluco- or galactomannans, e.g. Konjac gum, Locust bean gum, Guar gum
    • G01N2400/40Glycosaminoglycans, i.e. GAG or mucopolysaccharides, e.g. chondroitin sulfate, dermatan sulfate, hyaluronic acid, heparin, heparan sulfate, and related sulfated polysaccharides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/08Hepato-biliairy disorders other than hepatitis
    • G01N2800/085Liver diseases, e.g. portal hypertension, fibrosis, cirrhosis, bilirubin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/60Complex ways of combining multiple protein biomarkers for diagnosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7052Fibrosis

Definitions

  • the present invention relates to the field of hepatology and in particular to a non-invasive method for assessing the liver fibrosis progression, especially in alcohol or viral or metabolic chronic liver disease.
  • Liver fibrosis refers to the accumulation of fibrous scar tissue in the liver.
  • various techniques can be used.
  • One of these techniques is the liver needle biopsy (LNB), leading to a classification based on observation of lesions in the liver, particularly in the hepatic lobe.
  • LNB liver needle biopsy
  • Metavir classification which classifies liver fibrosis into five stages from F0 to F4. According to the Metavir classification, an F ⁇ 2 stage means that fibrosis is clinically significant, whereas a F4 stage corresponds to the ultimate stage, namely cirrhosis.
  • Fibrosis score such as for example FibrometerTM
  • OAF area of fibrosis
  • quantitative image analysis can also be used alone or in combination with LNB or Metavir classification, in order to determine with more accuracy the extent of liver fibrosis in an individual.
  • liver fibrosis progression rate of the fibrosis differs from an individual to another.
  • assessment of liver fibrosis progression would be a very important and useful tool in clinical practice for both prognostic and therapeutic reasons.
  • liver fibrosis progression depends on various genetic and host factors, it may indeed be useful to determine ahead of time whether it is reasonable to expect that liver fibrosis will progress towards cirrhosis during the patient's lifetime and if it does, at what rate will this progression occur.
  • assessing the progression rate of liver fibrosis can also be useful in order to help physicians decide whether or not to treat a patient or in order to help them monitor patients who are already following a treatment regimen.
  • physicians relied mostly on fibrosis staging (ex. Metavir stage ⁇ F2) in order to justify an antiviral treatment for chronic viral hepatitis.
  • fibrosis staging ex. Metavir stage ⁇ F2
  • it would be very useful to know early on, such as for example but not limited to patients showing a stage F0 or F1 whether his liver fibrosis will evolve rapidly or not into clinically significant fibrosis or cirrhosis, in order for the physicians to anticipate the treatment.
  • WO 03/064687 discloses a method for assessing a patient's risk of development and progression of liver cirrhosis, said method comprising the step of determining the patient's genotype or phenotype for a coagulation factor.
  • WO 2006/003654 discloses methods and kits for determining the predisposition of an individual affected by chronic hepatitis C infection to develop a fast progression rate of liver fibrosis. This method essentially consists in determining the presence or absence, in the CYP2D6 locus of the individual, of at least one fast progression liver fibrosis associated genotype.
  • EP 1887362A1 discloses a hepatic disease-evaluating method comprising a step of calculating an index indicating the degree of hepatic fibrosis from amino acid concentration data.
  • “Score” is a combination of markers (or variables) aimed at predicting a clinical event or a lesion such as fibrosis degree.
  • the score ranges from 0 (0% risk) to 1 (100% risk), i.e. the probability of the diagnostic target.
  • the score relies on multiple linear regression, the score produces a result in the same units as the diagnostic target.
  • the main scores are derived from multiple linear regression and measure a progression rate of fibrosis, i.e. expressed as a fibrosis unit per time unit.
  • “Progression” means the evolution of the fibrosis level over time.
  • Regularly means at regular intervals, such as for example, every 10-day, every month, or every year, etc.
  • Sample means a biological fluid of an individual, such as for example blood, serum, plasma, urine or saliva of an individual.
  • Non-invasive means that no tissue is taken from the body of an individual (blood is not considered as a tissue).
  • “Individual” means a woman, a man or an animal, young or old, healthy or susceptible of being affected or clearly affected by a hepatic pathology, such as a liver fibrosis of viral origin, of alcohol origin, a chronic liver steatosis or by any other pathology.
  • “Cause” means the risk factor that induces the lesions and the ensuing pathology.
  • “Cause duration” is the time between the age when the cause started (“start age”) and the age at inclusion when fibrosis level was measured (“inclusion age”).
  • Fibrosis level is reflected by a Fibrosis Score, AOF or fractal dimension, preferably fibrosis level is a fibrosis score or an AOF score or a fractal dimension score.
  • Fibrometer may refer to a fibrosis score or to a AOF score.
  • the present invention proposes a solution to the technical issue of assessing the progression rate of fibrosis in all and any condition or disease involving fibrosis.
  • This invention results in a very accurate diagnosis of fibrosis progression and in the ability of distinguishing slow, medium and fast fibrosers.
  • condition or disease is alcohol or viral chronic liver disease (CLD).
  • CLD chronic liver disease
  • OEF area of fibrosis
  • the liver fibrosis progression is assessed by calculating the ratio fibrosis level/cause duration.
  • fibrosis level is measured by a non-invasive method.
  • the fibrosis level is a fibrosis score, preferably FibrometerTM, AOF score or fractal dimension score.
  • the liver fibrosis progression is assessed by measuring, at two different intervals t 1 and t 2 , the fibrosis levels FL(t 1 ) and FL(t 2 ) and calculating the ratio FL(t 2 ) ⁇ FL(t 1 ) to (t 2 ⁇ t 1 ).
  • t 1 is the time at which a first measure is performed in an individual and a first fibrosis level FL(t 1 ) is determined;
  • t 2 is the time at which a second measure is performed in the same individual and a second fibrosis level FL(t 2 ) is determined;
  • t 2 ⁇ t 1 is a period of time of at least 10 days; in an embodiment, t 2 ⁇ t 1 is a period of 1 to 6 months; in another embodiment, t 2 ⁇ t 1 is a period of 1 year.
  • the fibrosis level is a fibrosis score, AOF score or fractal dimension score.
  • Fibrosis Score is a score obtained by measuring in a sample of an individual and combining in a logistic or linear regression function at least three, preferably 6 to 8, markers selected in the group consisting of ⁇ -2 macroglobulin (A2M), hyaluronic acid (HA or hyaluronate), apoliprotein A1 (ApoA1), N-terminal propeptide of type III procollagen (P3P), gamma-glutamyltranspeptidase (GGT), bilirubin, gamma-globulins (GLB), platelet count (PLT), prothrombin index (PI), aspartate amino-transferase (AST), alanine amino-transferase (ALT), urea, sodium (NA), glycemia (GLY), triglycerides (TG), albumin (ALB), alkaline phosphatases (ALP), human cartilage glycoprotein 39 (YKL-40), tissue inhibitor of matrix metall
  • the Fibrosis Score is measured by combining the levels of at least three markers selected from the group consisting of glycemia (GLY), aspartate aminotransferase (AST), alanine amino-transferase (ALT), ferritin, hyaluronic acid (HA), triglycerides (TG), prothrombin index (PI) gamma-globulins (GLB), platelet count (PLT), weight, age and sex.
  • GLY glycemia
  • AST aspartate aminotransferase
  • ALT alanine amino-transferase
  • ferritin ferritin
  • HA hyaluronic acid
  • TG triglycerides
  • PI prothrombin index
  • GLB platelet count
  • weight age and sex.
  • the Fibrosis score is established by combining in a binary linear regression function, the levels of four to eight markers, preferably selected from the group consisting of Alpha2 macroglobulin (A2M), hyaluronic acid or hyaluronate (AH), Prothrombin index (PI) Platelets (PLQ), ASAT, Urea, GGT, Age and Sex.
  • A2M Alpha2 macroglobulin
  • AH hyaluronic acid or hyaluronate
  • PI Prothrombin index
  • PQ Prothrombin index
  • ASAT FibrometerTM or FibrotestTM or FibrospectTM or Hepascore.
  • the markers of the score may be selected depending on the fact that the liver condition is of viral or alcoholic origin.
  • “Area Of Fibrosis” may be determined by image analysis, or by a non invasive method wherein a score is obtained by measuring in a sample of said patient and then combining in a logistic or linear regression function, preferably in a multiple linear regression function, at least two, preferably 3, more preferably 6 to 8 variables selected from the group consisting of ⁇ -2 macroglobulin (A2M), hyaluronic acid (HA or hyaluronate), apoliprotein A1 (ApoA1), procollagen Type III-N-terminal propeptide (P3P), gamma-glutamyltranspeptidase (GGT), bilirubin, gamma-globulins (GLB), platelet count (PLT), prothrombin index (PI), aspartate amino-transférase (AST), alanine amino-transferase (ALT), urea, sodium (NA), glycemia, triglycerides, albumin (ALB), alkaline
  • “Fractal dimension” reflects the liver architecture and may be obtained by image analysis or by a non invasive method wherein a score is obtained by measuring in a sample of an individual and combining in a logistic or linear regression function (preferably a multiple linear regression function) at least three, preferably 4 markers selected in the group comprising or consisting of ⁇ -2 macroglobulin (A2M), albumine (ALB), Prothrombin index (PI), hyaluronic acide (HA ou hyaluronate), alanine amino-transferase (ALAT), aspartate amino-transferase (ASAT) and age.
  • A2M macroglobulin
  • ALB albumine
  • PI Prothrombin index
  • HA ou hyaluronate alanine amino-transferase
  • ASAT aspartate amino-transferase
  • the fibrosis level is selected from the scores set forth in the table below:
  • This invention also relates to a non-invasive method for assessing whether or not an individual is a fast fibroser, including measuring the liver progression of said individual by using a non-invasive method here above described, preferably by calculating FL/cause duration and/or FL(t2) ⁇ FL (t 1 )/t 2 ⁇ t 1 , wherein FL preferably is a fibrosis score, an AOF score or a fractal dimension score.
  • the fast fibroser is identified with reference to statistical data as having an increased AOF, younger inclusion age and older start age (or cause duration replacing the two previous variables) by stepwise binary logistic regression. According the Applicant experiments, the diagnostic accuracy seems to be of 100.0% by stepwise binary logistic regression.
  • This invention also relates to a non-invasive method for assessing if an individual is a slow, medium or fast fibroser using discriminant analyses with reference to a population of fibrosers, ranked from their fibrosis progression rate in three categories, i.e. slow, medium and fast fibrosers: first, a method of assessing the fibrosis progression, preferably by AOF progression, as described above, is implemented, and the individual is ranked in slow, medium, fast fibrosers categories determined by statistical analysis.
  • the non-invasive method here above described is preferably FL/cause duration or FL(t2) ⁇ FL(t1)/t2 ⁇ t1, wherein FL preferably is AOF score.
  • liver fibrosis progression is assessed by a score.
  • the invention relates to a non-invasive method for assessing liver fibrosis progression in an individual, said method comprising the steps of:
  • the method includes combining at least two biological variables or at least two scores, and at least one clinical variable selected from cause duration, especially Chronic Liver Disease duration and age at first contact with cause (also named “start age”).
  • the at least one clinical variable is cause duration.
  • the at least one clinical variable is age at first contact with cause (“start age”).
  • the method includes two clinical variables.
  • the two clinical variables are cause duration and start age.
  • the at least one score is selected from the group consisting of Area of Fibrosis (AOF) and/or the Fibrosis Score and/or Fractal dimension.
  • AOF Area of Fibrosis
  • the liver fibrosis progression is assessed by measuring Metavir F progression, said Metavir F progression being established by measuring the following:
  • variable sex is not selected.
  • the variables are:
  • the variables are:
  • the variables are:
  • the liver fibrosis progression is assessed by measuring the area of fibrosis (AOF) progression, said AOF progression being established by measuring the following:
  • the variables are:
  • the variables are:
  • the variables are:
  • the variables are:
  • the variables are:
  • the non-invasive method of the invention includes at least two fibrosis scores, measured at regular intervals, such as for example, every 10-day, every month, or every year.
  • the individual may be at risk of suffering or is suffering from a condition selected from the group consisting of a chronic liver disease, a hepatitis viral infection, an hepatoxicity, a liver cancer, a non alcoholic fatty liver disease (NAFLD), an autoimmune disease, a metabolic liver disease and a disease with secondary involvement of the liver.
  • a condition selected from the group consisting of a chronic liver disease, a hepatitis viral infection, an hepatoxicity, a liver cancer, a non alcoholic fatty liver disease (NAFLD), an autoimmune disease, a metabolic liver disease and a disease with secondary involvement of the liver.
  • a condition selected from the group consisting of a chronic liver disease, a hepatitis viral infection, an hepatoxicity, a liver cancer, a non alcoholic fatty liver disease (NAFLD), an autoimmune disease, a metabolic liver disease and a disease with secondary involvement of the liver.
  • NAFLD non alcoholic fatty liver disease
  • Hepatitis viral infection may be caused by a virus selected from the group consisting of hepatitis C virus, hepatitis B virus and hepatitis D virus.
  • Hepatoxicity may be alcohol induced hepatoxicity and/or drug-induced hepatoxicity (i.e. any xenobiotic like alcohol or drug).
  • autoimmune disease is selected from the group consisting of autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC).
  • Metabolic liver disease may be selected from the group consisting of Hemochromatosis, Wilson's disease and alpha 1 anti trypsin. Secondary involvement of the liver may be celiac disease or amyloidosis.
  • FIGS. 1-7 are to be read with regard to Example 1.
  • r s is the coefficient of correlation of Spearman
  • r p is the coefficient of correlation of Pearson.
  • FIG. 2 is a graph showing the progression rate of fibrosis as a function of Metavir F stage.
  • FIG. 3 is a graph showing the fibrosis progression rates for Metavir F (3A) and AOF (3B) in alcoholic and viral chronic liver disease (CLD). Transition lines are drawn only to show the differences between patient groups.
  • FIG. 4 is a graph showing the AOF as a function of cause duration according to CLD cause (alcoholic in black and viral in grey) and to Metavir F stage.
  • FIG. 5 is the AOF progression rate as a function of cause duration according to Metavir fibrosis (F) stage.
  • the curve has an inverse shape (1/x) by definition.
  • FIG. 6 is the relationship between fibrosis progression rate, Metavir fibrosis stage (6A) and AOF (6B) and age at 1st contact. Lines are provided by polynomial regression. The axis of AOF progression was truncated at 3.
  • FIG. 7 is the effects of antifibrotic treatment on area of fibrosis and Metavir F stage. Box plots indicate median, quartiles and extremes.
  • FIGS. 8-16 are to be read with regard to Example 2.
  • FIG. 8 is a graph showing the correlation between Metavir fibrosis (F) stage and area of fibrosis (AOF) progression in populations 1 (panel a) and 2 (panel b) of Example2 Lines depict linear regression.
  • FIG. 9 is a graph showing relationship between Metavir fibrosis (F) stage (left panels) or area of fibrosis (AOF) progression (right panels), during cause duration, as a function of Metavir fibrosis (F) stage at inclusion age in populations 1 (top panels) and 2 (bottom panels).
  • FIG. 10 is a graph showing the correlation between Metavir fibrosis (F) stage (left panels) or area of fibrosis (AOF) progression (right panels) and respective predicted progression in populations 1 (top panels, alcoholic CLD only) and 2 (bottom panels, viral CLD).
  • FIG. 11 shows the relationship between Metavir fibrosis (F) stage (left panels) or area of fibrosis (AOF) (right panels) and cause duration in populations 1 (top panels) and 2 (bottom panels). Curves depict Lowess regression.
  • FIG. 12 shows the Relationship between Metavir fibrosis (F) stage (left panels) or area of fibrosis (AOF) (right panels) progression and start age in populations 1 (top panels) and 2 (bottom panels). Curves depict Lowess regression.
  • FIG. 13 shows the relationship between Metavir fibrosis (F) stage (left panels) or area of fibrosis (AOF) (right panels) and start age in populations 1 (top panels) and 2 (bottom panels). Curves depict Lowess regression.
  • FIG. 14 shows the relationship between Metavir fibrosis (F) stage progression (left panels) or area of fibrosis progression (medium panels) or area of fibrosis (right panels) and inclusion age in populations 1 (top panels) and 2 (bottom panels). Curves depict Lowess regression.
  • FIG. 15 shows the relationship between fibrosis characteristics and cause duration showing different fibrosers as a function of fibrosis progression in population 2. Curves depict Lowess regression.
  • FIG. 16 shows the impact of special patient subgroups on curves of Metavir fibrosis (F) stage as a function of different times in population 2. The impact was determined according to the method shown in FIG. 11 a.
  • a 1 st population of 185 patients (all of which had been subjected to one liver biopsy) was selected according to the availability of an estimation of the contact date (or exposure) to the risk factor (or cause) of CLD. The difference between inclusion date and contact date is herein called “duration of cause”.
  • a 2 nd population of 16 patients (all of which had been subjected to two liver biopsies) was selected.
  • the 185 patients included in this population were admitted for alcoholic liver disease, or for chronic viral hepatitis B or C. Patients were included who had drunk at least 50 g of alcohol per day for the past five years or were positive for serum hepatitis B surface antigen or C antibodies. None of the patient had clinical, biological, echographic or histological evidence of other causes of chronic liver disease (Wilson's disease, hemochromatosis, ⁇ 1-antitrypsin deficiency, biliary disease, auto-immune hepatitis, hepatocellular carcinoma). Blood samples were taken at entry and a transcostal (suction needle) or transjugular (cutting needle) liver biopsy was performed within one week.
  • Analyses of blood samples provided the following measurements: hemoglobin, mean corpuscular volume, lymphocyte count, platelet count, cholesterol, urea, creatinine, sodium (NA), bilirubin, ⁇ -glutamyltranspeptidase (GGT), alkaline phosphatases (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), albumin (ALB), ⁇ 1 and ⁇ 2-globulins, ⁇ -globulins, ⁇ -globulins, ⁇ -block, prothrombin index (PI), apolipoprotein A1 (ApoA1). Some of them are indirect blood markers of fibrosis (1).
  • the direct blood markers of fibrosis used in this study were the following: ⁇ -2-macroglobulin (A 2 M), the N-terminal peptide of type III procollagen (P3P), hyaluronic acid (HA), TGF ⁇ 1, and laminin.
  • the following blood tests were calculated: AST/ALT ratio, PGA score (2), PGAA score (3), APRI (4), different FibroMeters (5), and Hepascore (6).
  • Sera were kept at ⁇ 80° C. for a maximum of 48 months for assay.
  • Biopsy specimens were fixed in a formalin-alcohol-acetic solution and embedded in paraffin; 5 ⁇ m thick sections were stained with haematoxylin-eosin-saffron and 0.1% picrosirius red solution.
  • Fibrosis was staged by two independent pathologists according to the Metavir staging (7).
  • the Metavir staging is also well adapted to the semi-quantitative evaluation of fibrosis in alcoholic CLD since porto-septal fibrosis is more frequent and developed than centrolobular fibrosis (8). Observers were blinded for patient characteristics. When the pathologists did not agree, the specimens were re-examined under a double-headed microscope to analyse discrepancies and reach a consensus. All specimens were also evaluated according to the following grades: Metavir activity (7), steatosis and centrolobular fibrosis (CLF) as previously described (9).
  • AOF was measured on the same sections as the microscopic analysis using a Leica Quantimet Q570 image processor as previously described (9). Fractal dimension of fibrosis was also measured in population 2 (10).
  • Quantitative variables were expressed as mean ⁇ SD, unless otherwise specified.
  • the Pearson's rank correlation coefficient (r p ) was used for correlations between continuous variables or Spearman correlation coefficient (r s ) when necessary.
  • r p Pearson's rank correlation coefficient
  • r s binary logistic regression coefficient
  • the predictive performance of each model is expressed by the adjusted R 2 coefficient ( a R 2 ) and by the diagnostic accuracy, i.e. true positives and negatives, respectively.
  • a ⁇ risk ⁇ 5% for a two-sided test was considered statistically significant.
  • the statistical software used was SPSS version 11.5.1 (SPSS Inc., Chicago, Ill., USA).
  • PR progression rate
  • AST/ALT 0.5412244415007 with limits of confidence interval at 95%: 2.07804027617.e-006 & 0.3283727153579,
  • ⁇ -globulins 0.1594071294621 with limits of confidence interval at 95%: 0.001915414369681 & 0.06022006972876,
  • FibroMeterTM 1.15299980586 with limits of confidence interval at 95%: 0.002487655344947 & 0.4161078148282.
  • Metavir unit (MU) per year, ranged from 0 to 2.0 MU/yr for Metavir F (mean: 0.22 ⁇ 0.29, median: 0.13) and from 0.1 to 17.2%/yr for the area of fibrosis (mean: 1.8 ⁇ 2.6, median: 1.0).
  • FIG. 3 shows a progressive but irregular increase in fibrosis rate as a function of Metavir F stage.
  • FIG. 3 shows a rather stable progression rate of area of fibrosis from F stage 0 to 3 and a dramatic increase in patients with cirrhosis whereas the increase was progressive through all F stages for progression rate of Metavir F stage.
  • FIG. 4 shows that the area of fibrosis as a function of cause duration markedly varied among patients, so patients might develop cirrhosis within a short period and others after a prolonged period. However, all patients with the fastest rate, as expected, and those with the longest follow-up, as less expected, had cirrhosis. A short cause duration was surprising in cirrhosis, however this was mainly observed in alcoholic CLD.
  • FIG. 5 The graph of AOF progression plotted against cause duration ( FIG. 5 ) clearly shows that individual patients had different patterns of progression rate of area of fibrosis within each F stage.
  • previous multivariate analyses indicated that “cause duration” or “age at 1 st contact” was the main clinical independent predictor of Metavir F or area of fibrosis progression.
  • FIG. 6 shows that the F progression dramatically increased by 40 years in viral and alcoholic CLD.
  • the AOF progression displayed a linear increase over age in alcoholic CLD whereas there was a plateau followed by a linear increase by 40 years in viral CLD.
  • Fibrosis progression was calculated as the ratio fibrosis level/cause duration, with fibrosis level indicating stage or amount AOF. So, this is a mean value as a function of time.
  • LB reference for fibrosis level determination
  • the progression rate is a mean as a function of cause duration, cause duration being the time between the age when the cause started (“start age”) and the age at inclusion when fibrosis level was measured (“inclusion age”). Progression course is the trend as a function of time (increase, stability, decrease).
  • start age the age when the cause started
  • inclusion age the age at inclusion when fibrosis level was measured
  • Progression course is the trend as a function of time (increase, stability, decrease).
  • fibrosis determination LB or non-invasive test
  • duration recording retrospective/transversal or prospective/longitudinal
  • Populations 1 and 2 were selected according to the availability of estimation of the age when the cause started (“start age”). The period between start age and age at inclusion when fibrosis level was measured (“inclusion age”), was called “cause duration”.
  • Start age The period between start age and age at inclusion when fibrosis level was measured (“inclusion age”), was called “cause duration”.
  • Population 1 provided comparison between alcoholic and viral CLD.
  • Population 2 with viral CLD had a sufficient high number of patients to validate the previous viral subpopulation and to allow subgroup analysis.
  • Population 3 was a large population with viral CLD providing a validation of inclusion age effect.
  • Population 4 allowed validating in patients with 2 LB the previous progression estimated with 1 LB.
  • population 5 was used to validate the progression calculated with two blood tests.
  • Image analysis was measured on the same sections as the microscopic analysis using either a Leica Quantimet Q570 image processor as previously described from 1996 to 2006 (10) or an Aperio digital slide scanner (Scanscope® CS System, Aperio Technologies, Vista Calif. 92081, USA) image processor providing high quality images of 30,000 ⁇ 30,000 pixels and a resolution of 0.5 ⁇ m/pixel (magnification ⁇ 20) since 2007.
  • a binary image (white and black) was obtained via an automatic thresholding technique using an algorithm developed in our laboratory.
  • Quantitative variables were expressed as mean ⁇ SD, unless otherwise specified.
  • the Pearson's rank correlation coefficient (r p ) was used for correlations between continuous variables or the Spearman correlation coefficient (r s ) when necessary.
  • the Lowess regression by weighted least squares was used to determine the average trend of relationships between variables, mainly the progression course (18). The line rupture observed in these curves were checked by cut-offs determined according to maximum Youden index and diagnostic accuracy (data not shown). The curve shape was evaluated by corresponding test, e.g. quadratic trend test. To assess independent predictors, multiple linear regression for quantitative dependent variables, binary logistic regression for qualitative dependent variables and discriminant analysis for ordered variables were used with forward stepwise addition of variables.
  • each model is expressed by the adjusted R 2 coefficient ( a R 2 ) and/or by the diagnostic accuracy, i.e. true positives and negatives, respectively.
  • An ⁇ risk ⁇ 5% for a two-sided test was considered statistically significant.
  • the statistical software used was SPSS version 11.5.1 (SPSS Inc., Chicago, Ill., USA).
  • FIG. 12 a shows that the F progression dramatically increased by 30-40 years of start age in alcoholic ( ⁇ 40 years) and viral ( ⁇ 30 years) CLD (population 1).
  • the latter figure was confirmed in population 2 especially in men ( FIG. 12 c ).
  • the AOF progression displayed an almost linear increase over start age in alcoholic CLD whereas there was a plateau followed by a linear increase by ⁇ 40 years of start age in viral CLD (population 1) ( FIG. 12 b ). This was confirmed in population 2 especially in men ( FIG.
  • AOF progression did not depend on the inclusion age in alcoholic CLD ( FIG. 14 b ) whereas there was a late increase in viral CLD ( FIGS. 14 b and 14 e ). Consequently, the AOF level linearly increased with age in alcoholic CLD ( FIG. 14 c ) whereas this occurred by age 50 yr in viral CLD (FIG. 14 f ).
  • Sex We state here the particular relationship between sexes and CLD cause since sex effect has been already mentioned in viral CLD. Whereas there was a global parallelism between males and females in viral CLD, females in alcoholic CLD had two particularities: a slowdown between 30-50 yr and a late increase in fibrosis progression and level by 50 yr of start age (data not shown). The same differences were observed for inclusion age at the difference that the slowdown was observed later between 45-50 yr, as expected.
  • the start age increased with fibroser degree: 25.2 ⁇ 10.5, 28.7 ⁇ 10.8 and 33.0 ⁇ 13.6 yr, respectively (p ⁇ 10 ⁇ 3 ).
  • fibrosers were predicted by Metavir F, AOF, F progression and cause duration (diagnostic accuracy: 91.4%).
  • the fast fibrosers were predicted by increased AOF, younger inclusion age and older start age with diagnostic accuracy: 100.0% by stepwise binary logistic regression.

Abstract

The present invention relates to a non-invasive method for assessing liver fibrosis progression in an individual, said method comprising the steps of calculating the ratio of fibrosis level to cause duration and to a non-invasive method for assessing liver fibrosis progression in an individual, said method comprising the steps of measuring, at two different times t1 and t2, the fibrosis levels FL (t1) and FL (t2) and calculating the ratio FL (t2)−FL (t1) to (t2−t1) and to a non-invasive method for assessing if an individual is a slow, medium or fast fibroser.

Description

    FIELD OF THE INVENTION
  • The present invention relates to the field of hepatology and in particular to a non-invasive method for assessing the liver fibrosis progression, especially in alcohol or viral or metabolic chronic liver disease.
  • BACKGROUND OF THE INVENTION
  • Liver fibrosis refers to the accumulation of fibrous scar tissue in the liver. In order to diagnose liver fibrosis, various techniques can be used. One of these techniques is the liver needle biopsy (LNB), leading to a classification based on observation of lesions in the liver, particularly in the hepatic lobe. Indeed, one of the most commonly used classifications is the Metavir classification, which classifies liver fibrosis into five stages from F0 to F4. According to the Metavir classification, an F≧2 stage means that fibrosis is clinically significant, whereas a F4 stage corresponds to the ultimate stage, namely cirrhosis.
  • Figure US20120010824A1-20120112-C00001
  • Other techniques, such as the measurement of the presence or the severity of fibrosis in an individual through a Fibrosis score (such as for example Fibrometer™), an area of fibrosis (AOF) score as well as quantitative image analysis can also be used alone or in combination with LNB or Metavir classification, in order to determine with more accuracy the extent of liver fibrosis in an individual.
  • However, if detecting the presence or the severity of liver fibrosis is of high importance, it is observed that progression rate of the fibrosis differs from an individual to another. Thus, the assessment of liver fibrosis progression would be a very important and useful tool in clinical practice for both prognostic and therapeutic reasons.
  • First, considering that liver fibrosis progression depends on various genetic and host factors, it may indeed be useful to determine ahead of time whether it is reasonable to expect that liver fibrosis will progress towards cirrhosis during the patient's lifetime and if it does, at what rate will this progression occur.
  • Second, assessing the progression rate of liver fibrosis can also be useful in order to help physicians decide whether or not to treat a patient or in order to help them monitor patients who are already following a treatment regimen. Until now, physicians relied mostly on fibrosis staging (ex. Metavir stage ≧F2) in order to justify an antiviral treatment for chronic viral hepatitis. However, it would be very useful to know early on, such as for example but not limited to patients showing a stage F0 or F1, whether his liver fibrosis will evolve rapidly or not into clinically significant fibrosis or cirrhosis, in order for the physicians to anticipate the treatment.
  • Several documents have disclosed techniques developed in order to assess liver fibrosis progression. WO 03/064687 discloses a method for assessing a patient's risk of development and progression of liver cirrhosis, said method comprising the step of determining the patient's genotype or phenotype for a coagulation factor. WO 2006/003654 discloses methods and kits for determining the predisposition of an individual affected by chronic hepatitis C infection to develop a fast progression rate of liver fibrosis. This method essentially consists in determining the presence or absence, in the CYP2D6 locus of the individual, of at least one fast progression liver fibrosis associated genotype. EP 1887362A1 discloses a hepatic disease-evaluating method comprising a step of calculating an index indicating the degree of hepatic fibrosis from amino acid concentration data. Although, the aforementioned methods can assess liver fibrosis progression, they require sophisticated biological analysis which is not easily available in clinical practice.
  • Consequently, there is still a need for a low cost and easily available method which can evaluate the progression of fibrosis, said method being non-invasive, non-traumatizing, accurate and reliable, as well as simple to use.
  • DESCRIPTION OF THE INVENTION
  • For the purpose of the present invention,
  • “Score” is a combination of markers (or variables) aimed at predicting a clinical event or a lesion such as fibrosis degree. Usually, and especially when using the binary logistic regression, the score ranges from 0 (0% risk) to 1 (100% risk), i.e. the probability of the diagnostic target. When the score relies on multiple linear regression, the score produces a result in the same units as the diagnostic target. In the present invention, the main scores are derived from multiple linear regression and measure a progression rate of fibrosis, i.e. expressed as a fibrosis unit per time unit.
  • “Progression” means the evolution of the fibrosis level over time.
  • “Regularly” means at regular intervals, such as for example, every 10-day, every month, or every year, etc.
  • “Sample” means a biological fluid of an individual, such as for example blood, serum, plasma, urine or saliva of an individual.
  • “Non-invasive” means that no tissue is taken from the body of an individual (blood is not considered as a tissue).
  • “Individual” means a woman, a man or an animal, young or old, healthy or susceptible of being affected or clearly affected by a hepatic pathology, such as a liver fibrosis of viral origin, of alcohol origin, a chronic liver steatosis or by any other pathology.
  • “Cause” means the risk factor that induces the lesions and the ensuing pathology.
  • “Cause duration” is the time between the age when the cause started (“start age”) and the age at inclusion when fibrosis level was measured (“inclusion age”).
  • “Fibrosis level” is reflected by a Fibrosis Score, AOF or fractal dimension, preferably fibrosis level is a fibrosis score or an AOF score or a fractal dimension score.
  • “Fibrometer” may refer to a fibrosis score or to a AOF score.
  • The present invention proposes a solution to the technical issue of assessing the progression rate of fibrosis in all and any condition or disease involving fibrosis. This invention results in a very accurate diagnosis of fibrosis progression and in the ability of distinguishing slow, medium and fast fibrosers.
  • In a preferred embodiment, the condition or disease is alcohol or viral chronic liver disease (CLD). According to another embodiment, in order to assess the progression rate of fibrosis, the progression rate of area of fibrosis (AOF) is assessed.
  • According to a first embodiment of the invention, the liver fibrosis progression is assessed by calculating the ratio fibrosis level/cause duration. According to a preferred embodiment, fibrosis level is measured by a non-invasive method. Advantageously, the fibrosis level is a fibrosis score, preferably Fibrometer™, AOF score or fractal dimension score.
  • According to a second embodiment of the invention, the liver fibrosis progression is assessed by measuring, at two different intervals t1 and t2, the fibrosis levels FL(t1) and FL(t2) and calculating the ratio FL(t2)−FL(t1) to (t2−t1).
  • According to the invention, “t1”: is the time at which a first measure is performed in an individual and a first fibrosis level FL(t1) is determined;
  • “t2”: is the time at which a second measure is performed in the same individual and a second fibrosis level FL(t2) is determined;
  • “t2−t1” is a period of time of at least 10 days; in an embodiment, t2−t1 is a period of 1 to 6 months; in another embodiment, t2−t1 is a period of 1 year.
  • Advantageously, the fibrosis level is a fibrosis score, AOF score or fractal dimension score.
  • According to this invention, “Fibrosis Score” is a score obtained by measuring in a sample of an individual and combining in a logistic or linear regression function at least three, preferably 6 to 8, markers selected in the group consisting of α-2 macroglobulin (A2M), hyaluronic acid (HA or hyaluronate), apoliprotein A1 (ApoA1), N-terminal propeptide of type III procollagen (P3P), gamma-glutamyltranspeptidase (GGT), bilirubin, gamma-globulins (GLB), platelet count (PLT), prothrombin index (PI), aspartate amino-transferase (AST), alanine amino-transferase (ALT), urea, sodium (NA), glycemia (GLY), triglycerides (TG), albumin (ALB), alkaline phosphatases (ALP), human cartilage glycoprotein 39 (YKL-40), tissue inhibitor of matrix metalloproteinase 1 (TIMP-1), matrix metalloproteinase 2 (MMP-2), ferritin, weight, age and sex.
  • Preferably, the Fibrosis Score is measured by combining the levels of at least three markers selected from the group consisting of glycemia (GLY), aspartate aminotransferase (AST), alanine amino-transferase (ALT), ferritin, hyaluronic acid (HA), triglycerides (TG), prothrombin index (PI) gamma-globulins (GLB), platelet count (PLT), weight, age and sex.
  • More preferably, the Fibrosis score is established by combining in a binary linear regression function, the levels of four to eight markers, preferably selected from the group consisting of Alpha2 macroglobulin (A2M), hyaluronic acid or hyaluronate (AH), Prothrombin index (PI) Platelets (PLQ), ASAT, Urea, GGT, Age and Sex. According to a preferred embodiment, the Fibrosis score is a Fibrometer™ or Fibrotest™ or Fibrospect™ or Hepascore.
  • According to a specific embodiment, the markers of the score may be selected depending on the fact that the liver condition is of viral or alcoholic origin.
  • “Area Of Fibrosis” may be determined by image analysis, or by a non invasive method wherein a score is obtained by measuring in a sample of said patient and then combining in a logistic or linear regression function, preferably in a multiple linear regression function, at least two, preferably 3, more preferably 6 to 8 variables selected from the group consisting of α-2 macroglobulin (A2M), hyaluronic acid (HA or hyaluronate), apoliprotein A1 (ApoA1), procollagen Type III-N-terminal propeptide (P3P), gamma-glutamyltranspeptidase (GGT), bilirubin, gamma-globulins (GLB), platelet count (PLT), prothrombin index (PI), aspartate amino-transférase (AST), alanine amino-transferase (ALT), urea, sodium (NA), glycemia, triglycerides, albumin (ALB), alkaline phosphatases (ALP), human cartilage glycoprotein 39 (YKL-40), tissue inhibitor of matrix metalloproteinase 1 (TIMP-1), matrix metalloproteinase 2 (MMP-2), ferritin, age, weight, body mass index.
  • “Fractal dimension” reflects the liver architecture and may be obtained by image analysis or by a non invasive method wherein a score is obtained by measuring in a sample of an individual and combining in a logistic or linear regression function (preferably a multiple linear regression function) at least three, preferably 4 markers selected in the group comprising or consisting of α-2 macroglobulin (A2M), albumine (ALB), Prothrombin index (PI), hyaluronic acide (HA ou hyaluronate), alanine amino-transferase (ALAT), aspartate amino-transferase (ASAT) and age.
  • According to a preferred embodiment of the invention, the fibrosis level is selected from the scores set forth in the table below:
  • FibroMeter
    Virus Alcohol NAFLD
    Fibrosis
    Score Area Score Area Score Area
    Age x x x
    Sex x
    Body weight x
    alpha2 macroglobulin x x x x
    Hyaluronate x x x x
    Prothrombin index x x x X
    Platelet x x x x X
    AST x x X
    Urea x x
    GGT x x
    Bilirubin x
    ALT x X
    Ferritin x
    Glycemia x x
  • This invention also relates to a non-invasive method for assessing whether or not an individual is a fast fibroser, including measuring the liver progression of said individual by using a non-invasive method here above described, preferably by calculating FL/cause duration and/or FL(t2)−FL (t1)/t2−t1, wherein FL preferably is a fibrosis score, an AOF score or a fractal dimension score. According to the invention, the fast fibroser is identified with reference to statistical data as having an increased AOF, younger inclusion age and older start age (or cause duration replacing the two previous variables) by stepwise binary logistic regression. According the Applicant experiments, the diagnostic accuracy seems to be of 100.0% by stepwise binary logistic regression.
  • This invention also relates to a non-invasive method for assessing if an individual is a slow, medium or fast fibroser using discriminant analyses with reference to a population of fibrosers, ranked from their fibrosis progression rate in three categories, i.e. slow, medium and fast fibrosers: first, a method of assessing the fibrosis progression, preferably by AOF progression, as described above, is implemented, and the individual is ranked in slow, medium, fast fibrosers categories determined by statistical analysis. In the Example 2 below, cut-offs were 0.58 and 1.36%/yr distinguishing slow (52.5%), medium (34.5%) and fast (12.9%) fibrosers where AOF progression was: 0.42±0.10, 0.81±0.21 and 2.43±0.81%/yr (p<10−3), respectively. Fibrosers, preferably defined by AOF progression, are in agreement with Fibrosis progression: 0.09±0.06, 0.15±0.06 and 0.43±0.18 MU/yr (p<10−3), respectively slow, medium and fast fibrosers. According to a preferred embodiment, the non-invasive method here above described is preferably FL/cause duration or FL(t2)−FL(t1)/t2−t1, wherein FL preferably is AOF score.
  • According to a fourth embodiment of the invention, liver fibrosis progression is assessed by a score.
  • According to a first object, the invention relates to a non-invasive method for assessing liver fibrosis progression in an individual, said method comprising the steps of:
  • a) measuring in a sample of said individual, at least one, preferably at least two, more preferably at least three, even more preferably six to eight variables selected from the group consisting of
      • biological variables chosen among α-2 macroglobulin (α2M), Hyaluronic acid (HA), Apolipoprotein A1 (ApoA1), Type III procollagen N-terminal propeptide (P3P), γ-glutamyltranspeptidase (GGT), Bilirubin, β-globulin, γ-globulin (GLB), Platelets (PLT), Prothrombin time (PT), Prothrombin index (PI), Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Urea, Sodium (NA), Glycemia, Triglycerides, Albumin (ALB), Alkaline phosphatase (ALP), Human cartilage glycoprotein 39 (YKL-40), Tissue inhibitor of matrix metalloproteinase 1 (TIMP-1), Matrix metalloproteinase 2 (MMP-2), Ferritin, TGFβ1, Laminin, βγ-block, Haptoglobin, C-Reactive protein (CRP) or Cholesterol, preferably chosen among α-2 macroglobulin (α2M), Hyaluronic acid (HA), Type III procollagen N-terminal propeptide (P3P), γ-glutamyltranspeptidase (GGT), β-globulin, Platelets (PLT), Prothrombin time (PT), Prothrombin index (PI), Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Glycemia, Triglycerides, Tissue inhibitor of matrix metalloproteinase 1 (TIMP-1) or βγ-block, more preferably chosen among α-2 macroglobulin (α2M), Hyaluronic acid (HA), Type III procollagen N-terminal propeptide (P3P), γ-glutamyltranspeptidase (GGT), β-globulin, Prothrombin index (PI) or βγ-block,
      • complex biological variables such as for example AST/ALT,
      • clinical variables chosen among Age at 1st contact “start age”, Age, Cause duration, Sex, Firm liver, Splenomegaly, Ascites, Collateral circulation, Cause of CLD or Oesophageal varices (EV grade), preferably chosen among Age at 1st contact, Age, Cause duration, Sex or Cause of CLD,
      • scores chosen among Metavir F stage, Area of fibrosis (AOF), Fibrosis score (such as for example FibroMeter™, Fibrotest™, Fibrospect™, Fibroscan™, preferably FibroMeter™), PGA score, PGAA score, Hepascore, Aspartate-aminotransferase to platelet ratio index (APRI) or European Liver Fibrosis (ELF), and
      • any combination thereof,
        b) combining the selected variables in a mathematical function selected from the group consisting of multiple linear regression function, a non-linear regression function, or simple mathematic function such as arithmetic operation, for example division.
  • According to a preferred embodiment, the method includes combining at least two biological variables or at least two scores, and at least one clinical variable selected from cause duration, especially Chronic Liver Disease duration and age at first contact with cause (also named “start age”).
  • Preferably, the at least one clinical variable is cause duration. Alternatively, the at least one clinical variable is age at first contact with cause (“start age”). Preferably, the method includes two clinical variables. According to a preferred embodiment, the two clinical variables are cause duration and start age.
  • Advantageously, the at least one score is selected from the group consisting of Area of Fibrosis (AOF) and/or the Fibrosis Score and/or Fractal dimension.
  • According to a first embodiment of the invention, the liver fibrosis progression is assessed by measuring Metavir F progression, said Metavir F progression being established by measuring the following:
      • biological variables chosen among Type III procollagen N-terminal propeptide (P3P), Hyaluronic acid (HA), Prothrombin index (PI), γ-glutamyl transpeptidase (GGT) or βγ-block,
      • the complex biological variable AST/ALT,
      • clinical variables chosen among Age at 1st contact, Cause duration,
      • scores chosen among Metavir F stage, Area of fibrosis (AOF), PGA score, PGAA score or FibroMeter™, and
      • any combination thereof, and
        combining the selected variables in a mathematical function selected from the group consisting of multiple linear regression function, a non-linear regression function, or simple mathematic function such as arithmetic operation, for example division.
  • In this embodiment, preferably, the variable sex is not selected.
  • In this embodiment, according to a first object, the variables are:
      • the biological variable Prothrombin index (PI),
      • the complex biological variable AST/ALT,
      • the clinical variable Cause duration,
      • the score Metavir F stage, and
  • any combination thereof.
  • In this embodiment, according to a second object, the variables are:
      • the complex biological variable AST/ALT,
      • clinical variables chosen among Cause duration or Age at 1st contact,
      • the score FibroMeter™, and
      • any combination thereof.
  • In this embodiment, according to a third object, the variables are:
      • the complex biological variable AST/ALT,
      • clinical variables chosen among Cause duration, and
      • any combination thereof.
  • According to a second embodiment of the invention, the liver fibrosis progression is assessed by measuring the area of fibrosis (AOF) progression, said AOF progression being established by measuring the following:
      • biological variables chosen among α-2 macroglobulin (α2M), Hyaluronic acid (HA), β-globulin, Prothrombin index (PI) or βγ-block,
      • the complex biological variable AST/ALT,
      • clinical variables chosen among Age at 1st contact, Age, Cause duration, Sex, Firm liver, Splenomegaly, Ascites, Collateral circulation or Cause of CLD,
      • scores chosen among Metavir F stage, Area of fibrosis (AOF), FibroMeter™, PGA score or PGAA score, and
      • any combination thereof, and
      • combining the selected variables in a mathematical function selected from the group consisting of multiple linear regression function, a non-linear regression function, or simple mathematic function such as arithmetic operation, for example division.
  • In this second embodiment, according to a first object, the variables are:
      • the biological variable β-globulins,
      • the complex biological variable AST/ALT,
      • the clinical variable Cause duration,
      • the score Area of fibrosis (AOF), and
      • any combination thereof.
  • In this second embodiment, according to a second object, the variables are:
      • the biological variable β-globulins,
      • the complex biological variable AST/ALT,
      • the clinical variable Cause duration,
      • the score Metavir F stage, and
      • any combination thereof.
  • In this second embodiment, according to a third object, the variables are:
      • biological variables chosen among β-globulins or Prothrombin index (PI),
      • the complex biological variable AST/ALT,
      • clinical variables chosen among Cause duration or Firm liver, and
      • any combination thereof.
  • In this second embodiment, according to a fourth object, the variables are:
      • biological variables chosen among β-globulins or Prothrombin index (PI),
      • the complex biological variable AST/ALT,
      • clinical variables chosen among Age at 1st contact, Cause duration or Firm liver, and
      • any combination thereof.
  • In this second embodiment, according to a fourth object, the variables are:
      • biological variables chosen among β-globulins or α-2 macroglobulin (α2M),
      • the complex biological variable AST/ALT,
      • clinical variables chosen among Age at 1st contact or Cause duration, and
      • any combination thereof.
  • According to a particular embodiment, the non-invasive method of the invention includes at least two fibrosis scores, measured at regular intervals, such as for example, every 10-day, every month, or every year.
  • According to the invention, the individual may be at risk of suffering or is suffering from a condition selected from the group consisting of a chronic liver disease, a hepatitis viral infection, an hepatoxicity, a liver cancer, a non alcoholic fatty liver disease (NAFLD), an autoimmune disease, a metabolic liver disease and a disease with secondary involvement of the liver.
  • Hepatitis viral infection may be caused by a virus selected from the group consisting of hepatitis C virus, hepatitis B virus and hepatitis D virus. Hepatoxicity may be alcohol induced hepatoxicity and/or drug-induced hepatoxicity (i.e. any xenobiotic like alcohol or drug). According to the invention, autoimmune disease is selected from the group consisting of autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). Metabolic liver disease may be selected from the group consisting of Hemochromatosis, Wilson's disease and alpha 1 anti trypsin. Secondary involvement of the liver may be celiac disease or amyloidosis.
  • Other objects, advantages and features of the present invention will become more apparent upon reading of the following non restrictive description of preferred embodiments thereof, given by way of examples with reference to the accompanying figures.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIGS. 1-7 are to be read with regard to Example 1.
  • FIG. 1 is a graph showing the correlation of progression rates between Metavir F and area of fibrosis (rs=0.77, rp=0.90, p<10−4) as a function of Metavir fibrosis (F) stage. rs is the coefficient of correlation of Spearman; rp is the coefficient of correlation of Pearson.
  • FIG. 2 is a graph showing the progression rate of fibrosis as a function of Metavir F stage. The progression rate of Metavir F (F) or area of fibrosis (AOF) is correlated to Metavir F stages (rs=0.58, p<10−4, rs=0.49, p<10−4, respectively) and significantly different as a function of Metavir F grade (ANOVA: p<10−4, p=0.001, respectively).
  • FIG. 3 is a graph showing the fibrosis progression rates for Metavir F (3A) and AOF (3B) in alcoholic and viral chronic liver disease (CLD). Transition lines are drawn only to show the differences between patient groups.
  • FIG. 4 is a graph showing the AOF as a function of cause duration according to CLD cause (alcoholic in black and viral in grey) and to Metavir F stage.
  • FIG. 5 is the AOF progression rate as a function of cause duration according to Metavir fibrosis (F) stage. The curve has an inverse shape (1/x) by definition.
  • FIG. 6 is the relationship between fibrosis progression rate, Metavir fibrosis stage (6A) and AOF (6B) and age at 1st contact. Lines are provided by polynomial regression. The axis of AOF progression was truncated at 3.
  • FIG. 7 is the effects of antifibrotic treatment on area of fibrosis and Metavir F stage. Box plots indicate median, quartiles and extremes.
  • FIGS. 8-16 are to be read with regard to Example 2.
  • FIG. 8 is a graph showing the correlation between Metavir fibrosis (F) stage and area of fibrosis (AOF) progression in populations 1 (panel a) and 2 (panel b) of Example2 Lines depict linear regression.
  • FIG. 9 is a graph showing relationship between Metavir fibrosis (F) stage (left panels) or area of fibrosis (AOF) progression (right panels), during cause duration, as a function of Metavir fibrosis (F) stage at inclusion age in populations 1 (top panels) and 2 (bottom panels).
  • FIG. 10 is a graph showing the correlation between Metavir fibrosis (F) stage (left panels) or area of fibrosis (AOF) progression (right panels) and respective predicted progression in populations 1 (top panels, alcoholic CLD only) and 2 (bottom panels, viral CLD).
  • FIG. 11 shows the relationship between Metavir fibrosis (F) stage (left panels) or area of fibrosis (AOF) (right panels) and cause duration in populations 1 (top panels) and 2 (bottom panels). Curves depict Lowess regression.
  • FIG. 12 shows the Relationship between Metavir fibrosis (F) stage (left panels) or area of fibrosis (AOF) (right panels) progression and start age in populations 1 (top panels) and 2 (bottom panels). Curves depict Lowess regression.
  • FIG. 13 shows the relationship between Metavir fibrosis (F) stage (left panels) or area of fibrosis (AOF) (right panels) and start age in populations 1 (top panels) and 2 (bottom panels). Curves depict Lowess regression.
  • FIG. 14 shows the relationship between Metavir fibrosis (F) stage progression (left panels) or area of fibrosis progression (medium panels) or area of fibrosis (right panels) and inclusion age in populations 1 (top panels) and 2 (bottom panels). Curves depict Lowess regression.
  • FIG. 15 shows the relationship between fibrosis characteristics and cause duration showing different fibrosers as a function of fibrosis progression in population 2. Curves depict Lowess regression.
  • FIG. 16 shows the impact of special patient subgroups on curves of Metavir fibrosis (F) stage as a function of different times in population 2. The impact was determined according to the method shown in FIG. 11 a.
  • EXAMPLE 1 Methods 1. Patients Populations
  • All 201 patients included in this study were admitted to the hepatogastroenterology unit of the University hospital in Angers, France. A 1st population of 185 patients (all of which had been subjected to one liver biopsy) was selected according to the availability of an estimation of the contact date (or exposure) to the risk factor (or cause) of CLD. The difference between inclusion date and contact date is herein called “duration of cause”. A 2nd population of 16 patients (all of which had been subjected to two liver biopsies) was selected.
  • Population 1
  • The 185 patients included in this population were admitted for alcoholic liver disease, or for chronic viral hepatitis B or C. Patients were included who had drunk at least 50 g of alcohol per day for the past five years or were positive for serum hepatitis B surface antigen or C antibodies. None of the patient had clinical, biological, echographic or histological evidence of other causes of chronic liver disease (Wilson's disease, hemochromatosis, α1-antitrypsin deficiency, biliary disease, auto-immune hepatitis, hepatocellular carcinoma). Blood samples were taken at entry and a transcostal (suction needle) or transjugular (cutting needle) liver biopsy was performed within one week.
  • These patients might have had liver decompensation and different CLD causes. In fact, the duration of cause was recorded in only 179 patients but in the 6 other patients with Metavir F stage 0, the rate of Metavir F progression could be fixed at 0 by definition. However, the area of fibrosis could be measured in only 153 patients due to specimen fragmentation in 26 patients whereas the progression rate could not be fixed in the 6 patients with Metavir F stage 0 since baseline area of fibrosis is not null. The date of 1st exposure was estimated according to the recording of 1st blood transfusion or drug abuse in viral CLD and the 1st date of chronic excessive alcohol intake in alcoholic CLD. This population allowed calculating an estimated progression rate of fibrosis. In addition, explanatory variables of progression were recorded a posteriori.
  • Population 2
  • These 16 patients had two liver biopsies, different CLD causes and 10 underwent putative antifibrotic treatment like interferon and sartan between both biopsies. This population allowed measuring an observed progression rate of fibrosis. In addition, explanatory variables of progression were recorded a priori, thus being true predictive factors.
  • 2. Clinical Evaluation
  • A full clinical examination was performed by a senior physician. The recorded variables were: age, age at 1st contact to the cause of liver disease (available only for alcoholic patients and in C hepatitis attributed to blood transfusion and drug abuse), sex, size, body weight (before an eventual paracenthesis), mean alcohol consumption (g/d) before eventual withdrawal, duration of alcohol abuse, alcohol withdrawal, duration of alcohol withdrawal, known duration of liver disease (since the first clinical or biochemical abnormality suggestive of CLD), Child-Pugh score and other clinical abnormalities. Population 1 underwent also an upper gastro-intestinal endoscopy to evaluate signs of portal hypertension and liver Doppler-ultrasonography.
  • 3. Blood Tests
  • Analyses of blood samples provided the following measurements: hemoglobin, mean corpuscular volume, lymphocyte count, platelet count, cholesterol, urea, creatinine, sodium (NA), bilirubin, γ-glutamyltranspeptidase (GGT), alkaline phosphatases (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), albumin (ALB), α1 and α2-globulins, β-globulins, γ-globulins, βγ-block, prothrombin index (PI), apolipoprotein A1 (ApoA1). Some of them are indirect blood markers of fibrosis (1).
  • The direct blood markers of fibrosis used in this study were the following: α-2-macroglobulin (A2M), the N-terminal peptide of type III procollagen (P3P), hyaluronic acid (HA), TGF β1, and laminin. The following blood tests were calculated: AST/ALT ratio, PGA score (2), PGAA score (3), APRI (4), different FibroMeters (5), and Hepascore (6). Sera were kept at −80° C. for a maximum of 48 months for assay.
  • 4. Liver Histological Assessment Microscopic Analysis
  • Biopsy specimens were fixed in a formalin-alcohol-acetic solution and embedded in paraffin; 5 μm thick sections were stained with haematoxylin-eosin-saffron and 0.1% picrosirius red solution. Fibrosis was staged by two independent pathologists according to the Metavir staging (7). The Metavir staging is also well adapted to the semi-quantitative evaluation of fibrosis in alcoholic CLD since porto-septal fibrosis is more frequent and developed than centrolobular fibrosis (8). Observers were blinded for patient characteristics. When the pathologists did not agree, the specimens were re-examined under a double-headed microscope to analyse discrepancies and reach a consensus. All specimens were also evaluated according to the following grades: Metavir activity (7), steatosis and centrolobular fibrosis (CLF) as previously described (9).
  • Image Analysis
  • AOF was measured on the same sections as the microscopic analysis using a Leica Quantimet Q570 image processor as previously described (9). Fractal dimension of fibrosis was also measured in population 2 (10).
  • 5. Observers
  • Overall there were 2 pathologists with 1 senior expert and 1 junior expert working in academic hospital. Image analysis was performed by the junior expert pathologist experienced in this technique.
  • 6. Statistical Analysis
  • Quantitative variables were expressed as mean±SD, unless otherwise specified. The Pearson's rank correlation coefficient (rp) was used for correlations between continuous variables or Spearman correlation coefficient (rs) when necessary. To assess independent predictors, multiple linear regression for quantitative dependent variables and binary logistic regression for qualitative dependent variables were used with forward stepwise addition of variables. The predictive performance of each model is expressed by the adjusted R2 coefficient (aR2) and by the diagnostic accuracy, i.e. true positives and negatives, respectively. A α risk <5% for a two-sided test was considered statistically significant. The statistical software used was SPSS version 11.5.1 (SPSS Inc., Chicago, Ill., USA).
  • 7. Example of Mathematical Function
  • The estimation of the progression rate (PR) is provided by multiple linear regression according to the following formula: PR=a0+a1x1+a2x2+ . . . , where ax is the coefficient of marker or variable xx and a0 is a constant.
  • An example of formula for the PR of area of fibrosis is the predictive model including AST/ALT, cause duration, firm liver, β-globulins, and FibroMeter™ where the coefficients are the followings:
  • Constant: −0.0978158087539 with limits of confidence interval at 95%: 0.8363614252041 & −1.035103236918,
  • AST/ALT: 0.5412244415007 with limits of confidence interval at 95%: 2.07804027617.e-006 & 0.3283727153579,
  • Cause duration: −0.07623687627859 with limits of confidence interval at 95%: 5.016575306101.e-011 & −0.09671608407235,
  • Firm liver: 0.7172332316927 with limits of confidence interval at 95%: 0.006563850544752 & 0.2047931685256,
  • β-globulins: 0.1594071294621 with limits of confidence interval at 95%: 0.001915414369681 & 0.06022006972876,
  • FibroMeter™: 1.15299980586 with limits of confidence interval at 95%: 0.002487655344947 & 0.4161078148282.
  • Results 1. General Characteristics
  • The general characteristics of different populations are presented in table 1.
  • TABLE 1
    Main characteristics of populations
    Population
    1 2
    n 185 16
    Age (y) 48.5 ± 12.3 44.5 ± 10.4
    Sex (% M) 67.6 62.5
    Cause (% virus) 26.5 75.0
    Metavir F (%):
    0 9.7 18.8
    1 18.9 31.3
    2 15.1 25.0
    3 8.1 6.2
    4 48.1 18.8
    Complication (%) 21.6 12.5
  • 2. Main Characteristics of Fibrosis Progression
  • There were calculated in population 1. The rate of progression, expressed in Metavir unit (MU) per year, ranged from 0 to 2.0 MU/yr for Metavir F (mean: 0.22±0.29, median: 0.13) and from 0.1 to 17.2%/yr for the area of fibrosis (mean: 1.8±2.6, median: 1.0).
  • Both fibrosis progression rates were highly correlated (FIG. 1). The progression rate of fibrosis increased as a function of fibrosis F stage (FIG. 2). We then tested the other factors linked to the progression of fibrosis.
  • 3. Predictive Factors of Fibrosis Progression Metavir F Progression
  • The most marked correlations of Metavir F progression were observed with Metavir F stage (r=0.33, p<10−4), the area of fibrosis (r=0.28, p<10−4), age at 1st contact (r=0.46), cause duration (r=−0.48, p<10−4), P3P (r=0.26, p<10−4), HA (r=0.27, p<10−4), PI (r=−0.22, p<10−4), GGT (r=0.32, p<10−4), AST/ALT (r=0.38, p<10−4), FibroMeter™ (r=0.27, p<10−4), PGA score (r=0.27, p<10−4) and PGAA score (r=0.28, p<10−4). The only significant links with qualitative variables were observed with βγblock (p=0.03) and sex (p=0.001).
  • With linear regression, the independent predictors of the Metavir F progression were: AST/ALT, cause duration, Metavir F stage and PI (aR2=0.605). CLD cause had no independent role (p=0.63). If Metavir F stage was removed, there was no pathological variable in the predictive model: cause duration, AST/ALT, age at 1st contact, and FibroMeter™ (aR2=0.488). It should be noted that “age at 1st contact”+“cause duration”=age, however if the two former were removed, the latter was not selected, while aR2 decreased to 0.195 with AST/ALT and sex.
  • Area of Fibrosis Progression
  • The most marked correlations of the area of fibrosis progression were observed with Metavir F stage (r=0.32, p<10−4), the area of fibrosis (r=0.41, p<10−4), age at 1st contact (r=0.43), cause duration (r=−0.43, p<10−4), HA (r=0.34, p<10−4), PI (r=−0.24, p<10−4), β-globulins (r=0.32, p<10−4), AST/ALT (r=0.51, p<10−4), FibroMeter™ (r=0.29, p<10−4), PGA score (r=0.29, p<10−4) and PGAA score (r=0.30, p<10−4). Several significant links with qualitative variables were observed: βγ-block (p=0.004), sex (p=0.004), firm liver (p=0.04), splenomegaly (p=0.02), ascites (p=0.001), EV grade (p=0.04), collateral circulation (p=0.001) and the cause of CLD (p=0.03).
  • With linear regression, the independent predictors of the area of fibrosis progression were: AST/ALT, cause duration, area of fibrosis, and β-globulins (aR2=0.716). It should be noted that steatosis had a borderline signification (p=0.057) but not activity (p=0.53) and CLD cause (p=0.39). If the area of fibrosis was removed, the Metavir F stage took its place in the model (aR2=0.689) and if Metavir F stage was removed, i.e. without any pathological variables, the predictive model included AST/ALT, cause duration, firm liver, β-globulins, and PI (aR2=0.643). If “cause duration” was removed, “age at 1st contact” took its place in the model (aR2=0.643) and if “age at 1st contact” stage was removed, the model included objective variables: AST/ALT, age, β-globulins and A2M with aR2=0.509.
  • 4. Kinetics of Fibrosis Progression Estimated Progression (Population 1)
  • FIG. 3 shows a progressive but irregular increase in fibrosis rate as a function of Metavir F stage. As expected, the progression rate of metavir F stage was more linked to F stage than did the area of fibrosis as also reflected by correlation coefficients (rs=0.58 and 0.49, respectively, p<10−4). FIG. 3 shows a rather stable progression rate of area of fibrosis from F stage 0 to 3 and a dramatic increase in patients with cirrhosis whereas the increase was progressive through all F stages for progression rate of Metavir F stage.
  • The correlation between the area of fibrosis and cause duration was weak (rp=0.32, p<10−4). In fact, FIG. 4 shows that the area of fibrosis as a function of cause duration markedly varied among patients, so patients might develop cirrhosis within a short period and others after a prolonged period. However, all patients with the fastest rate, as expected, and those with the longest follow-up, as less expected, had cirrhosis. A short cause duration was surprising in cirrhosis, however this was mainly observed in alcoholic CLD. Moreover, patient age was significantly lower when cause duration was <15 yr: 45.5±8.9 vs 55.0±10.2 yr for 15 yr (p=0.002) in alcoholic CLD whereas the figures were similar in viral CLD: 54.4±14.4 vs 56.6±15.2 yr (p=0.81), respectively. This figure also does not suggest particular groups of patients according to progression rate.
  • The graph of AOF progression plotted against cause duration (FIG. 5) clearly shows that individual patients had different patterns of progression rate of area of fibrosis within each F stage. In fact, previous multivariate analyses indicated that “cause duration” or “age at 1st contact” was the main clinical independent predictor of Metavir F or area of fibrosis progression. FIG. 6 shows that the F progression dramatically increased by 40 years in viral and alcoholic CLD. However, the AOF progression displayed a linear increase over age in alcoholic CLD whereas there was a plateau followed by a linear increase by 40 years in viral CLD.
  • Observed Progression (Population 2)
  • The mean interval between biopsies (follow-up duration) was 4.1±2.6 years in the whole group and 4.8±2.5 in the 6 patients without treatment compared to 3.6±2.6 (p=0.38) in the 10 patients with anti-fibrotic treatment between the 2 liver biopsies. The yearly rate of progression in untreated patients was for Metavir F: mean: 0.17±0.27, median: 0.09 MU and for the area of fibrosis: mean: 1.3±3.4, median: 1.2%. These values were not significantly different than those estimated (p=0.66 for F and p=0.72 for AOF).
  • AOF was far more sensitive than Metavir F stage to detect effects of anti-fibrotic treatment: percent changes in AOF: p=0.03, progression rate of AOF: p=0.09; percent changes in F stage: p=0.85, progression rate of F stage: p=0.71 (by Mann-Whitney test, FIG. 10) or proportion of F stage increase: p=0.61 (by McNemar χ2 test).
  • EXAMPLE 2
  • Fibrosis progression was calculated as the ratio fibrosis level/cause duration, with fibrosis level indicating stage or amount AOF. So, this is a mean value as a function of time. As the main aim was to precisely describe fibrosis progression, through the amount of fibrosis reflected by the AOF, we used LB as reference for fibrosis level determination and we chose for the non invasive diagnosis a blood test that can both evaluate fibrosis staging and AOF (14). For time recording, we used two descriptors of fibrosis progression: the progression rate and the progression course. The progression rate is a mean as a function of cause duration, cause duration being the time between the age when the cause started (“start age”) and the age at inclusion when fibrosis level was measured (“inclusion age”). Progression course is the trend as a function of time (increase, stability, decrease). Thus, according to the methods used for fibrosis determination (LB or non-invasive test) and duration recording (retrospective/transversal or prospective/longitudinal), we distinguished 4 methods to calculate fibrosis progression. Their characteristics, advantages and limits are detailed in table 2. Because the availability of these methods has markedly evolved as a function of time, we had to indirectly compare them by collecting different populations in our database.
  • Patients
  • Population Aims (table 3)
  • 5 populations including 1456 patients were used. All patients included in this study were admitted to the Hepatogastroenterology unit of the University hospital in Angers, France, except in population 3 that is described elsewhere (15).
  • Populations 1 and 2 were selected according to the availability of estimation of the age when the cause started (“start age”). The period between start age and age at inclusion when fibrosis level was measured (“inclusion age”), was called “cause duration”. Population 1 provided comparison between alcoholic and viral CLD. Population 2 with viral CLD had a sufficient high number of patients to validate the previous viral subpopulation and to allow subgroup analysis. Population 3 was a large population with viral CLD providing a validation of inclusion age effect. Population 4 allowed validating in patients with 2 LB the previous progression estimated with 1 LB. Finally, population 5 was used to validate the progression calculated with two blood tests.
  • Population Characteristics (Table 4)
  • Population 1—It included 185 patients with alcoholic CLD or chronic hepatitis B or C between 1994 and 1996. This population is detailed elsewhere (16). The date of 1st cause exposure was estimated according to the 1st date of chronic excessive alcohol intake for alcoholic CLD and the recording of 1st blood transfusion or drug abuse for viral CLD. These patients might have liver decompensation. In fact, the cause start was recorded in only 179 patients but in 6 other patients with Metavir F stage 0, the rate of Metavir F progression could be fixed at 0 by definition. However, the AOF could be measured in only 153 patients due to specimen fragmentation in 26 patients whereas the progression could not be fixed in the 6 patients with Metavir F stage 0 since baseline AOF is not null.
  • Population 2—It included 157 patients with chronic hepatitis C between 1997 and 2002 detailed elsewhere (14). Mean inclusion age was 43.4±12.4 yr and 59.4% of patients were male.
  • Population 3—It included 1056 patients with chronic hepatitis C, LB recruited in 9 French centres between 1997 and 2007 detailed elsewhere (15). Mean age was 45.4±12.5 yr at inclusion and 59.6% of patients were male.
  • Population 4—It included 16 patients with various causes of CLD having two LB between 1997 and 2002 and different CLD causes.
  • Population 5—It included 42 patients with chronic hepatitis C between 2004 and 2008. The blood tests were yearly measured for 2.4±0.5 yr.
  • Clinical Evaluation and Blood Tests
  • A full clinical examination was performed by a senior physician. The main clinical variables recorded were: inclusion age, start age, sex and CLD cause. Other variables are described elsewhere (14-16). Analyses of blood samples provided the usual variables as well as direct blood markers of fibrosis to calculate blood fibrosis tests. Thus, blood tests were calculated to estimate either fibrosis stage or AOF (14).
  • Liver Histological Assessment ( Populations 1, 2 and 4)
  • Microscopic analysis—Biopsy specimens were fixed in a formalin-alcohol-acetic solution and embedded in paraffin; 5 μm thick sections were stained with haematoxylin-eosin-saffron and 0.1% picrosirius red solution. Fibrosis was staged by two independent pathologists, blinded for patient characteristics, according to the Metavir staging (6). The Metavir staging is also well adapted to the semi-quantitative evaluation of fibrosis in alcoholic CLD (17). In case of discrepancy, the specimens were re-examined under a double-headed microscope to reach a consensus.
  • Image analysis—AOF was measured on the same sections as the microscopic analysis using either a Leica Quantimet Q570 image processor as previously described from 1996 to 2006 (10) or an Aperio digital slide scanner (Scanscope® CS System, Aperio Technologies, Vista Calif. 92081, USA) image processor providing high quality images of 30,000×30,000 pixels and a resolution of 0.5 μm/pixel (magnification ×20) since 2007. A binary image (white and black) was obtained via an automatic thresholding technique using an algorithm developed in our laboratory.
  • Observers—Overall there were 2 pathologists with 1 senior expert and 1 junior expert working in academic hospital. Image analysis was performed by the junior expert pathologist experienced in this technique (17) or by an engineer for the fully automated system.
  • Statistical Analysis
  • Quantitative variables were expressed as mean±SD, unless otherwise specified. The Pearson's rank correlation coefficient (rp) was used for correlations between continuous variables or the Spearman correlation coefficient (rs) when necessary. The Lowess regression by weighted least squares was used to determine the average trend of relationships between variables, mainly the progression course (18). The line rupture observed in these curves were checked by cut-offs determined according to maximum Youden index and diagnostic accuracy (data not shown). The curve shape was evaluated by corresponding test, e.g. quadratic trend test. To assess independent predictors, multiple linear regression for quantitative dependent variables, binary logistic regression for qualitative dependent variables and discriminant analysis for ordered variables were used with forward stepwise addition of variables. The prediction of each model is expressed by the adjusted R2 coefficient (aR2) and/or by the diagnostic accuracy, i.e. true positives and negatives, respectively. An α risk <5% for a two-sided test was considered statistically significant. The statistical software used was SPSS version 11.5.1 (SPSS Inc., Chicago, Ill., USA).
  • Results General Characteristics
  • The general characteristics of core populations 1 and 2 are presented in table 4. In population 1, variables at baseline (inclusion) were significantly different between alcoholic and viral causes, except for start age. Baseline variables were not significantly different between viral populations 1 and 2. It should be noted that the start age was similar between populations whereas the inclusion age was significantly older in alcoholic CLD which was responsible to a longer cause exposure.
  • Overall Description of Fibrosis Progression Retrospective Measurement
  • Population 1—The progression, expressed in Metavir unit (MU) per year, ranged from 0 to 2.0 MU/yr for Metavir F (mean: 0.22±0.29, median: 0.13) and from 0.1 to 17.2%/yr for the AOF (mean: 1.8±2.6, median: 1.0). Both fibrosis progressions were highly correlated (rp=0.90, p<10−4, FIG. 8 a). The fibrosis progression increased as a function of fibrosis Fstage (FIGS. 9 a and 9 b). The AOF progression was significantly faster in alcoholic CLD than in viral CLD but not that of Metavir F (table 4).
  • Population 2—The rate of progression, expressed in Metavir unit (MU) per year, ranged from 0 to 0.8 MU/yr for Metavir F (mean: 0.16±0.14, median: 0.11) and from 0.2 to 4.5%/yr for the AOF (mean: 0.8±0.7, median: 0.6). AOF and F progressions were also well correlated rp: 0.795 (p<10−3) (FIG. 8 b). The fibrosis progressions were significantly different according to F stage (ANOVA, p<10−3) (FIGS. 9 c and 9 d). By Bonferroni post hoc comparison, the progressions were significantly different between each F stage for F progression (except between F2 and F3) but only in F4 vs F1 and F3 for AOF progression.
  • Comparison as a function of sex (table 4)—In alcoholic patients, F or AOF at inclusion were not significantly different between females and males, but cause duration was significantly shorter in females than in males. Consequently, the F or AOF progression was significantly faster in females than in males in alcoholic CLD. F or AOF at inclusion in population 2 were significantly higher in males than in females, but cause duration was not significantly different between males and females. Consequently, and conversely to alcoholic CLD, the F or AOF progression was significantly faster in males than in females in viral CLD (significant in more numerous population 2).
  • Comparison as a function of cause (table 5)—F and AOF progressions were dramatically and significantly increased in alcoholic CLD compared to viral CLD only in females.
  • Comparison between viral populations—The AOF progression were significantly higher in population 1 than in population (table 4); this can be due to difference in AOF technique since AOF was significantly different or in populations since the F progression tended to be different.
  • Prospective Measurement
  • Population 4—The mean interval between biopsies (follow-up duration) was 4.1±2.6 years. The yearly rate of progression was for Metavir F: mean: 0.17±0.27, median: 0.09 MU and for the area of fibrosis: mean: 1.3±3.4, median: 1.2%. These values were not significantly different than those estimated in population 1 (p=0.481 for F and p=0.567 for AOF).
  • Course of Fibrosis Progression
  • We described the average trends in course of fibrosis progression, as reflected by the plots of Lowess regression, according to three variables linked to times: cause duration, age at start cause and age at inclusion which is the sum of the two formers. Age at start cause was correlated with cause duration in population 1 (rp=−0.449, p<10−4), due to alcoholic CLD, but not in population 2 (rp=−0.084 p=0.319). Particular trends in extremes of plots have to be cautiously interpreted since this could be due to a decreased robustness linked to fewer patients.
  • Cause duration—In population 1, the cause duration was weakly correlated with fibrosis level: F stage: rs=0.357, p<10−3 (FIG. 11 a), AOF: rs=0.316, p<10−3 (FIG. 11 b). In population 2, the cause duration was weakly correlated with F stage (rs: 0.241, p=0.004) (FIG. 11 c) or AOF (rs: 0.201, p=0.018) with the same course in males and females (FIGS. 11 c and 11 d). All these figures show an unexpected decrease in the first 15 years and thereafter a progressive increase.
  • Start age—FIG. 12 a shows that the F progression dramatically increased by 30-40 years of start age in alcoholic (≈40 years) and viral (≈30 years) CLD (population 1). The latter figure was confirmed in population 2 especially in men (FIG. 12 c). This resulted in a progressive increase in F stage with start age in viral CLD (FIG. 13 c) but this was not observed in alcoholic CLD (FIG. 13 a) or in young patients with viral CLD (explanation below). However, the AOF progression displayed an almost linear increase over start age in alcoholic CLD whereas there was a plateau followed by a linear increase by ≈40 years of start age in viral CLD (population 1) (FIG. 12 b). This was confirmed in population 2 especially in men (FIG. 12 d). Globally, the AOF was relatively stable a function of start age in population 1 (FIG. 13 b) and 2 (FIG. 13 d). However, there were some peculiarities: a slow decrease in the first 20 years in males with viral CLD in F stages (FIG. 13 c) or AOF (FIG. 13 d) as well as a decrease by 40 yrs of start age in females (FIG. 13 d).
  • Inclusion age—Considering F progression, in alcoholic CLD there was a stable progression until 50 yr (FIG. 14 a) then a decrease whereas in viral CLD after a initial decrease below 35 yr, especially in men, there was thereafter an increase (FIGS. 14 a and 14 d). Considering F level, the increase was linear with age in alcoholic CLD and occurred by 40-50 yr in viral CLD (FIG. 15 a). Populations 2 and 3 stated that this increase occurred by age 40 yr in males and 50 yr in females in viral CLD (FIGS. 15 b and 15 c). There was an initial F decline in viral CLD (FIG. 15 a), especially in men (FIG. 15 b) which was not confirmed in population 3 (FIG. 15 c) but there were less young patients in this latter population (as reflected by an older age: p=0.06).
  • AOF progression did not depend on the inclusion age in alcoholic CLD (FIG. 14 b) whereas there was a late increase in viral CLD (FIGS. 14 b and 14 e). Consequently, the AOF level linearly increased with age in alcoholic CLD (FIG. 14 c) whereas this occurred by age 50 yr in viral CLD (FIG. 14 f).
  • Sex—We state here the particular relationship between sexes and CLD cause since sex effect has been already mentioned in viral CLD. Whereas there was a global parallelism between males and females in viral CLD, females in alcoholic CLD had two particularities: a slowdown between 30-50 yr and a late increase in fibrosis progression and level by 50 yr of start age (data not shown). The same differences were observed for inclusion age at the difference that the slowdown was observed later between 45-50 yr, as expected.
  • Times to Cirrhosis
  • In population 1, times to cirrhosis was 24.7±13.3 yr in alcoholic CLD vs 22.1±15.9 yr in viral CLD (p=0.495) and 28.0±12.5 yr in males vs 16.1±11.4 yr (p=0.001) in females in alcoholic CLD. In (viral) population 2, it was 17.0±8.0 yr in males vs 24.0±10.0 yr (p=0.017) in females.
  • Non Invasive Evaluation
  • observed FibroMeter™ progression [(FibroMeter™ t2−FibroMeter™ t1)/(t2−t1)] was 0.049±0.058/yr in population 5 whereas the estimated FibroMeter™ progression (FibroMeter™ t2/cause duration) was 0.038±0.033/yr in population 2 (p=0.217).
  • Identifying Categories of Fibrosers
  • In population 2, it was possible to distinguish three categories of fibrosers as a function of AOF progression (FIG. 15 b) rather on F progression (FIG. 15 a). The cut-offs were 0.58 and 1.36%/yr distinguishing slow (52.5%), medium (34.5%) and fast (12.9%) fibrosers where AOF progression was: 0.42±0.10, 0.81±0.21 and 2.43±0.81%/yr (p<10−3), respectively. Fibrosers, defined by AOF progression, were in agreement with F progression: 0.09±0.06, 0.15±0.06 and 0.43±0.18 MU/yr (p<10−3), respectively slow, medium and fast fibrosers (FIG. 15 c). The start age increased with fibroser degree: 25.2±10.5, 28.7±10.8 and 33.0±13.6 yr, respectively (p<10−3). The proportion of males increased with fibroser degree: 53.4%, 66.7% and 77.8%, respectively (p=0.034). By stepwise discriminant analysis, fibrosers were predicted by Metavir F, AOF, F progression and cause duration (diagnostic accuracy: 91.4%). The fast fibrosers were predicted by increased AOF, younger inclusion age and older start age with diagnostic accuracy: 100.0% by stepwise binary logistic regression.
  • TABLE 2
    Fibrosis evaluation
    Fibrosis evaluation Fibrosis progression
    Method Technique Calculationa Description Advantages Limits
    Single 1 biopsy FL/cause Transversal Availability + Linearity
    biopsy duration (retrospective) Start
    measurement measurement estimation
    Repeated 2 (FLt2 − FLt1)/ Longitudinal Precision Variability
    biopsy biopsies (t2 − t1) (prospective) Reference Unavailability
    measurement measurement Short duration
    Single non 1 testb FL/cause Transversal Availability Linearity
    invasive duration (retrospective) ++ Start
    test estimation estimation
    estimation
    Repeated 2 tests (FLt2 − FLt1)/ Longitudinal Precision
    non (t2 − t1) (prospective) Repeatability
    invasive estimation
    test
    estimation
    aFL is the fibrosis level and t is the corresponding date
    bNon-invasive (blood test in the present study)
  • TABLE 3
    Main characteristics of different populations used in this study.
    Pa-
    Popu- tients Fibrosis Area of Duration Fibrosis
    lation Cause (n) evaluation fibrosisa Time progression
    1 Alcohol 185 1 LB, 1 Yes Cause Retrospective
    virus blood durationb measurement +
    test estimation
    2 Virus 157 1 LB, 1 Yes Cause Retrospective
    blood durationb measurement +
    test estimation
    3 Virus 1056 1 LB, 1 No No Retrospective
    blood measurement +
    test estimation c
    4 Miscell 16 2 LB Yes Follow- Prospective
    aneous up measurement
    5 Virus 42 0 LB, 2 No Follow- Prospective
    blood up estimation
    tests
    aOn LB,
    bCause duration = time between age at inclusion when liver fibrosis level was measured and age at the start of the liver disease;
    cLimited to the plot fibrosis level vs age.
  • TABLE 4
    Clinical characteristics of populations 1 and 2.
    Population 1 Population 2
    Cause
    Alcohol Virus pa Both Virus pb
    N 136 49 185 157
    Age at inclusion 49.9 ± 11.2 44.2 ± 14.6 0.02  48.5 ± 12.3 43.4 ± 12.4 0.793
    (yr)
    Age at cause start 28.8 ± 9.5  28.2 ± 13.5 0.779 28.8 ± 10.8 27.4 ± 11.2 0.707
    (yr)
    Cause duration 21.3 ± 13.2 15.8 ± 10.7 0.006 19.8 ± 12.9 16.5 ± 7.3  0.604
    (yr)
    Sex (% M) 72.8 53.1 0.011 67.6 59.4 0.550
    Cause (% virus) 26.5 100
    Metavir F (%): 0.002
    0 9.6 10.2 9.7 10.3 0.998
    1 14.0 32.7 18.9 33.5 0.886
    2 13.2 20.4 15.1 25.8 0.419
    3 6.6 12.2 8.1 11.0 0.303
    4 56.6 24.5 48.1 19.4 0.414
    Area of fibrosis 23.5 ± 14.7 13.6 ± 11.7 p < 10−3 20.7 ± 14.6 10.7 ± 6.5  0.005
    (%)
    Complication (%) 29.4 0 p < 10−3 21.6 0
    Progression rate:
    Metavir F (MU/yr) 0.23 ± 0.32 0.19 ± 0.21 0.424 0.22 ± 0.29 0.16 ± 0.14 0.120
    Area of fibrosis 2.0 ± 2.9 1.3 ± 1.4 0.027 1.8 ± 2.6 0.8 ± 0.7 0.017
    (%/yr)
    aalcohol vs virus;
    bvs viral population 1
    NA: not available
  • TABLE 5
    Fibrosis: data at inclusion and course as a function of sex in
    populations 1 and 2.
    MALES FEMALES PA
    POPULATION 1
    AGE AT CAUSE START (YR)
    ALCOHOL 26.9 ± 8.1  34.1 ± 11.0 0.001
    VIRUS 27.5 ± 15.0 29.0 ± 11.7 0.337
    P 0.354 0.160
    BOTH 27.0 ± 9.9  32.2 ± 11.5 0.001
    AGE AT INCLUSION (YR)
    ALCOHOL 50.6 ± 12.0 48.0 ± 8.4  0.358
    VIRUS 42.2 ± 15.1 46.7 ± 13.6 0.400
    P 0.001 0.680
    BOTH 48.8 ± 13.1 47.5 ± 10.7 0.623
    CAUSE DURATION (YR)
    ALCOHOL 23.9 ± 13.1 14.2 ± 11.0 <10−3  
    VIRUS 14.6 ± 9.3  17.2 ± 12.2 0.626
    P 0.001 0.287
    BOTH 22.0 ± 12.9 15.3 ± 11.4 0.001
    METAVIR F SCORE
    ALCOHOL 2.8 ± 1.5 2.9 ± 1.4 0.724
    VIRUS 2.1 ± 1.3 2.1 ± 1.4 0.984
    P 0.012 0.024
    BOTH 2.7 ± 1.5 2.6 ± 1.5 0.737
    F PROGRESSION (MU/YR)
    ALCOHOL 0.17 ± 0.23 0.41 ± 0.43 <10−3  
    VIRUS 0.20 ± 0.21 0.18 ± 0.22 0.609
    PA 0.685 0.019
    BOTH 0.17 ± 0.23 0.32 ± 0.38 0.011
    AREA OF FIBROSIS (%)
    ALCOHOL 22.9 ± 14.7 25.0 ± 14.8 0.483
    VIRUS 14.3 ± 11.9 12.2 ± 11.4 0.199
    P 0.014 0.001
    BOTH 20.8 ± 14.5 20.2 ± 14.9 0.636
    AOF PROGRESSION (%/YR)
    ALCOHOL 1.4 ± 1.8 3.5 ± 4.2 0.001
    VIRUS 1.4 ± 1.4 1.1 ± 1.4 0.146
    P 0.762 0.001
    BOTH 1.4 ± 1.7 2.7 ± 3.6 0.106
    POPULATION 2
    AGE AT CAUSE START (YR) 26.1 ± 10.9 29.4 ± 11.4 0.021
    AGE AT INCLUSION (YR) 41.8 ± 11.8 47.1 ± 13.1 0.015
    CAUSE DURATION (YR) 15.7 ± 6.8  17.7 ± 8.0  0.195
    METAVIR F SCORE 2.3 ± 1.2 1.9 ± 1.2 0.030
    F PROGRESSION (MU/YR) 0.18 ± 0.14 0.13 ± 0.13 0.004
    AREA OF FIBROSIS (%) 11.4 ± 6.9  9.6 ± 5.8 0.018
    AOF PROGRESSION (%/YR) 0.91 ± 0.74 0.67 ± 0.67 0.004
    COMPARISON VIRAL
    POPULATIONS 1 AND 2 (P):
    AGE AT CAUSE START (YR) 0.665 0.888
    AGE AT INCLUSION (YR) 0.903 0.903
    CAUSE DURATION (YR) 0.516 0.830
    METAVIR F SCORE 0.473 0.549
    F PROGRESSION 0.659 0.311
    AREA OF FIBROSIS (%) 0.274 0.301
    AOF PROGRESSION 0.095 0.213
    aMann Whitney test
  • REFERENCES
  • References of Example 1
    • 1. Oberti F, Valsesia E, Pilette C, Rousselet M C, Bedossa P, Aube C, Gallois Y, et al. Noninvasive diagnosis of hepatic fibrosis or cirrhosis. Gastroenterology, 1997; 113:1609-1616.
    • 2. Poynard T, Aubert A, Bedossa P, Abella A, Naveau S, Paraf F, Chaput J C. A simple biological index for detection of alcoholic liver disease in drinkers. Gastroenterology 1991; 100:1397-1402.
    • 3. Naveau S, Poynard T, Benattar C, Bedossa P, Chaput J C. Alpha-2-macroglobulin and hepatic fibrosis. Diagnostic interest. Dig. Dis. Sci. 1994; 39:2426-2432.
    • 4. Wai C T, Greenson J K, Fontana R J, Kalbfleisch J D, Marrero J A, Conjeevaram H S, Lok A S. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003; 38:518-526.
    • 5. Cales P, Boursier J, Oberti F, Hubert I, Gallois Y, Rousselet M C, Dib N, et al. FibroMeters™: a family of blood tests for liver fibrosis. Gastroenterol Clin Biol. 2008; 32:40-51.
    • 6. Adams L A, Bulsara M, Rossi E, DeBoer B, Speers D, George J, Kench J, et al. Hepascore: an accurate validated predictor of liver fibrosis in chronic hepatitis C infection. Clin Chem. 2005; 51:1867-1873.
    • 7. Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. The French METAVIR Cooperative Study Group. Hepatology 1994; 20:15-20.
    • 8. Michalak S, Rousselet M C, Bedossa P, Pilette C, Chappard D, Oberti F, Gallois Y, et al. Respective roles of porto-septal fibrosis and centrilobular fibrosis in alcoholic liver disease. J. Pathol. 2003; 201:55-62.
    • 9. Pilette C, Rousselet M C, Bedossa P, Chappard D, Oberti F, Rifflet H, Maiga M Y, et al. Histopathological evaluation of liver fibrosis: quantitative image analysis vs semi-quantitative scores. Comparison with serum markers. J. Hepatol. 1998; 28:439-446.
    • 10. Moal F, Chappard D, Wang J, Vuillemin E, Michalak-Provost S, Rousselet M C, Oberti F, et al. Fractal dimension can distinguish models and pharmacologic changes in liver fibrosis in rats. Hepatology, 2002; 36:840-849.
  • References of Example 2
    • 1. Ascione A, Tartaglione T, Giuseppe Di Costanzo G. Natural history of chronic hepatitis C virus infection. Dig Liver Dis 2007; 39 Suppl 1:S4-7.
    • 2. Feld J J, Liang T J. Hepatitis C—identifying patients with progressive liver injury. Hepatology 2006; 43:5194-206.
    • 3. Lawson A, Ryder S D. Progression of hepatic fibrosis in chronic hepatitis C and the need for treatment in mild disease. Eur J Gastroenterol Hepatol 2006; 18:343-347.
    • 4. Rodriguez-Torres M, Rodriguez-Orengo J F, Rios-Bedoya C F, Fernandez-Carbia A, Marxuach-Cuetara A M, Lopez-Torres A, Jimenez-Rivera J. Effect of hepatitis C virus treatment in fibrosis progression rate (FPR) and time to cirrhosis (TTC) in patients co-infected with human immunodeficiency virus: a paired liver biopsy study. J Hepatol 2007; 46:613-619.
    • 5. Albanis E, Friedman S L. Antifibrotic agents for liver disease. Am J Transplant 2006; 6:12-19.
    • 6. Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. The French METAVIR Cooperative Study Group. Hepatology 1994; 20:15-20.
    • 7. Ishak K, Baptista A, Bianchi L, Callea F, De Groote J, Gudat F, Denk H, et al. Histological grading and staging of chronic hepatitis. J Hepatol 1995; 22:696-699.
    • 8. Winkfield B, Aube C, Burtin P, Cales P. Inter-observer and intra-observer variability in hepatology. Eur J Gastroenterol Hepatol 2003; 15:959-966.
    • 9. Nagula S, Jain D, Groszmann R J, Garcia-Tsao G. Histological-hemodynamic correlation in cirrhosis-a histological classification of the severity of cirrhosis. J Hepatol 2006; 44:111-117.
    • 10. Pilette C, Rousselet M C, Bedossa P, Chappard D, Oberti F, Rifflet H, Maiga M Y, et al. Histopathological evaluation of liver fibrosis: quantitative image analysis vs semi-quantitative scores. Comparison with serum markers. J Hepatol 1998; 28:439-446.
    • 11. Pol S, Carnot F, Nalpas B, Lagneau J L, Fontaine H, Serpaggi J, Serfaty L, et al. Reversibility of hepatitis C virus-related cirrhosis. Hum Pathol 2004; 35:107-112.
    • 12. Goodman Z D, Becker R L, Jr., Pockros P J, Afdhal N H. Progression of fibrosis in advanced chronic hepatitis C: evaluation by morphometric image analysis. Hepatology 2007; 45:886-894.
    • 13. Levine R A, Sanderson S O, Ploutz-Snyder R, Murray F, Kay E, Hegarty J, Nolan N, et al. Assessment of fibrosis progression in untreated irish women with chronic hepatitis C contracted from immunoglobulin anti-D. Clin Gastroenterol Hepatol 2006; 4:1271-1277.
    • 14. Cales P, Oberti F, Michalak S, Hubert-Fouchard I, Rousselet M C, Konate A, Gallois Y, et al. A novel panel of blood markers to assess the degree of liver fibrosis. Hepatology 2005; 42:1373-1381.
    • 15. Cales P, de Ledinghen V, Halfon P, Bacq Y, Leroy V, Boursier J, Foucher J, et al. Evaluating the accuracy and increasing the reliable diagnosis rate of blood tests for liver fibrosis in chronic hepatitis C. Liver Int 2008; 28:1352-1362.
    • 16. Oberti F, Valsesia E, Pilette C, Rousselet M C, Bedossa P, Aube C, Gallois Y, et al. Noninvasive diagnosis of hepatic fibrosis or cirrhosis. Gastroenterology 1997; 113:1609-1616.
    • 17. Michalak S, Rousselet M C, Bedossa P, Pilette C, Chappard D, Oberti F, Gallois Y, et al. Respective roles of porto-septal fibrosis and centrilobular fibrosis in alcoholic liver disease. J Pathol 2003; 201:55-62.
    • 18. Hubert J B, Burgard M, Dussaix E, Tamalet C, Deveau C, Le Chenadec J, Chaix M L, et al. Natural history of serum HIV-1 RNA levels in 330 patients with a known date of infection. The SEROCO Study Group. Aids 2000; 14:123-131.
    • 19. Kage M, Shimamatu K, Nakashima E, Kojiro M, Inoue O, Yano M. Long-term evolution of fibrosis from chronic hepatitis to cirrhosis in patients with hepatitis C: morphometric analysis of repeated biopsies. Hepatology 1997; 25:1028-1031.
    • 20. Boursier J, Chaigneau J, Roullier V, Lainé F, Michalak S, Hubert I, Dib N, et al. Histological and non-invasive quantitation of liver steatosis. J Hepatol 2009; 50:5357.
    • 21. Poynard T, Mathurin P, Lai C L, Guyader D, Poupon R, Tainturier M H, Myers RP, et al. A comparison of fibrosis progression in chronic liver diseases. J Hepatol 2003; 38:257-265.
    • 22. Poynard T, Ratziu V, Charlotte F, Goodman Z, McHutchison J, Albrecht J. Rates and risk factors of liver fibrosis progression in patients with chronic hepatitis c. J Hepatol 2001; 34:730-739.
    • 23. Deuffic-Burban S, Poynard T, Valleron A J. Quantification of fibrosis progression in patients with chronic hepatitis C using a Markov model. J Viral Hepat 2002; 9:114-122.
    • 24. Poynard T, Bedossa P, Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups. Lancet 1997; 349:825-832.
    • 25. Sobesky R, Mathurin P, Charlotte F, Moussalli J, Olivi M, Vidaud M, Ratziu V, et al. Modeling the impact of interferon alfa treatment on liver fibrosis progression in chronic hepatitis C: a dynamic view. The Multivirc Group. Gastroenterology 1999; 116:378-386.
  • Although the present invention has been described hereinabove by way of preferred embodiments thereof, it can be modified, without departing from the spirit and nature of the subject invention as defined in the appended claims.

Claims (18)

1.-14. (canceled)
15. A non-invasive method for assessing liver fibrosis progression in an individual comprising:
measuring a fibrosis level in a patient; and
calculating a ratio of fibrosis level to cause duration.
16. The method of claim 15, further comprising:
measuring at two different times t1 and t2 fibrosis levels FL(t1) and FL(t2); and
calculating a ratio FL(t2)−FL(t1) to (t2−t1).
17. The method of claim 15, further comprising:
a) measuring in a sample of the individual at least one variable or score further defined as:
biological variables further defined as α-2 macroglobulin (α2M), Hyaluronic acid (HA), Apolipoprotein A1 (ApoA1), Type III procollagen N-terminal propeptide (P3P), γ-glutamyltranspeptidase (GGT), Bilirubin, β-globulin, γ-globulin (GLB), Platelets (PLT), Prothrombin time (PT), Prothrombin index (PI), Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Urea, Sodium (NA), Glycemia, Triglycerides, Albumin (ALB), Alkaline phosphatase (ALP), Human cartilage glycoprotein 39 (YKL-40), Tissue inhibitor of matrix metalloproteinase 1 (TIMP-1), Matrix metalloproteinase 2 (MMP-2), Ferritin, TGFβ1, Laminin, βγ-block, Haptoglobin, C-Reactive protein (CRP), and/or cholesterol,
complex biological variable;
clinical variables further defined as age at first contact, age, cause duration, firm liver, Splenomegaly, Ascites, collateral circulation, cause of CLD, and/or oesophageal varices (EV grade);
score further defined as Metavir F stage, Area of fibrosis (AOF), fractal dimension, Fibrosis score, PGA score, PGAA score, Hepascore, Aspartate-aminotransferase to platelet ratio index (APRI), and/or European Liver Fibrosis (ELF), and/or
combinations thereof: and
b) combining the selected variables in a mathematical function, further defined as a multiple linear regression function, a non-linear regression function, or simple mathematic function.
18. The method of claim 17, further comprising measuring in a sample of the individual at least two variables or scores.
19. The method of claim 18, further comprising measuring in a sample of the individual at least three variables or scores.
20. The method of claim 17, wherein AST/ALT is measured.
21. The method of claim 17, wherein the mathematical function is an arithmetic operation.
22. The method of claim 21, wherein the arithmetic operation is division.
23. The method of claim 17, wherein liver fibrosis progression is assessed by measuring Metavir F progression established by:
measuring in any combination:
at least one biological variable further defined as Type III procollagen N-terminal propeptide (P3P), Hyaluronic acid (HA), Prothrombin index (PI), γ-glutamyl transpeptidase (GGT) and/or βγ-block;
at least one complex biological variable further defined as AST/ALT;
at least one clinical variable further defined as age at first contact and/or cause duration;
at least one score further defined as a fibrosis score, AOF, and/or fractal dimension; and/or
combining the selected variables in the mathematical function.
24. The method of claim 17, wherein the liver fibrosis progression is assessed by measuring the area of fibrosis (AOF) progression established by:
measuring in any combination:
at least one biological variable further defined as α-2 macroglobulin (α2M), Hyaluronic acid (HA), β-globulin, Prothrombin index (PI) and/or βγ-block;
the complex biological variable AST/ALT;
at least one clinical variable further defined as age at first contact, age, cause duration, sex, firm liver, Splenomegaly, Ascites, Collateral circulation and/or cause of CLD; and/or
at least one score further defined as Metavir F stage, area of fibrosis (AOF), FibroMeter™, PGA score and/or PGAA score; and
combining the selected variables in the mathematical function.
25. The method of claim 17, wherein the variables comprise in any combination:
the biological variable β-globulins;
the complex biological variable AST/ALT;
the clinical variable cause duration; and/or
the score Area of fibrosis (AOF) or Metavir F stage.
26. The method of claim 17, wherein the variables comprise in any combination:
at least one biological variables chosen among β-globulins or Prothrombin index (PI);
the complex biological variable AST/ALT; and/or
at least one clinical variable chosen among age at first contact, cause duration, or firm liver.
27. The method of claim 17, wherein the variables comprise in any combination:
at least one biological variable defined as β-globulins and/or α-2 macroglobulin (α2M);
the complex biological variable AST/ALT; and/or
at least one clinical variable further defined as age at first contact or cause duration.
28. A method for assessing an individual comprising performing at least once the method of claim 15.
29. The method of claim 28, further defined as a method of assessing if an individual is a fast fibroser, using binary logistic regression, and a fast fibroser is identified as having an increased AOF progression, younger inclusion age and older start age or alternatively cause duration by stepwise binary logistic regression.
30. The method of claim 28, further defined as a method of assessing if an individual is a slow, medium or fast fibroser using discriminant analyses and the individual is ranked as a slow, medium or fast fibroser with reference to a ranking of patients determined by statistical analysis.
31. The method of claim 28, further defined as a method of assessing if an individual is at risk of suffering or is suffering from a condition further defined as chronic liver disease, a hepatitis viral infection, a hepatoxicity, a liver cancer, a non alcoholic fatty liver disease (NAFLD), an autoimmune disease, a metabolic liver disease and/or a disease with secondary involvement of the liver.
US13/257,456 2009-03-19 2010-03-18 Non-Invasive Method for Assessing Liver Fibrosis Progression Abandoned US20120010824A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/257,456 US20120010824A1 (en) 2009-03-19 2010-03-18 Non-Invasive Method for Assessing Liver Fibrosis Progression

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16147409P 2009-03-19 2009-03-19
PCT/EP2010/053548 WO2010106140A1 (en) 2009-03-19 2010-03-18 Non-invasive method for assessing liver fibrosis progression
US13/257,456 US20120010824A1 (en) 2009-03-19 2010-03-18 Non-Invasive Method for Assessing Liver Fibrosis Progression

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US16147409P Division 2009-03-19 2009-03-19
PCT/EP2010/053548 A-371-Of-International WO2010106140A1 (en) 2009-03-19 2010-03-18 Non-invasive method for assessing liver fibrosis progression

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/608,287 Continuation-In-Part US10861582B2 (en) 2009-03-19 2017-05-30 Non-invasive method for assessing liver fibrosis progression

Publications (1)

Publication Number Publication Date
US20120010824A1 true US20120010824A1 (en) 2012-01-12

Family

ID=42227782

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/257,456 Abandoned US20120010824A1 (en) 2009-03-19 2010-03-18 Non-Invasive Method for Assessing Liver Fibrosis Progression
US15/608,287 Active 2031-10-20 US10861582B2 (en) 2009-03-19 2017-05-30 Non-invasive method for assessing liver fibrosis progression

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/608,287 Active 2031-10-20 US10861582B2 (en) 2009-03-19 2017-05-30 Non-invasive method for assessing liver fibrosis progression

Country Status (7)

Country Link
US (2) US20120010824A1 (en)
EP (1) EP2409154B1 (en)
JP (1) JP5612067B2 (en)
CN (2) CN102439456B (en)
BR (1) BRPI1009461B1 (en)
ES (1) ES2644725T3 (en)
WO (1) WO2010106140A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120177260A1 (en) * 2011-01-10 2012-07-12 The Regents Of The University Of Michigan System and methods for detecting liver disease
WO2014011925A3 (en) * 2012-07-11 2015-07-16 University Of Mississippi Medical Center Detection and staging of liver fibrosis
US20160012583A1 (en) * 2013-03-01 2016-01-14 Universite D' Angers Automatic measurement of lesions on medical images
WO2018024748A1 (en) * 2016-08-01 2018-02-08 Centre Hospitalier Universitaire D'angers Multi-targeted fibrosis tests
CN109111451A (en) * 2017-06-26 2019-01-01 广东东阳光药业有限公司 Dihydropyrimidines and its application in drug
US10165987B2 (en) 2014-08-01 2019-01-01 Centre Hospitalier Universitaire D'angers Method for displaying medical images
CN111279195A (en) * 2017-10-16 2020-06-12 生物预测公司 Method for prognosis and follow-up of primary liver cancer
CN112250769A (en) * 2020-09-30 2021-01-22 四川携光生物技术有限公司 FTCD and CYP2D6 fusion protein, and construction method and application thereof

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2815416A1 (en) * 2010-10-21 2012-04-26 Vertex Pharmaceuticals Incorporated Biomarkers for hcv infected patients
BR112013033595A2 (en) * 2011-06-29 2017-01-24 Inner Mongolia Furui Medical Science Co Ltd liver fibrosis apparatus and detection system
US9002656B2 (en) 2011-10-17 2015-04-07 Daxor Corporation Automated total body albumin analyzer
WO2014109708A1 (en) 2013-01-08 2014-07-17 Agency For Science, Technology And Research A method and system for assessing fibrosis in a tissue
EP2930515A1 (en) * 2014-04-08 2015-10-14 Universite D'angers Prognostic tests for hepatic disorders
CN105092855B (en) * 2014-05-23 2017-10-03 杭州普望生物技术有限公司 A kind of kit detected for liver fibrosis and hepatic sclerosis
WO2016061621A1 (en) * 2014-10-21 2016-04-28 Jeffrey Gary Peter Liver test
CN104887243B (en) * 2015-07-02 2017-08-01 郭璐 A kind of Platelet Index test and appraisal look into calculating and slide chi soon
CN107368689B (en) * 2017-07-31 2019-11-19 董云鹏 Somatic data acquisition and analysis system
CN110237263B (en) * 2018-03-07 2022-06-17 昆山新蕴达生物科技有限公司 HFn method for entrapping adriamycin and product thereof
CN108931645A (en) * 2018-07-26 2018-12-04 北京大学第医院 A kind of HCV removes heptic fibrosis assessment system and appraisal procedure
CN109473175A (en) * 2018-11-07 2019-03-15 中山大学附属第三医院(中山大学肝脏病医院) A kind of Noninvasive serology Rating Model and its design method for liver fibrosis
US11166976B2 (en) 2018-11-08 2021-11-09 Aligos Therapeutics, Inc. S-antigen transport inhibiting oligonucleotide polymers and methods
TWI685854B (en) * 2019-02-01 2020-02-21 中國醫藥大學附設醫院 Liver fibrosis assessment model, liver fibrosis assessment system and liver fibrosis assessment method
WO2021011369A1 (en) * 2019-07-12 2021-01-21 Primegen Biotech, Llc Methods of treatment using encapsulated cells
MX2022010201A (en) * 2020-02-19 2022-09-19 Hepion Pharmaceuticals Inc Use of cyclosporine analogues for treating fibrosis.
CN111783792B (en) * 2020-05-31 2023-11-28 浙江大学 Method for extracting significant texture features of B-ultrasonic image and application thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7668661B2 (en) * 2000-04-28 2010-02-23 Siemens Healthcare Diagnostics Inc. Liver disease-related methods and systems
DE60129314T2 (en) 2000-04-28 2008-07-17 Bayer Ag DIAGNOSIS OF LIVER FIBROSIS WITH THE HELP OF SERUM MARKER ALGORITHMS
GB0202213D0 (en) 2002-01-31 2002-03-20 Imp College Innovations Ltd Methods
US6986995B2 (en) 2002-02-28 2006-01-17 Prometheus Laboratories, Inc. Methods of diagnosing liver fibrosis
WO2006129513A1 (en) 2005-05-30 2006-12-07 Ajinomoto Co., Inc. Liver disease rating apparatus, method of liver disease rating, liver disease rating system, liver disease rating program and recording medium
EP1583968B1 (en) 2003-01-14 2015-04-22 VIB, vzw A serum marker for measuring liver fibrosis
WO2005025596A1 (en) * 2003-09-16 2005-03-24 Hadasit Medical Research Services & Development Ltd. Glatiramer acetate for use as an immuno-modulatory agent
FR2870348B1 (en) * 2004-05-14 2010-08-27 Univ Angers METHOD FOR DIAGNOSING THE PRESENCE AND / OR SEVERITY OF A HEPATHIC PATHOLOGY IN A SUBJECT
WO2006003654A2 (en) 2004-07-01 2006-01-12 Medical Research Fund Of Tel Aviv Sourasky Medical Center Methods and kits for predicting liver fibrosis progression rate in chronic hepatitis c patients
EP1626280B1 (en) * 2004-08-12 2007-02-14 Roche Diagnostics GmbH Method for diagnosing liver fibrosis
US20070037224A1 (en) * 2005-08-11 2007-02-15 Hamer Peter J Quantitative assays for PDGFR-beta in body fluids
CN101779128A (en) * 2007-06-14 2010-07-14 弗拉芒区生物技术研究所 Diagnostic test for the detection of early stage liver cancer
US20100049029A1 (en) 2008-08-20 2010-02-25 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Piezoelectric magnetic resonance elastograph (mre) driver system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Baker et al. "Metalloproteinase Inhibitors: Biological Actions and Therapeutic Opportunities," Journal of Cell Science (2002) volume 115, number 19, pages 3719-3727. *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120177260A1 (en) * 2011-01-10 2012-07-12 The Regents Of The University Of Michigan System and methods for detecting liver disease
US9036883B2 (en) * 2011-01-10 2015-05-19 The Regents Of The University Of Michigan System and methods for detecting liver disease
WO2014011925A3 (en) * 2012-07-11 2015-07-16 University Of Mississippi Medical Center Detection and staging of liver fibrosis
US10130295B2 (en) 2012-07-11 2018-11-20 University Of Mississippi Medical Center Method for the detection and staging of liver fibrosis from image acquired data
US20180075600A1 (en) * 2013-03-01 2018-03-15 Universite D'angers Automatic measurement of lesions on medical images
US9830699B2 (en) * 2013-03-01 2017-11-28 Universite D'angers Automatic measurement of lesions on medical images
US20160012583A1 (en) * 2013-03-01 2016-01-14 Universite D' Angers Automatic measurement of lesions on medical images
US10269118B2 (en) * 2013-03-01 2019-04-23 Universite D'angers Automatic measurement of lesions on medical images
US10165987B2 (en) 2014-08-01 2019-01-01 Centre Hospitalier Universitaire D'angers Method for displaying medical images
US11605460B2 (en) 2016-01-08 2023-03-14 Centre Hospitalier Universitaire D'angers Multi-targeted fibrosis tests
WO2018024748A1 (en) * 2016-08-01 2018-02-08 Centre Hospitalier Universitaire D'angers Multi-targeted fibrosis tests
CN109111451A (en) * 2017-06-26 2019-01-01 广东东阳光药业有限公司 Dihydropyrimidines and its application in drug
CN109111451B (en) * 2017-06-26 2020-08-11 广东东阳光药业有限公司 Dihydropyrimidine compound and application thereof in medicine
CN111279195A (en) * 2017-10-16 2020-06-12 生物预测公司 Method for prognosis and follow-up of primary liver cancer
CN112250769A (en) * 2020-09-30 2021-01-22 四川携光生物技术有限公司 FTCD and CYP2D6 fusion protein, and construction method and application thereof

Also Published As

Publication number Publication date
ES2644725T3 (en) 2017-11-30
BRPI1009461B1 (en) 2019-08-20
CN102439456A (en) 2012-05-02
EP2409154B1 (en) 2017-08-02
BRPI1009461A2 (en) 2016-03-01
US20170337322A1 (en) 2017-11-23
BRPI1009461A8 (en) 2017-09-12
US10861582B2 (en) 2020-12-08
EP2409154A1 (en) 2012-01-25
CN107014996A (en) 2017-08-04
WO2010106140A1 (en) 2010-09-23
JP5612067B2 (en) 2014-10-22
CN102439456B (en) 2016-11-02
JP2012520995A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
US20120010824A1 (en) Non-Invasive Method for Assessing Liver Fibrosis Progression
Corpechot et al. Assessment of biliary fibrosis by transient elastography in patients with PBC and PSC
Marcellin et al. Non‐invasive assessment of liver fibrosis by stiffness measurement in patients with chronic hepatitis B
Schütte et al. Markers for predicting severity and progression of acute pancreatitis
Lee et al. Comparison of surrogate serum markers and transient elastography (Fibroscan) for assessing cirrhosis in patients with chronic viral hepatitis
Pereira et al. Serum markers of hepatic fibrogenesis in cystic fibrosis liver disease
US20110313276A1 (en) Non-invasive in vitro method for quantifying liver lesions
Kawamoto et al. Assessment of liver fibrosis by a noninvasive method of transient elastography and biochemical markers
US11041864B2 (en) Method for prediction of prognosis of sepsis
CN101023356A (en) Method for diagnosing liver fibrosis
US20190265241A1 (en) Method of diagnosis of non-alcoholic fatty liver diseases
Yan et al. Serum S100 calcium binding protein A4 improves the diagnostic accuracy of transient elastography for assessing liver fibrosis in hepatitis B
Cho et al. Point shear wave elastography predicts fibrosis severity and steatohepatitis in alcohol-related liver disease
CN105021827A (en) Application of substance for detecting content of serum angiopoetin-like protein 2 in preparation of product for detecting hepatitis and fibrosis degree
US11605460B2 (en) Multi-targeted fibrosis tests
WO2014068018A1 (en) Methods of prognosis and diagnosis of sepsis
Arain et al. Serum hyaluronic acid level does not reliably differentiate minimal and significant liver disease in chronic hepatitis C
Gorka-Dynysiewicz et al. Accurate prediction of significant liver fibrosis using the Pentra score model in patients with chronic hepatitis C
Park et al. Noninvasive markers to diagnose cirrhosis in patients with HBeAg positive chronic hepatitis: Do new biomarkers improve the accuracy?
Jeffers et al. Prospective evaluation of FIBROSpect II for fibrosis detection in hepatitis C and B patients undergoing laparoscopic biopsy
WO2017011929A1 (en) Use of substance detecting content of angiopoietin-like protein 2 in serum for preparing products for detecting inflammation and degree of fibrosis of liver
Srygley IV et al. Noninvasive assessment of liver fibrosis in chronic hepatitis C infection
Yamasaki et al. Agglutinin-Positive Human Mac-2 Binding Protein Predict the Development of Hepatocellular Carcinoma in Hepatitis C Patients
HAYES Liver fibrosis assessments using FibroScan, Virtual-Touch tissue quantification, the FIB-4 index, and Mac-2 binding protein glycosylation isomer levels compared with pathological findings of liver resection specimens in patients with hepatitis C infection
Kawaoka Liver fibrosis assessments using FibroScan, Virtual-Touch tissue quantification, the FIB-4 index, and Mac-2 binding protein glycosylation isomer levels compared with pathological findings of liver resection specimens in patients with hepatitis C infection Naoyuki Ueda, Tomokazu Kawaoka 3, Michio Imamura 3, Hiroshi Aikata 3, Takashi Nakahara 3, Eisuke Murakami 3, Masataka Tsuge 3, Akira Hiramatsu 3, C Nelson Hayes 3, Michiya Yokozaki 2, Kazuaki Chayama 3, 4, 5 Laboratory Division of Clinical Support, Hiroshima University Hospital, Hiroshima, Japan. 2 Division of Clinical Laboratory Medicine, Hiroshima University Hospital, Hiroshima, Japan. 3 Department of Gastroenterology and Metabolism, Hiroshima University Hospital, Hiroshima, Japan.

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNIVERSITE D'ANGERS, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CALES, PAUL;REEL/FRAME:028975/0191

Effective date: 20120702

Owner name: CENTRE HOSPITALIER UNIVERSITAIRE D'ANGERS, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CALES, PAUL;REEL/FRAME:028975/0191

Effective date: 20120702

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION