US20120009243A1 - Liposomes for drug delivery and methods for preparation thereof - Google Patents

Liposomes for drug delivery and methods for preparation thereof Download PDF

Info

Publication number
US20120009243A1
US20120009243A1 US12/994,031 US99403109A US2012009243A1 US 20120009243 A1 US20120009243 A1 US 20120009243A1 US 99403109 A US99403109 A US 99403109A US 2012009243 A1 US2012009243 A1 US 2012009243A1
Authority
US
United States
Prior art keywords
liposome
liposomes
poly
oxaliplatin
formulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/994,031
Other languages
English (en)
Inventor
Anders Falk Vikbjerg
Sune Allan Petersen
Fredrik Melander
Jonas Rosager Henriksen
Kent Jørgensen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liplasome Pharma ApS
Original Assignee
Liplasome Pharma ApS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liplasome Pharma ApS filed Critical Liplasome Pharma ApS
Assigned to LIPLASOME PHARMA APS reassignment LIPLASOME PHARMA APS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Henriksen, Jonas Rosager, Melander, Fredrik, Petersen, Sune Allan, Vikbjerg, Anders Falk
Publication of US20120009243A1 publication Critical patent/US20120009243A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/203Retinoic acids ; Salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/475Quinolines; Isoquinolines having an indole ring, e.g. yohimbine, reserpine, strychnine, vinblastine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/555Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/14Peptides containing saccharide radicals; Derivatives thereof, e.g. bleomycin, phleomycin, muramylpeptides or vancomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • Liposomes are microscopic spheres which were developed as drug delivery vehicles/systems in the 1980s. The first liposome-based pharmaceuticals were approved for commercial use in the 1990s.
  • Liposomes have three distinct compartments that can be used to carry various compounds such as, e.g. drugs: The interior aqueous compartment; the hydro-phobic bilayer; and the polar inter-phase of the inner and outer leaflet. Depending on the chemical nature of the compound to be encapsulated it will be localised to either of the compartments.
  • drugs encapsulated in liposome's are, e.g. doxorubicin (Doxil), doxorubicin (Myocet) and daunorubicin (DaunoXone).
  • drugs intercalated in the liposome membrane are, e.g. amphotericin B (AmBisome), amphotericin (Albelcet B), benzoporphyrin (Visudyne) and muramyltripeptide-phosphatidylethanolamine (Junovan).
  • AmBisome amphotericin B
  • Albelcet B amphotericin
  • benzoporphyrin Visudyne
  • muramyltripeptide-phosphatidylethanolamine Junovan
  • the liposome technology has thus provided intelligent solutions to solve challenges in pharmacology such as e.g. increase drug solubility, reduce drug toxicity, improve targeted drug release, etc.
  • liposomes as drug delivery vehicles is crucially dependent on their surface charge, permeability, solubility, stability etc. which is significantly influenced by the lipids comprised in the liposome composition.
  • the drug to be encapsulated in the liposome may need further requirements to be considered in preparing a stable liposome formulation.
  • liposome formulations maintain their properties, i.e. remain stable, from the time of preparation until administration. Furthermore, it is desirable that such formulations are intact during the transport in the treated subject until they reach the target site where the drug is specifically released. Thus there is still a need for obtaining improved liposome formulations.
  • the present invention provides liposomes that are useful for delivery of bioactive agents such as therapeutics.
  • the liposomes of the invention are capable of delivering their payload at sites of increased secretory phospholipase A 2 (sPLA 2 ) activity, because phospholipase A 2 (PLA 2 ) will hydrolyse lipids of the liposome.
  • sPLA 2 secretory phospholipase A 2
  • PLA 2 phospholipase A 2
  • the liposomes of the invention may e.g. be used in relation to cancer therapy.
  • a second aspect of the invention is a liposomal formulation comprising the liposome of the invention.
  • Still another aspect is a method of producing a liposomal formulation of the invention.
  • FIG. 1 illustrates the UV spectra of oxaliplatin stored in solution containing 10% sucrose and 1 mM calcium gluconate during storage at room temperature.
  • FIG. 2 illustrates the relative absorbance (day/day 0) at 254 nm for oxaliplatin stored in a solution containing 10% sucrose and 1 mM calcium gluconate during storage at room temperature ( FIG. 1 ).
  • FIG. 3 illustrates the effect of varying calcium gluconate concentrations on leakage from liposomes (70/25/5 mol % DSPC/DSPG/DSPE-PEG2000) containing cisplatin (A) or oxaliplatin (B) after 24 hours storage in cell media (McCoy) at 37° C. (primary axis). The initial degree of encapsulation (DOE) is marked on the secondary axis.
  • FIG. 4 illustrates the cytotoxicity of liposome (70/25/5 mol % DSPC/DSPG/DSPE-PEG2000) encapsulated cisplatin containing 1 mM calcium gluconate.
  • HT-29 colon carcinoma cells were treated for 6 hours (37° C.) with cisplatin or Liposome encapsulated cisplatin in the presence or absence of sPLA 2 .
  • FIG. 5 illustrates the cytotoxicity of liposome (70/25/5 mol % DSPC/DSPG/DSPE-PEG2000) encapsulated oxaliplatin containing varying concentrations of calcium gluconate (A) 5 mM calcium gluconate, (B) 1 mM calcium gluconate, (C) 0.1 mM calcium gluconate, (D) 0.01 mM calcium gluconate, and (E) 0 mM calcium gluconate.
  • HT-29 colon carcinoma cells were treated for 6 hours (37° C.) with oxaliplatin or Liposome encapsulated oxaliplatin in the presence or absence of sPLA 2 .
  • FIG. 6 illustrates the cytotoxicity of liposome (70/25/5 mol % DSPC/DSPG/DSPE-PEG2000) encapsulated cisplatin containing varying concentrations of calcium gluconate.
  • HT-29 colon carcinoma cells were treated for 24 hours (37° C.) with cisplatin in the presence or absence of sPLA 2 .
  • FIG. 7 Changes in particle size as function of calcium concentration for oxaliplatin encapsulated liposomes (70/25/5 mol % DSPC/DSPG/DSPE-PEG2000) containing no calcium after 24 h at room temperature. Lipid concentration maintained at 0.84 mM.
  • FIG. 8 Leakage from Liposome encapsulated oxaliplatin formulation (70/25/5 mol % DSPC/DSPG/DSPE-PEG2000) containing no calcium after 24 h at room temperature as a function of calcium concentration. Lipid concentration maintained at 0.84 mM.
  • FIG. 9 The time-dependence of fluorescence intensity of DSPC/DSPG/DSPE-PEG LUV containing 0.5 mol % NBD-PE at 25° C. Arrow indicates the addition of dithionite, calcium and Triton-X100.
  • FIG. 10 Changes in particle size from sonication step to after 1st dialysis step (10% sucrose) as a function of DSPG in the liposomal oxaliplatin formulations containing 5 mol % DSPE-PEG2000 and DSPC.
  • FIG. 11 Changes in particle size from 1st dialysis step (10% sucrose) to after 2nd dialysis step (10% sucrose+calcium gluconate) as a function of DSPG in the liposomal oxaliplatin formulations containing 5 mol % DSPE-PEG2000 and DSPC.
  • FIG. 12 Changes in particle size from sonication to after 2nd dialysis step (10% sucrose +/ ⁇ calcium gluconate) as a function of DSPG in the liposomal oxaliplatin formulations containing DSPC and 5 mol % DSPE-PEG2000.
  • FIG. 13 Ion count ratio (Pt 195 /P 31 ) for liposomal oxaliplatin formulations containing 5 mol % DSPE-PEG2000 and varying amounts of DSPC and DSPG after 1st dialysis step (10% sucrose solution).
  • FIG. 14 Ion count ratio (Pt 195 /P 31 ) for liposomal oxaliplatin formulations containing 5 mol % DSPE-PEG2000 and varying amounts of DSPC and DSPG after 2nd dialysis step (10% sucrose solution ⁇ 1 mM calcium gluconate).
  • FIG. 15 %-difference in the ion count ratio (Pt 195 /P 31 ) for formulations dialyzed in solution without calcium compared to formulations dialyzed with calcium (see FIG. 14 ).
  • FIG. 16 Pt concentration in dialysate after 2nd dialysis (10% sucrose solution ⁇ 1 mM calcium gluconate) of liposomal oxaliplatin formulations containing 5 mol % DSPE-PEG2000 and varying amounts of DSPC and DSPG.
  • FIG. 17 Correlation between the final liposome size and concentration of oxaliplatin in formulations. Liposomal oxaliplatin formulations (5 mol % DSPE-PEG2000, and varying amounts of DSPC and DSPG) were prepared with or without 1 mM calcium gluconate during dialysis (see FIG. 14 ).
  • FIG. 18 Stability of liposomal oxaliplatin formulations (5 mol % DSPE-PEG2000, and varying concentrations of DSPC and DSPG) in McCoy cell media ( 24 h incubation at 37° C.).
  • FIG. 19 . 1 .- 6 DSC scans of Liposome encapsulated oxaliplatin (60/35/5 mol % DSPC/DSPG/DSPE-PEG2000) formulation without the presence calcium gluconate.
  • FIG. 20 DSC scan (1st scan) of Liposome encapsulated oxaliplatin formulations containing 5 mol % DSPE-PEG2000 and varying DSPC and DSPG concentrations and without the presence of calcium gluconate. Scan speed: 20° C./h.
  • FIG. 21 . 1 .- 6 DSC scans of Liposome encapsulated oxaliplatin (60/35/5 mol % DSPC/DSPG/DSPE-PEG2000) formulation with 1 mM calcium gluconate on the exterior. Scan speed: 20° C./h.
  • FIG. 22 DSC scan (1st scan) of Liposome encapsulated oxaliplatin formulations containing 5 mol % DSPE-PEG2000 and varying DSPC and DSPG concentration with 1 mM calcium gluconate on the exterior. Scan speed: 20° C./h.
  • FIG. 23 Pt concentration in dialysate after a) 1st dialysis step and b) 2nd dialysis step (10% sucrose solution containing 1 mM calcium gluconate) of oxaliplatin encapsulated liposomes.
  • FIG. 24 . 1 .- 6 DSC scans of Liposome encapsulated oxaliplatin (60/35/5 mol % DSPC/DSPG/DSPE-PEG2000) formulation with 1 mM calcium gluconate on both the interior and exterior. Scan speed: 20° C./h.
  • FIG. 25 DSC scan (1st scan) of Liposome encapsulated oxaliplatin formulations containing 5 mol % DSPE-PEG2000 and varying DSPC and DSPG concentrations with 1 mM calcium on both the interior and exterior. Scan speed: 20° C./h.
  • sPLA 2 secretory phospholipase A 2
  • An object of the present invention is to provide liposomes and liposome formulations of improved stability which may deliver their payload (e.g. a drug) at the target site with reduced uncontrolled delivery and/or too early release due to leakiness of the liposome membrane. Another object is to provide liposomes and liposomal formulations with an increased stability during storage.
  • payload e.g. a drug
  • the present invention provides a liposome comprising between 25% and 45% (mol/mol) of an anionic lipid.
  • the present inventors have taken into account that the content of anionic lipid affects important characteristics of the liposome, such as the rate of sPLA 2 mediated lipid hydrolysis of the liposome and also the immune response toward the liposome.
  • anionic lipid content As the content of anionic lipid increases, so does the rate of lipid hydrolysis by sPLA 2 (and the release of drug). It has been demonstrated that a reasonable rate of hydrolysis can be achieved by anionic lipid content between 25% and 45%. Thus, in one embodiment, the content of anionic lipid is at least 25%. In another embodiment, the content of anionic lipid is no more than 45%. In yet another embodiment, the anionic lipid content of the liposome is selected from the group consisting of between 25% and 45%, 25-42%, 28% and 42%, 30% and 40%, 32% and 38% and 34% and 36%. When referring to % content, reference is to mol/mol %, unless specifically mentioned otherwise.
  • the clearance rate of the liposome in body may be
  • the content of the anionic lipid in the liposome can be used to strike a balance between hydrolysis rate of sPLA 2 and clearance by the reticuloendothelial system.
  • the anionic lipid is a phospholipid and preferably, the phospholipid is selected from the group consisting of PI (phosphatidyl inositol), PS (phosphatidyl serine), DPG (bisphosphatidyl glycerol), PA (phosphatidic acid), PEOH (phosphatidyl alcohol), and PG (phosphatidyl glycerol). More preferably, the anionic phospholipid is PG.
  • PI phosphatidyl inositol
  • PS phosphatidyl serine
  • DPG bisphosphatidyl glycerol
  • PA phosphatidic acid
  • PEOH phosphatidyl alcohol
  • PG phosphatidyl glycerol
  • the liposome further comprises a hydrophilic polymer selected from the group consisting of PEG [poly(ethylene glycol)], PAcM [poly(N-acryloylmorpholine)], PVP [poly(vinylpyrrolidone)], PLA [poly(lactide)], PG [poly(glycolide)], POZO [poly(2-methyl-2-oxazoline)], PVA [poly(vinyl alcohol)], HPMC (hydroxypropylmethylcellulose), PEO [poly(ethylene oxide)], chitosan [poly(D-glucosamine)], PAA [poly(aminoacid)], polyHEMA [Poly(2-hydroxyethylmethacrylate)] and co-polymers thereof.
  • a hydrophilic polymer selected from the group consisting of PEG [poly(ethylene glycol)], PAcM [poly(N-acryloylmorpholine)], PVP [poly(vinylpyrrolidone)],
  • the polymer is PEG with a molecular weight between 100 Da and 10 kDa.
  • PEG sizes are particularly preferred.
  • liposomes The inclusion of polymers on liposomes is well known to the skilled artisan and can be used to increase the half-life of the liposomes in the bloodstream, presumably by reducing clearance by the reticuloendothelial system.
  • the polymer is conjugated to the head group of phosphatidyl ethanolamine.
  • Another option is ceramide (even though this lipid is not hydrolyzable by PLA 2 ).
  • the polymer-conjugated lipid is preferably present at an amount of at least 2%. More preferably, the amount is at least 5% and no more than 15%. Even more preferably, the amount of polymer-conjugated lipid is at least 3% and no more than 6%.
  • Liposomes containing anionic phospholipids and ⁇ 2.5% DSPE-PEG2000 have increased tendency to aggregate in the presence of calcium. This can usually be observed by formation of high viscous gel. Liposomes containing anionic phospholipids and >7.5% causes the liposomes to sediment or phase separate. Thus, another preferred window is between 2.5% and 7.5%.
  • the liposome of the invention also comprises an uncharged phospholipid selected from the group consisting of zwitterionic phospholipids comprising PC (phosphatidyl choline) and PE (phosphatidylethanolamine).
  • the zwitterionic phospholipid is PC.
  • zwitterionic phospholipid serves as a charge neutral sPLA 2 -hydrolyzable lipid component in the liposome.
  • the amount of zwitterionic phospholipid in the liposome is preferably between 40% and 75% and more preferably between 50 and 70%.
  • Some or all of the phospholipids may be ether-phospholipids.
  • ether phospholipids may be seen as pro-drugs of mono-ether lyso-phospholipids and liposomes of the invention can be used to deliver such pro-drugs to the sPLA 2 -enhanced environment of cancer cells, where the pro-drugs are activated by sPLA 2 hydrolysis.
  • Ether-phospholipids have been described in EP 1254143 and WO 2006/048017, the contents of which are hereby incorporated by reference.
  • a liposome may comprise pro-drugs of mono-ether lysolipids, pro-drugs released from the lipid by sPLA 2 and other therapeutic agents, as further outlined below.
  • the liposome may also be stabilized by the inclusion of cholesterol as membrane component in the liposome.
  • cholesterol as membrane component in the liposome.
  • high amounts of cholesterol in the liposome have a negative effect on hydrolysis by PLA 2 and therefore it is preferred that the liposome comprises no more than 20% or 10% cholesterol. Even more preferably, the liposome comprises less than 1% cholesterol, less than 0.1% or does not comprise any cholesterol at all.
  • the alkyl chain length of the lipids comprising the liposome may be adjusted for optimal PLA 2 hydrolysis rate and minimum leakage of entrapped compound out of the liposome.
  • the alkyl chains are C18 or C16 saturated chains.
  • the liposomes of the invention are preferably prepared by the method of the third aspect, wherein liposomes are stabilized by exposure to divalent cations.
  • the liposomes may comprise pro-drugs of mono-ether lyso-lipids and/or of the moiety released from the lipid by sPLA 2 to create the lysolipid.
  • the liposomes comprise a bioactive compound such as a therapeutic agent (drug), which is not a pro-drug of mono-ether lysophospholipid or mono-ether lysophospholipid.
  • the liposome may also comprise pro-drugs of mono-ether lysophospholipid and a therapeutic agent.
  • Preferred bioactive compounds are small molecules, peptides, proteins and nucleic acids such as plasmids and oligonucleotides.
  • a preferred class of proteins is antibodies, more preferably monoclonal antibodies.
  • Preferred oligonucleotides are aptamers, antisense oligonucleotides, microRNAs and siRNAs.
  • a class of compounds of particular interest is small molecule antitumour agents such as anthracyclin derivatives, cisplatin, oxaliplatin, carboplatin, doxorubicin, paclitaxel, 5-fluoruracil, exisulind, cis-retinoic acid, suldinac sulphide, methotrexate, bleomycin and vincristine.
  • Another class of particular interest is antibiotics and anti-fungals and yet another class is anti-inflammatory agents such as steroids and non-stereoids.
  • the liposome may comprise 1, 2, 3 or more different bioactive compounds. In a preferred embodiment, the liposome comprise only 1 bioactive component.
  • the liposome comprises a diagnostic agent.
  • diagnostic agent is meant an agent that supports the localisation of the target tissue and/or the diagnosis of the disease and/or condition.
  • Non-limiting examples could be contrast agents, microparticles, radioactive agents, target specific agents such as e.g. agents that bind specifically to markers associated with the disease and/or condition, etc.
  • target specific agents such as e.g. agents that bind specifically to markers associated with the disease and/or condition, etc. It is clear to a skilled person that in some embodiments the invention relates to a liposome formulation wherein the liposome comprises at least one drug as well as a diagnostic agent.
  • the liposome can be unilamellar or multilamellar. Most preferably, the liposome is unilamellar.
  • the diameter of the liposome should be between 50 and 400 nm, preferably between 80 and 160 nm and most preferable between 90 and 120 nm.
  • the Poly Dispersity Index (PDI) of the liposomal formulation of the second aspect of the invention should not exceed 0.2 and more preferable be 0.15 or less or even more preferably 0.10 or less.
  • a PDI value in this range ex-presses a relatively narrow particle size-distribution in the formulation.
  • At least one of the lipids comprising the liposome is a substrate for sPLA 2 when present in the liposome.
  • the liposome comprises lipids which are hydrolysed by sPLA 2 at the sn-3 position instead of at the sn-2 position.
  • lipids which are hydrolysed by sPLA 2 at the sn-3 position instead of at the sn-2 position.
  • the liposomes of the invention are present in the liposomal formulation of the second aspect.
  • they have been stabilized by exposure to divalent cations as described in the second aspect.
  • the liposomes have only been exposed to divalent cations after formation. I.e. the interior of the liposomes does not contain divalent cations.
  • only the interior of the liposomes comprise divalent cations.
  • a DSC-scan of liposomal oxaliplatin (70/25/5 mol % DSPC/DSPG/DSPE-PEG2000) in the absence of a divalent cation gives a single transition temperature observed as one peak. If the scan is repeated, the transition temperature is shifted towards higher temperatures, which might be due to the release of oxaliplatin to exterior of the liposomes when passing transition temperature ( FIG. 19 ). Repeated DSC scans of liposomes that have been exposed to a divalent cation have a more constant transition temperature.
  • the liposomes of the invention are characteristic in that repeated DSC-scans of the liposome gives a transition temperature that differs by no more than 2° C.
  • the liposomes of the invention are characteristic in that repeated DSC-scans of the liposomes gives a transition temperature that differs less between the first and second scan than will the transition temperature of control liposomes of the same composition.
  • a DSC-scan of liposomal oxaliplatin (70/25/5 mol % DSPC/DSPG/DSPE-PEG2000) stabilized by exposure to a divalent cation gives a phase-separated transition temperature (two peaks in the scan; see e.g. FIG. 22 ).
  • the liposomes are characteristic in that a DSC-scan of the liposomes gives a phase-separated transition temperature.
  • the transition temperature of liposomes is shifted towards higher temperatures by exposure to divalent cations and one method of determining whether (test) liposomes have been exposed to a divalent cation such as calcium is by determining the transition temperature of control liposomes of the same composition as the test liposomes, wherein said control liposomes have not been exposed to a divalent cation.
  • the liposomes of the invention are characteristic in that they have a higher transition temperature than control liposomes of the same composition which have not been exposed to divalent cations.
  • the liposomes of the invention are characteristic in that the mean liposome size does not decrease more than 10% and more preferably not more than 5%, when they are exposed to 1 mM calcium. If they have not been previously exposed to calcium, they will shrink when exposed to calcium.
  • One way of testing of testing whether test liposomes have been exposed to calcium is by comparison to control liposomes of the same composition, where it is known that they have not been exposed to calcium.
  • the liposomes of the invention are characteristic in that they display a degree of shrinkage when exposed to 1 mM calcium that is smaller than the degree of shrinkage for control liposomes of the same composition, which have not been previously exposed to divalent cations.
  • a second aspect of the invention is a liposomal formulation comprising liposomes of the invention.
  • the formulation also comprise a divalent cation at a concentration of at least 0.1 mM.
  • the present inventors have discovered that the presence of a divalent cation (or previous exposure to) stabilizes the liposomes of the formulation leading to reduced leakage of bioactive compound out of the liposomes.
  • the concentration of divalent cation should not exceed 10 mM and more preferably not exceed 5 mM as such concentrations can lead to aggregation of the liposomes and undesirable high viscosities.
  • the concentration of divalent cation is not above 1 mM and most preferably the concentration of divalent cation is between 0.1 mM and 1 mM ( FIG. 3 ).
  • a preferred divalent cation is calcium.
  • the divalent cation is selected from the group consisting of magnesium (Mg 2+ ), iron (Fe 2+ ), calcium (Ca 2+ ), beryllium (Be 2+ ), magnesium (Mg 2+ ), strontium (Sr 2+ ), barium (Ba 2+ ), and radon (Ra 2+ ).
  • the counterion of Ca 2+ is selected from the group consisting of bulky anions such as an organic salt, preferably selected from the group consisting of gluconate, propionate or lactate. More preferably the counterion is gluconate.
  • the divalent cation may be distributed at the interior of the liposome, at the exterior of the liposome or both at the interior and the exterior of the liposome.
  • the divalent cation may therefore be present in the hydration solution and/or in the solution wherein the liposome formulation is purified, suspended and/or stored.
  • the divalent cation is distributed at the exterior of the liposome, but not at the interior of the liposome.
  • the divalent cation may be added after liposome formation.
  • the concentration of calcium salt to be employed may depend on the individual liposome formulation and the drug. Salts such as e.g. CaCl 2 or NaCl are often required at certain concentrations to stabilize the liposomes. However, oxaliplatin is unstable in the presence of some salts, such as e.g. NaCl, and cis-platin is unstable in the presence of salts of phosphates or in pure water. Thus, the type of salt selected and their concentration will have a significant impact on the vesicle forming properties, and accordingly, depending on the drug to be encapsulated various salts must be selected and different salt concentrations used for the preparation of a liposome formulation.
  • the Poly Dispersity Index (PDI) of the liposomal formulation should not exceed 0.2 and more preferable be 0.10 or less.
  • a PDI value in this range expresses a relatively narrow particle size-distribution in the formulation.
  • the liposomal formulation further comprises a cryo- and/or lyo-protecting agent.
  • the phospholipids may undergo hydrolysis.
  • One simple way of preventing decomposition of the phospholipids in the liposome formulation is by freezing or freeze-drying.
  • the invention relates to a liposome formulation further comprising a cryo-protecting agent.
  • cryo-protecting agents may without limitation be disaccharides such as sucrose, maltose and/or trehalose. Such agents may be used at various concentrations depending on the preparation and the selected agent such as to obtain an isotonic solution.
  • the liposome can also be freeze-dried, stored and the reconstituted such that a substantial portion of its internal contents are retained.
  • Liposome dehydration generally requires use of a lyo-protecting agent such as a disaccharide (sucrose, maltose or trehalose) at both the inside and outside interfaces of the liposome bilayer.
  • a lyo-protecting agent such as a disaccharide (sucrose, maltose or trehalose) at both the inside and outside interfaces of the liposome bilayer.
  • This hydrophilic compound is generally believed to prevent the rearrangement of the lipids in the liposome formulation, so that the size and contents are maintained during the drying procedure and through subsequent reconstitution.
  • Appropriate qualities for such drying protecting agents are that they possess stereo chemical features that preserve the intermolecular spacing of the liposome bilayer components.
  • a third aspect of the invention is a method of preparing a liposomal formulation comprising the steps
  • the method of further comprising of high sheer mixing to reduce the size of the liposomes.
  • the method may further comprise a step of extruding the liposomes produced in step c) through a filter to produce liposomes of a certain mean size.
  • the method may also comprise a step of sonicating the liposomal formulation to produce liposomes of a certain size.
  • the liposome is a liposome as described in the first aspect of the invention.
  • Liposomes may be loaded with at least one therapeutic agent by solubilizing the drug in the organic solvent or hydration solvent used to prepare the liposomes.
  • ionisable therapeutic agent can be loaded into liposomes by first forming the liposomes, establishing an electrochemical potential, e.g. by way of a pH gradient, across the outermost liposome layer, and then adding the ionisable therapeutic agent to the aqueous medium external to the liposome.
  • the hydration solvent comprises a divalent cation at a concentration of at least 0.1 mM and more preferably at a concentration between 0.1 mM and 5 mM and most preferably between 0.1 mM and 1 mM.
  • the divalent cation is Ca 2+ .
  • the hydration solvent does not comprise a divalent cation.
  • the method further comprises a step of changing the exterior water phase of the formulation.
  • the water phase will comprise the hydration solvent.
  • the exterior water phase may be changed by centrifugation, ultrafiltration, dialysis or similar in order to prepare a liposomal formulation comprising liposomes in a solution of defined composition of the exterior water phase.
  • bioactive compounds therapeutic agents
  • the drug encapsulation in the liposomes should be >70%, more preferably >95% and most preferably >99%.
  • the degree of drug encapsulation is the ratio of drug encapsulated to the total amount of drug in the formulation.
  • the exterior water phase is changed to another exterior water phase comprising a divalent cation at a concentration of at least 0.1 mM and more preferably at a concentration between 0.1 mM and 5 mM and most preferably between 0.1 mM and 1 mM.
  • the divalent cation is Ca 2+ .
  • liposomes initially leak entrapped compound when being exposed to calcium. Moreover, the liposomes condense to give smaller particle diameters. However, after initial leakage the liposomes exposed to Ca 2+ displays reduced leakage as seen e.g. in case of incubation in cell media (e.g. McCoy media; FIG. 3 ). Because of initial leakage, dialysis and/or centrifugation is typically done to separate liposomes from leaked material. Also filtration may be done.
  • the liposomal formulation is produced by the method of the third aspect.
  • a fifth aspect of the invention is the liposome of the first aspect or the liposomal formulation of the second aspect for use as a medicament.
  • a sixth aspect of the invention is the liposome of the first aspect or the liposomal formulation of the second aspect used for treatment of conditions, wherein PLA 2 activity is increased.
  • conditions are e.g. cancer and inflammatory diseases.
  • Liposome encapsulated cisplatin and Liposome encapsulated oxaliplatin are liposome-drug formulations wherein the drug cisplatin or oxaliplatin is encapsulated in the aqueous compartment of the liposome.
  • the liposome drug formulations are composed of the drug encapsulated in a lipid mixture made of 5 mol % mPEG2000-disteoryl-phospahtidylethanolamine (DSPE-PEG2000); 25 mol % disterorylphosphatidylglycerol (DSPG); and 70 mol % disteorylphosphatidylcholine (DSPC).
  • DSPE-PEG2000 5 mol % mPEG2000-disteoryl-phospahtidylethanolamine
  • DSPG disterorylphosphatidylglycerol
  • DSPC disteorylphosphatidylcholine
  • Phospholipids were dissolved in 9:1 (v/v) chloroform/methanol. The solvent of the dissolved lipid mixtures were then evaporated in a 65° C. hot water bath until visual dryness, under a stream of nitrogen gas. The samples were further dried under vacuum overnight.
  • lipid suspensions were kept at 65-70° C. for at least 30 min. in order to ensure complete hydration. During this period, the lipid suspensions were vortex every 5 min.
  • Large unilamellar vesicles (LUV) were prepared by 5 min. sonication at 65° C. of the MLV followed by extrusion through a 100 nm pore size polycarbonate filters at 65-70° C. LUV were subsequently transferred to dialysis cassettes (MWCO: 10 kDa) in order to remove untrapped cisplatin.
  • Phospholipids were dissolved in 9:1 chloroform/methanol. The dissolved lipid mixtures were then evaporated in a 65° C. water bath until visual dryness, under a stream of nitrogen. The samples were further dried under vacuum overnight.
  • lipid suspensions were kept at 65-70° C. for at least 30 min. in order to ensure complete hydration. During this period, the lipid suspensions were vortex every 5 min. large unilamellar vesicles (LUV) were subsequently prepared by 5 min. sonication at 65-70° C. of the MLV followed by extrusion through a 100 nm pore size polycarbonate filters ten times at 65-70° C. LUV were subsequently transferred to dialysis cassettes (MWCO: 10 kDA) in order to remove un-trapped oxaliplatin.
  • LUV large unilamellar vesicles
  • Liposome encapsulated cisplatin or Liposome encapsulated oxaliplatin is based on sample equilibration followed by a step of separation by centrifuge filtration.
  • the Pt contents are quantified by use of ICP-MS.
  • Cisplatin content in liposomal cisplatin formulation with varying content of Calcium gluconate Calcium gluconate (mM) Cisplatin content (mg/ml) 0 1.10 0.10 0.49 1.00 0.77
  • Oxaliplatin was dissolved in a hydration solution containing 10% sucrose and 1 mM Calcium gluconate (10 mg/ml). Sucrose was added to obtain an osmolarity approximately corresponding to physiological salt concentration. Stability of oxaliplatin in the hydration solution was followed by UV measurement. Samples were taken continually during storage at room temperature. Sample concentration measured was 0.1 mg/ml oxaliplatin. In order to follow the oxaliplatin stability a scan was performed from 200-350 nm ( FIG. 1 ) and the absorbance at 254 nm was compared during storage ( FIG. 2 ).
  • This cell media was used for the subsequent evaluation of the cytotoxic effect of Liposome encapsulated oxaliplatin on HT-29 colon carcinoma cells. Increased leakage from the liposomes upon storage in the cell media results in unspecific cytotoxicity. Formulation should have minimal cytotoxicity when it is has not undergone sPLA 2 hydrolysis. Varying concentrations of calcium gluconate (0-5 mM) in the Liposome encapsulated oxaliplatin formulation were examined for their ability to stabilize the liposomes ( FIG. 5 ).
  • liposome formulation was affected by the presence of calcium gluconate on interior or exterior only. As demonstrated in the table below, it was quite evident that liposome formulation containing calcium on the interior only is not very good at stabilizing the liposome oxaliplatin formulation. Having calcium on the exterior only was demonstrated to stabilize the liposome formulation quite well.
  • Ether phospholipids were used to prepare a liposome formulation of oxaliplatin encapsulated in a lipid mixture (25 mol % 1-O-octadecyl-2-octadecanoyl-sn-glycero-3-phosphoglycerol (1-O-DSPG), 70 mol % 1-O-octadecyl-2-octadecanoyl-sn-glycero-3-phosphocholine (1-O-DSPC) and 5 mol % di-octadecanoyl-sn-glycero-3-phosphoethanolamine-N—[methoxy-(polyethylene glycol)2000] (DSPE-PEG2000)) in a solution containing 10% sucrose and 1 mM calcium gluconate.
  • a lipid mixture 25 mol % 1-O-octadecyl-2-octadecanoyl-sn-glycero-3-phosphoglyce
  • HT-29 colon carcinoma cells
  • FIG. 5 Cytotoxic activity of liposome encapsulated oxaliplatin was evaluated in colon carcinoma cells (HT-29) ( FIG. 5 ).
  • HT-29 cell line does not have the capability of secreting PLA 2 .
  • Free oxaliplatin was used as reference.
  • HT-29 cells were treated for 6 h with oxaliplatin or Liposome encapsulated oxaliplatin in the presence or absence of PLA 2 .
  • PLA 2 from external source such as tear fluid was added to show that full release of oxaliplatin had occurred. With stable liposome formulation the HT-29 should not be affected by presence of such. In order to release the oxaliplatin from the liposome presence of a PLA 2 source is required.
  • This cell media was used for the subsequent evaluation of the cytotoxic effect of Liposome encapsulated cisplatin on HT-29 colon carcinoma cells ( FIG. 4 and FIG. 6 ).
  • Aim To examine the effect of adding or diluting Liposome encapsulated oxaliplatin formulation with a calcium gluconate solution.
  • Liposome encapsulated oxaliplatin formulation was prepared without calcium (10% sucrose on interior and exterior). Liposome encapsulated oxaliplatin formulation was diluted in varying concentrations of calcium (Lipid concentration maintained at 0.84 mM). Samples were equilibrated 24 h, and degree of encapsulation (DOE; %) and particle sizes were measured.
  • a suspension of liposomes (70/25/5 mol %, PC/PG/PE-PEG) containing 0.5 mol % of 1,2-dipalmitoyl-phosphatidylethanolamine with the fluorescent probe 7-nitrobenz-2-oxa-1,3-diazol-4-yl covalently linked to the head group (NBD-PE) (Fluka, Buchs, Switzerland) was prepared in 10% sucrose.
  • NBD-PE head group
  • DSPG and DSPC contents were varied in the liposomal formulations as following:
  • Formulations were prepared without calcium on the interior, and with or without calcium on the exterior.
  • Particle sizes are observed to increase by raised PG content up to 45% PG in solutions only containing sucrose ( FIG. 10 ). Contrary to this, by adding 1 mM calcium gluconate on the exterior the particle sizes are observed to decrease ( FIG. 11 ). Formulation having the highest content of PG was observed to have largest variation in particle sizes in the absence of Ca 2+ (FIGS. 11 + 12 ).
  • DOE (%) is usually higher for formulation with lower content of PG when dialyzed the same amount of time.
  • Liposomes dialyzed in solution containing calcium gluconate are stable in McCoy media, whereas formulation dialyzed in 10% sucrose had major leakage of oxaliplatin when exposed to McCoy Media ( FIG. 18 ).
  • Transition temperature for Liposome encapsulated oxaliplatin formulation is in the range 60-70° C. It is therefore recommended that the extrusion temperature is maintained at 70° C.
  • DSPC and DSPG contents were varied in liposomal formulation as following:
  • Formulations were prepared with calcium on both the interior and exterior.
  • DOE (%) is usually higher for formulation with lower content of DSPG, when dialyzed the same amount of time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dispersion Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
US12/994,031 2008-05-23 2009-05-25 Liposomes for drug delivery and methods for preparation thereof Abandoned US20120009243A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DKPA200800717 2008-05-23
DKPA200800717 2008-05-23
EP08014793A EP2123258A1 (en) 2008-05-23 2008-08-20 Liposomes for drug delivery
EP08014793.7 2008-08-20
PCT/EP2009/056297 WO2009141450A2 (en) 2008-05-23 2009-05-25 Liposomes for drug delivery and methods for preparation thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/056297 A-371-Of-International WO2009141450A2 (en) 2008-05-23 2009-05-25 Liposomes for drug delivery and methods for preparation thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/786,194 Continuation US11173178B2 (en) 2008-05-23 2020-02-10 Liposomes for drug delivery and methods for preparation thereof

Publications (1)

Publication Number Publication Date
US20120009243A1 true US20120009243A1 (en) 2012-01-12

Family

ID=40221427

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/994,031 Abandoned US20120009243A1 (en) 2008-05-23 2009-05-25 Liposomes for drug delivery and methods for preparation thereof
US16/786,194 Active US11173178B2 (en) 2008-05-23 2020-02-10 Liposomes for drug delivery and methods for preparation thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/786,194 Active US11173178B2 (en) 2008-05-23 2020-02-10 Liposomes for drug delivery and methods for preparation thereof

Country Status (14)

Country Link
US (2) US20120009243A1 (pl)
EP (2) EP2123258A1 (pl)
JP (1) JP5767580B2 (pl)
CN (1) CN102065840B (pl)
AU (1) AU2009248673B2 (pl)
CA (1) CA2725529C (pl)
CY (1) CY1115325T1 (pl)
DK (1) DK2299977T3 (pl)
ES (1) ES2393170T3 (pl)
HR (1) HRP20120776T1 (pl)
PL (1) PL2299977T3 (pl)
PT (1) PT2299977E (pl)
SI (1) SI2299977T1 (pl)
WO (1) WO2009141450A2 (pl)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102579350A (zh) * 2012-03-02 2012-07-18 海南灵康制药有限公司 右旋布洛芬脂质体固体制剂
US20120288556A1 (en) * 2011-05-10 2012-11-15 The Penn State Research Foundation Ceramide anionic liposome compositions
US20180161462A1 (en) * 2015-06-10 2018-06-14 Teikyo University Theranostic bubble preparation (tb), and method for using same
US10907214B2 (en) 2016-12-30 2021-02-02 Oncology Venture ApS Methods for predicting drug responsiveness in cancer patients
US11173178B2 (en) 2008-05-23 2021-11-16 Liplasome Pharma Aps Liposomes for drug delivery and methods for preparation thereof
US11207269B2 (en) 2009-09-17 2021-12-28 Bio-Bedst Aps Medical use of sPLA2 hydrolysable liposomes
WO2021262892A1 (en) * 2020-06-23 2021-12-30 The Trustees Of The University Of Pennsylvania Compositions and methods of using a pla2-responsive drug delivery system
US11357743B2 (en) 2017-04-19 2022-06-14 Mayo Foundation For Medical Education And Research Ketamine and propofol admixture

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK177529B1 (en) * 2009-10-23 2013-09-08 Bio Bedst Aps Liposomes with improved storage stability
WO2011098578A2 (en) 2010-02-12 2011-08-18 Bioneer A/S Liposome system for ocular administration
JP6230538B2 (ja) * 2012-08-10 2017-11-15 大鵬薬品工業株式会社 安定なオキサリプラチン封入リポソーム水分散液及びその安定化方法
MA37931A1 (fr) * 2012-08-13 2016-07-29 Teni Boulikas Procédés améliorés permettant de traiter un cancer avec une toxicité rénale réduite
CN103169659A (zh) * 2012-11-23 2013-06-26 杭州师范大学 一种奥沙利铂长循环脂质体及其应用
BR112015022416A2 (pt) * 2013-03-13 2017-10-24 Bioasis Technologies Inc fragmentos de p97 e seus usos
US20140271923A1 (en) 2013-03-14 2014-09-18 Christopher Brian Reid Compositions & formulations for preventing and treating chronic diseases that cluster in patients such as cardiovascular disease, diabetes, obesity, polycystic ovary syndrome, hyperlipidemia and hypertension, as well as for preventing and treating other diseases and conditions
KR101683635B1 (ko) * 2014-12-29 2016-12-09 가천대학교 산학협력단 락테이트 금속염을 포함하는 암 치료용 약학 조성물
CN104758250B (zh) * 2015-03-04 2021-06-01 王海龙 一种紫杉醇脂质体及其制备方法和用途
US9725769B1 (en) 2016-10-07 2017-08-08 Oncology Venture ApS Methods for predicting drug responsiveness in cancer patients
US11590079B2 (en) 2018-01-18 2023-02-28 EndoProtech, Inc. Treating microvascular dysfunction
AU2019200325A1 (en) * 2018-01-31 2019-08-15 Liplasome Pharma Aps Methods for treating cancer and predicting drug responsiveness in cancer patients
CN110522728B (zh) * 2019-10-11 2022-03-15 上海市同仁医院 一种介孔二氧化硅纳米递药系统、制备方法及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993754A (en) * 1974-10-09 1976-11-23 The United States Of America As Represented By The United States Energy Research And Development Administration Liposome-encapsulated actinomycin for cancer chemotherapy
US5227170A (en) * 1989-06-22 1993-07-13 Vestar, Inc. Encapsulation process
US20030026831A1 (en) * 2001-04-20 2003-02-06 Aparna Lakkaraju Anionic liposomes for delivery of bioactive agents
US20030166602A1 (en) * 1999-12-03 2003-09-04 Szoka Francis C. Targeted drug delivery with a CD44 receptor ligand
US20040022842A1 (en) * 2002-06-03 2004-02-05 Mebiopharm Co., Ltd. Liposome preparations containing oxaliplatin
US20050002999A1 (en) * 2003-06-04 2005-01-06 Rahul Mehta Long-circulating liposomal compositions
US20050118249A1 (en) * 2001-11-13 2005-06-02 Murray Webb Lipid carrier compositions and methods for improved drug retention
US20070148194A1 (en) * 2005-11-29 2007-06-28 Amiji Mansoor M Novel nanoemulsion formulations
US20080085295A1 (en) * 2006-07-14 2008-04-10 Fmc Biopolymer As Hydrogels containing low molecular weight alginates and biostructures made therefrom

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880635B1 (en) 1984-08-08 1996-07-02 Liposome Company Dehydrated liposomes
US4963362A (en) 1987-08-07 1990-10-16 Regents Of The University Of Minnesota Freeze-dried liposome mixture containing cyclosporin
JPH04505319A (ja) * 1989-04-04 1992-09-17 アルコン ラボラトリーズ インコーポレイテッド 創傷、切傷および擦傷に対する治療剤のデリバリーとしてのリポソームの使用
AU3559695A (en) 1994-09-30 1996-04-26 Inex Pharmaceuticals Corp. Glycosylated protein-liposome conjugates and methods for their preparation
US5858397A (en) 1995-10-11 1999-01-12 University Of British Columbia Liposomal formulations of mitoxantrone
CA2252055C (en) * 1996-04-11 2007-01-16 The University Of British Columbia Fusogenic liposomes
US6120751A (en) * 1997-03-21 2000-09-19 Imarx Pharmaceutical Corp. Charged lipids and uses for the same
WO1999030686A1 (en) 1997-12-12 1999-06-24 Inex Pharmaceuticals Corp. Cationic drugs encapsulated in anionic liposomes
US6911306B1 (en) 1999-10-18 2005-06-28 Emory University TMS1 compositions and methods of use
PT1254143E (pt) * 2000-02-10 2005-02-28 Liplasome Pharma As Sistemas de administracao de farmacos a base de lipidos contendo derivados de lipidos degradaveis de fosfolipase a2 e sua utilizacao terapeutica
EP1839670A3 (en) * 2001-02-21 2009-11-11 Alavita Pharmaceuticals, Inc. Modified Annexin Proteins and their use against thrombosis
CA2383259A1 (en) 2002-04-23 2003-10-23 Celator Technologies Inc. Synergistic compositions
JP4555569B2 (ja) 2001-11-13 2010-10-06 セレーター ファーマシューティカルズ, インコーポレイテッド 増強された血中安定性を有する脂質キャリア組成物
US7273620B1 (en) 2002-05-20 2007-09-25 University Of British Columbia Triggered release of liposomal drugs following mixing of cationic and anionic liposomes
US20040018525A1 (en) 2002-05-21 2004-01-29 Bayer Aktiengesellschaft Methods and compositions for the prediction, diagnosis, prognosis, prevention and treatment of malignant neoplasma
ATE492295T1 (de) 2002-07-02 2011-01-15 Univ Texas Radioaktiv markierte verbindungen und liposome und ihre herstellungs- und anwendungsverfahren
WO2004087105A1 (en) * 2003-04-02 2004-10-14 Celator Pharmaceuticals, Inc. Combination formulations of platinum agents and fluoropyrimidines
US20040203069A1 (en) * 2003-04-10 2004-10-14 Chris Reutelingsperger Method for determining and/or isolating lipid-binding compounds
US20070160656A1 (en) * 2003-05-02 2007-07-12 Dziewiszek Krzysztof J Lipid platinum complexes and methods of use thereof
US20060165744A1 (en) * 2003-05-22 2006-07-27 Neopharm, Inc Combination liposomal formulations
AU2004256425A1 (en) 2003-06-09 2005-01-20 The Regents Of The University Of Michigan Compositions and methods for treating and diagnosing cancer
EP1547674A1 (en) 2003-12-23 2005-06-29 MediGene Oncology GmbH Method for producing colloidal nanoparticles
EP2295604B1 (en) 2004-02-09 2015-04-08 Thomas Jefferson University Diagnosis and treatment of cancers with microRNA located in or near cancer-associated chromosomal features
KR101376895B1 (ko) 2004-05-03 2014-03-25 헤르메스 바이오사이언스, 인코포레이티드 약물 전달에 유용한 리포좀
WO2006025411A1 (ja) 2004-08-31 2006-03-09 Astellas Pharm. Inc. 細胞内薬物送達改善リポソーム
WO2006048017A1 (en) 2004-11-03 2006-05-11 Liplasome Pharma A/S Lipid-based drug delivery systems containing unnatural phospholipase a2 degradable lipid derivatives and the therapeutic uses thereof
PE20070360A1 (es) * 2005-09-01 2007-04-19 Novartis Ag Composiciones de liposomas
US20100189771A1 (en) 2005-10-25 2010-07-29 Lawrence Mayer Fixed ratio drug combination treatments for solid tumors
EP2468899B1 (en) 2006-01-05 2015-03-11 The Ohio State University Research Foundation MicroRNA-based methods for the diagnosis of stomach cancers
GR20060100144A (el) * 2006-03-03 2007-10-17 Θεραπεια του καρκινου με χρηση οξαλιπλατινης εγκλεισμενης μεσα σε λιποσωματα και απο κοινου εγκλεισμος στο λιποσωμιακο μοριο περισσοτερων απο ενος φαρμακευτικου παρασκευασματος h gene
WO2007123691A2 (en) * 2006-03-30 2007-11-01 The Research Foundation Of State University Of New York Method for treating blood coagulation disorders
US20080069778A1 (en) * 2006-09-20 2008-03-20 Imarx Therapeutics, Inc. Polymer-encapsulated microspheres
US20090162425A1 (en) 2007-09-19 2009-06-25 University Of Tennessee Research Foundation Methods and compositions for inhibiting undesirable cellular proliferation by targeted liposome delivery of active agents
EP2123258A1 (en) 2008-05-23 2009-11-25 Liplasome Pharma A/S Liposomes for drug delivery
DK177532B1 (en) 2009-09-17 2013-09-08 Bio Bedst Aps Medical use of sPLA2 hydrolysable liposomes
DK177529B1 (en) 2009-10-23 2013-09-08 Bio Bedst Aps Liposomes with improved storage stability
WO2011098578A2 (en) 2010-02-12 2011-08-18 Bioneer A/S Liposome system for ocular administration
AU2017258901A1 (en) 2016-12-30 2018-07-19 Allarity Therapeutics Europe ApS Methods for predicting drug responsiveness in cancer patients

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993754A (en) * 1974-10-09 1976-11-23 The United States Of America As Represented By The United States Energy Research And Development Administration Liposome-encapsulated actinomycin for cancer chemotherapy
US5227170A (en) * 1989-06-22 1993-07-13 Vestar, Inc. Encapsulation process
US20030166602A1 (en) * 1999-12-03 2003-09-04 Szoka Francis C. Targeted drug delivery with a CD44 receptor ligand
US20030026831A1 (en) * 2001-04-20 2003-02-06 Aparna Lakkaraju Anionic liposomes for delivery of bioactive agents
US20050118249A1 (en) * 2001-11-13 2005-06-02 Murray Webb Lipid carrier compositions and methods for improved drug retention
US20040022842A1 (en) * 2002-06-03 2004-02-05 Mebiopharm Co., Ltd. Liposome preparations containing oxaliplatin
US20050002999A1 (en) * 2003-06-04 2005-01-06 Rahul Mehta Long-circulating liposomal compositions
US20070148194A1 (en) * 2005-11-29 2007-06-28 Amiji Mansoor M Novel nanoemulsion formulations
US20080085295A1 (en) * 2006-07-14 2008-04-10 Fmc Biopolymer As Hydrogels containing low molecular weight alginates and biostructures made therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Murakami M et al, in Biochimica et Biophysica Acta, 1488, pp. 159-166, 2000 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11173178B2 (en) 2008-05-23 2021-11-16 Liplasome Pharma Aps Liposomes for drug delivery and methods for preparation thereof
US11207269B2 (en) 2009-09-17 2021-12-28 Bio-Bedst Aps Medical use of sPLA2 hydrolysable liposomes
US20120288556A1 (en) * 2011-05-10 2012-11-15 The Penn State Research Foundation Ceramide anionic liposome compositions
US8747891B2 (en) * 2011-05-10 2014-06-10 The Penn State Research Foundation Ceramide anionic liposome compositions
CN102579350A (zh) * 2012-03-02 2012-07-18 海南灵康制药有限公司 右旋布洛芬脂质体固体制剂
US20180161462A1 (en) * 2015-06-10 2018-06-14 Teikyo University Theranostic bubble preparation (tb), and method for using same
US10688199B2 (en) * 2015-06-10 2020-06-23 Teikyo University Theranostic bubble preparation (TB), and method for using same
US10907214B2 (en) 2016-12-30 2021-02-02 Oncology Venture ApS Methods for predicting drug responsiveness in cancer patients
US11357743B2 (en) 2017-04-19 2022-06-14 Mayo Foundation For Medical Education And Research Ketamine and propofol admixture
WO2021262892A1 (en) * 2020-06-23 2021-12-30 The Trustees Of The University Of Pennsylvania Compositions and methods of using a pla2-responsive drug delivery system

Also Published As

Publication number Publication date
ES2393170T3 (es) 2012-12-19
US20200171080A1 (en) 2020-06-04
EP2299977A2 (en) 2011-03-30
PT2299977E (pt) 2012-09-07
EP2299977B1 (en) 2012-08-15
CA2725529C (en) 2016-07-05
CN102065840B (zh) 2014-12-10
AU2009248673B2 (en) 2014-08-21
AU2009248673A1 (en) 2009-11-26
JP5767580B2 (ja) 2015-08-19
PL2299977T3 (pl) 2013-01-31
SI2299977T1 (sl) 2012-11-30
WO2009141450A2 (en) 2009-11-26
WO2009141450A3 (en) 2010-07-08
CN102065840A (zh) 2011-05-18
DK2299977T3 (da) 2012-11-05
US11173178B2 (en) 2021-11-16
CA2725529A1 (en) 2009-11-26
JP2011521913A (ja) 2011-07-28
CY1115325T1 (el) 2017-01-04
EP2123258A1 (en) 2009-11-25
HRP20120776T1 (hr) 2012-10-31

Similar Documents

Publication Publication Date Title
US11173178B2 (en) Liposomes for drug delivery and methods for preparation thereof
US11071713B2 (en) Liposome composition
JP5778160B2 (ja) sPLA2加水分解性リポソームを含む医薬組成物
JP6263609B2 (ja) リポソーム組成物及びその製造方法
WO2005092388A1 (ja) リポソーム製剤
WO2018172942A1 (en) Quercetin nanoparticles
CA2570329C (en) Liposome preparation containing slightly water-soluble camptothecin
WO2010095964A1 (en) A method for amphiphilic drug loading in liposomes by ion gradient
RU2476216C1 (ru) Липосомальная композиция
JP2020079303A (ja) リポソーム及びリポソーム組成物

Legal Events

Date Code Title Description
AS Assignment

Owner name: LIPLASOME PHARMA APS, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VIKBJERG, ANDERS FALK;PETERSEN, SUNE ALLAN;MELANDER, FREDRIK;AND OTHERS;REEL/FRAME:027133/0620

Effective date: 20110208

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION