US20110240276A1 - Heat exchanger having an inlet distributor and outlet collector - Google Patents

Heat exchanger having an inlet distributor and outlet collector Download PDF

Info

Publication number
US20110240276A1
US20110240276A1 US13/052,554 US201113052554A US2011240276A1 US 20110240276 A1 US20110240276 A1 US 20110240276A1 US 201113052554 A US201113052554 A US 201113052554A US 2011240276 A1 US2011240276 A1 US 2011240276A1
Authority
US
United States
Prior art keywords
heat exchanger
exchanger assembly
orifices
header
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/052,554
Other languages
English (en)
Inventor
Douglas C. Wintersteen
David E. Samuelson
Russell S. Johnson
Donald R. Pautler
Yanping Xia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Technologies Inc
Original Assignee
Delphi Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Technologies Inc filed Critical Delphi Technologies Inc
Priority to US13/052,554 priority Critical patent/US20110240276A1/en
Assigned to DELPHI TECHNOLOGIES, INC. reassignment DELPHI TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOHNSON, RUSSELL S., PAUTLER, DONALD R., SAMUELSON, DAVID E., WINTERSTEEN, DOUGLAS C., XIA, YANPING
Priority to EP11159597.1A priority patent/EP2375209A3/en
Priority to CN2011201750670U priority patent/CN202182671U/zh
Priority to KR1020110029218A priority patent/KR20110110722A/ko
Publication of US20110240276A1 publication Critical patent/US20110240276A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3227Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0273Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple holes

Definitions

  • the invention relates to a heat exchanger having a plurality of refrigerant tubes extending from an inlet header to an outlet header for use with a two phase refrigerant; more particularly, to a heat exchanger having an inlet distributor disposed in the inlet header together with an outlet collector disposed in the outlet header for uniform refrigerant distribution through the core of the heat exchanger.
  • Automotive heat exchangers typically include an inlet header, an outlet header, and a plurality of extruded multi-port refrigerant tubes for proving hydraulic communication between the inlet and outlet headers.
  • the cores of the heat exchangers are defined by the plurality of refrigerant tubes and the corrugated fins disposed between the refrigerant tubes for improved heat transfer efficiency and increased structural rigidity.
  • the indoor heat exchanger acts as the evaporator.
  • the outdoor heat exchanger acts as the evaporator.
  • a partially expanded two-phase refrigerant enters the lower portions of the refrigerant tubes from the inlet header and expands absorbing heat from the air as it rises within the tubes and changing into a vapor phase.
  • Momentum and gravity effects due to the large mass differences between the liquid and gas phases can result in separation of the phases within the inlet header and cause poor refrigerant distribution throughout the refrigerant tubes. Poor refrigerant distribution degrades evaporator performance and can result in uneven temperature distribution over the core.
  • a heat exchanger assembly having an inlet header in hydraulic communication with an outlet header via a plurality of multi-channel flat refrigerant tubes, in which the multi-channel flat refrigerant tubes are substantially perpendicular to the headers. Interconnecting the refrigerant tubes are corrugated fins. The plurality of refrigerant tubes together with the fins defines the core of the heat exchanger assembly.
  • the heat exchanger assembly also includes a distributor tube disposed in the inlet header cavity and a collector tube disposed in the outlet header cavity, both of which have cooperating features to provide even refrigerant and temperature distribution through the core.
  • the distributor tube includes a plurality of orifices, in which the orifices are oriented between 45° to 135° degrees toward the upstream air side and/or between 225° to 315° degrees toward the downstream air side with respect to 0° being aligned in a direction opposite that of gravity.
  • the distributor tube may have an outside diameter of 1 ⁇ 4′′ to 3 ⁇ 8′′ and each orifice may have a diameter of 0.7 mm to 1.5 mm, arranged substantially linearly along the distributor tube and are spaced 20 mm to 90 mm apart.
  • the collector tube For an outlet header having a length up to 57′′, the collector tube includes a plurality of orifices, each having a diameter of 1 ⁇ 8′′ to 1 ⁇ 4′′, arranged substantially linearly along the collector tube and are spaced approximately 27 mm apart.
  • the collector tube For an outlet header having a length between 57′′ and 96′′, the collector tube includes a plurality of orifices, each having a diameter of approximately 1 ⁇ 8′′, arranged substantially linearly along the collector tube and are spaced approximately 60 mm apart.
  • the modified automotive style heat exchanger assembly having both a distributor tube and a collector tube together with the cooperating features of the distributor and collector tubes has the advantage of being less sensitive to criteria for archiving uniform refrigerant distribution.
  • a distributor tube and a collector tube designed for one particular application may be used for other applications having different operating parameters without having to redesign or optimize the distributor tube or collector tube.
  • FIG. 1 shows a cross-sectional view of a prior art heat exchanger assembly having an inlet distributor.
  • FIG. 2 shows a cross-sectional view of an embodiment of the improved heat exchanger assembly having both an inlet distributor and an outlet collector.
  • FIG. 3 shows a cross-sectional perspective view of the heat exchanger assembly shown in FIG. 2 along line 3 - 3 .
  • FIG. 4 shows a cross-sectional perspective view of the heat exchanger assembly shown in FIG. 2 along line 4 - 4 .
  • FIG. 5 a shows a thermal image of the core of the prior art heat exchanger assembly shown in FIG. 1 operating in evaporative mode, in which the outlet connector is on the same side of the heat exchanger assembly as the inlet connector.
  • FIG. 5 b shows a thermal image of the core of the prior art heat exchanger assembly shown in FIG. 1 operating in evaporative mode, in which the outlet connector is on the opposite side of the heat exchanger assembly as the inlet connector.
  • FIG. 5 c shows a thermal image of the core of the prior art heat exchanger assembly shown in FIG. 1 operating in evaporative mode, in which the outlet header includes an outlet connector on either end.
  • FIG. 6 shows a thermal image of the core of the improved heat exchanger assembly of FIG. 2 operating in evaporative mode.
  • FIG. 1 Shown in FIG. 1 is a prior art modified automotive style heat exchanger assembly 10 modified for stationary use in a residential or commercial setting.
  • the heat exchanger assembly 10 includes an inlet header 12 in hydraulic communication with an outlet header 14 via a plurality of extruded multi-port refrigerant tubes 16 . Interconnecting the refrigerant tubes 16 are corrugated fins 18 for enhanced heat transfer and increased structural integrity of the heat exchanger assembly 10 .
  • the plurality of refrigerant tubes 16 together with the fins 18 defines the core 30 of the heat exchanger assembly 10 .
  • a distributor tube 20 Disposed within the inlet header 12 is a distributor tube 20 to assist in the even distribution of refrigerant within the inlet header 12 with the objective of evenly distributing the refrigerant through the plurality of refrigerant tubes 16 for increase heat transfer efficiency.
  • the distributor tube 20 extends substantially parallel with the length of the inlet header 12 and includes a distributor inlet 13 and a plurality of substantially evenly spaced distributor orifices 22 oriented in the direction of the refrigerant tubes 16 .
  • An outlet flow connector 15 is provided on one end of the outlet header 14 for the return of vaporized refrigerant to the air conditioning system.
  • a partially expanded two-phase refrigerant enters the distributor inlet 13 , flows through the distributor tube 20 , and is uniformly distributed throughout the inlet header 12 by way of the substantially evenly spaced distributor orifices 22 .
  • the refrigerant flows through the plurality of refrigerant tubes 16 from the inlet header 12 to the outlet header 14 , the refrigerant undergoes a liquid-to-vapor transition as it absorbs heat from the ambient air.
  • FIGS. 5 a - c are thermal images of the prior art modified automotive style heat exchanger assembly shown in FIG. 1 having an outlet header 14 greater than 36′′ in length.
  • the heat exchanger assembly 10 was operated in evaporative mode with the outlet connector 15 located in alternative locations on the outlet header 14 , while the inlet connector 13 was fixed in the same location. It was surprisingly discovered that the distribution of the two-phase refrigerant through the plurality of tubes is highly influenced by the pressure drop within the outlet header 14 , by the location of the outlet flow connector 15 , as well as the overall size of the heat exchanger assembly 10 . The significance of which are clearly shown in the thermal images.
  • each thermal image corresponds to the left side of the heat exchanger assembly 10 and accordingly, the right side of each thermal image corresponds to the right side of heat exchanger assembly 10 .
  • the thermal images show the temperature gradient across the core 30 of the heat exchanger assembly 10 .
  • the blue area represents the regions of the core 30 having a two-phase refrigerant present in the refrigerant tubes, while the yellow area represents the region of the core 30 having a single phase superheated refrigerant vapor present in the refrigerant tubes. It can be viewed that, the blue area represents the flow paths of the two-phase refrigerant from the bottom inlet header 12 to the top outlet header 14 and the yellow area represents the flow paths of little to no refrigerant flow.
  • FIG. 5 a Shown in FIG. 5 a is a thermal image of the heat exchanger assembly 10 having an outlet flow connector 15 positioned on the left side of the outlet header 14 , corresponding to the upper left of the thermal image. Shown in FIG. 5 b is a thermal image of a heat exchanger assembly 10 having the outlet flow connector 15 on the right side of the outlet header 14 , corresponding to the upper right of the thermal image. Shown in FIG. 5 c is a thermal image of a heat exchanger assembly 10 having the outlet flow connectors 15 on both the left and right side of the outlet header 14 , corresponding to the upper left and upper right of the thermal image.
  • FIGS. 5 a and 5 b for a heat exchanger assembly 10 having an outlet header 14 greater than 36′′, it is shown that the two phase refrigerant (represented by the blue area) tends to migrate to the refrigerant tubes 16 nearest to the outlet flow connector 15 and starve the refrigerant tubes 16 at the opposite side of the core 30 (represented by the yellow area).
  • the two phase refrigerant is shown concentrated near the left portion of the core 30 while the right portion of the core 30 is starved of refrigerant.
  • FIG. 5 a where the outlet flow connector 15 is located on the upper left, the two phase refrigerant is shown concentrated near the left portion of the core 30 while the right portion of the core 30 is starved of refrigerant.
  • FIG. 5 b where the outlet flow connector 15 is located on the upper right, the two phase refrigerant is shown concentrated near the right portion of the core 30 while the left portion of the core 30 is starved of refrigerant.
  • FIG. 5 c shows that if two outlet flow connectors 15 are used, one on either side of the outlet header 14 , the two phase refrigerant is shown concentrated near the right and left portions of the core 30 while the center portion of the core is starved of refrigerant. In other words, for larger heat exchanger assemblies, the two phase refrigerant flow would follow the path nearest the outlet connectors 15 regardless of the location of the distributor inlet 13 .
  • FIG. 2 Shown in FIG. 2 is a cross-section of an embodiment of the improved heat exchanger assembly 110 having both a distributor tube 120 and a collector tube 121 , wherein the distributor and collector tubes 120 , 121 have cooperating features that provide even distribution of refrigerant through the multi-channel flat refrigerant tubes 116 .
  • the heat exchanger assembly 110 includes an outlet header 114 defining an outlet header cavity 115 extending along axis A 1 and an inlet header 112 defining an inlet header cavity 113 extending along axis A 2
  • Each of the headers 112 , 114 includes a side defining a plurality of header slots 126 , 128 .
  • Each header slot 126 of the inlet header 112 corresponds to a header slot 128 on the outlet header 114 .
  • Each of the multi-channel flat refrigerant tubes 116 defines fluid passages 117 hydraulically connecting the inlet header 112 with the outlet header 114 .
  • a plurality of corrugated heat transfer fins 118 is disposed between and interconnects adjacent multi-channel flat refrigerant tubes 116 for increased heat transfer efficiency.
  • the heat transfer fins 118 may be serpentine fins or any other heat transfer fins commonly known in the art.
  • the core 130 of the heat exchanger assembly 110 is defined by the plurality of multi-channel flat refrigerant tubes 116 and the fins 118 therebetween. While the heat exchanger assembly 110 shown in FIG. 2 has a flat or “slab” type core 130 , those of ordinary skill in the art would recognize that the heat exchanger assembly 110 may be modified to have a bent or round core.
  • FIG. 3 Shown in FIG. 3 , is a cross-sectional perspective of the heat exchanger assembly 110 shown in FIG. 2 along line 3 - 3 .
  • a collector tube 121 Disposed within the outlet header cavity 115 and substantially parallel to axis A 1 is a collector tube 121 , which provides for the collection and transportation of the vapor phase of the refrigerant out of the outlet header 114 .
  • the refrigerant collector tube 121 may be supported by protrusions 129 spaced along the interior surface of the outlet header.
  • the collector tube 121 cross-sectional area A collector may be substantially circular, semi-circular, heart shaped, or non-circular D as shown in FIG. 3 .
  • the collector tube 121 extends through one end of the outlet header 114 transitioning into an outlet connector 132 as shown in FIG. 2 .
  • the collector tube 121 includes a plurality of orifices 124 in fluid communication within the outlet header cavity 115 for collecting the refrigerant vapor.
  • the orifices 124 are oriented toward the direction of the refrigerant tubes 116 and are substantially equally spaced along the length of the collector tube 121 .
  • the outlet connectors 132 has a tapered transition section 134 which changes the cross-sectional area from a non-circular D having a inwardly curved surface 139 as shown in FIG. 3 to a full round circular shape conforming to the internal diameter of the outlet header 114 .
  • the inwardly curved surface 139 aids in the gathering and directing of the vapor refrigerant toward the orifices 124 of the outlet collector 121 .
  • the outlet header 114 may include an interior surface 135 defining a first shape and the collector tube 114 may include an exterior surface 136 opposite that of the inwardly curved surface 139 , wherein the exterior surface 136 of collector tube 114 is complementary to that of the interior surface 135 of the outlet header 114 , such that the exterior surface 136 of collector tube 114 abuts the interior surface 135 of outlet header 114 thereby forming a refrigerant vapor tight fit.
  • the inlet header 112 includes a distributor tube 120 for distributing the refrigerant evenly through inlet header 112 and to the refrigerant tubes 116 .
  • Shown in FIG. 4 is a cross-sectional perspective of the heat exchanger assembly shown in FIG. 2 along line 4 - 4 .
  • the distribution tube 120 extends substantially parallel to the outlet header axis A 2 within the inlet header cavity 113 .
  • the distributor tube 120 may include a cross-sectional area A distributor that is substantially circular.
  • the distributor tube 120 extends through one end of inlet header 112 and transitions into an inlet connector 133 .
  • a plurality of orifices 122 are substantially equally spaced along the length of the distributor tube 120 . Orifices 122 having a circular shaped profile may be spaced uniformly along the distributor tube 120 to provide desired refrigerant distribution when used together with the outlet collector 121 .
  • FIG. 6 shows a thermal image of the improved heat exchanger assembly 110 and the desirable effects of the interactions of the inlet distributor tube 120 and the outlet collector tube 121 operating in concert.
  • the change in color represents a change in core temperature.
  • the bluish-purple area represents the region of two-phase refrigerant flow, while the yellowish-orange area represents the region of single phase superheated vapor through the refrigerant tubes 116 .
  • the thermal image shows that the temperature gradient is substantially uniform through the core 130 with no localized hot or cold spots, thereby indicating that the two-phase refrigerant is uniformly distributed through the plurality of refrigerant tubes 116 .
  • a typical modified heat exchanger assembly has inlet and outlet header lengths that are 3 to 8 times longer than the header lengths for automotive applications. It was found that a good distributor or collector design strongly depends on refrigerant mass flow rate and the header length. Inlet distributor tubes have been evaluated with a 0.7 mm-1.5 mm orifice size with a 20 mm-90 mm orifice spacing for a 1 ⁇ 4′′, 5/16′′ and 3 ⁇ 8′′ distributor tube outside diameter. The distributor tube geometry found to provide the most robust design for various refrigerant flow rates and header lengths is a 1.3 mm orifice diameter with a fixed spacing of 60 mm for a 3 ⁇ 8′′ outside diameter distributor tube.
  • the orifices may be oriented between 45° to 135° degrees with respect to 0° being aligned in a direction opposite that of gravity. Shown in FIG. 4 , the orifices are oriented between 45° to 135° degrees from the plurality of vertical multi-channel flat refrigerant tubes toward the upstream air side of heat exchanger assembly. In concurrence or in the alternative, the orifices may be oriented between 225° to 315° degrees from the plurality of vertical multi-channel flat refrigerant tubes toward the downstream air side of heat exchanger assembly. Preferably, the orifices are oriented 90° and/or 270° degrees with respect to 0° being aligned in a direction opposite that of gravity .
  • Outlet collectors have been evaluated with 1 ⁇ 8′′, 3/16′′, 1 ⁇ 4′′, and 5/16′′ orifices at several fixed and variable spacing and distributions.
  • the geometry selected to provide the most robust design for various refrigerant flow rates depended slightly on header lengths. Combination of 1 ⁇ 8′′ orifices and 1 ⁇ 4′′ orifices spaced every 27 mm was acceptable for header length up to 57′′, and 1 ⁇ 8′′ orifices spaced every 60 mm for outlet header lengths from 57′′ to 96′′.
  • An added benefit of a heat exchanger assembly 110 is that the design features can be used for a wider range of header lengths and refrigerant flow rates without having to recalculating the optimal orifice sizes and locations for the distributor or collectors tubes. For example, it was found that the same orifice size and spacing for a given inlet distributor tube diameter can be used over a complete application lineup of 1.5 ton-10.0 ton indoor heat exchangers and outdoor heat pumps heat exchangers, with a range of header lengths from 18 inches to 96 inches and their corresponding core tube internal refrigerant velocities.
  • An advantage of this invention provides even refrigerant distribution through the inlet header, across the refrigerant tubes, and outlet header resulting in improved heat transfer performance and even outlet air temperature distribution. Another advantage is that the heat exchanger assembly is less sensitive to application and heat exchanger size, thereby significantly reducing the design effort for adapting the heat exchanger application to other operating parameters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
US13/052,554 2010-04-01 2011-03-21 Heat exchanger having an inlet distributor and outlet collector Abandoned US20110240276A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/052,554 US20110240276A1 (en) 2010-04-01 2011-03-21 Heat exchanger having an inlet distributor and outlet collector
EP11159597.1A EP2375209A3 (en) 2010-04-01 2011-03-24 Improved heat exchanger having an inlet distributor and outlet collector
CN2011201750670U CN202182671U (zh) 2010-04-01 2011-03-30 具有进口分配器和出口收集器的改进的热交换器
KR1020110029218A KR20110110722A (ko) 2010-04-01 2011-03-31 입구 분배기 및 출구 수집기를 구비한 향상된 열교환기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32001410P 2010-04-01 2010-04-01
US13/052,554 US20110240276A1 (en) 2010-04-01 2011-03-21 Heat exchanger having an inlet distributor and outlet collector

Publications (1)

Publication Number Publication Date
US20110240276A1 true US20110240276A1 (en) 2011-10-06

Family

ID=44244709

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/052,554 Abandoned US20110240276A1 (en) 2010-04-01 2011-03-21 Heat exchanger having an inlet distributor and outlet collector

Country Status (4)

Country Link
US (1) US20110240276A1 (ko)
EP (1) EP2375209A3 (ko)
KR (1) KR20110110722A (ko)
CN (1) CN202182671U (ko)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130299149A1 (en) * 2010-12-07 2013-11-14 Valeo Systemes Thermiques Heat Exchanger Header Box And Corresponding Heat Exchanger
US20140083665A1 (en) * 2012-09-25 2014-03-27 Behr Gmbh & Co. Kg Heat exchanger
WO2014100651A1 (en) * 2012-12-21 2014-06-26 Trane International Inc. Refrigerant distributor of micro-channel heat exchanger
US20140224461A1 (en) * 2011-06-28 2014-08-14 Valeo Systemes Thermiques Heat Exchanger, Housing, And Air-Conditioning Circuit Including Such An Exchanger
US20150114590A1 (en) * 2012-04-10 2015-04-30 Siemens Aktiengesellschaft Heat accumulator for power plant capacities
WO2015180661A1 (zh) * 2014-05-28 2015-12-03 丹佛斯微通道换热器(嘉兴)有限公司 换热器
US20160061496A1 (en) * 2014-08-26 2016-03-03 Delphi Technologies, Inc. Heat exchanger with reduced length distributor tube
US20160061497A1 (en) * 2013-11-01 2016-03-03 Delphi Technologies, Inc. Two-pass evaporator
JPWO2013191056A1 (ja) * 2012-06-18 2016-05-26 三菱電機株式会社 熱交換器
US20180038661A1 (en) * 2015-06-03 2018-02-08 Bayerische Motoren Werke Aktiengesellschaft Heat Exchanger for a Cooling System, Cooling System, and Assembly
WO2018051611A1 (ja) * 2016-09-16 2018-03-22 株式会社日立製作所 熱交換器およびそれを用いたヒートポンプシステム
US10551099B2 (en) * 2016-02-04 2020-02-04 Mahle International Gmbh Micro-channel evaporator having compartmentalized distribution
US10563895B2 (en) 2016-12-07 2020-02-18 Johnson Controls Technology Company Adjustable inlet header for heat exchanger of an HVAC system
US11015871B2 (en) 2016-05-03 2021-05-25 Carrier Corporation Heat exchanger arrangement
US20220316804A1 (en) * 2019-02-04 2022-10-06 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus including the same
US11493277B2 (en) * 2019-11-06 2022-11-08 Carrier Corporation Microchannel heat exchanger
US11713931B2 (en) * 2019-05-02 2023-08-01 Carrier Corporation Multichannel evaporator distributor
US12215932B2 (en) * 2020-07-14 2025-02-04 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co., Ltd. Heat exchanger

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101372096B1 (ko) * 2011-11-18 2014-03-07 엘지전자 주식회사 열교환기
CN103711996A (zh) * 2012-10-09 2014-04-09 汪洪 一种异型管的构造
KR20140116626A (ko) * 2013-03-25 2014-10-06 엘지전자 주식회사 열교환기
EP3033579B1 (en) * 2013-08-12 2017-08-02 Carrier Corporation Heat exchanger and flow distributor
JP6394202B2 (ja) * 2013-11-27 2018-09-26 株式会社デンソー 熱交換器
CN105509368B (zh) * 2014-09-23 2020-08-11 杭州三花研究院有限公司 一种热交换器及一种空调系统
EP3690377B1 (en) * 2019-01-29 2024-08-07 Valeo Systemes Thermiques Heat exchanger, housing and air conditioning circuit comprising such an exchanger

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1662236A (en) * 1926-09-11 1928-03-13 Edmund Mcgillivray Steam and hot-water radiator
US3976128A (en) * 1975-06-12 1976-08-24 Ford Motor Company Plate and fin heat exchanger
US20020174978A1 (en) * 2001-05-24 2002-11-28 Beddome David W. Heat exchanger with manifold tubes for stiffening and load bearing
US20090173482A1 (en) * 2008-01-09 2009-07-09 Beamer Henry E Distributor tube subassembly
US20100089559A1 (en) * 2006-10-13 2010-04-15 Carrier Corporation Method and apparatus for improving distribution of fluid in a heat exchanger
US7727493B2 (en) * 2004-05-24 2010-06-01 Methanol Casale S.A. Plate-type heat exchanger
US20110017438A1 (en) * 2009-07-23 2011-01-27 Danfoss Sanhua (Hangzhou) Micro Channel Heat Exchanger Co., Ltd. Multi-channel heat exchanger with improved uniformity of refrigerant fluid distribution
US7921558B2 (en) * 2008-01-09 2011-04-12 Delphi Technologies, Inc. Non-cylindrical refrigerant conduit and method of making same
US8113270B2 (en) * 2005-02-02 2012-02-14 Carrier Corporation Tube insert and bi-flow arrangement for a header of a heat pump
US8171987B2 (en) * 2006-11-13 2012-05-08 Carrier Corporation Minichannel heat exchanger header insert for distribution
US8225853B2 (en) * 2006-10-13 2012-07-24 Carrier Corporation Multi-pass heat exchangers having return manifolds with distributing inserts

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1950664B (zh) * 2004-05-11 2010-10-20 昭和电工株式会社 热交换器
US20090229805A1 (en) * 2008-03-13 2009-09-17 Delphi Technologies, Inc. Manifold design having an improved collector conduit and method of making same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1662236A (en) * 1926-09-11 1928-03-13 Edmund Mcgillivray Steam and hot-water radiator
US3976128A (en) * 1975-06-12 1976-08-24 Ford Motor Company Plate and fin heat exchanger
US20020174978A1 (en) * 2001-05-24 2002-11-28 Beddome David W. Heat exchanger with manifold tubes for stiffening and load bearing
US7727493B2 (en) * 2004-05-24 2010-06-01 Methanol Casale S.A. Plate-type heat exchanger
US8113270B2 (en) * 2005-02-02 2012-02-14 Carrier Corporation Tube insert and bi-flow arrangement for a header of a heat pump
US20100089559A1 (en) * 2006-10-13 2010-04-15 Carrier Corporation Method and apparatus for improving distribution of fluid in a heat exchanger
US8225853B2 (en) * 2006-10-13 2012-07-24 Carrier Corporation Multi-pass heat exchangers having return manifolds with distributing inserts
US8171987B2 (en) * 2006-11-13 2012-05-08 Carrier Corporation Minichannel heat exchanger header insert for distribution
US20090173482A1 (en) * 2008-01-09 2009-07-09 Beamer Henry E Distributor tube subassembly
US7921558B2 (en) * 2008-01-09 2011-04-12 Delphi Technologies, Inc. Non-cylindrical refrigerant conduit and method of making same
US20110017438A1 (en) * 2009-07-23 2011-01-27 Danfoss Sanhua (Hangzhou) Micro Channel Heat Exchanger Co., Ltd. Multi-channel heat exchanger with improved uniformity of refrigerant fluid distribution

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130299149A1 (en) * 2010-12-07 2013-11-14 Valeo Systemes Thermiques Heat Exchanger Header Box And Corresponding Heat Exchanger
US20140224461A1 (en) * 2011-06-28 2014-08-14 Valeo Systemes Thermiques Heat Exchanger, Housing, And Air-Conditioning Circuit Including Such An Exchanger
US9958218B2 (en) * 2011-06-28 2018-05-01 Valeo Systemes Thermiques Heat exchanger, housing, and air-conditioning circuit comprising such an exchanger
US20150114590A1 (en) * 2012-04-10 2015-04-30 Siemens Aktiengesellschaft Heat accumulator for power plant capacities
US10082341B2 (en) * 2012-04-10 2018-09-25 Siemens Aktiengesellschaft Heat accumulator for power plant capacities
JPWO2013191056A1 (ja) * 2012-06-18 2016-05-26 三菱電機株式会社 熱交換器
US20140083665A1 (en) * 2012-09-25 2014-03-27 Behr Gmbh & Co. Kg Heat exchanger
US9709338B2 (en) * 2012-09-25 2017-07-18 Mahle International Gmbh Heat exchanger
US10852075B2 (en) 2012-12-21 2020-12-01 Trane International Inc. Refrigerant distributor of micro-channel heat exchanger
CN107166811A (zh) * 2012-12-21 2017-09-15 特灵国际有限公司 微通道热交换器的制冷剂分配器
WO2014100651A1 (en) * 2012-12-21 2014-06-26 Trane International Inc. Refrigerant distributor of micro-channel heat exchanger
CN105074377A (zh) * 2012-12-21 2015-11-18 特灵国际有限公司 微通道热交换器的制冷剂分配器
US10228170B2 (en) 2012-12-21 2019-03-12 Trane International Inc. Refrigerant distributor of micro-channel heat exchanger
US20160061497A1 (en) * 2013-11-01 2016-03-03 Delphi Technologies, Inc. Two-pass evaporator
US10591227B2 (en) 2014-05-28 2020-03-17 Danfoss Micro Channel Heat Exchanger (Jiaxing) Co., Ltd. Heat exchanger including a mixing and redistribution header
WO2015180661A1 (zh) * 2014-05-28 2015-12-03 丹佛斯微通道换热器(嘉兴)有限公司 换热器
US20160061496A1 (en) * 2014-08-26 2016-03-03 Delphi Technologies, Inc. Heat exchanger with reduced length distributor tube
US10197312B2 (en) * 2014-08-26 2019-02-05 Mahle International Gmbh Heat exchanger with reduced length distributor tube
US20180038661A1 (en) * 2015-06-03 2018-02-08 Bayerische Motoren Werke Aktiengesellschaft Heat Exchanger for a Cooling System, Cooling System, and Assembly
US12305938B2 (en) * 2015-06-03 2025-05-20 Bayerische Motoren Werke Aktiengesellschaft Heat exchanger for a cooling system, cooling system, and assembly
US10551099B2 (en) * 2016-02-04 2020-02-04 Mahle International Gmbh Micro-channel evaporator having compartmentalized distribution
US11015871B2 (en) 2016-05-03 2021-05-25 Carrier Corporation Heat exchanger arrangement
WO2018051611A1 (ja) * 2016-09-16 2018-03-22 株式会社日立製作所 熱交換器およびそれを用いたヒートポンプシステム
US10563895B2 (en) 2016-12-07 2020-02-18 Johnson Controls Technology Company Adjustable inlet header for heat exchanger of an HVAC system
US11506434B2 (en) 2016-12-07 2022-11-22 Johnson Controls Tyco IP Holdings LLP Adjustable inlet header for heat exchanger of an HVAC system
US12044480B2 (en) * 2019-02-04 2024-07-23 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus including the same
US20220316804A1 (en) * 2019-02-04 2022-10-06 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus including the same
US11713931B2 (en) * 2019-05-02 2023-08-01 Carrier Corporation Multichannel evaporator distributor
US11493277B2 (en) * 2019-11-06 2022-11-08 Carrier Corporation Microchannel heat exchanger
US12215932B2 (en) * 2020-07-14 2025-02-04 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co., Ltd. Heat exchanger

Also Published As

Publication number Publication date
KR20110110722A (ko) 2011-10-07
EP2375209A3 (en) 2014-07-02
EP2375209A2 (en) 2011-10-12
CN202182671U (zh) 2012-04-04

Similar Documents

Publication Publication Date Title
US20110240276A1 (en) Heat exchanger having an inlet distributor and outlet collector
US11815318B2 (en) Flattened tube finned heat exchanger and fabrication method
EP2392886B1 (en) Orientation insensitive refrigerant distributor tube
US9746255B2 (en) Heat pump heat exchanger having a low pressure drop distribution tube
US10753656B2 (en) Low refrigerant charge microchannel heat exchanger
US20170089642A1 (en) Microchanel heat exchanger evaporator
CN106524594A (zh) 蛇形管式换热器
US20200088451A1 (en) Heat exchanger for heat pump applications
EP3362759B1 (en) Heat exchanger for residential hvac applications
WO2014137217A1 (en) Heat exchanger inlet and outlet design
US10126065B2 (en) Heat exchanger assembly having a refrigerant distribution control using selective tube port closures
US10197312B2 (en) Heat exchanger with reduced length distributor tube
CN103644688B (zh) 对流式制冷剂分配装置和具有它的换热器
JP2016148480A (ja) 熱交換器
JP5508818B2 (ja) エバポレータ
CN204880868U (zh) 一种换热器及具有该换热器的空调系统
JP2015014397A (ja) 熱交換器
CN106440861A (zh) 换热器组件和具有其的制冷系统
JP6213362B2 (ja) 熱交換器および熱交換器の製造方法
CN114518042B (zh) 换热器和具有其的制冷空调系统
CN206056338U (zh) 换热器组件和具有其的制冷系统
CN112444148A (zh) 换热器
JP2005009806A (ja) 熱交換器

Legal Events

Date Code Title Description
AS Assignment

Owner name: DELPHI TECHNOLOGIES, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WINTERSTEEN, DOUGLAS C.;SAMUELSON, DAVID E.;JOHNSON, RUSSELL S.;AND OTHERS;REEL/FRAME:025992/0255

Effective date: 20110315

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION