US20110147639A1 - Reactively Processed, High Heat Resistant Composition of Polypropylene and an Olefinic Interpolymer - Google Patents
Reactively Processed, High Heat Resistant Composition of Polypropylene and an Olefinic Interpolymer Download PDFInfo
- Publication number
- US20110147639A1 US20110147639A1 US12/996,030 US99603009A US2011147639A1 US 20110147639 A1 US20110147639 A1 US 20110147639A1 US 99603009 A US99603009 A US 99603009A US 2011147639 A1 US2011147639 A1 US 2011147639A1
- Authority
- US
- United States
- Prior art keywords
- polymer
- propylene
- composition
- olefinic
- ethylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 98
- 229920001155 polypropylene Polymers 0.000 title claims abstract description 41
- -1 Polypropylene Polymers 0.000 title description 45
- 239000004743 Polypropylene Substances 0.000 title description 19
- 238000000034 method Methods 0.000 claims abstract description 34
- 230000008569 process Effects 0.000 claims abstract description 29
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 claims abstract description 26
- 230000008878 coupling Effects 0.000 claims abstract description 10
- 238000010168 coupling process Methods 0.000 claims abstract description 10
- 238000005859 coupling reaction Methods 0.000 claims abstract description 10
- 238000009413 insulation Methods 0.000 claims abstract description 9
- 238000009717 reactive processing Methods 0.000 claims abstract description 9
- 239000004711 α-olefin Substances 0.000 claims description 33
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 26
- 239000005977 Ethylene Substances 0.000 claims description 26
- 229920000098 polyolefin Polymers 0.000 claims description 21
- 239000003963 antioxidant agent Substances 0.000 claims description 14
- 230000003078 antioxidant effect Effects 0.000 claims description 9
- 239000000654 additive Substances 0.000 claims description 7
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 5
- 229920001400 block copolymer Polymers 0.000 claims description 4
- 239000000347 magnesium hydroxide Substances 0.000 claims description 4
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 4
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims description 3
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 3
- 229920001179 medium density polyethylene Polymers 0.000 claims description 3
- 239000004701 medium-density polyethylene Substances 0.000 claims description 3
- 229920005679 linear ultra low density polyethylene Polymers 0.000 claims description 2
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 claims description 2
- 239000004708 Very-low-density polyethylene Substances 0.000 claims 1
- 229920000092 linear low density polyethylene Polymers 0.000 claims 1
- 239000004707 linear low-density polyethylene Substances 0.000 claims 1
- 229920001866 very low density polyethylene Polymers 0.000 claims 1
- 229920000642 polymer Polymers 0.000 abstract description 55
- 239000007822 coupling agent Substances 0.000 abstract description 18
- 229920001577 copolymer Polymers 0.000 description 25
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 21
- 150000001875 compounds Chemical class 0.000 description 18
- 239000000126 substance Substances 0.000 description 18
- 239000003795 chemical substances by application Substances 0.000 description 17
- HSVFKFNNMLUVEY-UHFFFAOYSA-N sulfuryl diazide Chemical group [N-]=[N+]=NS(=O)(=O)N=[N+]=[N-] HSVFKFNNMLUVEY-UHFFFAOYSA-N 0.000 description 17
- 238000004132 cross linking Methods 0.000 description 16
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 12
- 229910000077 silane Inorganic materials 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 11
- 239000003054 catalyst Substances 0.000 description 11
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 11
- 238000002156 mixing Methods 0.000 description 10
- 150000001336 alkenes Chemical class 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 8
- 125000003118 aryl group Chemical group 0.000 description 8
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 229920001519 homopolymer Polymers 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 238000006116 polymerization reaction Methods 0.000 description 7
- 229920001384 propylene homopolymer Polymers 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 150000002978 peroxides Chemical class 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 229920001862 ultra low molecular weight polyethylene Polymers 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 4
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 4
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 4
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 4
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 4
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 4
- 239000006057 Non-nutritive feed additive Substances 0.000 description 4
- KVOZXXSUSRZIKD-UHFFFAOYSA-N Prop-2-enylcyclohexane Chemical compound C=CCC1CCCCC1 KVOZXXSUSRZIKD-UHFFFAOYSA-N 0.000 description 4
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 4
- 238000013329 compounding Methods 0.000 description 4
- DMEGYFMYUHOHGS-UHFFFAOYSA-N cycloheptane Chemical compound C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 4
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 4
- 229920006124 polyolefin elastomer Polymers 0.000 description 4
- 229920001897 terpolymer Polymers 0.000 description 4
- HCILJBJJZALOAL-UHFFFAOYSA-N 3-(3,5-ditert-butyl-4-hydroxyphenyl)-n'-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyl]propanehydrazide Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)NNC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 HCILJBJJZALOAL-UHFFFAOYSA-N 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- 238000001237 Raman spectrum Methods 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 229940038553 attane Drugs 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 3
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Natural products C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 3
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 150000004677 hydrates Chemical class 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 239000012774 insulation material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920005629 polypropylene homopolymer Polymers 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- OJOWICOBYCXEKR-APPZFPTMSA-N (1S,4R)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound CC=C1C[C@@H]2C[C@@H]1C=C2 OJOWICOBYCXEKR-APPZFPTMSA-N 0.000 description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- ZNRLMGFXSPUZNR-UHFFFAOYSA-N 2,2,4-trimethyl-1h-quinoline Chemical compound C1=CC=C2C(C)=CC(C)(C)NC2=C1 ZNRLMGFXSPUZNR-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 229920003317 Fusabond® Polymers 0.000 description 2
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 229920000034 Plastomer Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical class [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229920010346 Very Low Density Polyethylene (VLDPE) Polymers 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 150000001540 azides Chemical class 0.000 description 2
- 229920006026 co-polymeric resin Polymers 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- PWWSSIYVTQUJQQ-UHFFFAOYSA-N distearyl thiodipropionate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCCCCCCCCCCCC PWWSSIYVTQUJQQ-UHFFFAOYSA-N 0.000 description 2
- 229940069096 dodecene Drugs 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 2
- LDLDYFCCDKENPD-UHFFFAOYSA-N ethenylcyclohexane Chemical compound C=CC1CCCCC1 LDLDYFCCDKENPD-UHFFFAOYSA-N 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000006078 metal deactivator Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- HZVOZRGWRWCICA-UHFFFAOYSA-N methanediyl Chemical compound [CH2] HZVOZRGWRWCICA-UHFFFAOYSA-N 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 2
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920005606 polypropylene copolymer Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000010703 silicon Chemical class 0.000 description 2
- 229910052710 silicon Chemical class 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- NALFRYPTRXKZPN-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane Chemical compound CC1CC(C)(C)CC(OOC(C)(C)C)(OOC(C)(C)C)C1 NALFRYPTRXKZPN-UHFFFAOYSA-N 0.000 description 1
- CCNDOQHYOIISTA-UHFFFAOYSA-N 1,2-bis(2-tert-butylperoxypropan-2-yl)benzene Chemical compound CC(C)(C)OOC(C)(C)C1=CC=CC=C1C(C)(C)OOC(C)(C)C CCNDOQHYOIISTA-UHFFFAOYSA-N 0.000 description 1
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- RPUOOWZETIYCHL-UHFFFAOYSA-N 2-[[2-carboxy-3-(3,5-ditert-butyl-4-hydroxyphenyl)-2-methylpropyl]sulfanylmethyl]-3-(3,5-ditert-butyl-4-hydroxyphenyl)-2-methylpropanoic acid Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC(C)(CSCC(C)(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)C(O)=O)C(O)=O)=C1 RPUOOWZETIYCHL-UHFFFAOYSA-N 0.000 description 1
- YFHKLSPMRRWLKI-UHFFFAOYSA-N 2-tert-butyl-4-(3-tert-butyl-4-hydroxy-5-methylphenyl)sulfanyl-6-methylphenol Chemical compound CC(C)(C)C1=C(O)C(C)=CC(SC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 YFHKLSPMRRWLKI-UHFFFAOYSA-N 0.000 description 1
- HXIQYSLFEXIOAV-UHFFFAOYSA-N 2-tert-butyl-4-(5-tert-butyl-4-hydroxy-2-methylphenyl)sulfanyl-5-methylphenol Chemical compound CC1=CC(O)=C(C(C)(C)C)C=C1SC1=CC(C(C)(C)C)=C(O)C=C1C HXIQYSLFEXIOAV-UHFFFAOYSA-N 0.000 description 1
- MQWCQFCZUNBTCM-UHFFFAOYSA-N 2-tert-butyl-6-(3-tert-butyl-2-hydroxy-5-methylphenyl)sulfanyl-4-methylphenol Chemical compound CC(C)(C)C1=CC(C)=CC(SC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O MQWCQFCZUNBTCM-UHFFFAOYSA-N 0.000 description 1
- BIISIZOQPWZPPS-UHFFFAOYSA-N 2-tert-butylperoxypropan-2-ylbenzene Chemical compound CC(C)(C)OOC(C)(C)C1=CC=CC=C1 BIISIZOQPWZPPS-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- XMIIGOLPHOKFCH-UHFFFAOYSA-N 3-phenylpropionic acid Chemical compound OC(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-N 0.000 description 1
- UJAWGGOCYUPCPS-UHFFFAOYSA-N 4-(2-phenylpropan-2-yl)-n-[4-(2-phenylpropan-2-yl)phenyl]aniline Chemical compound C=1C=C(NC=2C=CC(=CC=2)C(C)(C)C=2C=CC=CC=2)C=CC=1C(C)(C)C1=CC=CC=C1 UJAWGGOCYUPCPS-UHFFFAOYSA-N 0.000 description 1
- MDDXGELKFXXQDP-UHFFFAOYSA-N 4-n-(5-methylhexan-2-yl)benzene-1,4-diamine Chemical compound CC(C)CCC(C)NC1=CC=C(N)C=C1 MDDXGELKFXXQDP-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- GHKOFFNLGXMVNJ-UHFFFAOYSA-N Didodecyl thiobispropanoate Chemical compound CCCCCCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCCCCCC GHKOFFNLGXMVNJ-UHFFFAOYSA-N 0.000 description 1
- 239000003508 Dilauryl thiodipropionate Substances 0.000 description 1
- UAUDZVJPLUQNMU-UHFFFAOYSA-N Erucasaeureamid Natural products CCCCCCCCC=CCCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-UHFFFAOYSA-N 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 239000004812 Fluorinated ethylene propylene Substances 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- UTGQNNCQYDRXCH-UHFFFAOYSA-N N,N'-diphenyl-1,4-phenylenediamine Chemical compound C=1C=C(NC=2C=CC=CC=2)C=CC=1NC1=CC=CC=C1 UTGQNNCQYDRXCH-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- VKCMUBOOQROIQE-UHFFFAOYSA-N O(C1=C(CC(C=C1)=S(=O)=O)N=[N+]=[N-])C1=C(CC(C=C1)=S(=O)=O)N=[N+]=[N-] Chemical compound O(C1=C(CC(C=C1)=S(=O)=O)N=[N+]=[N-])C1=C(CC(C=C1)=S(=O)=O)N=[N+]=[N-] VKCMUBOOQROIQE-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- CKTPSKXTONNHIL-UHFFFAOYSA-N S(=O)(=O)=C1CC(=C(C=C1)CC1=C(CC(C=C1)=S(=O)=O)N=[N+]=[N-])N=[N+]=[N-] Chemical compound S(=O)(=O)=C1CC(=C(C=C1)CC1=C(CC(C=C1)=S(=O)=O)N=[N+]=[N-])N=[N+]=[N-] CKTPSKXTONNHIL-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 238000000333 X-ray scattering Methods 0.000 description 1
- XSHJLFOMGJTADT-UHFFFAOYSA-N [4-methyl-2-(4-methyl-2-phenylpentan-2-yl)peroxypentan-2-yl]benzene Chemical compound C=1C=CC=CC=1C(C)(CC(C)C)OOC(C)(CC(C)C)C1=CC=CC=C1 XSHJLFOMGJTADT-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 150000008378 aryl ethers Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- LNENVNGQOUBOIX-UHFFFAOYSA-N azidosilane Chemical class [SiH3]N=[N+]=[N-] LNENVNGQOUBOIX-UHFFFAOYSA-N 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- SRIDKWFKROYRSX-UHFFFAOYSA-N bis[(2-methylpropan-2-yl)oxy]-phenylphosphane Chemical compound CC(C)(C)OP(OC(C)(C)C)C1=CC=CC=C1 SRIDKWFKROYRSX-UHFFFAOYSA-N 0.000 description 1
- QUZSUMLPWDHKCJ-UHFFFAOYSA-N bisphenol A dimethacrylate Chemical compound C1=CC(OC(=O)C(=C)C)=CC=C1C(C)(C)C1=CC=C(OC(=O)C(C)=C)C=C1 QUZSUMLPWDHKCJ-UHFFFAOYSA-N 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000019241 carbon black Nutrition 0.000 description 1
- JRZBPELLUMBLQU-UHFFFAOYSA-N carbonazidic acid Chemical class OC(=O)N=[N+]=[N-] JRZBPELLUMBLQU-UHFFFAOYSA-N 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000012668 chain scission Methods 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- RNFNDJAIBTYOQL-UHFFFAOYSA-N chloral hydrate Chemical compound OC(O)C(Cl)(Cl)Cl RNFNDJAIBTYOQL-UHFFFAOYSA-N 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- 235000019304 dilauryl thiodipropionate Nutrition 0.000 description 1
- PKTOVQRKCNPVKY-UHFFFAOYSA-N dimethoxy(methyl)silicon Chemical compound CO[Si](C)OC PKTOVQRKCNPVKY-UHFFFAOYSA-N 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical class C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000001941 electron spectroscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- UAUDZVJPLUQNMU-KTKRTIGZSA-N erucamide Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-KTKRTIGZSA-N 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- HEAMQYHBJQWOSS-UHFFFAOYSA-N ethene;oct-1-ene Chemical compound C=C.CCCCCCC=C HEAMQYHBJQWOSS-UHFFFAOYSA-N 0.000 description 1
- BXOUVIIITJXIKB-UHFFFAOYSA-N ethene;styrene Chemical compound C=C.C=CC1=CC=CC=C1 BXOUVIIITJXIKB-UHFFFAOYSA-N 0.000 description 1
- WOXXJEVNDJOOLV-UHFFFAOYSA-N ethenyl-tris(2-methoxyethoxy)silane Chemical compound COCCO[Si](OCCOC)(OCCOC)C=C WOXXJEVNDJOOLV-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 150000002193 fatty amides Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000012685 gas phase polymerization Methods 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- GJTGYNPBJNRYKI-UHFFFAOYSA-N hex-1-ene;prop-1-ene Chemical compound CC=C.CCCCC=C GJTGYNPBJNRYKI-UHFFFAOYSA-N 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 125000001183 hydrocarbyl group Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229920001912 maleic anhydride grafted polyethylene Polymers 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010077 mastication Methods 0.000 description 1
- 230000018984 mastication Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- ORECYURYFJYPKY-UHFFFAOYSA-N n,n'-bis(2,2,6,6-tetramethylpiperidin-4-yl)hexane-1,6-diamine;2,4,6-trichloro-1,3,5-triazine;2,4,4-trimethylpentan-2-amine Chemical compound CC(C)(C)CC(C)(C)N.ClC1=NC(Cl)=NC(Cl)=N1.C1C(C)(C)NC(C)(C)CC1NCCCCCCNC1CC(C)(C)NC(C)(C)C1 ORECYURYFJYPKY-UHFFFAOYSA-N 0.000 description 1
- RKISUIUJZGSLEV-UHFFFAOYSA-N n-[2-(octadecanoylamino)ethyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCNC(=O)CCCCCCCCCCCCCCCCC RKISUIUJZGSLEV-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- QAXLLGNKYJQIQK-UHFFFAOYSA-N oct-1-ene;prop-1-ene Chemical compound CC=C.CCCCCCC=C QAXLLGNKYJQIQK-UHFFFAOYSA-N 0.000 description 1
- 229940038384 octadecane Drugs 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- FATBGEAMYMYZAF-UHFFFAOYSA-N oleicacidamide-heptaglycolether Natural products CCCCCCCCC=CCCCCCCCC(N)=O FATBGEAMYMYZAF-UHFFFAOYSA-N 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000004209 oxidized polyethylene wax Substances 0.000 description 1
- 235000013873 oxidized polyethylene wax Nutrition 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920009441 perflouroethylene propylene Polymers 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 239000012169 petroleum derived wax Substances 0.000 description 1
- 235000019381 petroleum wax Nutrition 0.000 description 1
- 239000002530 phenolic antioxidant Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- XRBCRPZXSCBRTK-UHFFFAOYSA-N phosphonous acid Chemical class OPO XRBCRPZXSCBRTK-UHFFFAOYSA-N 0.000 description 1
- CPGRMGOILBSUQC-UHFFFAOYSA-N phosphoryl azide Chemical class [N-]=[N+]=NP(=O)(N=[N+]=[N-])N=[N+]=[N-] CPGRMGOILBSUQC-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 238000012667 polymer degradation Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- FZYCEURIEDTWNS-UHFFFAOYSA-N prop-1-en-2-ylbenzene Chemical compound CC(=C)C1=CC=CC=C1.CC(=C)C1=CC=CC=C1 FZYCEURIEDTWNS-UHFFFAOYSA-N 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000012748 slip agent Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229940037312 stearamide Drugs 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920006029 tetra-polymer Polymers 0.000 description 1
- LVEOKSIILWWVEO-UHFFFAOYSA-N tetradecyl 3-(3-oxo-3-tetradecoxypropyl)sulfanylpropanoate Chemical compound CCCCCCCCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCCCCCCCC LVEOKSIILWWVEO-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
- UIYCHXAGWOYNNA-UHFFFAOYSA-N vinyl sulfide Chemical group C=CSC=C UIYCHXAGWOYNNA-UHFFFAOYSA-N 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
- C08J3/246—Intercrosslinking of at least two polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/06—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L53/005—Modified block copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
Definitions
- compositions comprising a polypropylene polymer and an olefinic interpolymer.
- the invention relates to compositions comprising polypropylene and an olefinic interpolymer that have been reactively processed and which display characteristics of high heat resistance suitable for wire and cable coatings.
- the invention relates to power cables comprising an insulation layer while in still another aspect, the invention relates to a power cable in which the insulation layer comprises a composition comprising polypropylene and an olefinic interpolymer that have been reactively processed.
- Polymeric compositions are used extensively as primary insulation materials for wire and cable. As an insulator the composition should exhibit various physical and electrical properties, such as heat resistance, resistance to mechanical cut through, stress crack resistance and dielectric failure. Insulation materials for electric conductors often require crosslinking to achieve the desired heat resistance.
- Crosslinks can be introduced between different molecular chains of a polymer by a number of mechanisms, one of which is to graft to the individual polymer backbones or chains that constitute the bulk polymer a chemically reactive compound in such a manner that the grafted compound on one backbone may subsequently react with a similar grafted compound on another backbone thus forming the crosslink.
- exemplary of this process is the “silane crosslinking” process.
- the silane crosslinking process employs a silane-containing compound that crosslinks the polymer molecules.
- Silanes can be grafted to a suitable polymer by the use of a suitable quantity of organic peroxide or other free radical initiator, either before or during a shaping or molding operation. Additional ingredients such as stabilizers, pigments, fillers, catalysts, processing aids and the like may also be included in the mixture.
- Another method of crosslinking is the use of radiation. Radiation crosslinking requires complex equipment and is thus relatively costly to perform. Furthermore, radiation can cause polymer degradation by oxidation and/or chain scission thus requiring special stabilization. Furthermore, the sizes of cable that can be handled by commercial radiation equipment are limited, both in terms of jacket thickness and overall diameter of the cable. This limitation is typically manifested as non-uniform crosslinking of the jacket and a resultant variation in physical properties around the circumference of the cable or within the material wall of the jacket.
- the invention relates to compositions comprising a polypropylene polymer that has been reactively processed with an olefinic interpolymer such that the composition exhibits heat resistance and resistance to ignition and flame spread.
- the composition may also exhibit good flexibility.
- the invention is a process for coupling a propylene polymer with an olefinic interpolymer, the process comprising contacting under reactive processing conditions at least:
- the coupling agent is (i) a silane having a vinyl group, or (ii) a poly(azide).
- the polypropylene polymer can be a homopolymer or a copolymer.
- the olefinic interpolymers include, but are not limited to, very low density polyethylene (VLDPE), homogeneously branched, linear ethylene/ ⁇ -olefin copolymers, homogeneously branched, substantially linear ethylene/ ⁇ -olefin copolymers, linear medium density polyethylene, linear low density polyethylene (LLDPE), ultra low density polyethylene (ULDPE), and multi-block olefin polymers.
- VLDPE very low density polyethylene
- LLDPE linear low density polyethylene
- ULDPE ultra low density polyethylene
- multi-block olefin polymers multi-block olefin polymers.
- the metal hydrates used in the present invention include, but are not limited to, aluminum hydroxide and magnesium hydroxide.
- the invention is a cable comprising an insulation layer that comprises a composition comprising a reactively processed polypropylene polymer, olefinic interpolymer and metal hydrate.
- the numerical ranges in this disclosure are approximate, and thus may include values outside of the range unless otherwise indicated. Numerical ranges include all values from and including the lower and the upper values, in increments of one unit, provided that there is a separation of at least two units between any lower value and any higher value. As an example, if a compositional, physical or other property, such as, for example, molecular weight, viscosity, melt index, etc., is from 100 to 1,000, it is intended that all individual values, such as 100, 101, 102, etc., and sub ranges, such as 100 to 144, 155 to 170, 197 to 200, etc., are expressly enumerated.
- a compositional, physical or other property such as, for example, molecular weight, viscosity, melt index, etc.
- “Cable,” “power cable,” and like terms means at least one wire or optical fiber within a protective jacket or sheath.
- a cable is two or more wires or optical fibers bound together, typically in a common protective jacket or sheath.
- the individual wires or fibers inside the jacket may be bare, covered or insulated.
- Combination cables may contain both electrical wires and optical fibers.
- the cable, etc. can be designed for low, medium and high voltage applications.
- Polymer means a polymeric compound prepared by polymerizing monomers, whether of the same or a different type.
- the generic term polymer thus embraces the term homopolymer, usually employed to refer to polymers prepared from only one type of monomer, and the term interpolymer as defined below.
- Interpolymer means a polymer prepared by the polymerization of at least two different types of monomers. These generic terms refer both to polymers prepared from two different types of monomers, and polymers prepared from more than two different types of monomers, e.g., terpolymers, tetrapolymers, etc.
- Polyolefin “PO” and like terms mean a polymer derived from simple olefins. Many polyolefins are thermoplastic and for purposes of this invention, can include a rubber phase. Representative polyolefins include polyethylene, polypropylene, polybutene, polyisoprene and their various interpolymers.
- “Blend,” “polymer blend” and like terms mean a composition of two or more polymers. Such a blend may or may not be miscible. Such a blend may or may not be phase separated. Such a blend may or may not contain one or more domain configurations, as determined from transmission electron spectroscopy, light scattering, x-ray scattering, and any other method known in the art.
- composition means a mixture or blend of two or more components.
- the composition includes all the components of the mix, e.g., coupled propylene polymer and olefinic interpolymer, metal hydrate, uncoupled polymers and coupling agent, and any other additives such as processing agents, antioxidants, etc.
- “Molecular melt” means an at least partially amorphous blend, at room temperature, of a coupling agent (modifying agent) and an antioxidant, optionally also containing other polymer additives as, for example, described in WO 2003/040229 A1. Both the coupling agent and the antioxidant are at least partially contained in the amorphous phase of the blend. Also, preferably the coupling agent and the antioxidant form a complex where the Raman spectra relating to the groups forming the nitrene groups are shifted compared to the Raman spectra exhibited by the groups forming the nitrene groups of the coupling agent alone.
- Coupled and like terms mean that one polymer strand is joined to another polymer strand by a coupling agent.
- Coupling agent and like terms means a chemical compound that contains at least two reactive groups that are each capable of forming a carbene or nitrene group that are capable of inserting into the carbon hydrogen bonds of CH, CH 2 , or CH 3 groups, both aliphatic and/or aromatic, of a polymer chain.
- the reactive groups together can couple or cross-link polymer chains.
- the coupling agent may require activation with heat, sonic energy, radiation or chemical activating energy, before it can effectively couple polymer chains.
- Coupling amount and like terms mean, in the context of this invention, an amount of coupling agent sufficient to couple a propylene polymer and olefinic interpolymer under reactive processing conditions and in the presence of a metal hydrate such that the heat resistance of the composition in the form of a cable or wire insulation sheath is improved over the heat resistance of a similar cable or wire insulation sheath made from a composition alike in all aspects except that the propylene polymer and olefinic interpolymer are not coupled.
- Neitrene group means a compound having a structure R—N in which N is nitrogen capable of reacting with a polymer chain by inserting into the carbon hydrogen bonds of CH, CH 2 , or CH 3 groups, both aliphatic and/or aromatic, of a polymer chain.
- the nitrene nitrogen most preferred for inserting into the carbon hydrogen bonds has two lone pairs of electrons.
- R may be any atom or atoms that do not adversely interfere with the nitrogen inserting into the above-described carbon-hydrogen bonds.
- Carbene group means a compound having a structure R—C—R′ in which C is carbon capable of reacting with a polymer chain by inserting into the carbon hydrogen bonds of CH, CH 2 or CH 3 groups, both aliphatic and/or aromatic, of a polymer chain.
- the carbon most preferred for inserting into the carbon hydrogen bonds has one lone pair of electrons.
- R and R′ are independently any atom or atoms that do not adversely interfere with the carbon inserting into the above-described carbon hydrogen bonds.
- Antioxidant means types or classes of chemical compounds that are capable of being used to minimize the oxidation that can occur during the processing of polymers.
- the term also includes chemical derivatives of the antioxidants.
- the term further includes chemical compounds as described later in the description of the antioxidant that, when properly combined with the coupling agent, interact with it to form a complex which exhibits a modified Raman spectra compared to the coupling agent alone.
- Reactive processing means a method for compatibilization or chemical coupling of blends of polymers by mixing the polymeric components in such a manner that they react with one another in situ.
- the components of the composition are of sufficient reactivity that the reactions can occur across melt-phase boundaries.
- “Reactive processing conditions” means that the blend of polymers is subjected to (1) sufficient mixing to achieve the desired fineness of morphological texture, and (2) reacting, or coupling, at least some of the polymer molecules with one another to form covalent bonds during the mixing/mastication process. The reactions occur rapidly enough such that they are completed during processing in the extruder or mixer within a reasonable time.
- the processing conditions include a temperature of 100 to 280, more typically 150 to 250 and even more typically 180 to 250, ° C.
- Pressure is typically a function, at least in part, of the equipment in which the polymers are blended, but typically the pressure ranges from atmospheric to a slightly positive pressure.
- the reactive processing conditions typically proceed until at least 50, more typically at least 70 and even more typically at least 80, percent of the azide has reacted or, in the case of a silane coupling agent, at least 50, more typically at least 70 and even more typically at least 80, percent of the peroxide has been consumed.
- the polyolefins used in the practice of this invention can be produced using conventional polyolefin polymerization technology, e.g., Ziegler-Natta, metallocene or constrained geometry catalysis, each adapted, of course, for the polyolefin of interest,
- Metallocene and constrained geometry catalysts include mono- or bis-cyclopentadienyl, indenyl, or fluorenyl transition metal (preferably Group 4) complexes in combination with an activator, e.g., an alumoxane.
- WO93/19104 and WO95/00526 disclose constrained geometry metal complexes and methods for their preparation.
- Variously substituted indenyl containing metal complexes are taught in WO95/14024 and WO98/49212.
- polymerization can be accomplished at conditions well known in the art for Ziegler-Natta or Kaminsky-Sinn type polymerization reactions, that is, at temperatures from 0-250° C., preferably 30-200° C., and pressures from atmospheric to 10,000 atmospheres (1013 megaPascal (MPa)). Suspension, solution, slurry, gas phase, solid state powder polymerization or other process conditions may be employed as desired.
- the catalyst can be supported or unsupported, and the composition of the support can vary widely.
- Silica, alumina or a polymer especially poly(tetrafluoroethylene) or a polyolefin) are representative supports, and desirably a support is employed when the catalyst is used in a gas phase polymerization process.
- the support is preferably employed in an amount sufficient to provide a weight ratio of catalyst (based on metal) to support within a range of from 1:100,000 to 1:10, more preferably from 1:50,000 to 1:20, and most preferably from 1:10,000 to 1:30.
- the molar ratio of catalyst to polymerizable compounds employed is from 10 ⁇ 12 :1 to 10 ⁇ 1 :1, more preferably from 10 ⁇ 9 :1 to 10 ⁇ 5 :1.
- Inert liquids serve as suitable solvents for polymerization.
- Examples include straight and branched-chain hydrocarbons such as isobutane, butane, pentane, hexane, heptane, octane, and mixtures thereof; cyclic and alicyclic hydrocarbons such as cyclohexane, cycloheptane, methylcyclohexane, methylcycloheptane, and mixtures of two or more of these materials; perfluorinated hydrocarbons such as perfluorinated C 4-10 alkanes; and aromatic and alkyl-substituted aromatic compounds such as benzene, toluene, xylene, and ethylbenzene.
- the propylene polymers used in the practice of this invention are not the olefin interpolymers (component B of the composition).
- the propylene polymer may be a propylene homopolymer, or a copolymer of propylene and one or more other olefins, or a blend of two or more homopolymers or two or more copolymers, or a blend of one or more homopolymer with one or more copolymer.
- the propylene polymers used in the present compositions can vary widely in form and include, for example, substantially isotactic propylene homopolymer, random propylene copolymers, and graft or block propylene copolymers,
- the propylene copolymers typically comprise 90 or more mole percent units derived from propylene. The remainder of the units in the propylene copolymer is derived from units of at least one ⁇ -olefin,
- the ⁇ -olefin component of the propylene copolymer is preferably ethylene (considered an ⁇ -olefin for purposes of this invention) or a C 4-20 linear, branched or cyclic ⁇ -olefin.
- Examples of C 4-20 ⁇ -olefins include 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, and 1-octadecene.
- the ⁇ -olefins also can contain a cyclic structure such as cyclohexane or cyclopentane, resulting in an ⁇ -olefin such as 3-cyclohexyl-1-propene (allyl cyclohexane) and vinyl cyclohexane.
- a cyclic structure such as cyclohexane or cyclopentane
- an ⁇ -olefin such as 3-cyclohexyl-1-propene (allyl cyclohexane) and vinyl cyclohexane.
- certain cyclic olefins such as norbornene and related olefins, particularly 5-ethylidene-2-norbornene, are ⁇ -olefins and can be used in place of some or all of the ⁇ -olefins described above.
- styrene and its related olefins are ⁇ -olefins for purposes of this invention.
- Illustrative polypropylene copolymers include but are not limited to propylene/ethylene, propylene/1-butene, propylene/1-hexene, propylene/1-octene, and the like.
- Illustrative terpolymers include ethylene/propylene/1-octene, ethylene/propylene/1-butene, and ethylene/propylene/diene monomer (EPDM).
- the copolymers can be random or blocky.
- propylene polymers that can be used in the compositions of this invention: a propylene impact copolymer including but not limited to DOW Polypropylene T702-12N; a propylene homopolymer including but not limited to DOW Polypropylene H502-25RZ; and a propylene random copolymer including but not limited to DOW Polypropylene R751-12N.
- the above-mentioned Dow propylene polymers typically have a density of 0.90 g/cm 3 measured using ASTM D792.
- INSPIRETM D114 which is a branched impact propylene copolymer with a melt flow index of 0.5 dg/min (230° C./2.16 kg) and a melting point of 164° C., can be used (also available from The Dow Chemical Company).
- PROFAXTM SR-256M which is a clarified propylene copolymer resin with a density of 0.90 g/cc and a MFR of 2 g/10 min
- PROFAXTM 8623 which is an impact propylene copolymer resin with a density of 0.90 g/cc and a MFR of 1.5 g/10 min
- CATALLOYTM in-reactor blends of polypropylene (homo- or copolymer) with one or more of propylene-ethylene or ethylene-propylene copolymer can be used (all available from BaseII, Elkton, Md.).
- Other propylene polymers include Solvay's KS 4005 propylene copolymer; and Solvay's KS 300 propylene terpolymer.
- the olefinic interpolymers used in the practice of this invention do not include the propylene polymers described above (component A of the composition).
- the olefinic interpolymers include but are not limited to polyolefin elastomers, polyolefin flexomers, and polyolefin plastomers.
- the olefinic interpolymers are ethylene interpolymers that comprise at least 10, preferably at least 50 and more preferably at least 80, wt % units derived from ethylene based on the weight of the olefinic interpolymer.
- olefinic interpolymers useful in the practice of this invention include very low density polyethylene (VLDPE), homogeneously branched, linear ethylene/ ⁇ olefin copolymers (e.g. TAFMER® by Mitsui Petrochemicals Company Limited and EXACT® by DEXPlastomers), and homogeneously branched, substantially linear ethylene/ ⁇ -olefin polymers (e.g., AFFINITY® polyolefin plastomers and ENGAGE® polyolefin elastomers available from The Dow Chemical Company).
- VLDPE very low density polyethylene
- linear ethylene/ ⁇ olefin copolymers e.g. TAFMER® by Mitsui Petrochemicals Company Limited and EXACT® by DEXPlastomers
- substantially linear ethylene/ ⁇ -olefin polymers e.g., AFFINITY® polyolefin plastomers and ENGAGE® polyolefin elastomers available from The Dow
- olefinic interpolymers useful in the present invention include heterogeneously branched ethylene-based interpolymers including, but are not limited to, linear medium density polyethylene (LMDPE), linear low density polyethylene (LLDPE), and ultra low density polyethylene (ULDPE).
- Commercial polymers include DOWLEXTM polymers, ATTANETM polymer and FLEXOMERTM polymers (all from The Dow Chemical Company), and ESCORENETM and EXCEEDTM polymers (both from Exxon Mobil Chemical).
- Still other olefinic interpolymers include multi-block or segmented copolymers. These are polymers comprising two or more chemically distinct regions or segments (referred to as “blocks”) preferably joined in a linear manner, that is, a polymer comprising chemically differentiated units which are joined end-to-end with respect to polymerized ethylenic functionality, rather than in pendent or grafted fashion.
- the blocks differ in the amount or type of comonomer incorporated therein, the density, the amount of crystallinity, the crystallite size attributable to a polymer of such composition, the type or degree of tacticity (isotactic or syndiotactic), regio-regularity or regio-irregularity, the amount of branching, including long chain branching or hyper-branching, the homogeneity, or any other chemical or physical property.
- the multi-block copolymers are characterized by unique distributions of polydispersity index (PDI or M w /M n ), block length distribution, and/or block number distribution due to the unique process making of the copolymers.
- embodiments of the polymers when produced in a continuous process, may possess a PDI ranging from about 1.7 to about 8; from about 1.7 to about 3.5 in other embodiments; from about 1.7 to about 2.5 in other embodiments; and from about 1.8 to about 2.5 or from about 1.8 to about 2.1 in yet other embodiments.
- embodiments of the polymers When produced in a batch or semi-batch process, embodiments of the polymers may possess a PDI ranging from about 1.0 to about 2.9; from about 1.3 to about 2.5 in other embodiments; from about 1.4 to about 2.0 in other embodiments; and from about 1.4 to about 1.8 in yet other embodiments.
- Ethylene/ ⁇ -olefin multi-block interpolymers comprise ethylene and one or more copolymerizable ⁇ -olefin comonomers in polymerized form, characterized by multiple (i.e., two or more) blocks or segments of two or more polymerized monomer units differing in chemical or physical properties (block interpolymer), preferably a multi-block interpolymer.
- the multi-block interpolymer may be represented by the following formula:
- n is at least 1, preferably an integer greater than 1, such as 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, or higher;
- A represents a hard block or segment; and
- B represents a soft block or segment.
- A's and B's are linked in a linear fashion, not in a branched or a star fashion.
- Hard segments refer to blocks of polymerized units in which ethylene is present in an amount greater than 95 weight percent in some embodiments, and in other embodiments greater than 98 weight percent. In other words, the comonomer content in the hard segments is less than 5 weight percent in some embodiments, and in other embodiments, less than 2 weight percent of the total weight of the hard segments.
- the hard segments comprise all or substantially all ethylene.
- “Soft” segments refer to blocks of polymerized units in which the comonomer content is greater than 5 weight percent of the total weight of the soft segments in some embodiments, greater than 8 weight percent, greater than 10 weight percent, or greater than 15 weight percent in various other embodiments in some embodiments, the comonomer content in the soft segments may be greater than 20 weight percent, greater than 25 eight percent, greater than 30 weight percent, greater than 35 weight percent, greater than 40 weight percent, greater than 45 weight percent, greater than 50 weight percent, or greater than 60 weight percent in various other embodiments.
- ethylene multi-block copolymers useful in the practice of this invention, and their preparation and use, are more fully described in WO 2005/090427, US2006/0199931, US2006/0199930, US2006/0199914, US2006/0199912, US2006/0199911, US2006/0199910, US2006/0199908, U.S. Pat. No. 7,355,089, US2006/0199906, US2006/0199905, U.S. Pat. No. 7,524,911, US2006/0199896, US2006/0199887, U.S. Pat. No. 7,514,517, US2006/0199872, US2006/0199744, US2006/0199030, U.S. Pat. No. 7,504,347 and US2006/0199983.
- Representative olefin multi-block interpolymers include olefin block copolymers manufactured and sold by The Dow Chemical Company.
- the ethylene interpolymers useful in the present invention include ethylene/ ⁇ -olefin interpolymers having a ⁇ -olefin content typically of at least 5, more typically of at least 15 and even more typically of at least about 20, wt % based on the weight of the interpolymer. These interpolymers typically have an ⁇ -olefin content of less than 90, more typically less than 75 and even more typically less than about 50, wt % based on the weight of the interpolymer.
- the ⁇ -olefin content is measured by 13 C nuclear magnetic resonance (NMR) spectroscopy using the procedure described in Randall ( Rev. Macromal. Chem. Phys., C 29 (2&3)).
- the ⁇ -olefin is preferably a C 3-20 linear, branched or cyclic ⁇ -olefin.
- C 3-20 ⁇ -olefins include propene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, and 1-octadecene.
- the ⁇ -olefins also can contain a cyclic structure such as cyclohexane or cyclopentane, resulting in an ⁇ -olefin such as 3-cyclohexyl-1-propene (allyl cyclohexane) and vinyl cyclohexane.
- a cyclic structure such as cyclohexane or cyclopentane
- an ⁇ -olefin such as 3-cyclohexyl-1-propene (allyl cyclohexane) and vinyl cyclohexane.
- certain cyclic olefins such as norbornene and related olefins, particularly 5-ethylidene-2-norbornene, are ⁇ -olefins and can be used in place of some or all of the ⁇ -olefins described above.
- styrene and its related olefins are ⁇ -olefins for purposes of this invention.
- Illustrative polyolefin copolymers include ethylene/propylene, ethylene/butene, ethylene/1-hexene, ethylene/1-octene, ethylene/styrene, and the like.
- Illustrative terpolymers include ethylene/propylene/1-octene, ethylene/propylene/butene, ethylene/butene/1-octene, ethylene/propylene/diene monomer (EPDM) and ethylene/butene/styrene.
- the copolymers can be random or blocky.
- Additional olefinic interpolymers useful in the practice of this invention include the VERSIFY® propylene-based polymers available from The Dow Chemical Company, and the VISTAMAXX® propylene polymers available from ExxonMobil Chemical Company, at least those VERSIFY® AND VISTAMAXX® propylene polymers with a content of units derived from propylene of less than 85 mol %.
- VERSIFY® propylene-based polymers available from The Dow Chemical Company
- VISTAMAXX® propylene polymers available from ExxonMobil Chemical Company
- the blend can be made by any in-reactor or post-reactor process.
- the in-reactor blending processes are preferred to the post-reactor blending processes, and the processes using multiple reactors connected in series are the preferred in-reactor blending processes.
- These reactors can be charged with the same catalyst but operated at different conditions, e.g., different reactant concentrations, temperatures, pressures, etc, or operated at the same conditions but charged with different catalysts, or operated at different conditions and charged with different catalysts.
- the metal hydrates useful in the practice of this invention include, but are not particularly limited to, for example, compounds having a hydroxyl group or water of crystallization, such as aluminum hydroxide and magnesium hydroxide. These metal hydrates can be used singly or in combination of two or more.
- Examples of commercially available magnesium hydroxide include MAGNIFIN® manufactured by Matinswerk. Other examples include KISUMA 5, KISUMA 5A, KISUMA 5B, KISUMA 5J, KISUMA 5LH and KISUMA 5PH (all trade names of and manufactured by Kyowa Chemical Industry Co., Ltd.). Examples of commercially available aluminum trihydroxide include MARTINAL® manufactured by Matinswerk and HYDRAL manufactured by Alamatis.
- the metal hydrate may be subjected to surface treatment with a surface treating agent, typically a silane surface treating agent, in advance to blending into the composition, or a metal hydrate whose surface is untreated may be blended into the composition together with the surface treating agent, to carry out surface treatment in situ.
- a surface treating agent typically a silane surface treating agent
- the surface treating agent is suitably added in an amount that is sufficient to provide the desired surface treatment of the metal hydrate.
- the preferable amount of surface treating agent to be added is 0.1 to 2.0 wt % based on the weight of the metal hydrate. Any of the surface treating agents known in the art can be employed without any particular restriction.
- a silane surface treating agent having an organic functional group such as an amino group, a methacrylic group, a vinyl group, an epoxy group and a mercapto group, is preferable, and in terms of the fire retardancy and the tensile property, a silane surface treating agent having a vinyl group and/or an epoxy group is even more preferable.
- a coupling agent is a polyfunctional compound, i.e., a compound comprising two or more functional groups, capable of joining together two or more polymer chains via covalently bound links under appropriate reaction conditions.
- the poly(azide) coupling agents include the alkyl and aryl azides, acyl azides, azidoformates, phosphoryl azides, phosphinic azides, silyl azides and poly(sulfonyl azides).
- a poly(sulfonyl azide) is any compound having at least two reactive groups (the sulfonyl azide groups (—SO 2 N 3 )) which are reactive with a polyolefin.
- the poly(sulfonyl azide)s have a structure X—R—X in which each X is —SO 2 N 3 and R represents an unsubstituted or inertly-substituted hydrocarbyl, hydrocarbyl ether or silicon-containing group, preferably having sufficient carbon, oxygen or silicon, preferably carbon, atoms to separate the sulfonyl azide groups sufficiently to permit a facile reaction between the polyolefin and the sulfonyl azide.
- R examples include, but are not limited to, fluorine, aliphatic or aromatic ether, siloxane as well as sulfonyl azide groups in which more than two polyolefin chains are to be joined.
- R is suitably aryl, alkyl, alkylaryl, arylalkyl silane, siloxane or heterocyclic, groups and other groups which are inert and separate the sulfonyl azide groups as described. More preferably R includes at least one aryl group between the sulfonyl groups, most preferably at least two aryl groups (such as when R is 4,4′diphenylether or 4,4′-biphenyl).
- R is one aryl group, it is preferred that the group have more than one ring, as in the case of naphthylene bis(sulfonyl azides).
- Poly(sulfonyl)azides include but are not limited to such compounds as 1,5-pentane bis(sulfonyl azide), 1,8-octane bis(sulfonyl azide), 1,10-decane bis(sulfonyl azide), 1,10-octadecane bis(sulfonyl azide), 1-octyl-2,4,6-benzene tris(sulfonyl azide), 4,4′-diphenyl ether bis(sulfonyl azide), 1,6-bis(4′sulfonazidophenyl)hexane, 2,7-naphthalene bis(sulfonyl azide), and mixed sulfonyl azides of chlorinated aliphatic hydrocarbons containing an
- Preferred poly(sulfonyl azide)s include oxy-bis(4-sulfonylazidobenzene), 2,7-naphthalene bis(sulfonyl azide), 4,4′bis(sulfonyl azido)biphenyl, 4,4′-diphenyl ether bis(sulfonyl azide) and bis(4-sulfonyl azidophenyl)methane, and mixtures of two or more such compounds.
- Examples of a silane coupling agent include vinyl-tris( ⁇ -methoxyethoxy)silane, vinyltriethoxysilane (VTES), vinyltrimethoxysilane (VMTS), ⁇ -(methacryloyloxypropyl)-trimethoxysilane, ⁇ -(methacryloyloxypropyl)methyldimethoxysilane, ⁇ -glycidoxypropylmethyl-diethoxysilane, and the like.
- VTES and VIMS are preferred silane coupling agents.
- the coupling agents are used in a coupling amount, e.g., typically in an amount of 0.1 to 6, more typically in an amount of 0.1 to 5 and even more typically in an amount of 0.2 to 3, wt % based on the combined weight of the composition, i.e., the combined weight of the polypropylene, (Actinic interpolymer and metal hydrate.
- the composition may contain additives including but not limited to antioxidants, curing agents, cross linking co-agents, boosters and retardants, processing aids, fillers, ultraviolet absorbers or stabilizers, antistatic agents, nucleating agents, slip agents, plasticizers, lubricants, viscosity control agents, tackifiers, anti-blocking agents, surfactants, extender oils, acid scavengers, and metal deactivators.
- additives including but not limited to antioxidants, curing agents, cross linking co-agents, boosters and retardants, processing aids, fillers, ultraviolet absorbers or stabilizers, antistatic agents, nucleating agents, slip agents, plasticizers, lubricants, viscosity control agents, tackifiers, anti-blocking agents, surfactants, extender oils, acid scavengers, and metal deactivators.
- Additives can be used in amounts ranging from 0.01 wt % or less to 10 wt % or more based on the weight of the
- antioxidants are as follows, but are not limited to: hindered phenols such as tetrakis[methylene(3,5-di-tert-butyl-4-hydroxyhydro-cinnamate)]methane; bis[(beta-(3,5-ditert butyl-4-hydroxybenzyl)-methylcarboxyethyl)]sulphide, 4,4′-thiobis(2-methyl-6-tert-butylphenol), 4,4′-thiobis(2-tert-butyl-5-methylphenol), 2,2′-thiobis(4-methyl-6-tert-butylphenol), and thiodiethylene bis(3,5-di-tert-butyl-4-hydroxy)hydrocinnamate; phosphites and phosphonites such as tris(2,4-di-tert-butylphenyl)phosphite and di-tert-butylphenyl-phosphonite; thio compounds such as dilauryl,
- curing agents are as follows: dicumyl peroxide; bis(alpha-t-butyl peroxyisopropyl)benzene; isopropylcumyl t-butyl peroxide; t-butylcumylperoxide; di-t-butyl peroxide; 2,5-bis(t-butylperoxy)2,5-dimethylhexane; 2,5-bis(t-butylperoxy)2,5-dimethylhexyne-3; 1,1-bis(t-butylperoxy)3,3,5-trimethylcyclohexane; isopropylcumyl cumylperoxide; di(isopropylcumyl)peroxide; or mixtures thereof.
- Peroxide curing agents can be used in amounts of 0.1 to 5 wt % based on the weight of the composition.
- Various other known curing co-agents, boosters, and retarders can be used, such as triallyl isocyanurate; ethyoxylated bisphenol A dimethacrylate; ⁇ -methyl styrene dimer; and other co-agents described in U.S. Pat. Nos. 5,346,961 and 4,018,852.
- processing aids include but are not limited to metal salts of carboxylic acids such as zinc stearate or calcium stearate; fatty acids such as stearic acid, oleic acid, or erucic acid; fatty amides such as stearamide, oleamide, erucamide, or N,N′-ethylenebis-stearamide; polyethylene wax; oxidized polyethylene wax; polymers of ethylene oxide; copolymers of ethylene oxide and propylene oxide; vegetable waxes; petroleum waxes; non ionic surfactants; and polysiloxanes. Processing aids can be used in amounts of 0.05 to 5 wt % based on the weight of the composition.
- fillers include but are not limited to clays, precipitated silica and silicates, fumed silica calcium carbonate, ground minerals, and carbon blacks with arithmetic mean particle sizes larger than 10 nanometers. Fillers can be used in amounts ranging from less than 0.01 to more than 50 wt % based on the weight of the composition.
- Reactive processing of the composition components will result in a preferred morphology of the solid, high-temperature polymer.
- Reactively coupled polypropylene compositions exhibit heat resistance, resistance to ignition and flame spread, and, preferably, flexibility.
- the reactive processing produces a preferred morphology that includes, but is not limited to, coupling of the polypropylene and olefinic interpolymer.
- Propylene homopolymer or copolymer can be used in any amount such that the composition exhibits as extruded without subsequent crosslinking heat resistance and resistance to ignition and flame spread.
- Propylene homopolymer or copolymer can comprise at least 10, preferably at least 15 and more preferably at least 20, wt % based on the weight of the composition.
- the only limit on the maximum amount of propylene homopolymer or copolymer in the composition is that imposed by economics, practicality (e.g., diminishing returns) and the required minimum amounts of the other components of the composition, but typically a general maximum comprises less than 50, preferably less than 45 and more preferably less than 40, wt % based on the weight of the composition.
- the olefinic interpolymer can be used in any amount such that the composition exhibits as extruded without crosslinking heat resistance and resistance to ignition and flame spread.
- the olefinic interpolymer can comprise at least 10, preferably at least 15 and more preferably at least 20, wt % based on the weight of the composition.
- the only limit on the maximum amount of olefinic interpolymer in the composition is that imposed by economics, practicality and the required minimum amounts of the other components of the composition, but typically a general maximum comprises less than 50, preferably less than 45 and more preferably less than 40, wt % based on the weight of the composition.
- the metal hydrate can be used in any amount such that the composition exhibits as extruded without subsequent crosslinking heat resistance, flexibility, and resistance to ignition and flame spread.
- the metal hydrate can comprise at least 35, preferably at least 40, and more preferably at least 50 wt % based on the weight of the composition.
- the only limit on the maximum amount of metal hydrate in the composition is that imposed by economics, practicality and the required minimum amounts of the other components of the composition, but typically a general maximum comprises less than 75, preferably less than 70 and more preferably less than 65, wt % of the composition.
- the composition also can comprise a coupling package of bis-sulfonyl azide with an antioxidant including but not limited to IRGANOX® 1010 or IRGANOX® MD 1024.
- This package can comprise at least 0.05, preferably at least 0.1 and more preferably at least 0.2, wt % of the composition.
- the only limit on the maximum amount of the package in the composition is that imposed by economics, practicality and the required minimum amounts of the other components of the composition, but typically a general maximum comprises less than 2%, preferably less than 1% and more preferably less than 0.5, wt % of the composition.
- the package is typically added to the composition as it exists in the form of a molecular melt within an extruder or other mixing device.
- Compounding of a cable insulation material can be effected by standard means known to those Skilled in the art.
- Examples of compounding equipment are internal batch mixers, such as a BanburyTM or BoilingTM internal mixer.
- continuous single, or twin screw, mixers can be used, such as FarrelTM continuous mixer, a Werner and PfleidererTM twin screw mixer, or a BussTM kneading continuous extruder.
- the type of mixer utilized, and the operating conditions of the mixer, will affect properties of the composition such as viscosity, volume resistivity and extruded surface smoothness.
- Cable comprising an insulation layer that itself comprises a composition of this invention can be prepared with various types of extruders, e.g., single or twin-screw types.
- U.S. Pat. No. 4,857,600 provides a description of a conventional extruder.
- U.S. Pat. No. 5,575,965 also provides a description of an extruder and a co-extrusion process.
- an extruder has a hopper at its upstream end and a die at its downstream end. The hopper feeds into a barrel, which contains a screw. At the downstream end, between the end of the screw and the die, there is a screen pack and a breaker plate.
- the screw portion of the extruder comprises three sections, i.e., the feed section, the compression section, and the metering section. It also comprises two zones, i.e., the back heat zone and the front heat zone.
- the sections and zones run from upstream to downstream.
- the extruder can comprise more than two heating zones along the axis running from upstream to downstream. If the extruder has more than one barrel, then the barrels are typically connected in series. Typically, the length to diameter ratio of each barrel is in the range of 15:1 to 30:1.
- the cable In wire coating operations in which the polymeric insulation is crosslinked after extrusion, the cable often passes immediately into a heated vulcanization zone downstream of the extrusion die.
- the heated cure zone is maintained at a temperature in the range of 200 to 350° C., preferably in the range of about 170 to about 250° C.
- the heated zone can be heated by pressurized steam, or by inductively heated, pressurized nitrogen gas.
- crosslinking after extrusion can be eliminated with the practice of this invention.
- compositions of the six samples analyzed are reported in Table 1, Three samples (the comparative example (CEX) and EX. 1 and 3) comprise a polypropylene homopolymer (H502-25R) reactively processed with a polyolefin elastomer (AFFINITYTM EG 8200 which has a density of 0.870 g/cm 3 (ASTM D792) and is available from The Dow Chemical Company), and MAGNIFIN®H5 Mg(OH 2 ) which is available from Albemarle-Martinswerk. Two samples (EX. 2 and EX.
- Example 4 comprise a polypropylene homopolymer (H502-25R) reactively processed with ultra-low density polyethylene (ATTANE SC4107 which is available from The Dow Chemical Company), and MAGNIFIN®H5 Mg(OH 2 ).
- Example 5 comprises a propylene impact copolymer (C705-44NAHP) and an olefinic interpolymer (VERSIFYTM 3300, 12 mole percent ethylene and 88 mole percent propylene, a density of 0.866 g/cm 3 and a MFR of 9.8/10 min (230° C./21.6 kg)) both of which are available from The Dow Chemical Company.
- the samples also comprise FUSABOND® 494 which is a maleic anhydride grafted polyethylene (density of 0.87 g/cc) available from E. I. du Pont de Nemours and Company.
- the samples also comprise IRGANOX MD 1024, which is a metal deactivator and antioxidant available from Ciba Specialty Chemicals, IRGANOX PS 802DSDP, which is used as a heat stabilizer in combination with a phenolic antioxidant (also available from Ciba Specialty Chemicals), and CHIMASSORB 944 which is a hindered amine light stabilizer (also available from Ciba Specialty Chemical).
- EX. 3, 4 and 5 also comprise IRGANOX 1010, which is an antioxidant.
- EX. 1-2 and 5 and the comparative example also comprises Dow-Corning MB 50-001 which is a formulation containing 50% of an ultra-high molecular weight siloxane polymer dispensed in polypropylene homopolymer.
- EX. 1-2 and 5 further comprise an additive package of bis-sulfonyl azide (BSA) and IRGANOX 1010.
- EX 3 and 4 further comprise XL PEarl Silane which is a mixture of peroxide, a vinyltrialkoxysilane and a silane dehydro-condensation catalyst. The peroxide decomposes during compounding causing the vinyl silane to graft to the polymer chains. Small amounts of moisture released from the metal hydrate during compounding in combination with the dehydro-condensation catalyst cause coupling of the silane-grafted polymer chains.
- the flexural properties are tested according to ISO 178 and are reported in Table 2.
- the Flexural test measures the force required to bend a beam under 3 point loading conditions. Flexural modulus is used as an indication of the stiffness of a material when flexed.
- TMA Thermal mechanical analysis
- Table 5 reports Hot Set measured for each of the six samples at 150° C.
- Table 6 reports the Hot Set measured for each of the six samples at 200° C.
- Table 7 reports the tensile properties for the six samples tested.
- compositions described above in which a propylene homopolymer is reactively processed with a polyolefin elastomer (AFFINITY®) or ultra-low density polyethylene (ATTANE®) or even a low ethylene content olefinic interpolymer (VERSIFYTM) exhibit, as extruded without subsequent cross-linking, (1) heat resistance; (2) resistance to ignition and flame spread, and (3) flexibility. These properties make these compositions suitable for cable applications, such as 125° C. rated automotive wire.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Organic Insulating Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Insulated Conductors (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
- Inorganic Insulating Materials (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/996,030 US20110147639A1 (en) | 2008-06-06 | 2009-05-21 | Reactively Processed, High Heat Resistant Composition of Polypropylene and an Olefinic Interpolymer |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US5935608P | 2008-06-06 | 2008-06-06 | |
| US12/996,030 US20110147639A1 (en) | 2008-06-06 | 2009-05-21 | Reactively Processed, High Heat Resistant Composition of Polypropylene and an Olefinic Interpolymer |
| PCT/US2009/044805 WO2009148842A1 (en) | 2008-06-06 | 2009-05-21 | Reactively processed, high heat resistant composition of polypropylene and an olefinic interpolymer |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20110147639A1 true US20110147639A1 (en) | 2011-06-23 |
Family
ID=40908423
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/996,030 Abandoned US20110147639A1 (en) | 2008-06-06 | 2009-05-21 | Reactively Processed, High Heat Resistant Composition of Polypropylene and an Olefinic Interpolymer |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20110147639A1 (enExample) |
| EP (1) | EP2288644A1 (enExample) |
| JP (1) | JP2011523968A (enExample) |
| CN (1) | CN102083894A (enExample) |
| TW (1) | TW201011064A (enExample) |
| WO (1) | WO2009148842A1 (enExample) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11555473B2 (en) | 2018-05-29 | 2023-01-17 | Kontak LLC | Dual bladder fuel tank |
| US11638331B2 (en) | 2018-05-29 | 2023-04-25 | Kontak LLC | Multi-frequency controllers for inductive heating and associated systems and methods |
| US20240059864A1 (en) * | 2021-01-29 | 2024-02-22 | Sumitomo Electric Industries, Ltd. | Resin composition and power cable |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2012068727A1 (en) | 2010-11-24 | 2012-05-31 | Dow Global Technologies Llc | Composition comprising propylene-alpha-olefin copolymer, olefin block copolymer and dpo-bsa molecular melt |
| JP6003023B2 (ja) * | 2011-08-19 | 2016-10-05 | 日立金属株式会社 | 電線・ケーブルおよび組成物 |
| MX2014015915A (es) * | 2012-06-27 | 2015-07-17 | Dow Global Technologies Llc | Recubrimientos polimericos para conductores recubiertos. |
| CA2927060C (en) * | 2013-10-18 | 2021-03-30 | Dow Global Technologies Llc | Optical fiber cable components |
| WO2015067533A1 (en) * | 2013-11-07 | 2015-05-14 | Akzo Nobel Chemicals International B.V. | Process for modifying ethylene-based polymers and copolymers |
| US9926388B2 (en) * | 2015-06-15 | 2018-03-27 | Braskem America, Inc. | Long-chain branched polymers and production processes |
| JP2021528527A (ja) * | 2018-06-15 | 2021-10-21 | ボレアリス エージー | 難燃性ポリオレフィン組成物 |
| JP7592649B2 (ja) * | 2019-06-28 | 2024-12-02 | ダウ グローバル テクノロジーズ エルエルシー | カップリング化ポストコンシューマーリサイクルポリプロピレンおよびそれを提供するプロセス |
| WO2021035709A1 (en) * | 2019-08-30 | 2021-03-04 | Dow Global Technologies Llc | Polyolefin compositions having improved electrical properties |
Citations (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3646155A (en) * | 1968-12-20 | 1972-02-29 | Midland Silicones Ltd | Cross-linking of a polyolefin with a silane |
| US4018852A (en) * | 1974-11-27 | 1977-04-19 | Union Carbide Corporation | Composition with triallyl compounds and process for avoiding scorching of ethylene polymer composition |
| US4857600A (en) * | 1988-05-23 | 1989-08-15 | Union Carbide Corporation | Process for grafting diacid anhydrides |
| US5064802A (en) * | 1989-09-14 | 1991-11-12 | The Dow Chemical Company | Metal complex compounds |
| US5272236A (en) * | 1991-10-15 | 1993-12-21 | The Dow Chemical Company | Elastic substantially linear olefin polymers |
| US5278272A (en) * | 1991-10-15 | 1994-01-11 | The Dow Chemical Company | Elastic substantialy linear olefin polymers |
| US5346961A (en) * | 1993-04-07 | 1994-09-13 | Union Carbide Chemicals & Plastics Technology Corporation | Process for crosslinking |
| US5575965A (en) * | 1995-05-19 | 1996-11-19 | Union Carbide Chemicals & Plastics Technology Corporation | Process for extrusion |
| US5741858A (en) * | 1994-04-20 | 1998-04-21 | The Dow Chemical Company | Silane-crosslinkable elastomer-polyolefin polymer blends their preparation and use |
| US5986028A (en) * | 1991-10-15 | 1999-11-16 | The Dow Chemical Company | Elastic substantially linear ethlene polymers |
| US20010025720A1 (en) * | 2000-02-21 | 2001-10-04 | Cesare Bisleri | Fire-resistant and water-resistant halogen-free low-voltage cables |
| US6465547B1 (en) * | 2001-04-19 | 2002-10-15 | Shawcor Ltd. | Crosslinked compositions containing silane-modified polypropylene blends |
| US20060199983A1 (en) * | 2003-04-11 | 2006-09-07 | Vinnolit Gmbh & Co. Kg | Apparatus and process for the production of vinyl chloride by thermal cracking of 1,2-dichloroethane |
| US20060199744A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Low molecular weight ethylene/alpha-olefin interpolymer as base lubricant oils |
| US20060199911A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Cap liners, closures and gaskets from multi-block polymers |
| US20060199908A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Rheology modification of interpolymers of ethylene/alpha-olefins and articles made therefrom |
| US20060199914A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Functionalized ethylene/alpha-olefin interpolymer compositions |
| US20060199896A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Viscosity index improver for lubricant compositions |
| US20060199906A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Polymer blends from interpolymers of ethylene/alpha-olefin with improved compatibility |
| US20060199931A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Fibers made from copolymers of ethylene/alpha-olefins |
| US20060199910A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Thermoplastic vulcanizate comprising interpolymers of ethylene alpha-olefins |
| US20060199930A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Ethylene/alpha-olefins block interpolymers |
| US20060199912A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Compositions of ethylene/alpha-olefin multi-block interpolymer suitable for films |
| US20060199905A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Interpolymers of ethylene/a-olefins blends and profiles and gaskets made therefrom |
| US20060199872A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Foams made from interpolymers of ethylene/alpha-olefins |
| US20060199030A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Compositions of ethylene/alpha-olefin multi-block interpolymer for blown films with high hot tack |
| US20060199887A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Filled polymer compositions made from interpolymers of ethylene/a-olefins and uses thereof |
| US7355089B2 (en) * | 2004-03-17 | 2008-04-08 | Dow Global Technologies Inc. | Compositions of ethylene/α-olefin multi-block interpolymer for elastic films and laminates |
| US7504347B2 (en) * | 2004-03-17 | 2009-03-17 | Dow Global Technologies Inc. | Fibers made from copolymers of propylene/α-olefins |
| US7514517B2 (en) * | 2004-03-17 | 2009-04-07 | Dow Global Technologies Inc. | Anti-blocking compositions comprising interpolymers of ethylene/α-olefins |
| US7524911B2 (en) * | 2004-03-17 | 2009-04-28 | Dow Global Technologies Inc. | Adhesive and marking compositions made from interpolymers of ethylene/α-olefins |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1002A (en) * | 1838-11-09 | Joseph evens | ||
| GB1470464A (en) * | 1975-01-10 | 1977-04-14 | Moore Co S | Electrically insulated conductor |
| JPH06290637A (ja) * | 1993-03-30 | 1994-10-18 | Hitachi Cable Ltd | 難燃性電気絶縁組成物,及びそれを用いた絶縁電線 |
| US6524702B1 (en) * | 1999-08-12 | 2003-02-25 | Dow Global Technologies Inc. | Electrical devices having polymeric members |
| JP3935320B2 (ja) * | 2001-01-19 | 2007-06-20 | 住友電装株式会社 | 樹脂組成物、その製法およびそれにより被覆された電線 |
| JP4205384B2 (ja) * | 2001-08-29 | 2009-01-07 | リケンテクノス株式会社 | 難燃性樹脂組成物およびこれを用いた配線材 |
| JP2005325280A (ja) * | 2004-05-17 | 2005-11-24 | Tmg Kk | 難燃性樹脂組成物 |
| JP4652845B2 (ja) * | 2005-02-28 | 2011-03-16 | 古河電気工業株式会社 | 絶縁樹脂組成物および絶縁電線 |
| JP4692372B2 (ja) * | 2005-08-10 | 2011-06-01 | 日立電線株式会社 | 非ハロゲン難燃性熱可塑性エラストマー組成物及びその製造方法並びにこれを用いた電線・ケーブル |
| JP5154823B2 (ja) * | 2007-04-17 | 2013-02-27 | 日東電工株式会社 | 難燃性ポリオレフィン系樹脂組成物及び該組成物よりなる粘着テープ基材、並びに、粘着テープ |
-
2009
- 2009-05-21 WO PCT/US2009/044805 patent/WO2009148842A1/en not_active Ceased
- 2009-05-21 EP EP09759003A patent/EP2288644A1/en not_active Withdrawn
- 2009-05-21 JP JP2011512525A patent/JP2011523968A/ja active Pending
- 2009-05-21 US US12/996,030 patent/US20110147639A1/en not_active Abandoned
- 2009-05-21 CN CN2009801210875A patent/CN102083894A/zh active Pending
- 2009-05-26 TW TW098117449A patent/TW201011064A/zh unknown
Patent Citations (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3646155A (en) * | 1968-12-20 | 1972-02-29 | Midland Silicones Ltd | Cross-linking of a polyolefin with a silane |
| US4018852A (en) * | 1974-11-27 | 1977-04-19 | Union Carbide Corporation | Composition with triallyl compounds and process for avoiding scorching of ethylene polymer composition |
| US4857600A (en) * | 1988-05-23 | 1989-08-15 | Union Carbide Corporation | Process for grafting diacid anhydrides |
| US5064802A (en) * | 1989-09-14 | 1991-11-12 | The Dow Chemical Company | Metal complex compounds |
| US5986028A (en) * | 1991-10-15 | 1999-11-16 | The Dow Chemical Company | Elastic substantially linear ethlene polymers |
| US5278272A (en) * | 1991-10-15 | 1994-01-11 | The Dow Chemical Company | Elastic substantialy linear olefin polymers |
| US5272236A (en) * | 1991-10-15 | 1993-12-21 | The Dow Chemical Company | Elastic substantially linear olefin polymers |
| US5346961A (en) * | 1993-04-07 | 1994-09-13 | Union Carbide Chemicals & Plastics Technology Corporation | Process for crosslinking |
| US5741858A (en) * | 1994-04-20 | 1998-04-21 | The Dow Chemical Company | Silane-crosslinkable elastomer-polyolefin polymer blends their preparation and use |
| US5575965A (en) * | 1995-05-19 | 1996-11-19 | Union Carbide Chemicals & Plastics Technology Corporation | Process for extrusion |
| US20010025720A1 (en) * | 2000-02-21 | 2001-10-04 | Cesare Bisleri | Fire-resistant and water-resistant halogen-free low-voltage cables |
| US6828022B2 (en) * | 2000-02-21 | 2004-12-07 | Cables Pirelli | Fire-resistant and water-resistant halogen-free low-voltage cables |
| US6465547B1 (en) * | 2001-04-19 | 2002-10-15 | Shawcor Ltd. | Crosslinked compositions containing silane-modified polypropylene blends |
| US20060199983A1 (en) * | 2003-04-11 | 2006-09-07 | Vinnolit Gmbh & Co. Kg | Apparatus and process for the production of vinyl chloride by thermal cracking of 1,2-dichloroethane |
| US20060199908A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Rheology modification of interpolymers of ethylene/alpha-olefins and articles made therefrom |
| US20060199912A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Compositions of ethylene/alpha-olefin multi-block interpolymer suitable for films |
| US20060199744A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Low molecular weight ethylene/alpha-olefin interpolymer as base lubricant oils |
| US20060199914A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Functionalized ethylene/alpha-olefin interpolymer compositions |
| US20060199896A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Viscosity index improver for lubricant compositions |
| US20060199906A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Polymer blends from interpolymers of ethylene/alpha-olefin with improved compatibility |
| US20060199931A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Fibers made from copolymers of ethylene/alpha-olefins |
| US20060199910A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Thermoplastic vulcanizate comprising interpolymers of ethylene alpha-olefins |
| US20060199930A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Ethylene/alpha-olefins block interpolymers |
| US20060199911A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Cap liners, closures and gaskets from multi-block polymers |
| US20060199905A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Interpolymers of ethylene/a-olefins blends and profiles and gaskets made therefrom |
| US20060199872A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Foams made from interpolymers of ethylene/alpha-olefins |
| US20060199030A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Compositions of ethylene/alpha-olefin multi-block interpolymer for blown films with high hot tack |
| US20060199887A1 (en) * | 2004-03-17 | 2006-09-07 | Dow Global Technologies Inc. | Filled polymer compositions made from interpolymers of ethylene/a-olefins and uses thereof |
| US7355089B2 (en) * | 2004-03-17 | 2008-04-08 | Dow Global Technologies Inc. | Compositions of ethylene/α-olefin multi-block interpolymer for elastic films and laminates |
| US7504347B2 (en) * | 2004-03-17 | 2009-03-17 | Dow Global Technologies Inc. | Fibers made from copolymers of propylene/α-olefins |
| US7514517B2 (en) * | 2004-03-17 | 2009-04-07 | Dow Global Technologies Inc. | Anti-blocking compositions comprising interpolymers of ethylene/α-olefins |
| US7524911B2 (en) * | 2004-03-17 | 2009-04-28 | Dow Global Technologies Inc. | Adhesive and marking compositions made from interpolymers of ethylene/α-olefins |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11555473B2 (en) | 2018-05-29 | 2023-01-17 | Kontak LLC | Dual bladder fuel tank |
| US11638331B2 (en) | 2018-05-29 | 2023-04-25 | Kontak LLC | Multi-frequency controllers for inductive heating and associated systems and methods |
| US20240059864A1 (en) * | 2021-01-29 | 2024-02-22 | Sumitomo Electric Industries, Ltd. | Resin composition and power cable |
| US12497496B2 (en) * | 2021-01-29 | 2025-12-16 | Sumitomo Electric Industries, Ltd. | Resin composition and power cable |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102083894A (zh) | 2011-06-01 |
| JP2011523968A (ja) | 2011-08-25 |
| EP2288644A1 (en) | 2011-03-02 |
| TW201011064A (en) | 2010-03-16 |
| WO2009148842A1 (en) | 2009-12-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20110147639A1 (en) | Reactively Processed, High Heat Resistant Composition of Polypropylene and an Olefinic Interpolymer | |
| JP5997282B2 (ja) | ポリカーボネートおよびポリプロピレンの難燃性熱可塑性組成物 | |
| CN101426847B (zh) | 热塑性聚合物组合物、热塑性聚合物组合物的制造方法、由热塑性聚合物组合物得到的成型体和电线 | |
| US10538682B2 (en) | Polyolefin compounds for cable coatings | |
| EP1911802A2 (en) | Thermoplastic resin composition, polymer composition, and molded object obtained from the composition | |
| WO2011034838A1 (en) | Crosslinked, melt-shaped articles and compositions for producing same | |
| EP3050913A1 (en) | Heat-resistant, silane-crosslinked resin molded article and production method for same, heat-resistant, silane-crosslinkable resin composition and production method for same, silane masterbatch, and heat-resistant product employing heat-resistant, silane-crosslinked resin molded article | |
| EP4077533B1 (en) | Halogen free flame retardant polymeric compositions | |
| EP4058514B1 (en) | Polymeric compositions for optical fiber cable components | |
| JP7732908B2 (ja) | 耐熱性シラン架橋樹脂成形体、シラン架橋性樹脂組成物及びそれらの製造方法、並びに配線材 | |
| WO2024195048A1 (ja) | 耐熱性シラン架橋樹脂成形体、シラン架橋性樹脂組成物及びそれらの製造方法、並びに配線材 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |