US20110102972A1 - Chip-type electric double layer capacitor cell and method of manufacturing the same - Google Patents
Chip-type electric double layer capacitor cell and method of manufacturing the same Download PDFInfo
- Publication number
- US20110102972A1 US20110102972A1 US12/923,950 US92395010A US2011102972A1 US 20110102972 A1 US20110102972 A1 US 20110102972A1 US 92395010 A US92395010 A US 92395010A US 2011102972 A1 US2011102972 A1 US 2011102972A1
- Authority
- US
- United States
- Prior art keywords
- double layer
- electric double
- layer capacitor
- chip
- external terminals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 140
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000011347 resin Substances 0.000 claims abstract description 65
- 229920005989 resin Polymers 0.000 claims abstract description 65
- 238000007789 sealing Methods 0.000 claims abstract description 30
- 238000001746 injection moulding Methods 0.000 claims abstract description 16
- 238000003466 welding Methods 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 22
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000001070 adhesive effect Effects 0.000 claims description 3
- 239000003792 electrolyte Substances 0.000 description 21
- 230000008569 process Effects 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 239000007772 electrode material Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 5
- 229920000106 Liquid crystal polymer Polymers 0.000 description 4
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 4
- 239000004734 Polyphenylene sulfide Substances 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 229920000069 polyphenylene sulfide Polymers 0.000 description 4
- -1 polypropylene Polymers 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 239000004841 bisphenol A epoxy resin Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004843 novolac epoxy resin Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/74—Terminals, e.g. extensions of current collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/78—Cases; Housings; Encapsulations; Mountings
- H01G11/80—Gaskets; Sealings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/78—Cases; Housings; Encapsulations; Mountings
- H01G11/82—Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/08—Housing; Encapsulation
- H01G9/10—Sealing, e.g. of lead-in wires
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a chip-type electric double layer capacitor, and more particularly, to a chip-type electric double layer capacitor effectively preventing an electrolyte spill.
- a stable energy supply is considered to be an important element.
- a function is performed by a capacitor. That is, the capacitor serves to store electricity in a circuit provided in various electronic products such as information communication devices and then discharge the electricity, thereby stabilizing the flow of electricity within the circuit.
- an electric double layer capacitor has intermediate properties between those of a condenser and those of a secondary cell in terms of energy density, output density and charge and discharge cycles.
- an electric double layer capacitor has the advantages of: a simplified electrical circuit and reduced unit cost since overcharge and overdischarge may be avoided; the detection of remaining capacitance by the measuring of voltage; durability within a wide temperature range ( ⁇ 30° C. to +90° C.); the use of environmentally friendly materials and so on.
- An electric double layer capacitor is being utilized as a power source for the backup of home appliances such as cellphones, AVs or cameras, and is expected to be mainly utilized in UPS or HEV/FCEV applications in the future. Particularly, studies are being carried out in order to utilize an electric double layer capacitor as a power source for the ignition and acceleration of a car since the electric double layer capacitor has a life cycle equivalent to that of the lifespan of a car and high output characteristics.
- a basic structure of the electric double layer capacitor includes an electrode, an electrolyte, a current collector, and a separator.
- the electrode has a relatively large surface area, such as that of a porous electrode.
- the operational principle of the electric double layer capacitor is an electro-chemical mechanism in which electricity is generated when a voltage of several volts is applied to both ends of a unit cell electrode such that ions in the electrolyte move along an electric field to be adsorbed by an electrode surface.
- a bracket is welded over and under the electric double layer capacitor, and the electric double layer capacitor is then mounted on the circuit board through the bracket.
- the electric double layer capacitor having such a structure may have an increase in thickness due to additional structures required for surface mounting. Also, when an exterior case is used, an electrolyte spill in a vulnerable area of the exterior case during subsequent processes (aging, soldering reflow, or the like) may be caused, and thus the reliability and lifespan of a chip-type electric double layer capacitor may be reduced.
- An aspect of the present invention provides a chip-type electric double layer capacitor which may be reduced in size and weight and surface-mounted by improving an upper structure without an additional structure and may effectively prevent an electrolyte spill.
- An aspect of the present invention also provides a chip-type electric double layer capacitor which may be reduced in size and weight and surface-mounted by improving the joining structural integrity of an external terminal and a lower case without an additional structure and may effectively prevent an electrolyte spill.
- a chip-type electric double layer capacitor including: a lower case having a housing space of which a top surface is opened and a first joint element provided along an upper end of a sidewall enclosing the housing space; an upper cap mounted on the lower case so as to cover the housing space, and having a second joint element provided at an edge adjacent area corresponding to the first joint element and conforming to a shape of the first joint element; first and second external terminals inserted into the lower case by insert injection molding, each having a first portion exposed to an outer surface of the lower case for external contact and a second portion exposed to an inner surface of the housing space for internal contact; and an electric double layer capacitor cell mounted in the housing space and electrically connected to the second portion of the first and second external terminals, wherein the first and second joint elements have a welded portion therebetween such that the housing space of the lower case is sealed by the upper cap, and the upper cap includes a shielding portion provided inwardly of the second joint element and extending downwardly.
- the shielding portion may extend downwardly so as to be lower than the welded portion.
- the shielding portion may be spaced apart from the second joint element.
- the shielding portion may be pressed and attached to an upper surface of the electric double layer capacitor cell mounted in the housing space.
- the first joint element may be a recess stepped towards the housing space and the second joint element may be a projection corresponding to the recess.
- the welded portion may be obtained such that a welding portion prepared at an end of the projection may be welded on a surface thereof in contact with the recess.
- the first portion of the first and second external terminals may be exposed to the same outer surface of the lower case.
- the same outer surface may be provided as a mounting surface for the chip-type electric double layer capacitor.
- the second portion of the first and second external terminals may extend to side surfaces connected to the mounting surface.
- the electric double layer capacitor cell may be electrically connected to the second portion of the first and second external terminals by welding or ultrasonic welding.
- a method of manufacturing a chip-type electric double layer capacitor including: preparing a lower case having a housing space of which a top surface is opened, a first joint element formed along an upper end of a sidewall enclosing the housing space, and first and second external terminals inserted therein by insert injection molding in order that each of the first and second external terminals has a first portion exposed to an outer surface of the lower case and a second portion exposed to an inner surface of the housing space; mounting an electric double layer capacitor cell in the housing space and electrically connecting the electric double layer capacitor cell to the second portion of the first and second external terminals exposed to the inner surface of the housing space; mounting an upper cap on the lower case, the upper cap having a second joint element formed at an edge adjacent area corresponding to the first joint element and conforming to a shape of the first joint element; and welding the first and second joint elements to have a welded portion therebetween such that the housing space of the lower case is sealed by the upper cap, wherein the upper
- the welding of the first and second joint elements may be performed while allowing the shielding portion to be pressed and attached to an upper surface of the electric double layer capacitor cell mounted in the housing space.
- the welding of the first and second joint elements may be performed by ultrasonic welding.
- a chip-type electric double layer capacitor including: a resin case having a housing space provided therein and formed of insulating resin; first and second external terminals inserted into the resin case by insert injection molding, each having a first portion exposed to an outer surface of the resin case for external contact and a second portion exposed to an inner surface of the housing space for internal contact; a sealing portion including a groove portion provided in the resin case along a circumference of at least one of the first and second external terminals and a resin filling the groove portion; and an electric double layer capacitor cell mounted in the housing space and electrically connected to the second portion of the first and second external terminals.
- the sealing portion may be provided to both the first and second external terminals individually.
- the sealing portion may be provided to enclose the circumference of the first and second external terminals.
- the sealing portion may be provided in part of the circumference of the first and second external terminals.
- the groove portion may be provided in the inner surface of the housing space along a circumference of the second portion of the first and second external terminals.
- the groove portion may be provided in the outer surface of the resin case along a circumference of the first portion of the first and second external terminals.
- the first portion of the first and second external terminals may be exposed to the same outer surface of the resin case.
- the same outer surface may be provided as a mounting surface for the chip-type electric double layer capacitor.
- the second portion of the first and second external terminals may extend to side surfaces connected to the mounting surface.
- the resin case may include a lower case having a housing space of which a top surface is opened and formed together with the first and second external terminals by insert injection molding, and an upper cap mounted on the lower case so as to cover the housing space.
- the upper cap may be mounted on the lower case by using an adhesive.
- the electric double layer capacitor cell may be electrically connected to the second portion of the first and second external terminals by welding or ultrasonic welding.
- FIG. 1 is an exploded perspective view illustrating a chip-type electric double layer capacitor according to an exemplary embodiment of the present invention
- FIG. 2 is a schematic perspective view illustrating an upper cap employed in the chip-type electric double layer capacitor of FIG. 1 ;
- FIGS. 3A through 3D are cross-sectional views illustrating a method of manufacturing a chip-type electric double layer capacitor according to an exemplary embodiment of the present invention
- FIG. 4 is a partially enlarged view of portion A in the cross-sectional view of FIG. 3C ;
- FIG. 5 is a partially enlarged view of portion B in the cross-sectional view of FIG. 3D ;
- FIG. 6 is a side cross-sectional view illustrating a chip-type electric double layer capacitor according to another exemplary embodiment of the present invention.
- FIG. 7 is a side cross-sectional view illustrating a chip-type electric double layer capacitor according to another exemplary embodiment of the present invention.
- FIG. 8 is a schematic perspective view illustrating a lower case employed in the chip-type electric double layer capacitor of FIG. 7 ;
- FIG. 9 is a side cross-sectional view illustrating a lower case employed in a chip-type electric double layer capacitor according to another exemplary embodiment of the present invention.
- FIG. 10 is a schematic perspective view illustrating the lower case of FIG. 9 as seen from below.
- FIG. 11 is a side cross-sectional view illustrating a lower case employed in a chip-type electric double layer capacitor according to another exemplary embodiment of the present invention.
- FIG. 1 is an exploded perspective view illustrating a chip-type electric double layer capacitor according to an exemplary embodiment of the present invention.
- a chip-type electric double layer capacitor 10 includes a resin case 11 having a housing space formed therein and an electric double layer capacitor cell 20 disposed in the housing space of the resin case 11 .
- the resin case 11 may be formed of insulating resin and include a lower case 11 a and an upper cap 11 b .
- the lower case 11 a may have the housing space of which the top surface is opened and be formed together with first and second external terminals 12 a and 12 b by insert injection molding.
- the upper cap 11 b may be mounted on the lower case 11 a so as to cover the housing space.
- a mold having a desired resin-case shape is prepared.
- the first and second external terminals are disposed in the mold so as to be exposed to an outer surface of the resin case and an inner surface of the housing space. Insulating resin is injected into the mold.
- a first portion exposed to the outer surface of the lower case 11 a is provided as an external contact area for the connection with an external electrical circuit.
- a second portion exposed to the inner surface of the housing space is provided as an internal contact area for the connection with first and second current collectors 23 a and 23 b of the electric double layer capacitor cell 20 .
- the electric double layer capacitor cell 20 is mounted in the housing space of the lower case 11 a .
- the electric double layer capacitor cell 20 may include the first and second current collectors 23 a and 23 b , first and second polarizable electrodes 24 a and 24 b connected to the first and second current collectors 23 a and 23 b , respectively, and a separator 25 interposed between the first and second polarizable electrodes 24 a and 24 b.
- the electric double layer capacitor cell 20 used in this embodiment may be replaced with other cells being formed to have various shapes.
- a multi-layered electric double layer capacitor cell, a winding-type electric double layer capacitor cell or the like may be used.
- the electric double layer capacitor cell 20 is electrically connected to the first and second external terminals 12 a and 12 b through the first and second current collectors 23 a and 23 b .
- the shapes and the structures of the first and second current collectors 23 a and 23 b may be appropriately modified so as to make electrical connections with the first and second external terminals 12 a and 12 b.
- the electric double layer capacitor cell 20 disposed in the housing space of the lower case 11 a is electrically connected to portions of the first and second external terminals 12 a and 12 b exposed to the housing space.
- the upper cap 11 b employed in this embodiment is mounted on an upper end of a sidewall of the lower case 11 a so as to cover the housing space.
- the upper end of the sidewall of the lower case 11 a has the structure of a recess 13 stepped inwardly.
- the upper cap 11 b has a projection 17 so as to be received in the recess 13 of the upper end of the sidewall of the lower case 11 a.
- the lower case 11 a and the upper cap 11 b are formed, by way of example, in such a manner that the lower case 11 a has the recess 13 and the upper cap 11 b has the projection 17 , in which the recess 13 and the projection 17 have shapes corresponding to each other and are positioned to correspond to each other.
- the lower case 11 a may have a projection and the upper cap 11 b may have a recess in a corresponding manner.
- the invention is not limited thereto. A variety of structures may be employed, as long as the structures are designed for the mounting of the upper cap so as to appropriately position the upper cap.
- the upper cap 11 b employed in this embodiment has a shielding portion 18 formed inwardly of the projection 17 and conforming thereto.
- the shielding portion 18 may be a single injection-molding element formed of the same resin as that of the upper cap 11 a.
- the shielding portion 18 extends downwardly.
- the shielding portion 18 may extend further downwardly than the projection 17 .
- the welding process may be interfered by an electrolyte spilled from the polarizable electrodes 24 a and 24 b .
- ultrasonic welding increases the possibility of contact with the electrolyte due to vibrations, so that serious welding interference may be caused.
- the extended shielding portion 18 may effectively prevent the electrolyte from reaching a portion to be welded.
- this may contribute to an improvement in reliability as well as to the lifespan of the electric double layer capacitor cell 20 .
- the first and second external terminals 12 a and 12 b may be formed on the same surface of the lower case 11 a .
- the same surface may be provided as a mounting surface for the chip-type electric double layer capacitor 10 .
- Such a structure may allow for surface mounting without an additional structure.
- the first and second external terminals 12 a and 12 b may extend from both ends of the same surface to both side surfaces connected to the ends, respectively. Therefore, when the chip-type electric double layer capacitor 10 is surface-mounted, its performance test may be performed by utilizing portions of the first and second external terminals 12 a and 12 b extending to the side surfaces.
- FIGS. 3A through 3D are cross-sectional views illustrating a method of manufacturing a chip-type electric double layer capacitor according to an exemplary embodiment of the present invention.
- a lower case 31 a is firstly prepared such that the lower case 31 a has a housing space of which the top surface is opened and includes a first joint element 33 formed along an upper end of a sidewall enclosing the housing space.
- the lower case 31 a includes first and second external terminals 32 a and 32 b inserted therein so as to be exposed to both an inner surface of the housing space and an outer surface of the lower case 31 a .
- the first joint element 33 may be a recess stepped inwardly, which is similar to the shape as shown in FIG. 1 .
- the lower case 31 a is formed of insulating resin which may prevent the internal structure of a chip-type electric double layer capacitor from being deformed during a surface mounting process at a high temperature (e.g., about 240° C. to 270° C.).
- the insulating resin may be polyphenylene sulfide (PPS) or liquid crystal polymer (LCP).
- an electric double layer capacitor cell 40 is mounted in the housing space.
- the electric double layer capacitor cell 40 is electrically connected to portions of the first and second external terminals 32 a and 32 b exposed to the inner surface of the housing space.
- the electric double layer capacitor cell 40 may include first and second current collectors 43 a and 43 b , first and second polarizable electrodes 44 a and 44 b connected to the first and second current collectors 43 a and 43 b , respectively, and a separator 45 interposed between the first and second polarizable electrodes 44 a and 44 b.
- the first and second current collectors 43 a and 43 b may be formed of a metallic foil such as a copper foil. Meanwhile, the first and second polarizable electrodes 44 a and 44 b may be formed of a polarizable electrode material. Particularly, activated carbon with a relatively high specific surface area may be used.
- the first and second polarizable electrodes 44 a and 44 b may be manufactured by making an electrode material mainly consisting of powdered activated carbon into a solid-state sheet or adhering electrode material slurry onto the first and second current collectors 43 a and 43 b.
- the separator 45 may be formed of a porous material through which ions can permeate.
- a porous material such as polypropylene, polyethylene, or glass fiber may be used.
- the material is not limited thereto.
- connection between the electric double layer capacitor cell 40 and the first and second external terminals 32 a and 32 b may be made by welding or ultrasonic welding. Resistance welding or arc welding may be applied, but the connecting method is not limited thereto. Portions of the first and second external terminals 32 a and 32 b exposed to the outer surface of the lower case 31 a are used to electrically connect the electric double layer capacitor cell 40 to an external power source.
- the upper cap 31 b is mounted on the lower case 31 a so as to cover the housing space thereof.
- the upper cap 31 b has a second joint element 37 formed at an edge adjacent area corresponding to the first joint element 33 and conforming to the shape thereof.
- the second joint element 37 may be a projection, which is similar to the shape as shown in FIG. 1 .
- the upper cap 31 b further includes a shielding portion 38 formed inwardly of the second joint element 37 and extending downwardly.
- the shielding portion 38 extends downwardly so as to be lower than a portion to be welded.
- the shielding portion 38 may be spaced apart from the second joint element 37 .
- a welding portion 37 a provided at an end of the second joint element 37 may be welded on a surface thereof in contact with the first joint element 33 .
- the welding portion 37 a may be melted during a welding process such as ultrasonic welding so that the upper cap 41 b and the lower case 41 a may be joined.
- the first and second joint elements 33 and 37 are welded at the joined portion thereof in order that the housing space of the lower case 31 a may be sealed by the upper cap 31 b.
- the welding process may be performed by ultrasonic welding.
- an electrolyte impregnated in the polarizable electrodes may be spilled due to vibrations, a welded portion 37 a ′ may be polluted by the spilled electrolyte I, and thus this may prevent a complete seal being realized.
- the present embodiment employs the shielding portion 38 to thereby effectively prevent the pollution caused by the electrolyte.
- FIG. 6 is a side cross-sectional view illustrating a chip-type electric double layer capacitor according to another exemplary embodiment of the present invention.
- a chip-type electric double layer capacitor 50 includes a lower case 51 a having a housing space formed therein, an electric double layer capacitor cell 60 disposed in the housing space of the lower case 51 a , and an upper cap 51 b covering the housing space of the lower case 51 a.
- the lower case 51 a may be formed of insulating resin, and formed together with first and second external terminals 52 a and 52 b by insert injection molding in a manner such that the first and second external terminals 52 a and 52 b may be exposed to an outer surface of the lower case 51 a and an inner surface of the housing space.
- the electric double layer capacitor cell 60 is mounted in the housing space of the lower case 51 a .
- the electric double layer capacitor cell 60 may include first and second current collectors 63 a and 63 b , first and second polarizable electrodes 64 a and 64 b connected to the first and second current collectors 63 a and 63 b , respectively, and a separator 65 interposed between the first and second polarizable electrodes 64 a and 64 b.
- the electric double layer capacitor cell 60 is electrically connected to the first and second external terminals 52 a and 52 b through the first and second current collectors 63 a and 63 b .
- the electric double layer capacitor cell 60 disposed in the housing space of the lower case 51 a is electrically connected to portions of the first and second external terminals 52 a and 52 b exposed to the housing space.
- the upper cap 51 b employed in this embodiment is disposed on an upper end of a sidewall of the lower case 51 a so as to cover the housing space.
- the upper end of the sidewall of the lower case 51 a has a recess 53 stepped inwardly.
- the upper cap 51 b has a projection 57 received in the recess 53 of the lower case 51 a.
- the upper cap 51 b has a shielding portion 58 formed inwardly of the projection 57 and conforming thereto.
- the shielding portion 58 employed in this embodiment extends downwardly.
- the shielding portion 58 is positioned to correspond to the electric double layer capacitor cell 60 such that it may be pressed and adhered to an upper surface of the electric double layer capacitor cell 60 after welding.
- the welding process after disposing the upper cap 51 b is performed in the situation that the upper cap 51 b is pressed by a predetermined pressure. In this case, since the electric double layer capacitor cell 60 is pressed by a predetermined pressure, an increase in product capacitance and a reduction in resistance may be achieved.
- the shielding portion 58 may effectively prevent the welded portion of the projection and the recess from being polluted by an electrolyte spilled in the polarizable electrodes 64 a and 64 b . Consequently, this may contribute to an improvement in reliability as well as to the lifespan of the electric double layer capacitor cell 60 .
- FIG. 7 is a side cross-sectional view illustrating a chip-type electric double layer capacitor according to another exemplary embodiment of the present invention.
- a chip-type electric double layer capacitor 110 includes a resin case 111 having a housing space formed therein, and an electric double layer capacitor cell 120 disposed in the housing space of the resin case 111 .
- the resin case 111 is formed of insulating resin which may prevent the internal structure of the chip-type electric double layer capacitor 110 from being deformed during a surface mounting process at a high temperature (e.g., about 240° C. to 270° C.).
- the insulating resin may be polyphenylene sulfide (PPS) or liquid crystal polymer (LCP).
- the resin case 111 includes first and second external terminals 112 a and 112 b exposed to an outer surface of the resin case 111 and an inner surface of the housing space.
- a first portion exposed to the outer surface of the resin case 111 is provided as an external contact area for the connection with an external electrical circuit.
- a second portion exposed to the inner surface of the housing space is provided as an internal contact area for the connection with first and second current collectors 123 a and 123 b of the electric double layer capacitor cell 120 .
- the resin case 111 may include a lower case 111 a having the housing space of which the top surface is opened and being formed together with the first and second external terminals 112 a and 112 b by insert injection molding, and an upper cap 111 b mounted on the lower case 111 a so as to cover the housing space.
- the upper cap 111 b may be mounted on the lower case 111 a by using an adhesive.
- the lower case 111 a may be formed in various manners. For example, a mold having a desired resin-case shape is prepared. The first and second external terminals 112 a and 112 b are disposed in the mold so as to be exposed to the outer surface of the resin case and the inner surface of the housing space. Insulating resin is injected into the mold.
- the electric double layer capacitor cell 120 is mounted in the housing space of the resin case 111 .
- the electric double layer capacitor cell 120 may include the first and second current collectors 123 a and 123 b , first and second polarizable electrodes 124 a and 124 b connected to the first and second current collectors 123 a and 123 b , respectively, and a separator 125 interposed between the first and second polarizable electrodes 124 a and 124 b.
- the first and second current collectors 123 a and 123 b may be formed of a metallic foil such as a copper foil. Meanwhile, the first and second polarizable electrodes 124 a and 124 b may be formed of a polarizable electrode material. Particularly, activated carbon with a relatively high specific surface area may be used.
- the first and second polarizable electrodes 124 a and 124 b may be manufactured by making an electrode material mainly consisting of powdered activated carbon into a solid-state sheet or adhering electrode material slurry onto the first and second current collectors 123 a and 123 b.
- the separator 125 may be formed of a porous material through which ions can permeate.
- a porous material such as polypropylene, polyethylene, or glass fiber may be used.
- the material is not limited thereto.
- the electric double layer capacitor cell 120 used in this embodiment may be replaced with other cells being formed to have various shapes.
- a multi-layered electric double layer capacitor cell, a winding-type electric double layer capacitor cell or the like may be used.
- the electric double layer capacitor cell 120 is electrically connected to the first and second external terminals 112 a and 112 b through the first and second current collectors 123 a and 123 b .
- the shapes and the structures of the first and second current collectors 123 a and 123 b may be appropriately modified so as to make electrical connections with the first and second external terminals 112 a and 112 b.
- the electric double layer capacitor cell 120 disposed in the housing space of the resin case 111 is electrically connected to portions of the first and second external terminals 112 a and 112 b exposed to the housing space.
- the connection between the electric double layer capacitor cell 120 and the first and second external terminals 112 a and 112 b may be made by welding or ultrasonic welding. Resistance welding or arc welding may be applied, but the connecting method is not limited thereto.
- Portions of the first and second external terminals 112 a and 112 b exposed to the outer surface of the resin case 111 are used to electrically connect the electric double layer capacitor cell 120 to an external power source.
- the first and second external terminals 112 a and 112 b may be formed on the same surface of the resin case 111 .
- the same surface may be provided as a mounting surface for the chip-type electric double layer capacitor 110 .
- Such a structure may allow for surface mounting without an additional structure.
- the chip-type electric double layer capacitor 110 includes a sealing portion 115 having a groove portion 115 a formed around the first and second external terminals 112 a and 112 b and a resin 115 b filling the groove portion 115 a .
- the groove portion 115 a may be formed around the first and second external terminals 112 a and 112 b by using a mold having a convex shape while the resin case 111 is formed by injection molding.
- first and second external terminals 112 a and 112 b and the resin case 111 are integrated by insert injection molding, but a minute crack may be caused therebetween due to heterogeneity between the materials thereof.
- the minute crack may allow the electrolyte to be spilled. Particularly, such an electrolyte spill may be caused during the mounting process and the use of the capacitor, and thus reliability may be reduced or lifespan may be lessened.
- the sealing portion 115 may allow for the sealing of the minute crack between the first and second external terminals 112 a and 112 b and the lower case 111 b .
- the electrolyte spill caused by external influences (e.g., vibrations) generated in the joining (e.g., ultrasonic welding) of the electric double layer capacitor cell 120 and the external terminals 112 a and 112 b may be effectively prevented.
- sealing portion 115 may contribute to an improvement in reliability as well as to the lifespan of the electric double layer capacitor cell 120 .
- the sealing portion 115 may be provided to both the first and second external terminals 112 a and 112 b . Also, the sealing portion 115 may be formed to enclose the circumference of the first and second external terminals 112 a and 112 b . In this manner, the first and second external terminals 112 a and 112 b and the lower case 111 b may be joined more completely.
- the groove portion 115 a employed in this embodiment is formed in the inner surface of the housing space of the resin case 111 . Therefore, the resin 115 b filling the groove portion 115 a is applied before the mounting of the electric double layer capacitor cell 120 .
- the sealing portion may be formed around any one of the first and second external terminals according to necessity. Also, the sealing portion may be provided by forming the groove portion in a necessary portion of the first and second external terminals without completely enclosing the circumference thereof.
- the resin 115 b used in the sealing portion 115 may be the same as that of the resin case 111 . However, the resin 115 b may also be different resin having superior malleability or strength in the joining of metals to the insulating resin of the resin case 111 .
- the resin 115 b of the sealing portion 115 may be curable resin such as epoxy resin, but is not limited thereto.
- multifunctional epoxy resin having two or more epoxy groups in a molecule such as bisphenol A epoxy resin and bisphenol novolac epoxy resin, may be used as the epoxy resin for the resin 115 b of the sealing portion 115 .
- the epoxy resin may include a cross-liking agent, if necessary.
- a chip-type electric double layer capacitor employed in the present invention may be modified in a variety of forms. Particularly, the structure of a lower case may be diversely modified according to shapes of external terminals.
- FIG. 9 is a side cross-sectional view illustrating a lower case of a chip-type electric double layer capacitor according to another exemplary embodiment of the present invention.
- a lower case 131 of FIG. 9 is understood with reference to a side cross-sectional view of the lower case shown in FIG. 10 , taken along line I-I′.
- the lower case 131 illustrated in this embodiment has a structure similar to that of FIG. 7 such that first and second external terminals 132 a and 132 b are disposed on the same surface, in which the same surface serves as a mounting surface.
- first and second external terminals 132 a and 132 b may extend from both ends of the same surface to both side surfaces connected to the ends, respectively.
- a chip-type electric double layer capacitor according to this embodiment When a chip-type electric double layer capacitor according to this embodiment is surface-mounted, its performance test may be performed by utilizing portions of the first and second external terminals 132 a and 132 b extending to the side surfaces.
- the sealing portion is formed on the inner surface of the housing space.
- the invention is not limited thereto. That is, the sealing portion may, if necessary, be formed on the outer surface of the lower case such that the sealing portion may be provided at boundary surfaces between the resin case and the external terminals, respectively.
- FIG. 11 illustrates a lower case employed in a chip-type electric double layer capacitor according to another exemplary embodiment of the present invention, in which the lower case has a sealing portion formed on the outer surface thereof.
- first and second external terminals 152 a and 152 b may have a plate structure, and portions thereof are bent at 180 degrees. This structure allows for an increase in contact area with the lower case 151 , so that strong joining may be ensured.
- a groove portion 155 a is formed around the circumference of the first and second external terminals 152 a and 152 b on the outer surface of the lower case 151 and the groove portion 155 a is filled with resin, thereby forming a desired sealing portion 155 .
- the sealing portion 155 may be formed outside a bent portion, i.e., a connecting portion of the inner and outer surfaces of the lower case 151 in a thickness direction thereof, of the first and second external terminals 152 a and 152 b without completely enclosing the entirety thereof.
- an electrolyte spill in the inside of the bent portion of the first and second external terminals 152 a and 152 b is properly prevented, an electrolyte spill may be effectively avoided with the sealing portion 155 formed only in the limited area.
- a chip-type electric double layer capacitor employs a shielding portion in an upper cap so that an electrolyte spill in a polarizable electrode during ultrasonic welding may be prevented and sealing interference caused thereby may be avoided. Since the shielding portion formed inwardly presses an electric double layer capacitor cell, an increase in product capacitance and a reduction in resistance may be achieved.
- a sealing portion prepared by using a groove portion formed around an external terminal, is used to appropriately seal a minute crack between an external terminal and a lower case.
- the sealing portion may effectively prevent an electrolyte spill caused by external influences such as vibrations generated when the external terminal and an electrode of a capacitor are joined through a welding process such as ultrasonic welding.
- a chip-type electric double layer capacitor according to exemplary embodiments of the invention has an improvement in reliability, as well as to the lifespan of an electric double layer capacitor cell.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/264,835 US9236198B2 (en) | 2009-11-05 | 2014-04-29 | Chip-type electric double layer capacitor cell and method of manufacturing the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2009-0106574 | 2009-11-05 | ||
KR1020090106574A KR101060850B1 (ko) | 2009-11-05 | 2009-11-05 | 칩형 전기 이중층 캐패시터 |
KR1020090106575A KR101060839B1 (ko) | 2009-11-05 | 2009-11-05 | 칩형 전기 이중층 캐패시터 및 그 제조방법 |
KR10-2009-0106575 | 2009-11-05 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/264,835 Division US9236198B2 (en) | 2009-11-05 | 2014-04-29 | Chip-type electric double layer capacitor cell and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110102972A1 true US20110102972A1 (en) | 2011-05-05 |
Family
ID=43925205
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/923,950 Abandoned US20110102972A1 (en) | 2009-11-05 | 2010-10-15 | Chip-type electric double layer capacitor cell and method of manufacturing the same |
US14/264,835 Expired - Fee Related US9236198B2 (en) | 2009-11-05 | 2014-04-29 | Chip-type electric double layer capacitor cell and method of manufacturing the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/264,835 Expired - Fee Related US9236198B2 (en) | 2009-11-05 | 2014-04-29 | Chip-type electric double layer capacitor cell and method of manufacturing the same |
Country Status (3)
Country | Link |
---|---|
US (2) | US20110102972A1 (ja) |
JP (2) | JP2011100998A (ja) |
CN (1) | CN102074385B (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110019338A1 (en) * | 2009-07-21 | 2011-01-27 | Panasonic Corporation | Capacitor |
US20140340817A1 (en) * | 2013-05-20 | 2014-11-20 | Amotech Co., Ltd. | Super capacitor |
US20160205769A1 (en) * | 2015-01-08 | 2016-07-14 | Samsung Electro-Mechanics Co., Ltd. | Multilayer ceramic electronic component and board having the same |
US9779886B2 (en) | 2012-10-24 | 2017-10-03 | Murata Manufacturing Co., Ltd. | Electronic component |
US9875856B2 (en) | 2013-06-14 | 2018-01-23 | Nippon Chemi-Con Corporation | Capacitor |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5689352B2 (ja) * | 2011-04-21 | 2015-03-25 | 太陽誘電株式会社 | 電気化学デバイス |
KR101488200B1 (ko) | 2013-09-06 | 2015-02-23 | (주) 스마트캡 | 개선된 전기이중층 커패시터 |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3215304A (en) * | 1963-06-21 | 1965-11-02 | Walter Glass | Battery case |
US3276913A (en) * | 1963-03-20 | 1966-10-04 | Globe Union Inc | One piece battery cover |
US3647556A (en) * | 1970-06-26 | 1972-03-07 | Gen Motors Corp | Storage battery cover |
US4663824A (en) * | 1983-07-05 | 1987-05-12 | Matsushita Electric Industrial Co., Ltd. | Aluminum electrolytic capacitor and a manufacturing method therefor |
US4737889A (en) * | 1984-07-17 | 1988-04-12 | Matsushita Electric Industrial Co., Ltd. | Polarizable electrode body and method for its making |
US4769745A (en) * | 1986-05-29 | 1988-09-06 | Licentia Patent Verwaltungs-Gmbh | Sealed capacitor winding container and process for hermetically sealing electrical component container with a lid |
US4882115A (en) * | 1987-12-17 | 1989-11-21 | U.S. Philips Corporation | Electrolytic capacitor and method for producing an electrolytic capacitor |
US5041696A (en) * | 1988-04-21 | 1991-08-20 | Siemens Aktiengesellschaft | Chip component for fastening to a circuit board, comprising an electrical or electronic function member |
US5253148A (en) * | 1991-03-01 | 1993-10-12 | Nec Corporation | Electric double layer capacitor |
US5381301A (en) * | 1993-05-11 | 1995-01-10 | Aerovox Incorporated | Leak-tight and rupture proof, ultrasonically-welded, polymer-encased electrical capacitor with pressure sensitive circuit interrupter |
US5638253A (en) * | 1994-04-28 | 1997-06-10 | Rohm Co. Ltd. | Package-type solid electrolytic capacitor |
US5862035A (en) * | 1994-10-07 | 1999-01-19 | Maxwell Energy Products, Inc. | Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes |
US6310762B1 (en) * | 1998-03-03 | 2001-10-30 | Jeol Ltd. | Carbon material for electric double layer capacitor, method of producing same, electric double layer capacitor and method of fabricating same |
US6459564B1 (en) * | 1999-01-26 | 2002-10-01 | Seiko Instruments Inc. | Electrical double layer capacitor and portable electronic apparatus equipped with electrical double layer capacitor |
US6461763B1 (en) * | 2000-01-13 | 2002-10-08 | The Gillette Company | Battery cartridge |
US6518501B1 (en) * | 1999-10-26 | 2003-02-11 | Nrs Technologies Inc. | Electronic part and method of assembling the same |
US20030112581A1 (en) * | 2001-12-18 | 2003-06-19 | Kyeong-Tae Kwon | Electric double layer capacitor and method of fabricating the same |
US20050231893A1 (en) * | 2004-04-19 | 2005-10-20 | Harvey Troy A | Electric double layer capacitor enclosed in polymer housing |
JP2006012792A (ja) * | 2004-05-28 | 2006-01-12 | Kyocera Corp | 電池用ケースおよび電池ならびに電気二重層キャパシタ用ケースおよび電気二重層キャパシタ |
US7031140B2 (en) * | 2003-12-03 | 2006-04-18 | Sanyo Electric Co., Ltd. | Electric double layer capacitor, electrolytic cell and process for fabricating same |
US7145763B2 (en) * | 2005-03-31 | 2006-12-05 | Korchip Co., Ltd. | High-voltage electric double layer capacitor |
US7180726B2 (en) * | 2003-11-07 | 2007-02-20 | Maxwell Technologies, Inc. | Self-supporting capacitor structure |
US7256981B2 (en) * | 2005-05-27 | 2007-08-14 | Tdk Corporation | Electric double layer capacitor |
US7326261B2 (en) * | 2004-10-27 | 2008-02-05 | Nec Tokin Corporation | Surface-mount capacitor and method of producing the same |
US20080123253A1 (en) * | 2006-11-29 | 2008-05-29 | Nec Tokin Corporation | Surface-mount type electrolytic capacitor and method of producing the same |
US7570479B2 (en) * | 2007-10-23 | 2009-08-04 | Gemmy Electronics Co., Ltd. | Solid electrolytic capacitor |
US20100214721A1 (en) * | 2009-02-23 | 2010-08-26 | Samsung Electro-Mechanics Co., Ltd. | Electric double layer capacitor package |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4408259A (en) * | 1979-02-09 | 1983-10-04 | Matsushita Electric Industrial Company, Limited | Electrochemical double-layer capacitor |
JPS6473612A (en) * | 1987-09-14 | 1989-03-17 | Nec Corp | Chip type electrolytic capacitor |
JP3479570B2 (ja) * | 1994-04-28 | 2003-12-15 | ローム株式会社 | パッケージ型固体電解コンデンサの構造 |
JPH11191520A (ja) * | 1997-12-26 | 1999-07-13 | Tdk Corp | チップ型電気二重層コンデンサ |
JP4723708B2 (ja) | 2000-06-06 | 2011-07-13 | アァルピィ東プラ株式会社 | 電池パック及びその製造方法 |
JP2002184370A (ja) | 2000-12-15 | 2002-06-28 | Sony Corp | 活電部保護電池ケース |
JP3766323B2 (ja) | 2001-11-28 | 2006-04-12 | 日産ディーゼル工業株式会社 | 電気二重層キャパシタセルの製造方法及び製造装置 |
JP4192486B2 (ja) | 2002-03-29 | 2008-12-10 | ソニー株式会社 | 電池パック |
JP2005019790A (ja) * | 2003-06-27 | 2005-01-20 | Sanyo Electric Co Ltd | 電気二重層コンデンサ及び電池 |
EP1630834A1 (en) * | 2003-05-30 | 2006-03-01 | Sanyo Electric Co., Ltd. | Electric double layer capacitor and electrolytic cell |
JP2005166974A (ja) * | 2003-12-03 | 2005-06-23 | Sanyo Electric Co Ltd | 電気二重層コンデンサ、電解質電池及びこれらの製造方法 |
JP2005259728A (ja) * | 2004-03-09 | 2005-09-22 | Sanyo Electric Co Ltd | 電気二重層キャパシタ及びその製造方法 |
JP2006049289A (ja) * | 2004-06-29 | 2006-02-16 | Kyocera Corp | 電池用ケースおよび電池ならびに電気二重層キャパシタ用ケースおよび電気二重層キャパシタ |
JP2007201383A (ja) * | 2006-01-30 | 2007-08-09 | Sanyo Electric Co Ltd | 蓄電デバイス |
JP2007207920A (ja) * | 2006-01-31 | 2007-08-16 | Sanyo Electric Co Ltd | キャパシタ |
JP4889037B2 (ja) | 2006-11-29 | 2012-02-29 | Necトーキン株式会社 | 表面実装型電解コンデンサおよびその製造方法 |
JP2011014859A (ja) * | 2009-01-27 | 2011-01-20 | Panasonic Corp | 電気二重層キャパシタ |
CN201774454U (zh) * | 2010-06-21 | 2011-03-23 | 国琏电子(上海)有限公司 | 离子散热设备 |
-
2010
- 2010-10-15 US US12/923,950 patent/US20110102972A1/en not_active Abandoned
- 2010-10-18 JP JP2010233842A patent/JP2011100998A/ja active Pending
- 2010-11-05 CN CN2010105428915A patent/CN102074385B/zh not_active Expired - Fee Related
-
2013
- 2013-01-16 JP JP2013005442A patent/JP5594497B2/ja not_active Expired - Fee Related
-
2014
- 2014-04-29 US US14/264,835 patent/US9236198B2/en not_active Expired - Fee Related
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3276913A (en) * | 1963-03-20 | 1966-10-04 | Globe Union Inc | One piece battery cover |
US3215304A (en) * | 1963-06-21 | 1965-11-02 | Walter Glass | Battery case |
US3647556A (en) * | 1970-06-26 | 1972-03-07 | Gen Motors Corp | Storage battery cover |
US4663824A (en) * | 1983-07-05 | 1987-05-12 | Matsushita Electric Industrial Co., Ltd. | Aluminum electrolytic capacitor and a manufacturing method therefor |
US4737889A (en) * | 1984-07-17 | 1988-04-12 | Matsushita Electric Industrial Co., Ltd. | Polarizable electrode body and method for its making |
US4769745A (en) * | 1986-05-29 | 1988-09-06 | Licentia Patent Verwaltungs-Gmbh | Sealed capacitor winding container and process for hermetically sealing electrical component container with a lid |
US4882115A (en) * | 1987-12-17 | 1989-11-21 | U.S. Philips Corporation | Electrolytic capacitor and method for producing an electrolytic capacitor |
US5041696A (en) * | 1988-04-21 | 1991-08-20 | Siemens Aktiengesellschaft | Chip component for fastening to a circuit board, comprising an electrical or electronic function member |
US5253148A (en) * | 1991-03-01 | 1993-10-12 | Nec Corporation | Electric double layer capacitor |
US5381301A (en) * | 1993-05-11 | 1995-01-10 | Aerovox Incorporated | Leak-tight and rupture proof, ultrasonically-welded, polymer-encased electrical capacitor with pressure sensitive circuit interrupter |
US5638253A (en) * | 1994-04-28 | 1997-06-10 | Rohm Co. Ltd. | Package-type solid electrolytic capacitor |
US5862035A (en) * | 1994-10-07 | 1999-01-19 | Maxwell Energy Products, Inc. | Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes |
US6310762B1 (en) * | 1998-03-03 | 2001-10-30 | Jeol Ltd. | Carbon material for electric double layer capacitor, method of producing same, electric double layer capacitor and method of fabricating same |
US6459564B1 (en) * | 1999-01-26 | 2002-10-01 | Seiko Instruments Inc. | Electrical double layer capacitor and portable electronic apparatus equipped with electrical double layer capacitor |
US6518501B1 (en) * | 1999-10-26 | 2003-02-11 | Nrs Technologies Inc. | Electronic part and method of assembling the same |
US6461763B1 (en) * | 2000-01-13 | 2002-10-08 | The Gillette Company | Battery cartridge |
US20030112581A1 (en) * | 2001-12-18 | 2003-06-19 | Kyeong-Tae Kwon | Electric double layer capacitor and method of fabricating the same |
US7180726B2 (en) * | 2003-11-07 | 2007-02-20 | Maxwell Technologies, Inc. | Self-supporting capacitor structure |
US7031140B2 (en) * | 2003-12-03 | 2006-04-18 | Sanyo Electric Co., Ltd. | Electric double layer capacitor, electrolytic cell and process for fabricating same |
US20050231893A1 (en) * | 2004-04-19 | 2005-10-20 | Harvey Troy A | Electric double layer capacitor enclosed in polymer housing |
JP2006012792A (ja) * | 2004-05-28 | 2006-01-12 | Kyocera Corp | 電池用ケースおよび電池ならびに電気二重層キャパシタ用ケースおよび電気二重層キャパシタ |
US7326261B2 (en) * | 2004-10-27 | 2008-02-05 | Nec Tokin Corporation | Surface-mount capacitor and method of producing the same |
US7145763B2 (en) * | 2005-03-31 | 2006-12-05 | Korchip Co., Ltd. | High-voltage electric double layer capacitor |
US7256981B2 (en) * | 2005-05-27 | 2007-08-14 | Tdk Corporation | Electric double layer capacitor |
US20080123253A1 (en) * | 2006-11-29 | 2008-05-29 | Nec Tokin Corporation | Surface-mount type electrolytic capacitor and method of producing the same |
US7570479B2 (en) * | 2007-10-23 | 2009-08-04 | Gemmy Electronics Co., Ltd. | Solid electrolytic capacitor |
US20100214721A1 (en) * | 2009-02-23 | 2010-08-26 | Samsung Electro-Mechanics Co., Ltd. | Electric double layer capacitor package |
Non-Patent Citations (1)
Title |
---|
Machine translation of JP2005166974A * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110019338A1 (en) * | 2009-07-21 | 2011-01-27 | Panasonic Corporation | Capacitor |
US8248759B2 (en) * | 2009-07-21 | 2012-08-21 | Panasonic Corporation | Capacitor |
US9779886B2 (en) | 2012-10-24 | 2017-10-03 | Murata Manufacturing Co., Ltd. | Electronic component |
US20140340817A1 (en) * | 2013-05-20 | 2014-11-20 | Amotech Co., Ltd. | Super capacitor |
US9875856B2 (en) | 2013-06-14 | 2018-01-23 | Nippon Chemi-Con Corporation | Capacitor |
US20160205769A1 (en) * | 2015-01-08 | 2016-07-14 | Samsung Electro-Mechanics Co., Ltd. | Multilayer ceramic electronic component and board having the same |
US9491847B2 (en) * | 2015-01-08 | 2016-11-08 | Samsung Electro-Mechanics Co., Ltd. | Multilayer ceramic electronic component and board having the same |
Also Published As
Publication number | Publication date |
---|---|
CN102074385A (zh) | 2011-05-25 |
CN102074385B (zh) | 2013-03-13 |
US20140233155A1 (en) | 2014-08-21 |
US9236198B2 (en) | 2016-01-12 |
JP5594497B2 (ja) | 2014-09-24 |
JP2013065906A (ja) | 2013-04-11 |
JP2011100998A (ja) | 2011-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9236198B2 (en) | Chip-type electric double layer capacitor cell and method of manufacturing the same | |
CN101459236B (zh) | 保护电路组件及具有该组件的电池组 | |
US20090181297A1 (en) | Storage cell | |
US8254084B2 (en) | Chip type electric double layer capacitor and method for manufacturing the same | |
US20110128673A1 (en) | Chip-type electric double layer capacitor and method of manufacturing the same | |
US9070513B2 (en) | Method of manufacturing chip-type electric double layer capacitor | |
US20100214721A1 (en) | Electric double layer capacitor package | |
US20110188169A1 (en) | Electric double layer capacitor cell, electric double layer capacitor package having the same, and methods of manufacturing the same | |
KR101060839B1 (ko) | 칩형 전기 이중층 캐패시터 및 그 제조방법 | |
JP5050519B2 (ja) | 面実装用方形蓄電セル | |
KR101060850B1 (ko) | 칩형 전기 이중층 캐패시터 | |
JP2006303269A (ja) | 電気二重層キャパシタ及び電気二重層キャパシタモジュール | |
KR101337373B1 (ko) | 표면 실장형 슈퍼 커패시터 | |
KR101067177B1 (ko) | 칩형 전기 이중층 커패시터 및 그 제조방법 | |
KR20130140956A (ko) | 세라믹 플랫형 전기이중층 커패시터 | |
KR101306601B1 (ko) | 표면 실장형 슈퍼 커패시터 | |
KR101306600B1 (ko) | 표면 실장형 슈퍼 커패시터의 제조 방법 | |
KR101244280B1 (ko) | 케이스 단자를 갖는 슈퍼 커패시터 | |
KR101133374B1 (ko) | 칩형 전기 이중층 커패시터 및 그 제조방법 | |
KR101549814B1 (ko) | 표면 실장형 슈퍼 커패시터 및 그의 제조 방법 | |
KR101306598B1 (ko) | 패키지형 전기이중층 커패시터 | |
KR101070084B1 (ko) | 칩형 전기 이중층 커패시터 및 그 제조방법 | |
KR101416812B1 (ko) | 기밀 보호층을 갖는 표면 실장형 슈퍼 커패시터 | |
KR20130085563A (ko) | 표면 실장형 슈퍼 커패시터 및 그의 제조 방법 | |
KR20170051832A (ko) | 표면 실장형 슈퍼 커패시터 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SAMSUNG ELECTRO-MECHANICS CO., LTD., KOREA, REPUBL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JUNG, CHANG RYUL;LEE, SUNG HO;PARK, DONG SUP;AND OTHERS;SIGNING DATES FROM 20100809 TO 20100810;REEL/FRAME:025194/0682 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |