US20110005510A1 - Fire Grate for Enhanced Combustion - Google Patents

Fire Grate for Enhanced Combustion Download PDF

Info

Publication number
US20110005510A1
US20110005510A1 US12/501,869 US50186909A US2011005510A1 US 20110005510 A1 US20110005510 A1 US 20110005510A1 US 50186909 A US50186909 A US 50186909A US 2011005510 A1 US2011005510 A1 US 2011005510A1
Authority
US
United States
Prior art keywords
baffle plate
combustion chamber
combustion
end portion
combustion zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/501,869
Inventor
Steve Marple
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Earth's Flame Inc
Original Assignee
JOE LEIGHTON AND ASSOCIATES Inc dba CANTERBURY ENTERPRISES
Earth's Flame Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/501,869 priority Critical patent/US20110005510A1/en
Application filed by JOE LEIGHTON AND ASSOCIATES Inc dba CANTERBURY ENTERPRISES, Earth's Flame Inc filed Critical JOE LEIGHTON AND ASSOCIATES Inc dba CANTERBURY ENTERPRISES
Assigned to JOE LEIGHTON AND ASSOCIATES, INC. DBA CANTERBURY ENTERPRISES reassignment JOE LEIGHTON AND ASSOCIATES, INC. DBA CANTERBURY ENTERPRISES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MARPLE, STEVE, MR.
Priority to US12/620,453 priority patent/US20110005509A1/en
Priority to US12/719,742 priority patent/US8602020B2/en
Priority to PCT/US2010/041718 priority patent/WO2011008699A1/en
Assigned to EARTH'S FLAME, INC. reassignment EARTH'S FLAME, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOE LEIGHTON & ASSOCIATES, INC. DBA CANTERBURY ENTERPRISES
Publication of US20110005510A1 publication Critical patent/US20110005510A1/en
Priority to US13/443,583 priority patent/US20120192855A1/en
Priority to US13/453,865 priority patent/US8528540B2/en
Priority to US14/087,291 priority patent/US20140076304A1/en
Priority to US14/134,095 priority patent/US20140102437A1/en
Priority to US15/145,035 priority patent/US20160245530A1/en
Priority to US15/423,253 priority patent/US20170146245A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B1/00Stoves or ranges
    • F24B1/18Stoves with open fires, e.g. fireplaces
    • F24B1/185Stoves with open fires, e.g. fireplaces with air-handling means, heat exchange means, or additional provisions for convection heating ; Controlling combustion
    • F24B1/189Stoves with open fires, e.g. fireplaces with air-handling means, heat exchange means, or additional provisions for convection heating ; Controlling combustion characterised by air-handling means, i.e. of combustion-air, heated-air, or flue-gases, e.g. draught control dampers 
    • F24B1/19Supplying combustion-air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H3/00Grates with hollow bars
    • F23H3/04Grates with hollow bars externally cooled, e.g. with water, steam or air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B1/00Stoves or ranges
    • F24B1/18Stoves with open fires, e.g. fireplaces
    • F24B1/1808Simulated fireplaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B1/00Stoves or ranges
    • F24B1/18Stoves with open fires, e.g. fireplaces
    • F24B1/191Component parts; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B1/00Stoves or ranges
    • F24B1/18Stoves with open fires, e.g. fireplaces
    • F24B1/191Component parts; Accessories
    • F24B1/193Grates; Irons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B1/00Stoves or ranges
    • F24B1/18Stoves with open fires, e.g. fireplaces
    • F24B1/191Component parts; Accessories
    • F24B1/199Fuel-handling equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C3/00Stoves or ranges for gaseous fuels
    • F24C3/002Stoves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the improved fire grate for enhanced combustion relates to an apparatus for improving efficiency of a fireplace in relation to reduction in harmful emissions and/or heating a room.
  • a fireplace is a structure to contain a fire for heating.
  • the fire is contained within a firebox which defines a combustion chamber.
  • a chimney or other flue directs combustion gas to the environment.
  • emissions e.g., particulate, carbon monoxide, volatile organic compounds, etc.
  • Time is residence time or the amount of time combustion gas remains within the combustion chamber. The longer the combustion gas stays within the combustion chamber, the more complete the combustion process and harmful emissions are reduced.
  • Temperature relates to the temperature within the combustion chamber. The higher the temperature, the better and efficient the burn. As such, there are less harmful emissions.
  • Turbulence relates to the amount of air mixing occurring within the combustion chamber. During operation of the fireplace, the biomass/fuel being burned consumes oxygen in the surrounding area. Fresh air is introduced into the combustion chamber through the fireplace opening. Stratified columns of fresh oxygen rich air rise up in the combustion chamber along side the starved combustion gases. The harmful emissions contained within the oxygen starved combustion gases do not come into contact with the oxygen rich air. Turbulence promotes mixing of the stratified layers or columns of fresh oxygen rich air with the oxygen starved air to encourage a cleaner burn and reduce harmful emissions.
  • the biomass/fuel being burned produces harmful emissions because the residence time of the combustion gas in the combustion chamber may be too short to allow the biomass/fuel to completely combust. Additionally, the biomass/fuel being burned may not completely combust because the temperature within the combustion chamber may be too low. Moreover, during the combustion process of the biomass/fuel, oxygen in the surrounding area of the biomass/fuel is consumed thereby producing oxygen starved combustion gases. These oxygen starved combustion gases rise, containing the harmful emissions, up through the combustion chamber into the chimney and out into the environment in a vertical column.
  • the improved fire grate addresses the needs of reducing harmful emissions discussed above, discussed below and those that are known in the art.
  • the improved fire grate may be disposed within a combustion chamber of a conventional fireplace.
  • the conventional fireplace defines a single combustion zone.
  • the improved fire grate creates two combustion zones, a primary and secondary combustion zone. This primary combustion zone is at the lower portion of the combustion chamber.
  • the primary combustion zone is the part of the combustion chamber in which the biomass/fuel is being burned. During combustion or burning of biomass/fuel, combustion gases will rise up due to convection (i.e., rising hot air). Any harmful emissions (e.g., particulate matter, carbon monoxide, etc.) may float or be contained within that combustion gas stream.
  • the improved fire grate comprises a hollow tubular conduit that routes fresh oxygen rich air into the combustion chamber and releases the fresh oxygen rich air in a secondary combustion zone of the combustion process.
  • the secondary combustion zone is above the primary combustion zone within the combustion chamber.
  • the hollow tubular conduit may bring fresh oxygen rich air from the room through the fireplace opening or from any reliable oxygen rich air source.
  • the hollow tubular conduit may be routed to the back of the fireplace up and over the biomass/fuel.
  • the hollow tubular conduit may have a plurality of air apertures for releasing the fresh oxygen rich air into the secondary combustion zone where it generally has less oxygen compared to the primary combustion zone.
  • the hollow tubular conduit may define an upper frame comprised of a plurality of hollow tubes. These tubes may be configured to cover a substantial area of the combustion chamber over the biomass/fuel.
  • first and second tubes may be generally parallel and be placed at the front and rear of the combustion chamber.
  • Side tubes may be in fluid communication with the front and rear tubes.
  • One or more of the first tube, second tube and side tubes may have air apertures which permit the air brought in from the fresh oxygen rich air source to be introduced into the secondary combustion zone of the combustion chamber.
  • the fresh oxygen rich air is introduced into the secondary combustion zone since the secondary combustion zone will typically have less air or oxygen.
  • the air or oxygen resident within the fireplace was partially consumed during the burning process in the primary combustion zone.
  • the combustion gas that rises above the fuel source into the secondary combustion zone is oxygen starved.
  • the fresh oxygen rich air introduced into the secondary combustion zone via the hollow tubular conduit provides an additional source of fresh oxygen rich air to assist in the completion of the burning process for the incompletely combusted harmful emissions.
  • the fresh oxygen rich air may be preheated prior to introduction in the secondary combustion zone to maintain the temperature at the secondary combustion zone. This is accomplished by routing the hollow tubular conduit from the fireplace opening, back to the rear of the combustion chamber, and up to the secondary combustion zone. The hollow tubular conduit is exposed to the heat in the combustion chamber.
  • a baffle plate may be disposed over the biomass/fuel to be burned.
  • the baffle plate interrupts the flame path rising up from the biomass/fuel being burnt in the sense of velocity, direction and turbulence.
  • the interruption of the flame path encourages larger incompletely burned harmful particulate to fall out of the combustion gas stream and may be reentrained in the combustion gas stream at an earlier point and rise back up toward the baffle plate. This allows the harmful particulate to stay within the flame path for a longer period of time (i.e., longer residence time) and promotes more complete combustion thereby reducing harmful emissions.
  • There are generally less harmful particulate the more time the particulate stays within the combustion chamber.
  • the baffle plate may be fabricated from a refractory material or another material having good insulation characteristics. As such, the baffle plate increases the temperature at the secondary combustion zone as well as the primary combustion zone to promote complete burning of the harmful particulate matter. It is also contemplated that the baffle plate may have a lower surface formed with a plurality of channels or other groove shapes to interrupt the flow of gas flowing up from the fuel source to the chimney. The channels or grooves formed in the lower surface of the baffle plate may be configured to route the combustion gas stream toward the sides of the baffle plate. When the gas stream from the sides of the baffle plate and the gas stream from the front of the baffle plate recombines above the baffle plate, turbulence may occur which promotes mixing of oxygen rich air with the oxygen starved air.
  • the baffle plate may also be tilted in the forward direction. Provided that the baffle plate also has good emissivity characteristics, the forward tilt may redirect heat from the burning biomass/fuel into the room to be heated. This may also allow the improved fire grate with enhanced combustion to be utilized in a zero clearance fireplace as well as a masonry fireplace.
  • the baffle plate may optionally be disposed slightly forward of the fuel source to allow flames from the fuel source to rise up behind the baffle plate. This further splits up the gas stream such that the recombined gas streams above the baffle plate may be more turbulent and promote mixing of oxygen starved and oxygen rich air.
  • a log lighter may be disposed in the primary combustion zone and below the biomass/fuel to be burned. This log lighter aids in rapid ignition of the biomass/fuel.
  • the log lighter may be turned off after the biomass/fuel starts its burning process.
  • the log lighter may be left on to promote efficient burning of the fuel source.
  • Other log lighters may be disposed at other areas within the combustion chamber.
  • one or more log lighters may be disposed in the secondary combustion zone of the combustion chamber.
  • the baffle plate redirects the combusted gas stream having harmful emissions therein.
  • the log lighter disposed in the secondary combustion zone may increase temperature in the secondary combustion zone. The increased temperature aids in completing the burning process of the biomass/fuel and reducing harmful emissions.
  • the improved fire grate provides for a unique and efficient supplement to any existing fireplace.
  • FIG. 1 is a perspective view of an improved fire grate
  • FIG. 2 is a cross sectional view of the improved fire grate shown in FIG. 1 ;
  • FIG. 3 is an exploded perspective view of the improved fire grate shown in FIG. 1 ;
  • FIG. 4 is an enlarged view of a log lighter shown in FIG. 1 having aligned holes;
  • FIG. 4A is cross sectional view of an elongate tube of the log lighter shown in FIG. 4 ;
  • FIG. 5 is an alternate embodiment of the log lighter having staggered holes
  • FIG. 6 is a schematic of an ignition system and logic control system.
  • the improved fire grate 10 may be disposed within a combustion chamber 12 (see FIG. 2 ) of a fireplace 14 .
  • the improved fire grate 10 introduces oxygen rich air to a secondary combustion zone 50 of the combustion chamber 12 , retains heat within the combustion chamber 12 to increase a temperature of the combustion chamber 12 , encourages mixing of oxygen rich air with oxygen starved combustion gas stream, and increases residence time of the combustion gas stream for the purpose of reducing harmful emissions during fireplace use.
  • the improved fire grate 10 may be fabricated from a tubular design made from a cost effective material (e.g., steel, aluminum ceramics, etc.) of appropriate temperature and chemical resistance characteristic.
  • the fire grate 10 may have an adjustable width 22 .
  • the improved fire grate 10 may have a first side 24 and a second side 26 .
  • the first side 24 may have a plurality of tubes 28 a - d which are slidably insertable into tubes 30 a - d of the second side 26 of the improved fire grate 10 .
  • the tubes 28 a - d telescope into and out of the tubes 30 a - d .
  • the tubes 28 a, b, c, d may be insertable into tubes 30 a, b, c, d, respectively.
  • the tubes 28 a - d may have a frictional fit with tubes 30 a - d such that once the tubes 28 a - d are inserted into tubes 30 a - d , they 28 a - d and 30 a - d are set and do not need further adjustment to fit the combustion chamber 12 .
  • the installer adjusts the width 22 such that the first and second sides 24 , 26 fill a substantial area of the combustion chamber 12 .
  • the first and second sets of tubes 28 a - d and 30 a - d may be fixed in relation to each other through a pin, setscrew or other means known in the art.
  • the improved fire grate 10 may have an adjustable height.
  • vertical tubes 38 a, b may be telescoping and set to a height to fit within the combustion chamber 12 .
  • the telescoping length of the tubes 38 a, b may be set by friction fit, pin, set screw or other means known in the art.
  • the improved fire grate 10 may have an upper frame 32 and a lower frame 34 .
  • the upper frame 32 may comprise the tubes 28 a, b and 30 a, b but also hollow tubes 28 e and 30 e which may be splayed to fit the general configuration of combustion chambers 12 of modern fireplaces 14 and/or to provide better cover of the burning biomass/fuel 20 .
  • One or more of the tubes 28 a, b, e and 30 a, b, e may have a plurality of air outlet holes 36 which introduces fresh oxygen rich air above the biomass/fuel 20 , as shown in FIG. 2 .
  • the air outlet holes 36 may be formed to direct air down toward the biomass/fuel 20 , and/or out toward the outer periphery of the upper frame 32 and/or inward toward the inner periphery of the upper frame 32 .
  • Fresh oxygen rich air 44 may be supplied to the upper frame 32 and out of the air outlet holes 36 via tubular supports 38 a, b (see FIG. 3 ) and an airflow path through the tubes 40 a and 42 a (see FIG. 3 ) of the lower frame 34 .
  • fresh air or oxygen 44 may enter through the tubes 40 a , 42 a of the lower frame 34 through induction (convection), forced airflow (e.g., blower), or other means known in the art. If via induction, the fire in the combustion chamber 12 heats up the tubes 38 a , 38 b , 40 a , 42 a , and the upper frame 32 . Since hot air rises, the heat air rises through the tubes 38 a , 38 b , 40 a , 42 a , and the upper frame 32 and out of the air outlet holes 36 . The fresh oxygen rich air 44 may be taken from the bottom front of the fireplace 14 or another fresh air source.
  • induction convection
  • forced airflow e.g., blower
  • the fresh oxygen rich air 44 flows through the tubes 40 a , 42 a and up through the tubular supports 38 a, b.
  • the fresh oxygen rich air 44 may be distributed throughout the tubular structure of the upper frame 32 and exit out of the air outlet holes 36 formed in one or more of the tubes 28 a, b, e and 30 a, b, e.
  • the fresh oxygen rich air 44 flows through the tubular structure 38 , 40 a , 42 a , the fresh oxygen rich air 44 is preheated prior to being introduced into a secondary combustion zone 48 of the combustion chamber 12 (see FIG. 2 ) to maintain the higher temperature within the combustion chamber.
  • the biomass/fuel 20 is burned in a primary combustion zone 50 (see FIG. 2 ), namely, at the biomass/fuel 20 .
  • the combustion process consumes both the biomass/fuel 20 as well as the surrounding oxygen 52 .
  • some of the biomass/fuel 20 does not completely burn and rises as a of the combustion gas stream which includes harmful emissions such as particulate matter 46 . Since hot air rises, the particulate matter 46 rises along with the rising combustion gas stream into the secondary combustion zone 48 where the particulate 46 comes into contact with fresh oxygen rich air 44 introduced into the secondary combustion zone 48 of the burning process via the upper frame 32 .
  • the introduction of fresh oxygen rich air 44 at the secondary combustion zone 48 assists to further the burning process to mitigate release of harmful emissions into the environment.
  • oxygen rich air exits out of the holes 36 (see FIG. 3 ) in a location (i.e., secondary combustion zone of the combustion chamber) which is oxygen starved to complete the combustion and reduce harmful emissions.
  • the combustion gas stream may contain columns or stratified columns of oxygen starved air as well as oxygen rich air.
  • the location of the holes 36 may be placed at a location where oxygen starved air is expected.
  • a baffle plate 54 having good insulating characteristics may be disposed about the inner periphery of the upper frame 32 .
  • the baffle plate 54 may be fabricated from a refractory material.
  • the inner periphery of the upper frame 32 may have a plurality of tabs 56 to hold up the baffle plate 54 within the inner periphery of the upper frame 32 .
  • the improved fire grate 10 may be provided with a plurality of baffle plate slabs 58 a - e such that the appropriate slabs 58 a - e may be fitted to the width 22 of the improved fire grate 10 .
  • the slabs 58 a - e are shown in FIG. 3 .
  • the baffle plate 54 may be tilted in the forward direction, as shown in FIG. 2 . This is to aid in reflecting heat out through the fireplace opening 16 . More particularly, the lower surface 60 of the baffle plate 54 may face the fireplace opening 16 to accomplish the reflection of heat through the fireplace opening 16 .
  • the baffle plate 54 as discussed above, may have good insulating characteristics.
  • the baffle plate 54 may also increase the temperature in the secondary combustion zone 48 of the combustion chamber 12 to further encourage the combustion process and reduce harmful emissions.
  • the increased heat in the secondary combustion zone 48 caused by the baffle plate 54 aids in the burning process of the harmful emissions in the secondary combustion zone 48 as well as in the primary combustion zone 50 to reduce harmful emissions into the atmosphere.
  • baffle plates 55 a, b, c may be disposed at other areas of the improved fire grate 10 , as shown in FIG. 1 .
  • a baffle plate 55 a may be attached to the rear side of the improved fire grate 10 at tubes 38 a, b .
  • the baffle plate 54 attached to these tubes 38 a, b may extend from the lower frame 34 to the upper frame 32 to increase a temperature within the primary combustion zone 50 and the secondary combustion zone 48 .
  • Additional baffle plates 55 b, c may be lined on the sides of the improved fire grate 10 that extends from tubes 40 a , 28 e and 42 a , 30 e .
  • baffle plates 55 a, b, c as well as baffle plate 54 also aid in maintaining or increasing the temperature at the primary combustion zone 50 and the secondary combustion zone 48 and promote more efficient combustion of the biomass/fuel 20 .
  • the baffle plates 55 a, b, c may be attached to the fire grate 10 via adhesives, nut and bolts and/or other attachment methods known in the art.
  • the baffle plate 54 increases gas residence time of the combustion gas in the primary and secondary combustion zones 50 , 48 thereby encouraging or promoting more complete combustion of the biomass/fuel 20 and reduction of harmful particulate. Additionally, the flame produced by the fuel source 20 may impinge the baffle plate 54 . As a result, larger particulate 46 may drop out of the combustion gas stream back toward the primary combustion zone 50 and reenter the combustion gas stream. The residence time of the larger particulate 46 in the combustion gas stream is increased which provides additional time for the larger particulate 46 to complete its combustion process.
  • the baffle plate 54 also prevents the combustion gas from going straight up through the chimney but rather provides a barrier to provide a circuitous flame path around the baffle plate 54 . Since the natural vertical flame path is interrupted, mixing of oxygen rich air with oxygen starved air is encouraged. Additionally, since the length of the flame path is now increased, residence time of the combustion gas in the primary and secondary combustion zones 50 , 48 is increased to promote more complete combustion and reduction of harmful emissions.
  • the baffle plate 54 since the baffle plate 54 is tilted forward, the gas as well as the particulate 46 following such combusted gas stream is re-directed to the front of the improved fire grate 10 at the upper frame 32 where oxygen 44 is introduced to encourage more complete combustion and to reduce harmful emissions (e.g., particulate matter, carbon monoxide, etc.). It is contemplated that the baffle plate 54 may optionally be disposed slightly forward of the fuel source 20 such that a portion of the flames and combustion gas proceeds past the back of the baffle plate 54 . Please note that the fresh oxygen rich air 44 may also be supplied to the back side via tubes 28 a , 30 a to aid in combustion of the such combustion gas and particulate.
  • the lower surface 60 of the baffle plate 54 may have channels 65 that extend horizontally from left to right. These channels may have a semicircular concave configuration as shown in FIG. 2 but other configurations (e.g., vertical, diagonal, etc.) are also contemplated.
  • the channels 65 promote the gas to flow toward the perimeter (e.g., sides) of the improved fire grate 10 .
  • the combustion gas may be divided into two or more flame paths, namely, a portion of the combustion gas may proceed forward and around the front edge of the baffle plate 54 .
  • the combustion gas may flow outward toward the sides of the baffle plate 54 and around the baffle plate 54 to join up with the combustion gas that flowed past the front edge of the baffle plate 54 .
  • the separation and recombination of these flame paths encourage mixing of air above the baffle plate 54 .
  • a portion of the combustion gas stream may pass the rear edge of the baffle plate. This increases mixing action, increases particulate drop out and residence gas time within the primary and secondary combustion zones 50 , 48 .
  • the channels 65 may extend vertically to route combustion gas to the front side of the upper frame 32 .
  • through holes 67 may be formed through the baffle plate 54 that extend from the lower surface 60 and/or channels 65 to the upper surface 69 for the purposes of encouraging particulate removal and mixing of oxygen rich air with the oxygen starved air.
  • one or more fire sources 62 may be disposed at select locations within the secondary combustion zone 48 .
  • the fire sources 62 may be an elongate tube 64 with a plurality of holes 66 that may be directed outward. These elongate tubes 64 with holes 66 are supplied with combustible gas such as propane, natural gas, etc. via a system of tubes from a gas source.
  • the fire sources 62 may be a log lighter sold under the trademark BLUE FLAME.
  • the fire source 62 a is shown in FIGS. 1 and 2 .
  • Flammable gas (e.g., propane, natural gas, etc.) may be routed to the fire sources 62 a, b via pipes 63 .
  • the user may ignite the gas flowing out of the holes 66 of the elongate tube 64 .
  • the rapid ignition and additional heat increases the temperature in the primary combustion zone 50 to reduce harmful emissions and support additional combustion of flue gases.
  • Additional fire sources 62 may also be disposed within the secondary combustion zone 48 such as at the rear (see fire source 62 b in FIG. 1 ) of the combustion chamber 12 as well as the sides (not shown) of the combustion chamber 12 .
  • the BTU rating, location and flame hole distribution is to be determined based on test results.
  • the fire sources 62 in the secondary combustion zone are optional.
  • the lower frame 34 may have a similar construction as that compared to the upper frame 32 .
  • the lower frame 34 may be fabricated from telescoping tubes 28 c and 30 c as well as telescoping tubes 28 d and 30 d . These respective tubes may have a frictional fit to fix the width 22 of the improved fire grate 10 . It is contemplated that the tubes 28 c, d and tubes 30 c, d may or may not be in fluid communication with tubes 38 a , 40 a or tubes 38 b , 42 a . Fresh oxygen rich air 44 may flow through tubes 40 a , 42 a , 38 a and 38 b up to the upper frame 32 .
  • a crossbar 68 may be disposed over the tubes 28 c , 30 c and 28 d , 30 d .
  • the biomass/fuel 20 may be laid across tube 40 a , crossbar 68 and tube 42 a to raise the biomass/fuel 20 above the ground.
  • the tubular supports 38 a, b along with retaining pipes 70 a , b retain the biomass/fuel 20 on the lower frame 34 .
  • Two legs 72 a, b may be attached (e.g., tack welded) to tubes 40 a , 42 a .
  • Baffle plate 74 a, b may be attached (e.g., tack welded or other means) to the tubes 28 d , 30 d to provide leg support at the front of the improved fire grate 10 .
  • the baffle plate 74 a, b may also be fabricated from a refractory material or other material having good insulation characteristics.
  • the baffle plates 74 a, b may overlap one another and provide a semi-enclosed space behind the baffle plates 74 a, b during operation, as shown in FIG. 1 .
  • the baffle plates 74 a, b directs airflow coming through the fireplace opening 16 up and into the primary combustion zone 50 of the combustion chamber.
  • a fire source 62 c may also optionally be disposed below the lower frame 34 , as shown in FIG. 2 .
  • the fire source 62 c may be an elongate tube 64 with a plurality of holes 66 , as shown in FIGS. 4-5 .
  • the elongate tubes 64 may have a hollow configuration to allow gaseous fuel (e.g., propane, natural gas, etc.) to flow through the elongate tube 64 and out of the holes 66 .
  • This fire source 62 c provides for rapid initial ignition of the biomass/fuel 20 and may be left on to supplement the combustion process for the entire time the biomass/fuel 20 is being burned to maintain a more efficient burning state.
  • the additional fire source 62 assists in bringing new unburnt biomass/fuel (e.g., wood logs) to an efficient burning state.
  • the holes 66 may be aligned to each other along a longitudinal length of the elongate tubes 64 .
  • the holes 66 may be staggered as shown in FIG. 5 along the length of the elongate tubes 64 .
  • the holes 66 may also be at a ninety (90) degree angle with respect to each other as shown in FIG. 4A and be directed in the generally upward direction as shown in FIG. 2 .
  • the fire source 62 c may be disposed centrally below the lower frame 34 as shown in FIG. 2 .
  • fire sources 62 d, e may be disposed below the lower frame 34 evenly distributed there below.
  • the fire sources 62 a, b disposed in the second stage 48 of the combustion chamber 12 may have the same configuration as the fire sources 62 c - e.
  • an ash pan 76 may be disposed below the lower frame 34 and the fire source 62 c, d, e.
  • the ash pan 76 aids in the cleanup of the fireplace 14 after use.
  • an ignition system/logic control system 78 is contemplated.
  • the log lighters 62 a, b, c, d, e disclosed herein may be in fluid communication with a manifold 80 that receives flammable gas (e.g., propane, natural gas, etc.) from a flammable gas source 82 .
  • a manifold 80 that receives flammable gas (e.g., propane, natural gas, etc.) from a flammable gas source 82 .
  • flammable gas e.g., propane, natural gas, etc.
  • an ignition and logic control unit 84 which may be electro-mechanically connected to the manifold 80 opens and closes various valves to supply flammable gas to one or more of the log lighters 62 a - e .
  • Various sensors 86 may be disposed within the combustion chamber 12 , the room to be heated, the chimney, or at other various locations within or adjacent the fireplace 14 to measure the efficiency of the fireplace 14 . Based on the sensed information, such sensed information may be transmitted to ignition and logic control unit 84 such that the appropriate amount of flammable gas is being supplied to one or more of the log lighters 62 a - e . To light the log lighters 62 a - e, an ignition switch 88 may be disposed adjacent the log lighter to provide a spark or initial pilot flame to the log lighter.
  • the ignition and logic control unit 84 may send a signal to the ignition switch 88 to either start and leave on one or more of the log lighter 62 a - e .
  • the ignition and logic control unit 84 may shut off supply of flammable gas to that particular log lighter 62 a - e.

Abstract

An improved fire grate may provide fresh oxygen rich air to a secondary combustion zone, created by the improved fire grate, of a combustion chamber where a combustion gas stream is typically oxygen starved assisting in the burning process of incompletely burned particulates and reducing other harmful emissions. A baffle plate may be introduced in the secondary combustion zone to increase a combustion chamber temperature, encourage mixing of oxygen starved air with oxygen rich air and increase a residence time of the combustion gas within the combustion chamber. These aspects of the baffle plate promote more efficient burning of the biomass/fuel. Additionally, log lighter(s) may be disposed in the secondary combustion zone to increase a temperature of the combustion chamber for the purposes of reducing harmful emissions.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • Not Applicable
  • STATEMENT RE: FEDERALLY SPONSORED RESEARCH/DEVELOPMENT
  • Not Applicable
  • BACKGROUND
  • The improved fire grate for enhanced combustion relates to an apparatus for improving efficiency of a fireplace in relation to reduction in harmful emissions and/or heating a room.
  • A fireplace is a structure to contain a fire for heating. The fire is contained within a firebox which defines a combustion chamber. A chimney or other flue directs combustion gas to the environment. Studies have shown that fireplaces produce a significant amount of emissions (e.g., particulate, carbon monoxide, volatile organic compounds, etc.) that is harmful to humans and the environment. These harmful emissions rise up with the combustion gas and escape through the chimney to the environment.
  • There are three time honored principles to good combustion. They relate to time, temperature and turbulence. Time is residence time or the amount of time combustion gas remains within the combustion chamber. The longer the combustion gas stays within the combustion chamber, the more complete the combustion process and harmful emissions are reduced. Temperature relates to the temperature within the combustion chamber. The higher the temperature, the better and efficient the burn. As such, there are less harmful emissions. Turbulence relates to the amount of air mixing occurring within the combustion chamber. During operation of the fireplace, the biomass/fuel being burned consumes oxygen in the surrounding area. Fresh air is introduced into the combustion chamber through the fireplace opening. Stratified columns of fresh oxygen rich air rise up in the combustion chamber along side the starved combustion gases. The harmful emissions contained within the oxygen starved combustion gases do not come into contact with the oxygen rich air. Turbulence promotes mixing of the stratified layers or columns of fresh oxygen rich air with the oxygen starved air to encourage a cleaner burn and reduce harmful emissions.
  • The biomass/fuel being burned produces harmful emissions because the residence time of the combustion gas in the combustion chamber may be too short to allow the biomass/fuel to completely combust. Additionally, the biomass/fuel being burned may not completely combust because the temperature within the combustion chamber may be too low. Moreover, during the combustion process of the biomass/fuel, oxygen in the surrounding area of the biomass/fuel is consumed thereby producing oxygen starved combustion gases. These oxygen starved combustion gases rise, containing the harmful emissions, up through the combustion chamber into the chimney and out into the environment in a vertical column.
  • BRIEF SUMMARY
  • The improved fire grate addresses the needs of reducing harmful emissions discussed above, discussed below and those that are known in the art.
  • The improved fire grate may be disposed within a combustion chamber of a conventional fireplace. The conventional fireplace defines a single combustion zone. The improved fire grate creates two combustion zones, a primary and secondary combustion zone. This primary combustion zone is at the lower portion of the combustion chamber. The primary combustion zone is the part of the combustion chamber in which the biomass/fuel is being burned. During combustion or burning of biomass/fuel, combustion gases will rise up due to convection (i.e., rising hot air). Any harmful emissions (e.g., particulate matter, carbon monoxide, etc.) may float or be contained within that combustion gas stream.
  • The improved fire grate comprises a hollow tubular conduit that routes fresh oxygen rich air into the combustion chamber and releases the fresh oxygen rich air in a secondary combustion zone of the combustion process. The secondary combustion zone is above the primary combustion zone within the combustion chamber. The hollow tubular conduit may bring fresh oxygen rich air from the room through the fireplace opening or from any reliable oxygen rich air source. The hollow tubular conduit may be routed to the back of the fireplace up and over the biomass/fuel. The hollow tubular conduit may have a plurality of air apertures for releasing the fresh oxygen rich air into the secondary combustion zone where it generally has less oxygen compared to the primary combustion zone.
  • The hollow tubular conduit may define an upper frame comprised of a plurality of hollow tubes. These tubes may be configured to cover a substantial area of the combustion chamber over the biomass/fuel. By way of example and not limitation, first and second tubes may be generally parallel and be placed at the front and rear of the combustion chamber. Side tubes may be in fluid communication with the front and rear tubes. One or more of the first tube, second tube and side tubes may have air apertures which permit the air brought in from the fresh oxygen rich air source to be introduced into the secondary combustion zone of the combustion chamber. The fresh oxygen rich air is introduced into the secondary combustion zone since the secondary combustion zone will typically have less air or oxygen. The air or oxygen resident within the fireplace was partially consumed during the burning process in the primary combustion zone. The combustion gas that rises above the fuel source into the secondary combustion zone is oxygen starved. The fresh oxygen rich air introduced into the secondary combustion zone via the hollow tubular conduit provides an additional source of fresh oxygen rich air to assist in the completion of the burning process for the incompletely combusted harmful emissions. As the fresh oxygen rich air is routed from the fresh oxygen rich air source to the upper frame, the fresh oxygen rich air may be preheated prior to introduction in the secondary combustion zone to maintain the temperature at the secondary combustion zone. This is accomplished by routing the hollow tubular conduit from the fireplace opening, back to the rear of the combustion chamber, and up to the secondary combustion zone. The hollow tubular conduit is exposed to the heat in the combustion chamber.
  • In addition to supplying fresh oxygen to the secondary combustion zone of the combustion chamber, a baffle plate may be disposed over the biomass/fuel to be burned. The baffle plate interrupts the flame path rising up from the biomass/fuel being burnt in the sense of velocity, direction and turbulence. The interruption of the flame path encourages larger incompletely burned harmful particulate to fall out of the combustion gas stream and may be reentrained in the combustion gas stream at an earlier point and rise back up toward the baffle plate. This allows the harmful particulate to stay within the flame path for a longer period of time (i.e., longer residence time) and promotes more complete combustion thereby reducing harmful emissions. There are generally less harmful particulate, the more time the particulate stays within the combustion chamber. Also, a more complete combustion is promoted thereby reducing harmful emissions. The baffle plate may be fabricated from a refractory material or another material having good insulation characteristics. As such, the baffle plate increases the temperature at the secondary combustion zone as well as the primary combustion zone to promote complete burning of the harmful particulate matter. It is also contemplated that the baffle plate may have a lower surface formed with a plurality of channels or other groove shapes to interrupt the flow of gas flowing up from the fuel source to the chimney. The channels or grooves formed in the lower surface of the baffle plate may be configured to route the combustion gas stream toward the sides of the baffle plate. When the gas stream from the sides of the baffle plate and the gas stream from the front of the baffle plate recombines above the baffle plate, turbulence may occur which promotes mixing of oxygen rich air with the oxygen starved air.
  • The baffle plate may also be tilted in the forward direction. Provided that the baffle plate also has good emissivity characteristics, the forward tilt may redirect heat from the burning biomass/fuel into the room to be heated. This may also allow the improved fire grate with enhanced combustion to be utilized in a zero clearance fireplace as well as a masonry fireplace. The baffle plate may optionally be disposed slightly forward of the fuel source to allow flames from the fuel source to rise up behind the baffle plate. This further splits up the gas stream such that the recombined gas streams above the baffle plate may be more turbulent and promote mixing of oxygen starved and oxygen rich air.
  • Optionally, a log lighter may be disposed in the primary combustion zone and below the biomass/fuel to be burned. This log lighter aids in rapid ignition of the biomass/fuel. The log lighter may be turned off after the biomass/fuel starts its burning process. However, it is also contemplated that the log lighter may be left on to promote efficient burning of the fuel source. Other log lighters may be disposed at other areas within the combustion chamber. By way of example and not limitation, one or more log lighters may be disposed in the secondary combustion zone of the combustion chamber. As discussed above, the baffle plate redirects the combusted gas stream having harmful emissions therein. The log lighter disposed in the secondary combustion zone may increase temperature in the secondary combustion zone. The increased temperature aids in completing the burning process of the biomass/fuel and reducing harmful emissions.
  • The improved fire grate provides for a unique and efficient supplement to any existing fireplace.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawings, in which like numbers refer to like parts throughout, and in which:
  • FIG. 1 is a perspective view of an improved fire grate;
  • FIG. 2 is a cross sectional view of the improved fire grate shown in FIG. 1;
  • FIG. 3 is an exploded perspective view of the improved fire grate shown in FIG. 1;
  • FIG. 4 is an enlarged view of a log lighter shown in FIG. 1 having aligned holes;
  • FIG. 4A is cross sectional view of an elongate tube of the log lighter shown in FIG. 4;
  • FIG. 5 is an alternate embodiment of the log lighter having staggered holes; and
  • FIG. 6 is a schematic of an ignition system and logic control system.
  • DETAILED DESCRIPTION
  • Referring now to the drawings, an improved fire grate 10 for enhanced combustion is shown. The improved fire grate 10 may be disposed within a combustion chamber 12 (see FIG. 2) of a fireplace 14. The improved fire grate 10 introduces oxygen rich air to a secondary combustion zone 50 of the combustion chamber 12, retains heat within the combustion chamber 12 to increase a temperature of the combustion chamber 12, encourages mixing of oxygen rich air with oxygen starved combustion gas stream, and increases residence time of the combustion gas stream for the purpose of reducing harmful emissions during fireplace use.
  • Referring now to FIG. 3, an exploded view of the improved fire grate 10 is shown. The improved fire grate 10 may be fabricated from a tubular design made from a cost effective material (e.g., steel, aluminum ceramics, etc.) of appropriate temperature and chemical resistance characteristic. The fire grate 10 may have an adjustable width 22. To this end, the improved fire grate 10 may have a first side 24 and a second side 26. The first side 24 may have a plurality of tubes 28 a-d which are slidably insertable into tubes 30 a-d of the second side 26 of the improved fire grate 10. The tubes 28 a-d telescope into and out of the tubes 30 a-d. More particularly, the tubes 28 a, b, c, d may be insertable into tubes 30 a, b, c, d, respectively. The tubes 28 a-d may have a frictional fit with tubes 30 a-d such that once the tubes 28 a-d are inserted into tubes 30 a-d, they 28 a-d and 30 a-d are set and do not need further adjustment to fit the combustion chamber 12. The installer adjusts the width 22 such that the first and second sides 24, 26 fill a substantial area of the combustion chamber 12. Alternatively, the first and second sets of tubes 28 a-d and 30 a-d may be fixed in relation to each other through a pin, setscrew or other means known in the art.
  • Additionally, the improved fire grate 10 may have an adjustable height. To this end, vertical tubes 38 a, b may be telescoping and set to a height to fit within the combustion chamber 12. The telescoping length of the tubes 38 a, b may be set by friction fit, pin, set screw or other means known in the art.
  • The improved fire grate 10 may have an upper frame 32 and a lower frame 34. The upper frame 32 may comprise the tubes 28 a, b and 30 a, b but also hollow tubes 28 e and 30 e which may be splayed to fit the general configuration of combustion chambers 12 of modern fireplaces 14 and/or to provide better cover of the burning biomass/fuel 20. One or more of the tubes 28 a, b, e and 30 a, b, e may have a plurality of air outlet holes 36 which introduces fresh oxygen rich air above the biomass/fuel 20, as shown in FIG. 2. The air outlet holes 36 may be formed to direct air down toward the biomass/fuel 20, and/or out toward the outer periphery of the upper frame 32 and/or inward toward the inner periphery of the upper frame 32. Fresh oxygen rich air 44 may be supplied to the upper frame 32 and out of the air outlet holes 36 via tubular supports 38 a, b (see FIG. 3) and an airflow path through the tubes 40 a and 42 a (see FIG. 3) of the lower frame 34.
  • During operation, fresh air or oxygen 44 may enter through the tubes 40 a, 42 a of the lower frame 34 through induction (convection), forced airflow (e.g., blower), or other means known in the art. If via induction, the fire in the combustion chamber 12 heats up the tubes 38 a, 38 b, 40 a, 42 a, and the upper frame 32. Since hot air rises, the heat air rises through the tubes 38 a, 38 b, 40 a, 42 a, and the upper frame 32 and out of the air outlet holes 36. The fresh oxygen rich air 44 may be taken from the bottom front of the fireplace 14 or another fresh air source. The fresh oxygen rich air 44 flows through the tubes 40 a, 42 a and up through the tubular supports 38 a, b. The fresh oxygen rich air 44 may be distributed throughout the tubular structure of the upper frame 32 and exit out of the air outlet holes 36 formed in one or more of the tubes 28 a, b, e and 30 a, b, e. As the fresh oxygen rich air 44 flows through the tubular structure 38, 40 a, 42 a, the fresh oxygen rich air 44 is preheated prior to being introduced into a secondary combustion zone 48 of the combustion chamber 12 (see FIG. 2) to maintain the higher temperature within the combustion chamber.
  • Initially, the biomass/fuel 20 is burned in a primary combustion zone 50 (see FIG. 2), namely, at the biomass/fuel 20. As the biomass/fuel 20 burns, the combustion process consumes both the biomass/fuel 20 as well as the surrounding oxygen 52. As the biomass/fuel 20 burns, some of the biomass/fuel 20 does not completely burn and rises as a of the combustion gas stream which includes harmful emissions such as particulate matter 46. Since hot air rises, the particulate matter 46 rises along with the rising combustion gas stream into the secondary combustion zone 48 where the particulate 46 comes into contact with fresh oxygen rich air 44 introduced into the secondary combustion zone 48 of the burning process via the upper frame 32. The introduction of fresh oxygen rich air 44 at the secondary combustion zone 48 assists to further the burning process to mitigate release of harmful emissions into the environment. Beneficially, oxygen rich air exits out of the holes 36 (see FIG. 3) in a location (i.e., secondary combustion zone of the combustion chamber) which is oxygen starved to complete the combustion and reduce harmful emissions. As discussed herein, the combustion gas stream may contain columns or stratified columns of oxygen starved air as well as oxygen rich air. The location of the holes 36 may be placed at a location where oxygen starved air is expected.
  • Referring back to FIG. 1, a baffle plate 54 having good insulating characteristics may be disposed about the inner periphery of the upper frame 32. By way of example and not limitation, the baffle plate 54 may be fabricated from a refractory material. As shown in FIG. 3, the inner periphery of the upper frame 32 may have a plurality of tabs 56 to hold up the baffle plate 54 within the inner periphery of the upper frame 32. In the event that the improved fire grate 10 has an adjustable width 22, the improved fire grate 10 may be provided with a plurality of baffle plate slabs 58 a-e such that the appropriate slabs 58 a-e may be fitted to the width 22 of the improved fire grate 10. The slabs 58 a-e are shown in FIG. 3. The baffle plate 54 may be tilted in the forward direction, as shown in FIG. 2. This is to aid in reflecting heat out through the fireplace opening 16. More particularly, the lower surface 60 of the baffle plate 54 may face the fireplace opening 16 to accomplish the reflection of heat through the fireplace opening 16. The baffle plate 54, as discussed above, may have good insulating characteristics. As such, the baffle plate 54 may also increase the temperature in the secondary combustion zone 48 of the combustion chamber 12 to further encourage the combustion process and reduce harmful emissions. The increased heat in the secondary combustion zone 48 caused by the baffle plate 54 aids in the burning process of the harmful emissions in the secondary combustion zone 48 as well as in the primary combustion zone 50 to reduce harmful emissions into the atmosphere.
  • It is also contemplated that additional optional baffle plates 55 a, b, c may be disposed at other areas of the improved fire grate 10, as shown in FIG. 1. By way of example and not limitation, a baffle plate 55 a may be attached to the rear side of the improved fire grate 10 at tubes 38 a, b. The baffle plate 54 attached to these tubes 38 a, b may extend from the lower frame 34 to the upper frame 32 to increase a temperature within the primary combustion zone 50 and the secondary combustion zone 48. Additional baffle plates 55 b, c may be lined on the sides of the improved fire grate 10 that extends from tubes 40 a, 28 e and 42 a, 30 e. These additional baffle plates 55 a, b, c as well as baffle plate 54 also aid in maintaining or increasing the temperature at the primary combustion zone 50 and the secondary combustion zone 48 and promote more efficient combustion of the biomass/fuel 20. The baffle plates 55 a, b, c may be attached to the fire grate 10 via adhesives, nut and bolts and/or other attachment methods known in the art.
  • The baffle plate 54 increases gas residence time of the combustion gas in the primary and secondary combustion zones 50, 48 thereby encouraging or promoting more complete combustion of the biomass/fuel 20 and reduction of harmful particulate. Additionally, the flame produced by the fuel source 20 may impinge the baffle plate 54. As a result, larger particulate 46 may drop out of the combustion gas stream back toward the primary combustion zone 50 and reenter the combustion gas stream. The residence time of the larger particulate 46 in the combustion gas stream is increased which provides additional time for the larger particulate 46 to complete its combustion process.
  • The baffle plate 54 also prevents the combustion gas from going straight up through the chimney but rather provides a barrier to provide a circuitous flame path around the baffle plate 54. Since the natural vertical flame path is interrupted, mixing of oxygen rich air with oxygen starved air is encouraged. Additionally, since the length of the flame path is now increased, residence time of the combustion gas in the primary and secondary combustion zones 50, 48 is increased to promote more complete combustion and reduction of harmful emissions. Additionally, since the baffle plate 54 is tilted forward, the gas as well as the particulate 46 following such combusted gas stream is re-directed to the front of the improved fire grate 10 at the upper frame 32 where oxygen 44 is introduced to encourage more complete combustion and to reduce harmful emissions (e.g., particulate matter, carbon monoxide, etc.). It is contemplated that the baffle plate 54 may optionally be disposed slightly forward of the fuel source 20 such that a portion of the flames and combustion gas proceeds past the back of the baffle plate 54. Please note that the fresh oxygen rich air 44 may also be supplied to the back side via tubes 28 a, 30 a to aid in combustion of the such combustion gas and particulate.
  • Referring back to FIG. 2, the lower surface 60 of the baffle plate 54 may have channels 65 that extend horizontally from left to right. These channels may have a semicircular concave configuration as shown in FIG. 2 but other configurations (e.g., vertical, diagonal, etc.) are also contemplated. The channels 65 promote the gas to flow toward the perimeter (e.g., sides) of the improved fire grate 10. The combustion gas may be divided into two or more flame paths, namely, a portion of the combustion gas may proceed forward and around the front edge of the baffle plate 54. The combustion gas may flow outward toward the sides of the baffle plate 54 and around the baffle plate 54 to join up with the combustion gas that flowed past the front edge of the baffle plate 54. The separation and recombination of these flame paths encourage mixing of air above the baffle plate 54. A portion of the combustion gas stream may pass the rear edge of the baffle plate. This increases mixing action, increases particulate drop out and residence gas time within the primary and secondary combustion zones 50, 48. Alternatively, the channels 65 may extend vertically to route combustion gas to the front side of the upper frame 32. Additionally, through holes 67 may be formed through the baffle plate 54 that extend from the lower surface 60 and/or channels 65 to the upper surface 69 for the purposes of encouraging particulate removal and mixing of oxygen rich air with the oxygen starved air.
  • Referring now back to FIGS. 1 and 2, one or more fire sources 62 may be disposed at select locations within the secondary combustion zone 48. The fire sources 62 may be an elongate tube 64 with a plurality of holes 66 that may be directed outward. These elongate tubes 64 with holes 66 are supplied with combustible gas such as propane, natural gas, etc. via a system of tubes from a gas source. By way of example and not limitation, the fire sources 62 may be a log lighter sold under the trademark BLUE FLAME. The fire source 62 a is shown in FIGS. 1 and 2.
  • Flammable gas (e.g., propane, natural gas, etc.) may be routed to the fire sources 62 a, b via pipes 63. During operation of the fireplace 14, the user may ignite the gas flowing out of the holes 66 of the elongate tube 64. The rapid ignition and additional heat increases the temperature in the primary combustion zone 50 to reduce harmful emissions and support additional combustion of flue gases. Additional fire sources 62 may also be disposed within the secondary combustion zone 48 such as at the rear (see fire source 62 b in FIG. 1) of the combustion chamber 12 as well as the sides (not shown) of the combustion chamber 12. The BTU rating, location and flame hole distribution is to be determined based on test results. The fire sources 62 in the secondary combustion zone are optional.
  • The lower frame 34 may have a similar construction as that compared to the upper frame 32. The lower frame 34 may be fabricated from telescoping tubes 28 c and 30 c as well as telescoping tubes 28 d and 30 d. These respective tubes may have a frictional fit to fix the width 22 of the improved fire grate 10. It is contemplated that the tubes 28 c, d and tubes 30 c, d may or may not be in fluid communication with tubes 38 a, 40 a or tubes 38 b, 42 a. Fresh oxygen rich air 44 may flow through tubes 40 a, 42 a, 38 a and 38 b up to the upper frame 32. A crossbar 68 may be disposed over the tubes 28 c, 30 c and 28 d, 30 d. The biomass/fuel 20 may be laid across tube 40 a, crossbar 68 and tube 42 a to raise the biomass/fuel 20 above the ground. The tubular supports 38 a, b along with retaining pipes 70 a, b retain the biomass/fuel 20 on the lower frame 34. Two legs 72 a, b may be attached (e.g., tack welded) to tubes 40 a, 42 a. Baffle plate 74 a, b may be attached (e.g., tack welded or other means) to the tubes 28 d, 30 d to provide leg support at the front of the improved fire grate 10. The baffle plate 74 a, b may also be fabricated from a refractory material or other material having good insulation characteristics. The baffle plates 74 a, b may overlap one another and provide a semi-enclosed space behind the baffle plates 74 a, b during operation, as shown in FIG. 1. The baffle plates 74 a, b directs airflow coming through the fireplace opening 16 up and into the primary combustion zone 50 of the combustion chamber.
  • A fire source 62 c may also optionally be disposed below the lower frame 34, as shown in FIG. 2. The fire source 62 c may be an elongate tube 64 with a plurality of holes 66, as shown in FIGS. 4-5. The elongate tubes 64 may have a hollow configuration to allow gaseous fuel (e.g., propane, natural gas, etc.) to flow through the elongate tube 64 and out of the holes 66. This fire source 62 c provides for rapid initial ignition of the biomass/fuel 20 and may be left on to supplement the combustion process for the entire time the biomass/fuel 20 is being burned to maintain a more efficient burning state. The additional fire source 62 assists in bringing new unburnt biomass/fuel (e.g., wood logs) to an efficient burning state. As shown in FIG. 4, the holes 66 may be aligned to each other along a longitudinal length of the elongate tubes 64. Alternatively, the holes 66 may be staggered as shown in FIG. 5 along the length of the elongate tubes 64. The holes 66 may also be at a ninety (90) degree angle with respect to each other as shown in FIG. 4A and be directed in the generally upward direction as shown in FIG. 2. The fire source 62 c may be disposed centrally below the lower frame 34 as shown in FIG. 2. It is also it is contemplated that two (2) fire sources 62 d, e may be disposed below the lower frame 34 evenly distributed there below. The fire sources 62 a, b disposed in the second stage 48 of the combustion chamber 12 may have the same configuration as the fire sources 62 c-e.
  • It is also contemplated that an ash pan 76 may be disposed below the lower frame 34 and the fire source 62 c, d, e. The ash pan 76 aids in the cleanup of the fireplace 14 after use.
  • Referring now to FIG. 6, an ignition system/logic control system 78 is contemplated. The log lighters 62 a, b, c, d, e disclosed herein may be in fluid communication with a manifold 80 that receives flammable gas (e.g., propane, natural gas, etc.) from a flammable gas source 82. Based on the configuration of the improved fire grate 10 and the placement and number of heat sources 62 a-e incorporated into the system, an ignition and logic control unit 84 which may be electro-mechanically connected to the manifold 80 opens and closes various valves to supply flammable gas to one or more of the log lighters 62 a-e. Various sensors 86 (e.g., carbon monoxide sensor, temperature sensor, oxygen sensor, etc.) may be disposed within the combustion chamber 12, the room to be heated, the chimney, or at other various locations within or adjacent the fireplace 14 to measure the efficiency of the fireplace 14. Based on the sensed information, such sensed information may be transmitted to ignition and logic control unit 84 such that the appropriate amount of flammable gas is being supplied to one or more of the log lighters 62 a-e. To light the log lighters 62 a-e, an ignition switch 88 may be disposed adjacent the log lighter to provide a spark or initial pilot flame to the log lighter. Based on which log lighters 62 a-e is to be ignited, the ignition and logic control unit 84 may send a signal to the ignition switch 88 to either start and leave on one or more of the log lighter 62 a-e. To turn off one or more of the log lighters 62 a-e, the ignition and logic control unit 84 may shut off supply of flammable gas to that particular log lighter 62 a-e.
  • The above description is given by way of example, and not limitation. Given the above disclosure, one skilled in the art could devise variations that are within the scope and spirit of the invention disclosed herein, including various ways of fixing the width 22 of the improved fire grate after adjustment. Further, the various features of the embodiments disclosed herein can be used alone, or in varying combinations with each other and are not intended to be limited to the specific combination described herein. Thus, the scope of the claims is not to be limited by the illustrated embodiments.

Claims (23)

1. An apparatus for promoting a cleaner burn of fuel within a combustion chamber of a fireplace, the apparatus comprising:
a baffle plate horizontally disposable above the fuel to be burned in the combustion chamber for interrupting a flame path of the burning fuel;
a frame disposable within the combustion chamber for supporting the baffle plate above the fuel to be burned in the horizontal position;
wherein the baffle plate interrupts reduces a speed of the combustion gas stream, induces turbulence within the combustion gas stream and redirects the combustion has stream for the purposes of reducing harmful emissions.
2. The apparatus of claim 1 wherein the baffle plate is tilted in the forward direction and has a plurality of horizontal grooves formed in a lower surface of the baffle plate for redirecting a partion of the combustion gas stream toward sides of the baffle plate.
3. The apparatus of claim 1 wherein the baffle plate has a plurality of holes formed in a generally vertical direction for removing harmful particulate in the combustion gas stream.
4. The apparatus of claim 1 wherein the frame has tubular construction.
5. An apparatus for promoting a cleaner burn of fuel within a combustion chamber of a fireplace, the apparatus comprising:
a hollow tubular conduit defining a first end portion in fluid communication with an air source and a second end portion with a plurality of air apertures, the second end portion disposable in a secondary combustion zone of the combustion chamber of the fireplace; and
a means for flowing air through the hollow tubular conduit from the first end portion to the second end portion through the air apertures for introducing oxygen to the secondary combustion zone of the combustion chamber which has oxygen starved air to encourage complete combustion and reduction of harmful emissions.
6. The apparatus of claim 5 wherein the means for flowing air through the hollow conduit is a blower.
7. The apparatus of claim 5 wherein the air apertures of the second end portion of the hollow tubular conduit are directed downwardly toward a primary combustion zone of the combustion chamber.
8. The apparatus of claim 5 wherein the air apertures of the second end portion of the hollow tubular conduit are directed outwardly from an upper frame disposed in the secondary combustion zone and formed by the hollow tubular conduit.
9. The apparatus of claim 5 wherein the second end portion of the hollow tubular conduit defines an upper frame having first, second, third and fourth hollow tubes in fluid communication with each other, the first and third tubes being generally parallel with each other and aligned to a fireplace opening, the second and fourth hollow tubes being splayed such that the upper frame substantially fills the secondary combustion zone of the combustion chamber of the fireplace.
10. The apparatus of claim 9 wherein the upper frame has an adjustable width to fit a range of combustion chamber sizes.
11. The apparatus of claim 5 wherein the first end portion of the hollow tubular conduit is routed from a fresh air source through the primary combustion zone of the combustion chamber and to the secondary combustion zone of the combustion chamber for preheating the fresh air.
12. The apparatus of claim 5 further comprising a baffle plate disposed in an upper region of the secondary combustion zone of the combustion chamber, the baffle plate having a plurality of channels formed on a lower surface of the baffle plate for disturbing rising combustion gas and incompletely burned particulates.
13. The apparatus of claim 5 further comprising a baffle plate disposed in the secondary combustion zone of the combustion chamber and routes rising combustion gas to the fresh air introduced into the secondary combustion zone of the combustion chamber via the second end portion of the hollow tubular conduit.
14. The apparatus of claim 12 wherein the channels are routed toward an outer periphery of the baffle plate.
15. The apparatus of claim 12 wherein the baffle plate has a plurality of holes extending from a lower surface of the baffle plate to an upper surface of the baffle plate.
16. The apparatus of claim 5 further comprising a log lighter in the secondary combustion zone of the combustion chamber for promoting burning of incompletely burned particulates.
17. The apparatus of claim 16 wherein the log lighter comprises:
an elongate tube connected to a flammable gas source, the elongate tube having a plurality of holes for directing flames in a direction of the plurality of holes, the direction of the plurality of holes being directed toward walls of the combustion chamber.
18. The apparatus of claim 13 further comprising a log lighter in the secondary combustion zone of the combustion chamber wherein the log lighter is positioned in the secondary combustion zone of the combustion chamber with the flames of the log lighter directed into the combustion gas rerouted by the baffle plate.
19. A log lighter for assisting in burning of biomass/fuel within a fireplace, the log lighter comprising:
a gas connector connectable to a combustible gas source; and
a hollow tube defining a length and a first end portion which is connected to the gas connector for providing combustible gas within the hollow tube during operation, the hollow tube having a plurality of staggered apertures along its length for providing combustible gas to the fireplace.
20. The log lighter of claim 19 wherein the plurality of staggered apertures comprises first and second sets of apertures, the first set of apertures being directed at about ninety degree angle compared to the second set of apertures.
21. The log lighter of claim 19 wherein the hollow tube is elongate.
22. The log lighter of claim 19 wherein the hollow tube defines a second end portion, the second end portion being closed.
23. The log lighter of claim 19 wherein the plurality of staggered apertures comprises first and second sets of apertures, each aperture of the first set disposed between two apertures of the second set.
US12/501,869 2009-07-13 2009-07-13 Fire Grate for Enhanced Combustion Abandoned US20110005510A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US12/501,869 US20110005510A1 (en) 2009-07-13 2009-07-13 Fire Grate for Enhanced Combustion
US12/620,453 US20110005509A1 (en) 2009-07-13 2009-11-17 Fire Grate for Enhanced Combustion with Vertical and Horizontal Expansion Sleeves
US12/719,742 US8602020B2 (en) 2009-07-13 2010-03-08 Fire grate for enhanced combustion with vertical and horizontal expansion sleeves
PCT/US2010/041718 WO2011008699A1 (en) 2009-07-13 2010-07-12 Improved fire grate for enhanced combustion with vertical and horizontal expansion sleeves
US13/443,583 US20120192855A1 (en) 2009-07-13 2012-04-10 Fire grate for enhanced combustion
US13/453,865 US8528540B2 (en) 2009-07-13 2012-04-23 Fire grate for enhanced combustion with vertical and horizontal expansion sleeves
US14/087,291 US20140076304A1 (en) 2009-07-13 2013-11-22 Fire grate for enhanced combustion with vertical and horizontal expansion sleeves
US14/134,095 US20140102437A1 (en) 2009-07-13 2013-12-19 Fire grate for enhanced combustion
US15/145,035 US20160245530A1 (en) 2009-07-13 2016-05-03 Fire grate for enhanced combustion with vertical and horizontal expansion sleeves
US15/423,253 US20170146245A1 (en) 2009-07-13 2017-02-02 Fire grate for enhanced combustion with vertical and horizontal expansion sleeves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/501,869 US20110005510A1 (en) 2009-07-13 2009-07-13 Fire Grate for Enhanced Combustion

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/620,453 Continuation-In-Part US20110005509A1 (en) 2009-07-13 2009-11-17 Fire Grate for Enhanced Combustion with Vertical and Horizontal Expansion Sleeves
US13/443,583 Continuation US20120192855A1 (en) 2009-07-13 2012-04-10 Fire grate for enhanced combustion

Publications (1)

Publication Number Publication Date
US20110005510A1 true US20110005510A1 (en) 2011-01-13

Family

ID=43426500

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/501,869 Abandoned US20110005510A1 (en) 2009-07-13 2009-07-13 Fire Grate for Enhanced Combustion
US13/443,583 Abandoned US20120192855A1 (en) 2009-07-13 2012-04-10 Fire grate for enhanced combustion
US14/134,095 Abandoned US20140102437A1 (en) 2009-07-13 2013-12-19 Fire grate for enhanced combustion

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/443,583 Abandoned US20120192855A1 (en) 2009-07-13 2012-04-10 Fire grate for enhanced combustion
US14/134,095 Abandoned US20140102437A1 (en) 2009-07-13 2013-12-19 Fire grate for enhanced combustion

Country Status (1)

Country Link
US (3) US20110005510A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130078584A1 (en) * 2011-06-08 2013-03-28 Alan R. Atemboski Wood burning fireplace assembly with automatic igniter
US20170254530A1 (en) * 2016-03-02 2017-09-07 Peter CANNON Baffle insert for solid field combustion appliance
US20180017261A1 (en) * 2016-07-13 2018-01-18 Richard Bolton Fireplace enhancer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9980608B2 (en) 2014-05-13 2018-05-29 Earth's Flame, Inc. Portable fire pit barbeque combination

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US92526A (en) * 1869-07-13 Improved blast-heating- tttrnace
US114280A (en) * 1871-05-02 Improvement in tubular grate-bars
US503705A (en) * 1893-08-22 Peter i
US976039A (en) * 1908-01-25 1910-11-15 Edwin R Cahoone Heating-grate.
US1191848A (en) * 1913-12-04 1916-07-18 Gen Chemical Corp Rabble-arm.
US3380472A (en) * 1966-04-14 1968-04-30 Joseph T. Leighton Gas lighter valve
US3416733A (en) * 1967-05-31 1968-12-17 Joseph T. Leighton Gas burner and fuel igniter for fireplaces
US3905351A (en) * 1975-01-08 1975-09-16 James M Hatfield Fireplace heat distribution unit
US3942509A (en) * 1974-07-23 1976-03-09 Sasser Glen T Combination air induced and heat circulating log grate
US4078542A (en) * 1976-08-11 1978-03-14 Morton Metalcraft Co. Fireplace grate and blower
US4122825A (en) * 1977-03-10 1978-10-31 Slate Robert C Air-heater type fireplace grate
US4149517A (en) * 1976-01-12 1979-04-17 Horwinski Elwood R Grate and stove heating unit
US4185611A (en) * 1976-08-12 1980-01-29 John Johnson Fireplace heating unit
US4203417A (en) * 1977-11-02 1980-05-20 Cardinal American Corporation Fireplace heater and grate
US4206875A (en) * 1977-09-27 1980-06-10 Fiat Societa Per Azioni Heat recovery apparatus
US4310303A (en) * 1980-07-11 1982-01-12 W. B. Combustion, Inc. Plug-in recuperator and method
US4334517A (en) * 1979-06-27 1982-06-15 Bruce Sweitzer Heat exchanger unit
US4349009A (en) * 1980-03-03 1982-09-14 Overhead Door Corporation Combustion air system
US4445497A (en) * 1981-10-22 1984-05-01 Kilday Sr Glen W Fireplace heating unit
US4502463A (en) * 1984-04-26 1985-03-05 Gregory Willis H Method and apparatus for efficiently capturing and distributing heat produced by gas logs
US4515147A (en) * 1984-01-23 1985-05-07 Grouw Samuel J Van Clean burning grate for fireplaces and wood stoves
US4611573A (en) * 1985-10-23 1986-09-16 Newman Robert D Fireplace grate kit and grate
US4672946A (en) * 1986-05-05 1987-06-16 Orrville Products, Inc. Secondary combustion device for woodburning stove
US5113843A (en) * 1991-04-01 1992-05-19 Alladin Steel Products Combustion device for stoves and fireplaces
US5179933A (en) * 1991-11-07 1993-01-19 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Single chamber wood stove including gaseous hydrocarbon supply
US5263471A (en) * 1992-01-06 1993-11-23 Shimek Ronald J Solid fuel clean burning zero clearance fireplace
US5850830A (en) * 1997-01-07 1998-12-22 Smith; Richard D. Heat reflector for use with fireplace grate for high temperature combustion
US5934270A (en) * 1997-01-30 1999-08-10 Kim; Sinil Fireplace heat exchange device
US6053165A (en) * 1999-01-13 2000-04-25 Heat-N-Glo Fireplace Products, Inc. Simulated electric glowing embers for gas fireplaces
US6484714B1 (en) * 2001-12-31 2002-11-26 Richard D. Smith High temperature fireplace grate including room heating transfer tubes
US6688302B2 (en) * 2000-03-15 2004-02-10 Hon Technology Inc. Wood burning stove having pivoting baffle and method
US7047962B2 (en) * 2003-03-06 2006-05-23 Hni Technologies Inc. Air control for a clean burning fireplace

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2814287A (en) * 1956-08-30 1957-11-26 Isaac N Shults Draft control
US3930490A (en) * 1974-03-25 1976-01-06 Lassy Carl O Fireplace heater

Patent Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US92526A (en) * 1869-07-13 Improved blast-heating- tttrnace
US114280A (en) * 1871-05-02 Improvement in tubular grate-bars
US503705A (en) * 1893-08-22 Peter i
US976039A (en) * 1908-01-25 1910-11-15 Edwin R Cahoone Heating-grate.
US1191848A (en) * 1913-12-04 1916-07-18 Gen Chemical Corp Rabble-arm.
US3380472A (en) * 1966-04-14 1968-04-30 Joseph T. Leighton Gas lighter valve
US3416733A (en) * 1967-05-31 1968-12-17 Joseph T. Leighton Gas burner and fuel igniter for fireplaces
US3942509A (en) * 1974-07-23 1976-03-09 Sasser Glen T Combination air induced and heat circulating log grate
US3905351A (en) * 1975-01-08 1975-09-16 James M Hatfield Fireplace heat distribution unit
US4149517A (en) * 1976-01-12 1979-04-17 Horwinski Elwood R Grate and stove heating unit
US4078542A (en) * 1976-08-11 1978-03-14 Morton Metalcraft Co. Fireplace grate and blower
US4185611A (en) * 1976-08-12 1980-01-29 John Johnson Fireplace heating unit
US4122825A (en) * 1977-03-10 1978-10-31 Slate Robert C Air-heater type fireplace grate
US4206875A (en) * 1977-09-27 1980-06-10 Fiat Societa Per Azioni Heat recovery apparatus
US4203417A (en) * 1977-11-02 1980-05-20 Cardinal American Corporation Fireplace heater and grate
US4334517A (en) * 1979-06-27 1982-06-15 Bruce Sweitzer Heat exchanger unit
US4349009A (en) * 1980-03-03 1982-09-14 Overhead Door Corporation Combustion air system
US4310303A (en) * 1980-07-11 1982-01-12 W. B. Combustion, Inc. Plug-in recuperator and method
US4445497A (en) * 1981-10-22 1984-05-01 Kilday Sr Glen W Fireplace heating unit
US4515147A (en) * 1984-01-23 1985-05-07 Grouw Samuel J Van Clean burning grate for fireplaces and wood stoves
US4502463A (en) * 1984-04-26 1985-03-05 Gregory Willis H Method and apparatus for efficiently capturing and distributing heat produced by gas logs
US4611573A (en) * 1985-10-23 1986-09-16 Newman Robert D Fireplace grate kit and grate
US4672946A (en) * 1986-05-05 1987-06-16 Orrville Products, Inc. Secondary combustion device for woodburning stove
US5341794A (en) * 1991-04-01 1994-08-30 Aladdin Steel Products Combustion device for stoves and fireplaces
US5113843A (en) * 1991-04-01 1992-05-19 Alladin Steel Products Combustion device for stoves and fireplaces
US5179933A (en) * 1991-11-07 1993-01-19 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Single chamber wood stove including gaseous hydrocarbon supply
US5322052A (en) * 1991-11-07 1994-06-21 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Fireplace with destruction of products of incomplete combustion enhanced by a gaseous-fueled pilot burner
US5263471A (en) * 1992-01-06 1993-11-23 Shimek Ronald J Solid fuel clean burning zero clearance fireplace
US5850830A (en) * 1997-01-07 1998-12-22 Smith; Richard D. Heat reflector for use with fireplace grate for high temperature combustion
US5934270A (en) * 1997-01-30 1999-08-10 Kim; Sinil Fireplace heat exchange device
US6053165A (en) * 1999-01-13 2000-04-25 Heat-N-Glo Fireplace Products, Inc. Simulated electric glowing embers for gas fireplaces
US6688302B2 (en) * 2000-03-15 2004-02-10 Hon Technology Inc. Wood burning stove having pivoting baffle and method
US7216645B2 (en) * 2000-03-15 2007-05-15 Hni Technologies Inc. Wood burning stove having pivoting baffle and method
US6484714B1 (en) * 2001-12-31 2002-11-26 Richard D. Smith High temperature fireplace grate including room heating transfer tubes
US7047962B2 (en) * 2003-03-06 2006-05-23 Hni Technologies Inc. Air control for a clean burning fireplace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130078584A1 (en) * 2011-06-08 2013-03-28 Alan R. Atemboski Wood burning fireplace assembly with automatic igniter
US20170016621A1 (en) * 2011-06-08 2017-01-19 Travis Industries, Inc. Wood burning fireplace assembly with automatic igniter
US9903591B2 (en) * 2011-06-08 2018-02-27 Travis Industries, Inc. Wood burning fireplace assembly with automatic igniter
US20170254530A1 (en) * 2016-03-02 2017-09-07 Peter CANNON Baffle insert for solid field combustion appliance
US20180017261A1 (en) * 2016-07-13 2018-01-18 Richard Bolton Fireplace enhancer

Also Published As

Publication number Publication date
US20140102437A1 (en) 2014-04-17
US20120192855A1 (en) 2012-08-02

Similar Documents

Publication Publication Date Title
US8602020B2 (en) Fire grate for enhanced combustion with vertical and horizontal expansion sleeves
EP0401205B1 (en) Device for supply of secondary air, and boiler with the device
US8186286B2 (en) Wood fired boiler
US8528540B2 (en) Fire grate for enhanced combustion with vertical and horizontal expansion sleeves
US20080041357A1 (en) Combustion Apparatus for Solid Fuel
US4111181A (en) Combustion air system
US20140102437A1 (en) Fire grate for enhanced combustion
SE462299B (en) ROSTING DEVICE FOR AGING WITH THE FIRE
RU2031315C1 (en) Prolonged combustion furnace with recuperation of heat from smoke
KR101312963B1 (en) Wood combustor
KR101390042B1 (en) Stove with a high-energy efficiency
FI115734B (en) Procedure for controlling combustion air and corresponding control arrangements
RU2485414C2 (en) Heating boiler operating on firewood
KR102414733B1 (en) Heater for burning firewood tree by fire
FI129332B (en) A combustion air cassette, a fireplace with a combustion air cassette, a method for supplying combustion air, and a kit for retrofitting a combustion air cassette
KR101325663B1 (en) Combustion device for fire wood boiler
JP6688511B2 (en) Stove
WO2012173363A2 (en) Firewood combustion device, and hot air blower and hot water boiler apparatus using same
RU2403497C2 (en) Tetrahedral prismatic furnace with vertical walls (versions)
FI109871B (en) Tub assembly for use by disabled/elderly persons, during bathing, has power element connected between primary and secondary leg sections, for adjusting distance between connecting points of leg sections
NO843182L (en) COMBUSTION DEVICE
JP4452871B2 (en) Fire transfer structure of grill burner
CN110081416A (en) Smokeless burning stove
RU112746U1 (en) WOOD BOILING BOILER
JPH109544A (en) Multi-boiler type combustion furnace

Legal Events

Date Code Title Description
AS Assignment

Owner name: JOE LEIGHTON AND ASSOCIATES, INC. DBA CANTERBURY E

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MARPLE, STEVE, MR.;REEL/FRAME:022948/0428

Effective date: 20090705

AS Assignment

Owner name: EARTH'S FLAME, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JOE LEIGHTON & ASSOCIATES, INC. DBA CANTERBURY ENTERPRISES;REEL/FRAME:024681/0704

Effective date: 20100712

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION