US20180017261A1 - Fireplace enhancer - Google Patents

Fireplace enhancer Download PDF

Info

Publication number
US20180017261A1
US20180017261A1 US15/649,635 US201715649635A US2018017261A1 US 20180017261 A1 US20180017261 A1 US 20180017261A1 US 201715649635 A US201715649635 A US 201715649635A US 2018017261 A1 US2018017261 A1 US 2018017261A1
Authority
US
United States
Prior art keywords
air
enhancer
heat
combustion area
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/649,635
Inventor
Richard Bolton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US15/649,635 priority Critical patent/US20180017261A1/en
Publication of US20180017261A1 publication Critical patent/US20180017261A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B1/00Stoves or ranges
    • F24B1/18Stoves with open fires, e.g. fireplaces
    • F24B1/185Stoves with open fires, e.g. fireplaces with air-handling means, heat exchange means, or additional provisions for convection heating ; Controlling combustion
    • F24B1/189Stoves with open fires, e.g. fireplaces with air-handling means, heat exchange means, or additional provisions for convection heating ; Controlling combustion characterised by air-handling means, i.e. of combustion-air, heated-air, or flue-gases, e.g. draught control dampers 
    • F24B1/19Supplying combustion-air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B1/00Stoves or ranges
    • F24B1/18Stoves with open fires, e.g. fireplaces
    • F24B1/185Stoves with open fires, e.g. fireplaces with air-handling means, heat exchange means, or additional provisions for convection heating ; Controlling combustion
    • F24B1/188Stoves with open fires, e.g. fireplaces with air-handling means, heat exchange means, or additional provisions for convection heating ; Controlling combustion characterised by use of heat exchange means , e.g. using a particular heat exchange medium, e.g. oil, gas  
    • F24B1/1885Stoves with open fires, e.g. fireplaces with air-handling means, heat exchange means, or additional provisions for convection heating ; Controlling combustion characterised by use of heat exchange means , e.g. using a particular heat exchange medium, e.g. oil, gas   the heat exchange medium being air only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B1/00Stoves or ranges
    • F24B1/18Stoves with open fires, e.g. fireplaces
    • F24B1/185Stoves with open fires, e.g. fireplaces with air-handling means, heat exchange means, or additional provisions for convection heating ; Controlling combustion
    • F24B1/189Stoves with open fires, e.g. fireplaces with air-handling means, heat exchange means, or additional provisions for convection heating ; Controlling combustion characterised by air-handling means, i.e. of combustion-air, heated-air, or flue-gases, e.g. draught control dampers 

Definitions

  • the present invention generally deals solid fuel burning conventional fireplaces.
  • Many conventional solid fuel burning fireplaces burn such solid fuels as wood, coal, etc.
  • the solid fuel is placed in a burn chamber and is lit.
  • the fuel burns, heating the surrounding ceramics, which in turn radiate heat along with the direct radiation from the fire to heat the room housing the fireplace.
  • the present invention provides a more energy efficient and cleaner burning solid fuel burning fireplace.
  • the fire place enhancer includes: a main air shield having a main exhaust port, a main access port an air ingestion port and an air supply port; an inner surface disposed with the main air shield so as to provide a combustion area for combusting the fuel, the inner surface having a rear surface and two side surfaces; and a heat manifold disposed above the combustion area, the heat manifold having first end and a second end, the heat manifold being operable to pass gasses from the combustion area to the chimney.
  • the air ingestion port provides ingested air from the room to the heat manifold at the rear surface without entering the combustion area.
  • the heat manifold transfers the ingested air from the rear surface to the main air shield and into the room.
  • the air supply port provides primary air from the room to the combustion area and provides secondary air to the rear surface without entering the combustion area.
  • the rear surface includes an exhaust port operable to provide the secondary air to the combustion area.
  • FIG. 1 illustrates an oblique frontal view of a portion of an enhancer front and secondary air supply channel in accordance with aspects of the present invention
  • FIG. 2 illustrates an oblique rear view of the portion of enhancer front and secondary air supply channel of FIG. 1 ;
  • FIG. 3 illustrates an oblique rear view of the portion of enhancer front and two port secondary air supply channel of FIG. 2 with a vent plate containing primary air vents in accordance with aspects of the present invention
  • FIG. 4 illustrates an oblique frontal view of the portion of the enhancer front of FIG. 1 with the addition of side walls, rear wall and a bottom surface in accordance with aspects of the present invention
  • FIG. 5 illustrates an oblique rear view of the portion of the enhancer front of FIG. 4 ;
  • FIG. 6 illustrates an oblique frontal view of the portion of enhancer front of FIG. 4 with the addition of a heat manifold and exhaust ports in accordance with aspects of the present invention
  • FIG. 7 illustrates another oblique frontal view of the portion of enhancer front of FIG. 6 ;
  • FIG. 8 illustrates an oblique frontal view of the portion of enhancer front of FIG. 7 with the addition of an outer shell
  • FIG. 9 illustrates another oblique frontal view of the portion of enhancer front of FIG. 8 ;
  • FIG. 10 illustrates another oblique frontal view of the portion of enhancer front of FIG. 8 ;
  • FIG. 11 illustrates an oblique frontal view of the portion of enhancer front of FIG. 10 with the addition of a baffle
  • FIG. 12 illustrates an oblique frontal view of the portion of enhancer front of FIG. 11 with the addition of a door frame
  • FIG. 13 illustrates an oblique frontal view of the portion of enhancer front of FIG. 12 with the addition of doors;
  • FIG. 14 illustrates another oblique frontal view of the portion of enhancer front of FIG. 13 with the addition of handles, hinges and latches;
  • FIG. 15 illustrates an oblique frontal view of the portion of enhancer front of FIG. 14 addition of extended shield and fasteners.
  • a fireplace enhancer in accordance with aspects of the present invention provides a secondary burn.
  • This secondary burn has a much higher temperature than a regular burn in a solid fuel burning fireplace and drastically decreases the particulates in the exhausted gases.
  • a fireplace enhancer in accordance with aspects of the present invention also provides the following: 1) control of the primary and secondary air supply; 2) a constricted and partially insulated space to increase the heat for a more efficient burn; 3) a shield to contain the heated air of the surrounding room from traveling through the open fireplace and up the chimney; 4) a surrounding cavity that imports air from the surrounding room, preheats it by conduction from the inner fire walls and circulates it back into the surrounding room via pipes connecting the surrounding cavity to the surrounding room; and 5) a set of pipes that heat air delivered from the surrounding cavity and deliver the air back into the room surrounding the fire place. Since these pipes are located at the top of the fireplace enhancer in accordance with aspects of the present invention, this process adds additional heat to the air passing into the surrounding room and this process cools the exhaust gas
  • a fireplace enhancer in accordance with aspects of the present invention includes: a heatilator; a heat manifold; a baffle; a secondary air supply system; an air control shuttle; an air filter/brace; a front air shield; an airwash system; and two front doors.
  • the heatilater is a hollow steel or cast iron body which surrounds the fire on three sides with openings on the front side of the fireplace to ingest air from the surrounding room.
  • the main function of the heatilator is to preheat the ingested room air and deliver it to heater manifold attached to the back of the heatilator at the upper most location of the wall adjacent to the fire.
  • the heat manifold may be pipes or tubes that attach from the back of the heatilator to the upper portion of a front air shield.
  • the heat manifold transfers the heat from the exhaust gasses from the fire to the air passing from the heatilator to the front air shield and back into the room where it originated. This super heats the air returning to the room and cools the exhaust gasses from the fire. This action greatly reduces the possibility of a chimney fire.
  • the heat manifold may include threaded attachments for hanging a baffle below the heat manifold.
  • the baffle may be made of steel or ceramic fiber, which hangs below the heat manifold supported by threaded rods attached heat manifold.
  • the secondary air supply system includes rectangular tubes arranged at right angles passing air from the front floor of the fireplace to the back bottom of the fireplace enhancer to an elevation just blow the baffle and discharging through holes at the end of the assembly.
  • the secondary air heated by the conducting tube is united with the hot unburnt gasses of the fire producing a secondary burn of intense heat thereby eliminating harmful particulates.
  • the air control shuttle includes a bar of steel with louvers and a handle that work in conjunction with louvers at the bottom of the front air shield to control the air flow for primary and secondary air.
  • the air filter/brace delivers primary air through fine slots thereby reducing the possibility sparks being blown back into the surrounding room. This device also acts to hold the secondary air assembly in place.
  • the front air shield includes a main front shield and an extended air shield including two side wings and a top wing, which are of variable size to adjust the size of the front air shield to fit the front of the fire place.
  • the wings are rectangular steel sheets attached to the main front shield with bolts, rivets, welds or other form of attachments.
  • the main front air shield is made of steel plate or other heat resistant material and has the following features. Holes may be provided near the top for the heat manifold pipes to exhaust the heated air into the surrounding room.
  • two vertical rectangular holes accommodate the air ingestion holes of the heatilator.
  • a hole accommodates the door assembly, which provides view of the fire and access to load fuel.
  • a door frame serves as the mounting device far the hinges, two doors and the locking devices for the two doors.
  • the frame also houses the air wash system to keep the windows of the doors clean, and houses the sliding shutoff valves controlling the supply of air for the air wash system.
  • the two doors include a C-shaped rim bounding a C-shaped plate with C-shaped divider of square stock on the underside of the plate. This square stock divides housing for the rope gasket and the lip to embrace the glass panels of the doors.
  • Handles of the door are secured by threaded nobs mounted at the top of the door plate. The handles are latched by two small narrow notched steel plates attached to the front air shield just above the door frame.
  • a hot air deflector is a rectangular panel mounted at the top of the hot air exit holes near the top of the main air shield. This panel is mounted such that it is parallel to the top of the heat manifold pipes. The deflector is held in place by plates welded to the deflector, which slide several inches down the throat of the heat manifold pipes. This mechanism deflects the very hot air from the heat manifold pipes away from the front of the fireplace to protect a mantle. This unit is only mounted and used if necessary.
  • FIGS. 1-15 An example embodiment of a fireplace enhancer in accordance with aspects of the present invention will now be described with reference to FIGS. 1-15 .
  • FIG. 1 illustrates an oblique frontal view of a portion of an enhancer front and secondary air supply channel in accordance with aspects of the present invention.
  • FIG. 1 includes a main air shield 102 , a tube 104 and a vertical box 106 .
  • Main air shield 102 , tube 104 and vertical box 106 may be made of any material that is able to withstand heat up to 850° F., non-limiting examples of which include metals, ceramics and combinations thereof.
  • air shield 102 , tube 104 and vertical box 106 are made of steel.
  • main air shield 102 is generally rectangular in nature, but may be any shape to generally cover the opening of a fireplace.
  • Main air shield 102 includes a top portion 108 , a bottom portion 110 , a side portion 112 and a side portion 114 .
  • Located at top portion 108 are a plurality of main exhaust ports, a sample of which is indicated as main exhaust port 116 .
  • Located at bottom portion 110 are a plurality of air supply ports, a sample of which is indicated as air supply port 118 .
  • Located at side portion 112 is an air ingestion port 120 .
  • Located at side portion 114 is air ingestion port 122 .
  • an air control shuttle 124 is located at bottom portion 110 , through which handle 126 protrudes.
  • Vertical box 106 includes an opening 107 . It should be noted that in some embodiments, vertical box 106 may be replaced with an enclosed tube having a first opening to coincide with tube 104 and another opening to coincide with exhaust ports, which will be described in greater detail below.
  • FIG. 2 illustrates an oblique rear view of the portion of enhancer front and secondary air supply channel of FIG. 1 .
  • tube 104 includes a pin 202 disposed near an open end 204 that is displaced from bottom portion 110 of main air shield 102 by a distance d.
  • Tube 104 additionally includes an open end 206 disposed adjacent to vertical box 106 .
  • FIGS. 1-2 illustrate a portion of an enhancer front and two port secondary air supply channel. These two C channels, tube 104 and vertical box 106 , deliver air to holes in the inner shell of the enhancer.
  • Main air shield 102 has levers at its base to control the amount of air supplied for primary and secondary air ports.
  • FIG. 2 shows the air control shuttle, which opens and closes the air supply levers on main air shield 102 .
  • FIG. 3 illustrates an oblique rear view of the portion of enhancer front and secondary air supply channel of FIG. 2 with a vent plate 302 containing primary air vents 304 in accordance with aspects of the present invention.
  • Vent plate 302 may be made of any material that is able to withstand heat up to 850° F., examples of which include metals, ceramics and combinations thereof. In an example embodiment, vent plate is made of steel.
  • vent plate 302 includes a notch 306 that fits over tube 104 . With notch 306 , vent plate 302 rests on pin 202 at an angle to leave a space 308 adjacent to bottom portion 110 of main air shield 102 .
  • Vent plate 302 enables outside air to be channeled as primary air and secondary air. Specifically, air that passes through air supply ports 118 in main air shield 102 . Some of this air passes through vents 304 , which will be primary air for fuel combustion. Further, the remainder of the air is diverted to open end 204 (not shown) of tube 104 , which will be secondary air for hot unburnt volatile gas combustion.
  • FIG. 3 illustrates how vent plate 302 contains and control the air supplied by the levers in the front panel. This air is supplied in a fixed ratio to primary and secondary air ports.
  • FIG. 4 illustrates an oblique frontal view of the portion of the enhancer front of FIG. 1 with the addition of side walls and a rear wall in accordance with aspects of the present invention.
  • a rear wall 404 , a side wall 406 and a side wall 408 are arranged to provide a combustion area 410 .
  • Rear wall 404 , side wall 406 and side wall 408 may be made of any material that is able to withstand heat up to 850° F., non-limiting examples of which include metals, ceramics and combinations thereof.
  • rear wall 404 , side wall 406 and side wall 408 are made of steel.
  • the primary air provided through vents 304 (not shown), is used for fuel combustion within combustion area 410 .
  • Air that is provided through air ingestion port 120 is separated from combustion area 410 by side wall 408 .
  • air that is provided through air ingestion port 122 is separated from combustion area 410 by side wall 406 .
  • the secondary air that is provided to tube 104 is then fed to a channel now formed by vertical box 106 capped by rear wall 404 .
  • FIG. 5 illustrates an oblique rear view of the portion of the enhancer front of FIG. 4 .
  • side wall 406 is disposed adjacent to air ingestion port 122
  • side wall 408 is disposed adjacent to air ingestion port 120 .
  • Rear wall 404 is disposed adjacent to vertical box 106 so as to cover opening 107 (not shown).
  • Rear wall 404 has a top portion 502 , a side portion 504 and a side portion 506 .
  • Disposed near top portion 502 are a plurality of heatilator exhaust ports, a sample of which is indicated as heatilator exhaust port 508 .
  • Disposed at side portion 504 is a diverting flange 510 so as to create a circulating air channel 512 .
  • Disposed at side portion 506 is a diverting flange 514 so as to create a circulating air channel 516 .
  • Diverting flange 510 and diverting flange 514 may be made of any material that is able to withstand heat up to 850° F., non-limiting examples of which include metals, ceramics and combinations thereof. In an example embodiment, diverting flange 510 and diverting flange 514 are made of steel.
  • FIGS. 4-5 show the addition of an inner box.
  • the plurality of heatilator exhaust ports provide secondary air just below a baffle, which will be described in greater detail below.
  • This inner box serves as the following: 1. a compact fire box; 2. a base for secondary air supply; 3. the inner wall of a heatilator that supplies hot air to the space in front of the enhancer by way of manifold tubes at the top of the enhancer, and 4. a container that delivers exhaust between the exit heater pipes to the chimney.
  • FIG. 6 illustrates an oblique frontal view of the portion of enhancer front of FIG. 4 with the addition of a heat manifold and exhaust ports in accordance with aspects of the present invention.
  • a heat manifold 602 includes a plurality of heat manifold tubes, a sample of which is indicated as heat manifold tube 604 .
  • Each of the tubes of heat manifold 602 are disposed from one of the plurality of heatilator exhaust ports disposed at top portion 502 of rear wall 404 to a respective one of the plurality of main exhaust ports in main air shield 102 .
  • Heat manifold 602 may be made of any material that is able to withstand heat up to 850° F., non-limiting examples of which include metals, ceramics and combinations thereof. In an example embodiment, heat manifold 602 made of steel.
  • rear wall 404 includes a plurality of secondary air exhaust ports, a sample of which is indicated as secondary air exhaust port 606 .
  • the secondary air is directed to tube 104 as indicated by arrow 608 , continues through the channel formed by vertical box 106 and rear wall 404 as indicated by arrow 610 and exits exhaust ports 606 as indicated by arrow 612 into combustion area 410 .
  • vents 304 (not shown) as indicated by arrows 614 and 616 .
  • air is directed through air ingestion port 120 as indicated by arrows 622 , is directed under diverting flange 510 as indicated by arrow 624 and is directed out through heat manifold 602 back into the room as indicated by arrow 626 .
  • FIG. 7 illustrates another oblique frontal view of the portion of enhancer front of FIG. 6 .
  • FIGS. 6-7 illustrate the placement of the heat manifold tubes which: transport air from the heatilator to the surrounding room; transfer heat from the exhaust gases from the fire to the air supplied to the surrounding room; and cools the exhaust gases going up the chimney, which substantially reduces the chance of chimney fires.
  • FIG. 8 illustrates an oblique frontal view of the portion of enhancer front of FIG. 7 with the addition of an outer shell 802 .
  • Outer shell 802 may be made of any material that is able to withstand heat up to 850° F., non-limiting examples of which include metals, ceramics and combinations thereof. In an example embodiment, outer shell 802 is made of steel.
  • outer shell 802 includes an outer wall 804 , an outer wall 806 and a rear outer wall 808 .
  • Outer wall 804 is disposed adjacent to air ingestion port 120 so as to create an ingestion air channel 810 with side wall 408 .
  • outer wall 806 is disposed adjacent to air ingestion port 122 so as to create an ingestion air channel 812 with side wall 406 .
  • FIG. 9 illustrates another oblique frontal view of the portion of enhancer front of FIG. 8 .
  • air ingestion channel 810 confines the air provided through air ingestion port 120 .
  • heat is transferred through side wall 408 to heat the air confined in ingestion channel 810 .
  • the heated air is directed under diverting flange 510 (not shown), out through heat manifold 602 and back into the room as indicated by arrow 902 .
  • heat is transferred through side wall 406 to heat the air confined in ingestion channel 812 .
  • the heated air is directed under diverting flange 514 (not shown), out through heat manifold 602 and back into the room as indicated by arrow 904 .
  • FIGS. 8-9 illustrate the addition of outer shell 802 .
  • Outer shell 802 completes the body of the heatilator.
  • the heatilator in combination with the heat manifold have two side ports and several round or square ports on the front panel of the fire place enhancer.
  • the circulating air enters the bottom of the side ports and exits out of the top of the side ports and the several top ports connected to the heat manifold tubes.
  • FIG. 10 illustrates another oblique frontal view of the portion of the enhancer front of FIG. 8 .
  • FIG. 11 illustrates an oblique frontal view of the portion of enhancer front of FIG. 10 with the addition of a baffle 1102 .
  • baffle 1102 is supported by a plurality of hangers, a sample of which is indicated as hanger 1104 .
  • Baffle 1102 includes a front portion 1106 and a rear portion 1108 .
  • Rear portion 1108 is disposed against rear wall 404 just above the secondary air exhaust ports.
  • Baffle 1102 is arranged at an angle such that front portion 1106 is disposed higher than rear portion 1108 .
  • front portion 1106 is displaced from main air shield 102 so as to create an open space 1110 that exposes a portion of heat manifold 602 .
  • Baffle 1102 and the hangers may be made of any material that is able to withstand heat up to 850° F., non-limiting examples of which include metals, ceramics and combinations thereof.
  • baffle 1102 and the hangers are made of steel.
  • Baffle 1102 provides three functions when fuel is combusting in combustion area 410 . Firstly, the combustion process generates infrared heat that is emitted omnidrectionally. Baffle 1102 reflects a portion of the omnidirectionally emitted infrared heat back toward combustion area 410 to increase the heat in combustion area 410 . The infrared heat reflection increases the temperature in combustion area 410 , and thus making the combustion process more efficient and decreasing the overall resulting particulates.
  • baffle 1102 directs the air exiting secondary exiting exhaust ports 606 as indicated by arrow 612 toward the upper portion of combustion area 410 .
  • This air mixes with the heated air combusted in the primary burn (the primary air provided to combustion area 410 as discussed above with reference to arrows 614 and 616 in FIG. 6 ).
  • the air from exhaust ports 606 as directed from baffle is used to provide a secondary burn with the unburnt gasses and particulates mixed in the heated exhaust gasses from the primary burn. This secondary burn provides additional heat and decreases overall resulting particulates.
  • baffle 1102 insulates heat manifold 602 from the increased heat generated by the secondary burn, thus preventing air that is circulated back into the room through heat manifold 602 from becoming too hot.
  • FIG. 12 illustrates an oblique frontal view of the portion of enhancer front of FIG. 11 with the addition of a door frame 1202 .
  • Door frame 1202 may be made of any material that is able to withstand heat up to 850° F., non-limiting examples of which include metals, ceramics and combinations thereof. In an example embodiment, door frame 1202 is made of steel.
  • door frame 1202 is disposed to surround main access port 108 .
  • FIG. 12 illustrates an example embodiment in which a bolt on door frame bolts onto main air shield 102 of the fire place enhancer.
  • This unit serves as the basis for bottom hinges of the two fire place doors and the latches for the door handles. It also serves as the based for the air wash supply system with two air supply control valves.
  • FIG. 13 illustrates an oblique frontal view of the portion of enhancer front of FIG. 12 with the addition of doors.
  • each of door 1302 and door 1304 includes a plurality of buttons, a sample of which is indicated as button 1306 , a glass pane 1308 and a glass pane 1310 .
  • buttons may be made of any material that is able to withstand heat up to 850° F., non-limiting examples of which include metals, ceramics and combinations thereof.
  • the buttons are made of steel.
  • Glass pane 1308 and glass pane 1310 may be made of any glass that is able to withstand heat up to 1200° C.
  • Glass panes 1308 and 1310 provide four functions. Firstly, glass panes 1308 and 1310 prevent smoke and particulates from escaping combustion area 410 during combustion. Secondly, glass panes 1308 and 1310 conduct thermal heat from the combustion process to the outside air. Thirdly, glass panes 1308 and 1310 conduct the radiant heat from the combustion process to the outside air. Fourthly, glass panes act as an air shield preventing great amounts of warm room air from flowing up the chimney.
  • FIG. 13 illustrates door frame/Air wash unit with air control slider valves on the underside of the unit.
  • the air wash system supplies fresh air that flows across the glass panes of the doors attached to the door frame and helps keep the glass clean.
  • the door frame also is attached to the lower portion of the door hinges thereby securing the doors to the door frame. This whole unit is attached to the front air shield and is placed around its main access port.
  • FIG. 14 illustrates another oblique frontal view of the portion of enhancer front of FIG. 13 with the addition of a handle 1402 , a handle 1404 , a latch 1406 , a latch 1408 and a plurality of hinges, a sample of which is indicated as hinge 1410 .
  • Handle 1402 and handle 1404 may be made of any material that can withstand heat that may be conducted from latch 1406 and latch 1408 .
  • Latch 1406 and latch 1408 may be made of any material that is able to withstand heat up to 700° F., non-limiting examples of which include metals, ceramics and combinations thereof.
  • handle 1402 , handle 1404 , latch 1406 and latch 1408 are made of a combination of wood and steel.
  • the hinges may be made of any material that is able to withstand heat up to 850° F., non-limiting examples of which include metals, ceramics and combinations thereof. In an example embodiment, the hinges are made of steel.
  • Handle 1402 is able to rotate about an axis as indicated by arrow 1412 so as to disengage from latch 1406 .
  • handle 1404 is able to rotate about an axis indicated by arrow 1414 so as to disengage from latch 1408 .
  • the plurality of hinges enable door 1302 and door 1304 to open and close.
  • FIG. 15 illustrates an oblique frontal view of the portion of enhancer front of FIG. 14 with the addition of an extended air shield 1502 .
  • extended air shield 1502 includes an extended side portion 1504 , an extended side portion 1506 and an extended top portion 1508 .
  • Extended air shield 1502 may be made of any material that is able to withstand heat up to 850° F., non-limiting examples of which include metals, ceramics and combinations thereof.
  • the extended air shield is made of steel.
  • Extended side portion 1504 is disposed behind side portion 112 of main air shield 102 .
  • Extended side portion 1506 is disposed behind side portion 114 of main air shield 102 .
  • Extended top portion 1508 is disposed behind top portion 108 of main air shield 102 .
  • side walls 406 and 408 and rear wall 404 provide combustion area 410 .
  • a combustion area may be provided by a unitary curved surface or combination of curved surfaces and flat walls.
  • a combustion area may be provided by an inner surface disposed with the main air shield so as to provide a combustion area for combusting the fuel, wherein the inner surface has a rear surface and two side surfaces.
  • tube 104 is provides secondary air to combustion area 410 .
  • a plurality of tubes may be used to provide secondary air to combustion area 410 .
  • the tubes of heat manifold 602 have rectangular cross sections. In some embodiments, the tubes of a heat manifold may have any known cross sectional shape.
  • seven tubes are illustrated in heat manifold 602 have rectangular cross sections. In some embodiments, any number of tubes may be included in heat manifold, so long as space is provided between the tubes to allow gasses to escape through to the chimney.
  • the above discussed non-limiting example embodiment includes a handle and latch door system, as shown in FIG. 15 , for purposes of discussion only. It should be noted that any known system may be used to open and close doors of a fireplace enhancer in accordance with aspects of the present invention.
  • a large air shield assembly that includes a main air shield with two side extensions and a top extension that prevent the warm air of a room surrounding a fireplace from escaping through the fireplace and up the chimney.
  • the large air shield assembly provides an additional benefit of radiating heat absorbed from the combustion processes out into the surrounding room environment.
  • a baffle reflects heat back into the combustion processes thereby making these processes more efficient and producing less harmful particulates.
  • a secondary air supply system in conjunction with the baffle causes the heated secondary air to unite with the rising unburnt gasses from the primary combustion to produce an intensely hot secondary burn that eliminates even more harmful particulates.
  • an air control system limits and adjusts the amount of air provided to the primary and secondary combustion processes.
  • a large viewable port is provided to observe combustion and give access for attending fuel.
  • This viewable port has doors with large glass shields that provide greater radiation of heat into the surrounding room.
  • a heat manifold of secured pipes located at the top of the fireplace enhancer.
  • the extremely hot exhaust gasses escaping from the combustion processes the heat manifold, pass around these pipes thus transferring heat through the pipes to further heat the air passing through the pipes and into the surrounding room.
  • This process cools the hot exhaust gasses passing around the pipes and up the chimney thus reducing the chances of chimney fires.
  • the arrangement of the heating components and the double heating of the circulating room air yield an efficient heating system without any mechanical system.
  • a heatilator surrounds the combustion processes and extracts a great deal of the generated heat and transfers this heat to the ingested air from the surrounding room. This heated air is exhausted into a heat manifold and out into the surrounding room.

Abstract

A fire place enhancer is provided for combusting fuel and for placement into a fireplace within a wall of a room, wherein the fireplace has a chimney. The fire place enhancer includes: a main air shield having a main exhaust port, a main access port an air ingestion port and an air supply port; an inner surface disposed with the main air shield so as to provide a combustion area for combusting the fuel, the inner surface having a rear surface and two side surfaces; and a heat manifold disposed above the combustion area, the heat manifold having a first end and a second end, the heat manifold being operable to pass gasses from the combustion area to the chimney.

Description

  • The present application claims priority from U.S. Provisional Application No. 62/361,743 filed Jul. 13, 2016, the entire disclosure of which is incorporated herein by reference.
  • BACKGROUND
  • The present invention generally deals solid fuel burning conventional fireplaces. Many conventional solid fuel burning fireplaces burn such solid fuels as wood, coal, etc. The solid fuel is placed in a burn chamber and is lit. The fuel burns, heating the surrounding ceramics, which in turn radiate heat along with the direct radiation from the fire to heat the room housing the fireplace.
  • Many of these fireplaces exhaust the heated air of the surrounding along with the exhaust of the fire up through a chimney that leads the heated air outside the home. Unfortunately, these conventional fireplaces are inefficient in that much of the heat escapes with the heated air through the stack, as opposed to not allowing most of the heated air within the surrounding room to escape up the chimney. Further, the exhausts are dirty in that they include many particulates because the temperature of the flame from the burning fuel is insufficient to break down all the particulates.
  • There exists a need to provide a more energy efficient and cleaner burning solid fuel burning fireplace.
  • SUMMARY
  • The present invention provides a more energy efficient and cleaner burning solid fuel burning fireplace.
  • Various embodiments described herein are drawn to a fire place enhancer for combusting fuel and for placement into a fireplace within a wall of a room, wherein the fireplace has a chimney. The fire place enhancer includes: a main air shield having a main exhaust port, a main access port an air ingestion port and an air supply port; an inner surface disposed with the main air shield so as to provide a combustion area for combusting the fuel, the inner surface having a rear surface and two side surfaces; and a heat manifold disposed above the combustion area, the heat manifold having first end and a second end, the heat manifold being operable to pass gasses from the combustion area to the chimney. The air ingestion port provides ingested air from the room to the heat manifold at the rear surface without entering the combustion area. The heat manifold transfers the ingested air from the rear surface to the main air shield and into the room. The air supply port provides primary air from the room to the combustion area and provides secondary air to the rear surface without entering the combustion area. The rear surface includes an exhaust port operable to provide the secondary air to the combustion area.
  • BRIEF SUMMARY OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and form a part of the specification, illustrate an exemplary embodiment of the present invention and, together with the description, serve to explain the principles of the invention. In the drawings:
  • FIG. 1 illustrates an oblique frontal view of a portion of an enhancer front and secondary air supply channel in accordance with aspects of the present invention;
  • FIG. 2 illustrates an oblique rear view of the portion of enhancer front and secondary air supply channel of FIG. 1;
  • FIG. 3 illustrates an oblique rear view of the portion of enhancer front and two port secondary air supply channel of FIG. 2 with a vent plate containing primary air vents in accordance with aspects of the present invention;
  • FIG. 4 illustrates an oblique frontal view of the portion of the enhancer front of FIG. 1 with the addition of side walls, rear wall and a bottom surface in accordance with aspects of the present invention;
  • FIG. 5 illustrates an oblique rear view of the portion of the enhancer front of FIG. 4;
  • FIG. 6 illustrates an oblique frontal view of the portion of enhancer front of FIG. 4 with the addition of a heat manifold and exhaust ports in accordance with aspects of the present invention;
  • FIG. 7 illustrates another oblique frontal view of the portion of enhancer front of FIG. 6;
  • FIG. 8 illustrates an oblique frontal view of the portion of enhancer front of FIG. 7 with the addition of an outer shell;
  • FIG. 9 illustrates another oblique frontal view of the portion of enhancer front of FIG. 8;
  • FIG. 10 illustrates another oblique frontal view of the portion of enhancer front of FIG. 8;
  • FIG. 11 illustrates an oblique frontal view of the portion of enhancer front of FIG. 10 with the addition of a baffle;
  • FIG. 12 illustrates an oblique frontal view of the portion of enhancer front of FIG. 11 with the addition of a door frame;
  • FIG. 13 illustrates an oblique frontal view of the portion of enhancer front of FIG. 12 with the addition of doors;
  • FIG. 14 illustrates another oblique frontal view of the portion of enhancer front of FIG. 13 with the addition of handles, hinges and latches; and
  • FIG. 15 illustrates an oblique frontal view of the portion of enhancer front of FIG. 14 addition of extended shield and fasteners.
  • DETAILED DESCRIPTION
  • A fireplace enhancer in accordance with aspects of the present invention provides a secondary burn. This secondary burn has a much higher temperature than a regular burn in a solid fuel burning fireplace and drastically decreases the particulates in the exhausted gases. A fireplace enhancer in accordance with aspects of the present invention also provides the following: 1) control of the primary and secondary air supply; 2) a constricted and partially insulated space to increase the heat for a more efficient burn; 3) a shield to contain the heated air of the surrounding room from traveling through the open fireplace and up the chimney; 4) a surrounding cavity that imports air from the surrounding room, preheats it by conduction from the inner fire walls and circulates it back into the surrounding room via pipes connecting the surrounding cavity to the surrounding room; and 5) a set of pipes that heat air delivered from the surrounding cavity and deliver the air back into the room surrounding the fire place. Since these pipes are located at the top of the fireplace enhancer in accordance with aspects of the present invention, this process adds additional heat to the air passing into the surrounding room and this process cools the exhaust gasses from the fire and reduces the probability of fire.
  • A fireplace enhancer in accordance with aspects of the present invention includes: a heatilator; a heat manifold; a baffle; a secondary air supply system; an air control shuttle; an air filter/brace; a front air shield; an airwash system; and two front doors.
  • The heatilater is a hollow steel or cast iron body which surrounds the fire on three sides with openings on the front side of the fireplace to ingest air from the surrounding room. The main function of the heatilator is to preheat the ingested room air and deliver it to heater manifold attached to the back of the heatilator at the upper most location of the wall adjacent to the fire.
  • The heat manifold may be pipes or tubes that attach from the back of the heatilator to the upper portion of a front air shield. The heat manifold transfers the heat from the exhaust gasses from the fire to the air passing from the heatilator to the front air shield and back into the room where it originated. This super heats the air returning to the room and cools the exhaust gasses from the fire. This action greatly reduces the possibility of a chimney fire. In an example embodiment, the heat manifold may include threaded attachments for hanging a baffle below the heat manifold.
  • The baffle may be made of steel or ceramic fiber, which hangs below the heat manifold supported by threaded rods attached heat manifold.
  • In an example embodiment, the secondary air supply system includes rectangular tubes arranged at right angles passing air from the front floor of the fireplace to the back bottom of the fireplace enhancer to an elevation just blow the baffle and discharging through holes at the end of the assembly. The secondary air heated by the conducting tube is united with the hot unburnt gasses of the fire producing a secondary burn of intense heat thereby eliminating harmful particulates.
  • In an example embodiment, the air control shuttle includes a bar of steel with louvers and a handle that work in conjunction with louvers at the bottom of the front air shield to control the air flow for primary and secondary air.
  • The air filter/brace delivers primary air through fine slots thereby reducing the possibility sparks being blown back into the surrounding room. This device also acts to hold the secondary air assembly in place.
  • The front air shield includes a main front shield and an extended air shield including two side wings and a top wing, which are of variable size to adjust the size of the front air shield to fit the front of the fire place. In an example embodiment, the wings are rectangular steel sheets attached to the main front shield with bolts, rivets, welds or other form of attachments. In an example embodiment, the main front air shield is made of steel plate or other heat resistant material and has the following features. Holes may be provided near the top for the heat manifold pipes to exhaust the heated air into the surrounding room. In an example embodiment, two vertical rectangular holes accommodate the air ingestion holes of the heatilator. A hole accommodates the door assembly, which provides view of the fire and access to load fuel. Louver holes near the bottom of the main air shield act in conjunction with the air control shuttle to control the supply of primary and secondary air. A door frame serves as the mounting device far the hinges, two doors and the locking devices for the two doors. The frame also houses the air wash system to keep the windows of the doors clean, and houses the sliding shutoff valves controlling the supply of air for the air wash system.
  • The two doors include a C-shaped rim bounding a C-shaped plate with C-shaped divider of square stock on the underside of the plate. This square stock divides housing for the rope gasket and the lip to embrace the glass panels of the doors. Handles of the door are secured by threaded nobs mounted at the top of the door plate. The handles are latched by two small narrow notched steel plates attached to the front air shield just above the door frame. A hot air deflector is a rectangular panel mounted at the top of the hot air exit holes near the top of the main air shield. This panel is mounted such that it is parallel to the top of the heat manifold pipes. The deflector is held in place by plates welded to the deflector, which slide several inches down the throat of the heat manifold pipes. This mechanism deflects the very hot air from the heat manifold pipes away from the front of the fireplace to protect a mantle. This unit is only mounted and used if necessary.
  • An example embodiment of a fireplace enhancer in accordance with aspects of the present invention will now be described with reference to FIGS. 1-15.
  • FIG. 1 illustrates an oblique frontal view of a portion of an enhancer front and secondary air supply channel in accordance with aspects of the present invention. FIG. 1 includes a main air shield 102, a tube 104 and a vertical box 106.
  • Main air shield 102, tube 104 and vertical box 106 may be made of any material that is able to withstand heat up to 850° F., non-limiting examples of which include metals, ceramics and combinations thereof. In an example embodiment, air shield 102, tube 104 and vertical box 106 are made of steel.
  • In this non-limiting example embodiment, main air shield 102 is generally rectangular in nature, but may be any shape to generally cover the opening of a fireplace. Main air shield 102 includes a top portion 108, a bottom portion 110, a side portion 112 and a side portion 114.
  • Located at top portion 108 are a plurality of main exhaust ports, a sample of which is indicated as main exhaust port 116. Located at bottom portion 110 are a plurality of air supply ports, a sample of which is indicated as air supply port 118. Located at side portion 112 is an air ingestion port 120. Located at side portion 114 is air ingestion port 122. Additionally located at bottom portion 110 is an air control shuttle 124, through which handle 126 protrudes.
  • Vertical box 106 includes an opening 107. It should be noted that in some embodiments, vertical box 106 may be replaced with an enclosed tube having a first opening to coincide with tube 104 and another opening to coincide with exhaust ports, which will be described in greater detail below.
  • FIG. 2 illustrates an oblique rear view of the portion of enhancer front and secondary air supply channel of FIG. 1.
  • As shown in FIG. 2, tube 104 includes a pin 202 disposed near an open end 204 that is displaced from bottom portion 110 of main air shield 102 by a distance d. Tube 104 additionally includes an open end 206 disposed adjacent to vertical box 106.
  • FIGS. 1-2 illustrate a portion of an enhancer front and two port secondary air supply channel. These two C channels, tube 104 and vertical box 106, deliver air to holes in the inner shell of the enhancer. Main air shield 102 has levers at its base to control the amount of air supplied for primary and secondary air ports. FIG. 2 shows the air control shuttle, which opens and closes the air supply levers on main air shield 102.
  • FIG. 3 illustrates an oblique rear view of the portion of enhancer front and secondary air supply channel of FIG. 2 with a vent plate 302 containing primary air vents 304 in accordance with aspects of the present invention.
  • Vent plate 302 may be made of any material that is able to withstand heat up to 850° F., examples of which include metals, ceramics and combinations thereof. In an example embodiment, vent plate is made of steel.
  • As shown in FIG. 3, vent plate 302 includes a notch 306 that fits over tube 104. With notch 306, vent plate 302 rests on pin 202 at an angle to leave a space 308 adjacent to bottom portion 110 of main air shield 102.
  • Vent plate 302 enables outside air to be channeled as primary air and secondary air. Specifically, air that passes through air supply ports 118 in main air shield 102. Some of this air passes through vents 304, which will be primary air for fuel combustion. Further, the remainder of the air is diverted to open end 204 (not shown) of tube 104, which will be secondary air for hot unburnt volatile gas combustion.
  • FIG. 3 illustrates how vent plate 302 contains and control the air supplied by the levers in the front panel. This air is supplied in a fixed ratio to primary and secondary air ports.
  • FIG. 4 illustrates an oblique frontal view of the portion of the enhancer front of FIG. 1 with the addition of side walls and a rear wall in accordance with aspects of the present invention.
  • As shown in FIG. 4, a rear wall 404, a side wall 406 and a side wall 408 are arranged to provide a combustion area 410.
  • Rear wall 404, side wall 406 and side wall 408 may be made of any material that is able to withstand heat up to 850° F., non-limiting examples of which include metals, ceramics and combinations thereof. In an example embodiment, rear wall 404, side wall 406 and side wall 408 are made of steel.
  • The primary air provided through vents 304 (not shown), is used for fuel combustion within combustion area 410. Air that is provided through air ingestion port 120 is separated from combustion area 410 by side wall 408. Similarly, air that is provided through air ingestion port 122 is separated from combustion area 410 by side wall 406. The secondary air that is provided to tube 104 is then fed to a channel now formed by vertical box 106 capped by rear wall 404.
  • FIG. 5 illustrates an oblique rear view of the portion of the enhancer front of FIG. 4.
  • As shown in FIG. 5, side wall 406 is disposed adjacent to air ingestion port 122, whereas side wall 408 is disposed adjacent to air ingestion port 120.
  • Rear wall 404 is disposed adjacent to vertical box 106 so as to cover opening 107 (not shown). Rear wall 404 has a top portion 502, a side portion 504 and a side portion 506. Disposed near top portion 502 are a plurality of heatilator exhaust ports, a sample of which is indicated as heatilator exhaust port 508. Disposed at side portion 504 is a diverting flange 510 so as to create a circulating air channel 512. Disposed at side portion 506 is a diverting flange 514 so as to create a circulating air channel 516.
  • Diverting flange 510 and diverting flange 514 may be made of any material that is able to withstand heat up to 850° F., non-limiting examples of which include metals, ceramics and combinations thereof. In an example embodiment, diverting flange 510 and diverting flange 514 are made of steel.
  • When fuel is combusting in combustion area 410, heat is transferred through side wall 408 so as to heat the air that is provided through air ingestion port 120. Similarly, when fuel is combusting in combustion area 410, heat is transferred through side wall 406 so as to heat the air that is provided through air ingestion port 122.
  • FIGS. 4-5 show the addition of an inner box. The plurality of heatilator exhaust ports provide secondary air just below a baffle, which will be described in greater detail below. This inner box serves as the following: 1. a compact fire box; 2. a base for secondary air supply; 3. the inner wall of a heatilator that supplies hot air to the space in front of the enhancer by way of manifold tubes at the top of the enhancer, and 4. a container that delivers exhaust between the exit heater pipes to the chimney.
  • FIG. 6 illustrates an oblique frontal view of the portion of enhancer front of FIG. 4 with the addition of a heat manifold and exhaust ports in accordance with aspects of the present invention.
  • As shown in FIG. 6, a heat manifold 602 includes a plurality of heat manifold tubes, a sample of which is indicated as heat manifold tube 604. Each of the tubes of heat manifold 602 are disposed from one of the plurality of heatilator exhaust ports disposed at top portion 502 of rear wall 404 to a respective one of the plurality of main exhaust ports in main air shield 102.
  • Heat manifold 602 may be made of any material that is able to withstand heat up to 850° F., non-limiting examples of which include metals, ceramics and combinations thereof. In an example embodiment, heat manifold 602 made of steel.
  • As further shown in FIG. 6, rear wall 404 includes a plurality of secondary air exhaust ports, a sample of which is indicated as secondary air exhaust port 606.
  • As mentioned above, the secondary air is directed to tube 104 as indicated by arrow 608, continues through the channel formed by vertical box 106 and rear wall 404 as indicated by arrow 610 and exits exhaust ports 606 as indicated by arrow 612 into combustion area 410.
  • As mentioned above, the primary air is directed into combustion area 410 through vents 304 (not shown) as indicated by arrows 614 and 616.
  • Furthermore, air is directed through air ingestion port 120 as indicated by arrows 622, is directed under diverting flange 510 as indicated by arrow 624 and is directed out through heat manifold 602 back into the room as indicated by arrow 626.
  • FIG. 7 illustrates another oblique frontal view of the portion of enhancer front of FIG. 6.
  • FIGS. 6-7 illustrate the placement of the heat manifold tubes which: transport air from the heatilator to the surrounding room; transfer heat from the exhaust gases from the fire to the air supplied to the surrounding room; and cools the exhaust gases going up the chimney, which substantially reduces the chance of chimney fires.
  • FIG. 8 illustrates an oblique frontal view of the portion of enhancer front of FIG. 7 with the addition of an outer shell 802.
  • Outer shell 802 may be made of any material that is able to withstand heat up to 850° F., non-limiting examples of which include metals, ceramics and combinations thereof. In an example embodiment, outer shell 802 is made of steel.
  • As shown in the figure, outer shell 802 includes an outer wall 804, an outer wall 806 and a rear outer wall 808. Outer wall 804 is disposed adjacent to air ingestion port 120 so as to create an ingestion air channel 810 with side wall 408. Similarly, outer wall 806 is disposed adjacent to air ingestion port 122 so as to create an ingestion air channel 812 with side wall 406.
  • FIG. 9 illustrates another oblique frontal view of the portion of enhancer front of FIG. 8.
  • As shown in FIG. 9, air ingestion channel 810 confines the air provided through air ingestion port 120. When fuel is combusting in combustion area 410 heat is transferred through side wall 408 to heat the air confined in ingestion channel 810. As mentioned above, the heated air is directed under diverting flange 510 (not shown), out through heat manifold 602 and back into the room as indicated by arrow 902. Similarly, when fuel is combusting in combustion area 410 heat is transferred through side wall 406 to heat the air confined in ingestion channel 812. As mentioned above, the heated air is directed under diverting flange 514 (not shown), out through heat manifold 602 and back into the room as indicated by arrow 904.
  • FIGS. 8-9 illustrate the addition of outer shell 802. Outer shell 802 completes the body of the heatilator. The heatilator in combination with the heat manifold have two side ports and several round or square ports on the front panel of the fire place enhancer. The circulating air enters the bottom of the side ports and exits out of the top of the side ports and the several top ports connected to the heat manifold tubes.
  • FIG. 10 illustrates another oblique frontal view of the portion of the enhancer front of FIG. 8.
  • FIG. 11 illustrates an oblique frontal view of the portion of enhancer front of FIG. 10 with the addition of a baffle 1102.
  • As shown in the figure, baffle 1102 is supported by a plurality of hangers, a sample of which is indicated as hanger 1104. Baffle 1102 includes a front portion 1106 and a rear portion 1108. Rear portion 1108 is disposed against rear wall 404 just above the secondary air exhaust ports. Baffle 1102 is arranged at an angle such that front portion 1106 is disposed higher than rear portion 1108. Further, front portion 1106 is displaced from main air shield 102 so as to create an open space 1110 that exposes a portion of heat manifold 602.
  • Baffle 1102 and the hangers may be made of any material that is able to withstand heat up to 850° F., non-limiting examples of which include metals, ceramics and combinations thereof. In an example embodiment, baffle 1102 and the hangers are made of steel.
  • Baffle 1102 provides three functions when fuel is combusting in combustion area 410. Firstly, the combustion process generates infrared heat that is emitted omnidrectionally. Baffle 1102 reflects a portion of the omnidirectionally emitted infrared heat back toward combustion area 410 to increase the heat in combustion area 410. The infrared heat reflection increases the temperature in combustion area 410, and thus making the combustion process more efficient and decreasing the overall resulting particulates.
  • Secondly, baffle 1102 directs the air exiting secondary exiting exhaust ports 606 as indicated by arrow 612 toward the upper portion of combustion area 410. This air mixes with the heated air combusted in the primary burn (the primary air provided to combustion area 410 as discussed above with reference to arrows 614 and 616 in FIG. 6). The air from exhaust ports 606 as directed from baffle is used to provide a secondary burn with the unburnt gasses and particulates mixed in the heated exhaust gasses from the primary burn. This secondary burn provides additional heat and decreases overall resulting particulates.
  • Thirdly, baffle 1102 insulates heat manifold 602 from the increased heat generated by the secondary burn, thus preventing air that is circulated back into the room through heat manifold 602 from becoming too hot.
  • FIG. 12 illustrates an oblique frontal view of the portion of enhancer front of FIG. 11 with the addition of a door frame 1202.
  • Door frame 1202 may be made of any material that is able to withstand heat up to 850° F., non-limiting examples of which include metals, ceramics and combinations thereof. In an example embodiment, door frame 1202 is made of steel.
  • As shown in FIG. 12, door frame 1202 is disposed to surround main access port 108.
  • FIG. 12 illustrates an example embodiment in which a bolt on door frame bolts onto main air shield 102 of the fire place enhancer. This unit serves as the basis for bottom hinges of the two fire place doors and the latches for the door handles. It also serves as the based for the air wash supply system with two air supply control valves.
  • FIG. 13 illustrates an oblique frontal view of the portion of enhancer front of FIG. 12 with the addition of doors.
  • As shown in FIG. 13, each of door 1302 and door 1304 includes a plurality of buttons, a sample of which is indicated as button 1306, a glass pane 1308 and a glass pane 1310.
  • The buttons may be made of any material that is able to withstand heat up to 850° F., non-limiting examples of which include metals, ceramics and combinations thereof. In an example embodiment, the buttons are made of steel. Glass pane 1308 and glass pane 1310 may be made of any glass that is able to withstand heat up to 1200° C.
  • Glass panes 1308 and 1310 provide four functions. Firstly, glass panes 1308 and 1310 prevent smoke and particulates from escaping combustion area 410 during combustion. Secondly, glass panes 1308 and 1310 conduct thermal heat from the combustion process to the outside air. Thirdly, glass panes 1308 and 1310 conduct the radiant heat from the combustion process to the outside air. Fourthly, glass panes act as an air shield preventing great amounts of warm room air from flowing up the chimney.
  • FIG. 13 illustrates door frame/Air wash unit with air control slider valves on the underside of the unit. The air wash system supplies fresh air that flows across the glass panes of the doors attached to the door frame and helps keep the glass clean. The door frame also is attached to the lower portion of the door hinges thereby securing the doors to the door frame. This whole unit is attached to the front air shield and is placed around its main access port.
  • FIG. 14 illustrates another oblique frontal view of the portion of enhancer front of FIG. 13 with the addition of a handle 1402, a handle 1404, a latch 1406, a latch 1408 and a plurality of hinges, a sample of which is indicated as hinge 1410.
  • Handle 1402 and handle 1404 may be made of any material that can withstand heat that may be conducted from latch 1406 and latch 1408. Latch 1406 and latch 1408 may be made of any material that is able to withstand heat up to 700° F., non-limiting examples of which include metals, ceramics and combinations thereof. In an example embodiment, handle 1402, handle 1404, latch 1406 and latch 1408 are made of a combination of wood and steel.
  • The hinges may be made of any material that is able to withstand heat up to 850° F., non-limiting examples of which include metals, ceramics and combinations thereof. In an example embodiment, the hinges are made of steel.
  • Handle 1402 is able to rotate about an axis as indicated by arrow 1412 so as to disengage from latch 1406. Similarly, handle 1404 is able to rotate about an axis indicated by arrow 1414 so as to disengage from latch 1408. The plurality of hinges enable door 1302 and door 1304 to open and close.
  • FIG. 15 illustrates an oblique frontal view of the portion of enhancer front of FIG. 14 with the addition of an extended air shield 1502.
  • As shown in FIG. 15, extended air shield 1502 includes an extended side portion 1504, an extended side portion 1506 and an extended top portion 1508.
  • Extended air shield 1502 may be made of any material that is able to withstand heat up to 850° F., non-limiting examples of which include metals, ceramics and combinations thereof. In an example embodiment, the extended air shield is made of steel.
  • Extended side portion 1504 is disposed behind side portion 112 of main air shield 102. Extended side portion 1506 is disposed behind side portion 114 of main air shield 102. Extended top portion 1508 is disposed behind top portion 108 of main air shield 102.
  • In the above discussed non-limiting example embodiment, side walls 406 and 408 and rear wall 404 provide combustion area 410. In some embodiments, a combustion area may be provided by a unitary curved surface or combination of curved surfaces and flat walls. In a general sense, a combustion area may be provided by an inner surface disposed with the main air shield so as to provide a combustion area for combusting the fuel, wherein the inner surface has a rear surface and two side surfaces.
  • In the above discussed non-limiting example embodiment, tube 104 is provides secondary air to combustion area 410. In some embodiments, a plurality of tubes may be used to provide secondary air to combustion area 410.
  • In the above discussed non-limiting example embodiment, the tubes of heat manifold 602 have rectangular cross sections. In some embodiments, the tubes of a heat manifold may have any known cross sectional shape.
  • In the above discussed non-limiting example embodiment, seven tubes are illustrated in heat manifold 602 have rectangular cross sections. In some embodiments, any number of tubes may be included in heat manifold, so long as space is provided between the tubes to allow gasses to escape through to the chimney.
  • The above discussed non-limiting example embodiment includes a handle and latch door system, as shown in FIG. 15, for purposes of discussion only. It should be noted that any known system may be used to open and close doors of a fireplace enhancer in accordance with aspects of the present invention.
  • In accordance with an aspect of the present invention, a large air shield assembly that includes a main air shield with two side extensions and a top extension that prevent the warm air of a room surrounding a fireplace from escaping through the fireplace and up the chimney. The large air shield assembly provides an additional benefit of radiating heat absorbed from the combustion processes out into the surrounding room environment.
  • In accordance with another aspect of the present invention, a baffle reflects heat back into the combustion processes thereby making these processes more efficient and producing less harmful particulates.
  • In accordance with another aspect of the present invention, a secondary air supply system in conjunction with the baffle causes the heated secondary air to unite with the rising unburnt gasses from the primary combustion to produce an intensely hot secondary burn that eliminates even more harmful particulates.
  • In accordance with another aspect of the present invention, an air control system limits and adjusts the amount of air provided to the primary and secondary combustion processes.
  • In accordance with another aspect of the present invention, a large viewable port is provided to observe combustion and give access for attending fuel. This viewable port has doors with large glass shields that provide greater radiation of heat into the surrounding room.
  • In accordance with another aspect of the present invention, a heat manifold of secured pipes located at the top of the fireplace enhancer. The extremely hot exhaust gasses escaping from the combustion processes the heat manifold, pass around these pipes thus transferring heat through the pipes to further heat the air passing through the pipes and into the surrounding room. This process cools the hot exhaust gasses passing around the pipes and up the chimney thus reducing the chances of chimney fires. The arrangement of the heating components and the double heating of the circulating room air yield an efficient heating system without any mechanical system.
  • In accordance with another aspect of the present invention, a heatilator surrounds the combustion processes and extracts a great deal of the generated heat and transfers this heat to the ingested air from the surrounding room. This heated air is exhausted into a heat manifold and out into the surrounding room.
  • In the drawings and specification, there have been disclosed embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.

Claims (6)

What is claimed as new and desired to be protected by Letters Patent of the United States is:
1. A fire place enhancer for combusting fuel and for placement into a fireplace within a wall of a room, the fireplace having a chimney, said fire place enhancer comprising:
a main air shield having a main exhaust port, a main access port an air ingestion port and an air supply port;
an inner surface disposed with said main air shield so as to provide a combustion area for combusting the fuel, said inner surface having a rear surface and two side surfaces; and
a heat manifold disposed above the combustion area, said heat manifold having a first end and a second end, said heat manifold being operable to pass gasses from the combustion area to the chimney;
wherein said air ingestion port operable to provide ingested air from the room to said heat manifold at said rear surface without entering the combustion area,
said heat manifold being operable to transfer the ingested air from said rear surface to said main air shield and into the room,
wherein said air supply port is operable to provide primary air from the room to the combustion area and to provide secondary air to said rear surface without entering the combustion area, and
wherein said rear surface includes an exhaust port operable to provide the secondary air to the combustion area.
2. The fire place enhancer of claim 1, further comprising a baffle disposed between the exhaust port and said heat manifold.
3. The fire place enhancer of claim 1, further comprising a door covering said main access port.
4. The fire place enhancer of claim 3, wherein said door comprises a glass panel.
5. The fire place enhancer of claim 1, further comprising a shuttle operable to adjust said air supply port to adjust the amount of primary air provided from the room to the combustion area.
6. The fire place enhancer of claim 1, further comprising an extended air shield arranged so as to be disposed between said main air shield and the wall.
US15/649,635 2016-07-13 2017-07-13 Fireplace enhancer Abandoned US20180017261A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/649,635 US20180017261A1 (en) 2016-07-13 2017-07-13 Fireplace enhancer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662361743P 2016-07-13 2016-07-13
US15/649,635 US20180017261A1 (en) 2016-07-13 2017-07-13 Fireplace enhancer

Publications (1)

Publication Number Publication Date
US20180017261A1 true US20180017261A1 (en) 2018-01-18

Family

ID=60942491

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/649,635 Abandoned US20180017261A1 (en) 2016-07-13 2017-07-13 Fireplace enhancer

Country Status (1)

Country Link
US (1) US20180017261A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10895392B2 (en) * 2019-04-23 2021-01-19 Resource Management Data System, LLC Systems and methods for heating and cooling a facility

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291670A (en) * 1980-07-08 1981-09-29 Hyatt Everett C Gas fired fireplace insert with heat extractor
US4441482A (en) * 1979-07-13 1984-04-10 Luscombe Terry L Fireplace insert
US4475531A (en) * 1980-04-09 1984-10-09 Iem Ltd. Fireplace unit
US4601280A (en) * 1984-06-11 1986-07-22 Onward Hardware Limited Fireplace insert
US20110005510A1 (en) * 2009-07-13 2011-01-13 Steve Marple Fire Grate for Enhanced Combustion
US20110220090A1 (en) * 2010-03-12 2011-09-15 Atemboski Alan R Hybrid wood burning fireplace assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441482A (en) * 1979-07-13 1984-04-10 Luscombe Terry L Fireplace insert
US4475531A (en) * 1980-04-09 1984-10-09 Iem Ltd. Fireplace unit
US4291670A (en) * 1980-07-08 1981-09-29 Hyatt Everett C Gas fired fireplace insert with heat extractor
US4601280A (en) * 1984-06-11 1986-07-22 Onward Hardware Limited Fireplace insert
US20110005510A1 (en) * 2009-07-13 2011-01-13 Steve Marple Fire Grate for Enhanced Combustion
US20110220090A1 (en) * 2010-03-12 2011-09-15 Atemboski Alan R Hybrid wood burning fireplace assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10895392B2 (en) * 2019-04-23 2021-01-19 Resource Management Data System, LLC Systems and methods for heating and cooling a facility

Similar Documents

Publication Publication Date Title
US4263889A (en) Combination fireplace furnace and cookstove
US4147153A (en) Fireplace air circulation and draft control
US4941451A (en) Solid fuel burning heater
RU2365824C1 (en) Heating-cooking fireplace
US4404953A (en) Stove for burning combustible solid fuels
EP0072391A1 (en) Stove with catalytic combustor and bypass
CN109965719B (en) kiln oven
US4259941A (en) Fireplace construction for mobile homes
NO165361B (en) PROCEDURE FOR CLEANING TRANSPARENT GLASSES IN WOODEN, AND HEATING DEVICE FOR SOLID FUEL COMBUSTION.
KR101622312B1 (en) Stove
US4170219A (en) Fireplace
US20180017261A1 (en) Fireplace enhancer
US4305373A (en) Fireplace furnace
US4359040A (en) Free standing stove
US4174700A (en) Fireplace
US4342306A (en) Wood stove with safety forced air system
US4185610A (en) Forced air channel baffles
US4207861A (en) Fire box gas baffle and hood
CA2287678A1 (en) Wood burning stove
US4426992A (en) Free standing stove
US4213446A (en) Stove door operator
EP3306200B1 (en) Convection stove
US4387699A (en) Space heating stove
US4141335A (en) Dual mode furnace
US4215668A (en) Stove

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION