US20100150701A1 - Variable geometry turbocharger - Google Patents

Variable geometry turbocharger Download PDF

Info

Publication number
US20100150701A1
US20100150701A1 US12/663,891 US66389108A US2010150701A1 US 20100150701 A1 US20100150701 A1 US 20100150701A1 US 66389108 A US66389108 A US 66389108A US 2010150701 A1 US2010150701 A1 US 2010150701A1
Authority
US
United States
Prior art keywords
vanes
turbocharger
vane
ring
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/663,891
Other languages
English (en)
Inventor
Volker Simon
Mathias Weber
Paul Anschel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BorgWarner Inc
Original Assignee
BorgWarner Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BorgWarner Inc filed Critical BorgWarner Inc
Priority to US12/663,891 priority Critical patent/US20100150701A1/en
Assigned to BORGWARNER INC. reassignment BORGWARNER INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIMON, VOLKER, ANSCHEL, PAUL, WEBER, MATHIAS
Publication of US20100150701A1 publication Critical patent/US20100150701A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/146Shape, i.e. outer, aerodynamic form of blades with tandem configuration, split blades or slotted blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/16Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/462Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/36Arrangement of components in inner-outer relationship, e.g. shaft-bearing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/40Movement of components
    • F05D2250/41Movement of components with one degree of freedom
    • F05D2250/411Movement of components with one degree of freedom in rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Definitions

  • the invention relates in general to turbochargers and, more particularly, to variable geometry turbochargers.
  • Turbochargers are widely used on internal combustion engines and, in the past, have been particularly used with large diesel engines, especially for highway trucks and marine applications.
  • turbochargers have become popular for use in connection with smaller, passenger car power plants.
  • the use of a turbocharger in passenger car applications permits selection of a power plant that develops the same amount of horsepower from a smaller, lower mass engine.
  • Using a lower mass engine has the desired effect of decreasing the overall weight of the car, increasing sporty performance, and enhancing fuel economy and reducing the aerodynamic drag of the vehicle.
  • use of a turbocharger permits more complete combustion of the fuel delivered to the engine, thereby reducing the overall emissions of the engine, which contributes to the highly desirable goal of a cleaner environment.
  • turbochargers are described in detail in the prior art, for example, U.S. Pat. Nos. 4,705,463, 5,399,064, and 6,164,931, the disclosures of which are incorporated herein by reference.
  • Turbocharger units typically include a turbine operatively connected to the engine exhaust manifold, a compressor operatively connected to the engine air intake system, and a shaft connecting the turbine and compressor so that rotation of the turbine wheel causes rotation of the compressor impeller.
  • the turbine is driven to rotate by the exhaust gas flowing from the exhaust manifold.
  • the compressor impeller is driven to rotate by the turbine, and, as it rotates, it increases the air mass flow rate, airflow density, air pressure and temperature delivered to the engine cylinders.
  • turbocharger that meets the above criteria and is comprised of a minimum number of parts. Further, those parts should be easy to manufacture and easy to assemble, in order to provide a cost effective and reliable turbocharger.
  • Turbocharger efficiency over a broad range of operating conditions is enhanced if the flow of motive gas to the turbine wheel can be modulated.
  • One method for achieving this level of control is to make the vanes pivotable so as to alter the geometry of the passages therebetween.
  • the design of the mechanism used to effect pivoting of the vanes is critical to prevent binding of the vanes. Other considerations include the cost of manufacture of parts and the labor involved in assembly of such systems.
  • the design of the vane is critical to both the efficiency of the gas delivery to the turbine, as well as the reliability of the variable geometry assembly. While movement of the vanes allows for control of the gas delivery, it also adds the problem of leakage past the moveable vanes. Additionally, due to the extreme environment that the moveable vanes are placed in, the structure of the vanes, especially where pivotally connected via vane posts and the like, must be sound to avoid failure.
  • a variable diffuser geometry 13 on a rear compressor wall 14 comprises a plurality of annularly arranged guide vanes 16 which are uniformly distributed over the circumference and each of which includes a guide vane shaft 17 .
  • the guide vane shaft 17 of each guide vane 16 is pivotally supported in a support ring 18 which is surrounded by an adjustment ring 19 .
  • the radially inner end of the adjustment ring 19 is rotatably supported on the radially outer circumference of the support ring 18 .
  • the adjustment ring 19 includes a plurality of adjustment elements 20 in the form of pins arranged at an axial front side of the adjustment ring 19 .
  • the adjustment ring 19 is engaged by an adjustment member 21 in the form of an operating rod for rotating the adjustment ring 19 .
  • the Daudel adjustment member 21 is operated by an actuator 21 ′.
  • the adjustment member 21 is capable of rotating the adjustment ring 19 , so that the adjustment elements 20 are moved circumferentially by a certain angle whereby the guide vanes 16 on the support ring 18 are pivoted by a corresponding angle about their guide vane shaft 17 .
  • Each guide vane 16 is fork-like shaped with two spaced fork tines 22 and 23 disposed at their outer ends between which a radially outwardly open engagement channel is formed into which the adjustment element 20 extends in any position of the adjustment ring 19 .
  • the guide vanes 16 can be guided in any position of the adjustment ring 19 .
  • the Daudel system suffers from the drawback of requiring a complicated system with numerous parts.
  • the Daudel system further suffers from the drawback of only allowing for a particular range of motion for control of the fluid flow.
  • the Applicant attempts to control flow to the volute by providing movable guide vanes.
  • the Arnold system has a turbocharger 110 with a turbine housing 112 adapted to receive exhaust gas from an internal combustion engine and distribute the exhaust gas to an exhaust gas turbine wheel or turbine 114 rotatably disposed within the turbine housing 112 and coupled to one end of a common shaft 116 .
  • the turbine housing 112 encloses a variable geometry member 117 that comprises a plurality of pivotably moving vanes 118 disposed therein.
  • a turbine adjustment or unison ring 119 is positioned within the turbine housing 112 adjacent the vanes 118 to engage the vanes and effect radially inward and outward movement of the vanes vis-a-vis the turbine in unison.
  • the turbine unison ring 119 comprises a plurality of slots 120 disposed therein that are configured to provide a minimum backlash and a large area contact when combined with correspondingly shaped tabs 122 that project from each of the turbine vanes 118 .
  • the turbine unison ring 119 is rotatably positioned within the housing, and is configured to engage and rotate turbine vanes through identical angular movement.
  • the turbine unison ring 119 comprises an elliptical slot 123 that is configured to accommodate placement of an actuator pin 124 therein for purposes of moving the unison ring within the housing.
  • the pin 124 is attached to one end of an actuator lever arm 126 , that is attached at its other opposite end an actuator crank 128 .
  • the turbine actuating pin 124 and lever arm 126 are each disposed within a portion of the turbocharger center housing 130 adjacent the turbine housing.
  • the actuator crank 128 is rotatably disposed axially through the turbocharger center housing 130 , and is configured to move the lever arm 126 back and forth about an actuator crank longitudinal axis, which movement operates to rotate the actuating pin 124 and effect rotation of the unison ring 119 within the turbine housing. Rotation of the unison ring 119 in turn causes the plurality of turbine vanes to be rotated radially inwardly or outwardly vis-a-vis the turbine 114 in unison.
  • the turbocharger 110 also comprises a compressor housing 131 that is adapted to receive air from an air intake 132 and distribute the air to a compressor impeller 134 rotatably disposed within the compressor housing 131 and coupled to an opposite end of the common shaft 116 .
  • the compressor housing also encloses a variable geometry member 136 interposed between the compressor impeller and an air outlet.
  • the variable geometry member is in the form of radial diffuser and comprises a plurality of pivoting vanes 138 .
  • a compressor adjustment or unison ring 140 is rotatably disposed within the compressor housing 131 and is configured to engage and rotatably move all of the compressor vanes 138 in unison.
  • the compressor unison ring 140 comprises a plurality of slots 142 disposed therein that are each configured to provide a minimum backlash and a large area contact when combined with correspondingly shaped tabs 144 projecting from each respective compressor vane.
  • the compressor unison ring 140 effects rotation of the plurality of compressor vanes 138 through identical angular movement.
  • the compressor adjustment ring 140 comprises a slot and an actuating pin 146 that is rotatably disposed within the slot.
  • An actuating lever arm 148 is attached at one of its end to the actuating pin 146 , and is attached at another one of its ends to an end of the actuator crank 128 opposite the turbine unison ring lever arm 126 .
  • the compressor unison ring actuating pin 146 and lever arm 148 are disposed through a backing plate 150 that is interposed between the turbocharger compressor housing 131 and the center housing 130 .
  • the actuator crank 128 is rotatably disposed through the center housing 130 .
  • Rotation of the actuator crank 128 causes the compressor unison actuating lever arm 148 to move around a longitudinal axis of the actuator crank, which in turn effects rotation of the compressor unison ring actuating pin 146 .
  • Rotation of the actuating pin 146 causes the compressor unison ring 140 to rotate along the backing plate 150 , which in turn causes each of the compressor vanes 138 to be pivoted radially inwardly or outwardly vis-a-vis the compressor impeller 134 .
  • the Arnold system suffers from the drawback of requiring a complicated system with numerous parts.
  • the Arnold system further suffers from the drawback of only allowing for a particular range of motion for control of the fluid flow.
  • the present disclosure provides an efficient and cost-effective system for controlling fluid from the compressor impeller of a turbocharger.
  • the system facilitates assembly of the turbocharger by reducing the requirement for precision fit.
  • the system further improves efficiency by creating a better seal between the vanes and the mating surfaces against which they control the airflow.
  • a turbocharger comprising a compressor housing; a compressor rotor rotatably mounted in the compressor housing; a supply channel for supplying a compressible fluid from the compressor rotor; and a vane ring assembly having an adjustment ring and a plurality of vanes.
  • the plurality of vanes are distributed in an annular vane space and are movable to control flow of the compressible fluid.
  • the vane angle of attack can be changed using a variety of methods.
  • the plurality of vanes ( 260 ) can be low solidity vanes.
  • a turbocharger comprising: a housing; a rotor rotatably mounted in the housing; a supply channel for supplying a fluid to the rotor; and a vane ring assembly having first and second nozzle rings.
  • the first nozzle ring is fixed with respect to the turbocharger and has a plurality of first vanes.
  • the second nozzle ring is rotatable with respect to the turbocharger and has a plurality of second vanes.
  • Each of the plurality of first and second vanes is distributed in an annular vane space.
  • Each of the plurality of first and second vanes is non-rotatable with respect to the first and second nozzle rings.
  • the second nozzle ring is rotatable from a first position to a second position. In the first position, the plurality of first vanes are aligned with the plurality of second vanes. In the second position, the plurality of first vanes are non-aligned with the plurality of second vanes.
  • a turbocharger comprising: a housing; a rotor rotatably mounted in the housing; a supply channel for supplying a fluid to the rotor; and a vane ring assembly having an adjustment ring and a plurality of vanes.
  • the plurality of vanes are distributed in an annular vane space and are movable to control flow of the fluid.
  • Each of the plurality of vanes is connected to the turbocharger by a rotatable pin.
  • the adjustment ring has a sealing portion that is axially movable towards the plurality of vanes.
  • the sealing portion is in communication with an actuator. The actuator causes the sealing portion to move towards the plurality of vanes to reduce a gap therebetween.
  • the turbocharger may further comprise a biasing mechanism that biases the adjustment ring towards the plurality of vanes.
  • the biasing mechanism can be a spring.
  • the biasing mechanism may be a plurality of springs.
  • the turbocharger can further comprise a biasing mechanism that biases each of the plurality of vanes towards the adjustment ring.
  • Each of the plurality of vanes can be first and second portions that are moveable with respect to each other, and the biasing mechanism can expand each of the plurality of vanes.
  • the biasing mechanism may be at least one spring positioned between the first and second portions.
  • the biasing mechanism can be a compressible material.
  • the turbocharger can further comprise a biasing mechanism that biases the first and second nozzle rings towards the plurality of first and second vanes.
  • the actuator can be a pressure source in communication with the sealing portion via a channel.
  • the pressure source may be pneumatic or hydraulic.
  • FIG. 1 is a plan view of a variable geometry compressor of a turbocharger according to U.S. Published Patent Application No. 20050207885;
  • FIG. 2 is a cross-sectional view of another variable geometry compressor of a turbocharger according to U.S. Pat. No. 6,679,057;
  • FIG. 3 is a cross-sectional view of a portion of a variable geometry compressor according to an exemplary embodiment of the invention.
  • FIG. 4 a is a cross-sectional view of a portion of a variable geometry compressor according to another exemplary embodiment of the invention.
  • FIG. 4 b is a plan view of a vane used with the variable geometry compressor of FIG. 4 a;
  • FIG. 5 a is a cross-sectional view of a portion of a variable geometry compressor according to another exemplary embodiment of the invention.
  • FIG. 5 b is a plan view of a vane used with the variable geometry compressor of FIG. 5 a;
  • FIG. 6 a is a cross-sectional view of a portion of a variable geometry compressor according to another exemplary embodiment of the invention.
  • FIG. 6 b is a plan view of a vane used with the variable geometry compressor of FIG. 6 a;
  • FIG. 7 is a cross-sectional view of a portion of a variable geometry compressor according to another exemplary embodiment of the invention.
  • FIG. 8 is a plan view of a portion of a variable geometry compressor according to another exemplary embodiment of the invention.
  • FIG. 9 is a plan view of a portion a variable geometry compressor according to another exemplary embodiment of the invention.
  • FIG. 10 is a plan view of a portion of the variable geometry compressor of FIG. 9 in a second position
  • FIG. 11 a is a cross-sectional view of a portion of a variable geometry compressor according to another exemplary embodiment of the invention.
  • FIG. 11 b is a cross-sectional view of the variable geometry compressor of FIG. 11 a in a biased state
  • FIG. 12 a is a perspective view of a vane of a variable geometry compressor according to another exemplary embodiment of the invention.
  • FIG. 12 b is a perspective view of the vane of FIG. 12 a in an un-biased state
  • FIG. 13 is a cross-sectional view of a portion of a variable geometry compressor according to another exemplary embodiment of the invention.
  • FIG. 14 is a schematic representation a variable geometry compressor according to another exemplary embodiment of the invention.
  • Exemplary embodiments described herein are directed to a variable geometry compressor system for a turbocharger. Aspects will be explained in connection with several possible embodiments of the system, but the detailed description is intended only as exemplary.
  • the particular type of turbocharger that utilizes the exemplary embodiments of the vane and vane assemblies described herein can vary.
  • the several embodiments are described with respect to vanes for the compressor wheel. Exemplary embodiments are shown in FIGS. 3-14 , but the present disclosure is not limited to the illustrated structure or application.
  • the moveable guide vanes are low solidity vanes (i.e., low ratio of gap to chord).
  • the low solidity can be less than one.
  • a portion of a turbocharger system as shown in FIG. 3 includes turbomachinery in the form of a compressor housing 210 , a bearing housing 220 , a compressor wheel 230 , an adjustment ring 240 and a flow channel 250 .
  • the flow channel or vane space 250 has a series of guide vanes 260 that allow for control of flow therethrough and thus adjustment of flow to the compressor wheel 230 .
  • the adjustment force for the vane 260 is applied at region 270 , while the pivot point is along a pin or other rotation mechanism 265 .
  • the particular size or shape of each of the vanes 260 can be chosen based upon a number of factors including flow efficiency.
  • the embodiment of FIG. 3 uses a single bearing, which is pin 265 . However, the present disclosure contemplates the use of bearings on both sides of the vanes 260 .
  • FIGS. 4 a and 4 b show a variable geometry compressor system having the compressor housing 210 , the adjustment ring 240 and the flow channel 250 .
  • the adjustment force for the vane 360 is applied at region 270 , while the pivot point is along the pin or other rotation mechanism 265 .
  • An adjustment pin 380 is connected to the adjustment ring 240 and is housed in a groove 385 of the vane 360 . Annular movement of the adjustment ring 240 and thus adjustment pin 380 causes selective sliding of the pin within groove 385 and rotation of the vane 360 .
  • FIGS. 5 a and 5 b show a variable geometry compressor system having the compressor housing 210 , the adjustment ring 240 and the flow channel 250 .
  • the adjustment force for the vane 460 is applied at region 270 , while the pivot point is along the pin or other rotation mechanism 265 .
  • An adjustment pin 480 is connected to the vane 460 and is housed in a groove 485 of the adjustment ring 240 . Annular movement of the adjustment ring 240 and thus groove 485 causes selective sliding of the pin within groove 485 and rotation of the vane 460 .
  • FIGS. 6 a and 6 b show a variable geometry compressor system having the compressor housing 210 , the adjustment ring 240 and the flow channel 250 .
  • the adjustment force for the vane 560 is applied at region 270 , while the pivot point is along the pin or other rotation mechanism 265 .
  • a pair of opposing adjustment pins or a fork 580 abuts the vane 560 and is connected to the adjustment ring 240 .
  • Annular movement of the adjustment ring 240 and thus fork 580 causes rotation of the vane 560 about the axis defined by pin 265 .
  • Rotation of the adjustment ring 240 for the above-described embodiments can be by various structures and techniques including gear pairing, lever mechanisms and/or chain drives.
  • Various sizes and shapes can be used for the components described above including the grooves, pins and forks based upon various factors including flow efficiency and effecting selected motion of the vanes 560 .
  • FIG. 7 shows a variable geometry compressor system having the compressor housing 210 , the adjustment ring 240 and the flow channel 250 .
  • the adjustment force for the vane 660 is applied along the pin or other rotation mechanism 665 .
  • an adjustment moment can be applied to pin 665 via a gear 670 operably connected to an actuation device 680 .
  • Rotation of the adjustment ring 240 causes rotation of the gear 670 due to its connection to the actuation device 680 .
  • FIG. 8 shows a variable geometry compressor system that allows for change of angle of attack or profile of the vane set.
  • the system has a first fixed nozzle ring 700 having a series of fixed guide vanes 710 attached thereto and a second rotatable nozzle ring 720 having a series of fixed guide vanes 730 attached thereto.
  • Rotation of the ring 720 allows for changing of the position of the vanes 730 and thus changing of the angle of attack of the total vane structure.
  • the un-aligned position of the vanes 730 is shown by dashed lines 735 .
  • the embodiment of FIG. 8 provides for an adjustment of the operating point while reducing the number of moving parts. While the system of FIG. 8 has two nozzle rings, the present disclosure contemplates the use of more than two rings which can be various combinations of moveable and non-movable rings for adjustment of the position of each of the vanes 710 , 730 with respect to each other.
  • FIGS. 9 and 10 show a variable geometry compressor system that allows for adjustment of the vane effective chord lengths.
  • the system has a vane comprising first, second and third portions 800 , 810 , 820 .
  • Portions 800 , 810 and 820 are connected to an actuation device, such as an adjustment ring 850 , that allow for movement of the vane portions 800 , 810 , 820 along path 830 .
  • the extended vane structure is shown in FIG. 10 .
  • the embodiment of FIGS. 9 and 10 provides for an adjustment of the vane effective chord length in a synchronized manner for flow control to the compressor wheel. While the system of FIGS. 9 and 10 has three portions 800 , 810 , and 820 that are movable with respect to each other, the present disclosure contemplates the use of two or more movable vane portions.
  • Vane 900 is adjustably positioned with respect to adjustment ring 240 through use of pin 265 .
  • a biasing mechanism such as spring 910 , is utilized to bias the adjustment ring towards the vane 900 to reduce or eliminate any gap 905 between the ring and the vane.
  • the particular type of biasing mechanism 910 e.g., a spring, and the amount of force applied can be selected so as to ensure movement of the vane while minimizing any gap.
  • the number and configuration of the biasing mechanisms can be chosen to efficiently reduce or eliminate any gap 905 while still allowing for movement of the vanes 900 , such as, for example, a plurality of equidistantly spaced springs 910 to spread the biasing force with respect to the adjustment ring 240 .
  • the adjustment mechanism can be on either the bearing housing side of the vane, or on the compressor housing side of the vane.
  • Vane 1000 is adjustably positioned with respect to an adjustment ring through use of a pin 265 or the like.
  • a biasing mechanism such as spring 1010 , is utilized to bias the vane toward the adjustment ring and/or compressor housing to reduce or eliminate any gap therebetween.
  • the particular type of biasing mechanism 1010 and the amount of force applied can be selected so as to ensure movement of the vane while minimizing any gap.
  • the biasing spring 1010 can be one or more springs positioned within separate housings or portions 1015 , 1020 of the vane to expand the width of the vane as desired.
  • the biasing mechanism 1010 can also be a compressible or expandable foam or other material applied between the separate housings or portions 1015 , 1020 .
  • Vane 1100 is adjustably positioned with respect to an adjustment ring 240 through use of a pin 265 or the like.
  • a movable ring segment 1150 is utilized to reduce or eliminate any gap between the vane and the adjustment ring.
  • the ring segment 1150 is moveably connected to the adjustment ring 240 by bearings 1160 and the like, and can be axially moved by various sources including a pneumatic or hydraulic source in communication with the segment through supply channel 1175 . Movement of the segment 1150 against or in proximity to the vane 1100 can also reduce any gap between the vane and the compressor housing 210 . Variations of the pressure supplied through channel 1175 can dynamically adjust the vane gaps as needed.
  • the present disclosure also contemplates movement of the segment 1150 by other means such as electrical controllers, springs or mechanical actuators.
  • FIG. 14 shows a variable geometry compressor system having a flexible vane 1200 that is connected to the turbocharger by a rotatable pin 265 or the like.
  • the pin 265 is rigidly connected to the vane 1200 and can be connected to the compressor housing and/or adjustment ring. Pins or a fork 1220 abuts against the vane 1200 .
  • a rotational force 1210 applied to pin 265 causes flexing of the vane into the shape shown by dashed line 1250 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
US12/663,891 2007-06-26 2008-06-26 Variable geometry turbocharger Abandoned US20100150701A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/663,891 US20100150701A1 (en) 2007-06-26 2008-06-26 Variable geometry turbocharger

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US94620807P 2007-06-26 2007-06-26
US12/663,891 US20100150701A1 (en) 2007-06-26 2008-06-26 Variable geometry turbocharger
PCT/US2008/068433 WO2009003144A2 (en) 2007-06-26 2008-06-26 Variable geometry turbocharger

Publications (1)

Publication Number Publication Date
US20100150701A1 true US20100150701A1 (en) 2010-06-17

Family

ID=40186285

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/663,891 Abandoned US20100150701A1 (en) 2007-06-26 2008-06-26 Variable geometry turbocharger

Country Status (5)

Country Link
US (1) US20100150701A1 (zh)
EP (1) EP2171219A4 (zh)
JP (1) JP2010531957A (zh)
CN (1) CN101663466A (zh)
WO (1) WO2009003144A2 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120023938A1 (en) * 2009-02-06 2012-02-02 Toyota Jidosha Kabushiki Kaisha Variable capacity supercharger for internal combustion engine
US20120034071A1 (en) * 2010-03-09 2012-02-09 Toyota Jidosha Kabushiki Kaisha Diffuser apparatus, centrifugal compressor, and turbo supercharger
US20120189433A1 (en) * 2010-09-20 2012-07-26 Baker Glenn L Variable geometry turbine
US20140064933A1 (en) * 2012-08-31 2014-03-06 Dresser, Inc. Diffuser assembly comprising diffuser vanes pivoting about the leading edge
WO2014081577A1 (en) * 2012-11-20 2014-05-30 Borgwarner Inc. Exhaust-gas turbocharger
US20140341718A1 (en) * 2013-05-16 2014-11-20 Toyota Jidosha Kabushiki Kaisha Variable nozzle turbochargers
US20140341761A1 (en) * 2011-06-15 2014-11-20 Emmanuel Severin Turbocharger Variable-Nozzle Assembly With Vane Sealing Ring
CN107829788A (zh) * 2016-09-15 2018-03-23 曼柴油机和涡轮机欧洲股份公司 涡轮增压器的径向涡轮机以及涡轮增压器
US10030669B2 (en) 2014-06-26 2018-07-24 General Electric Company Apparatus for transferring energy between a rotating element and fluid
US10145263B2 (en) 2016-05-16 2018-12-04 General Electric Company Moveable nozzle assembly and method for a turbocharger
US10527059B2 (en) 2013-10-21 2020-01-07 Williams International Co., L.L.C. Turbomachine diffuser
US11092032B2 (en) * 2018-08-28 2021-08-17 Pratt & Whitney Canada Corp. Variable vane actuating system
US11092167B2 (en) * 2018-08-28 2021-08-17 Pratt & Whitney Canada Corp. Variable vane actuating system
US11143053B2 (en) 2016-11-18 2021-10-12 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Low friction inlet nozzle for a turbo expander
US11371380B2 (en) 2020-12-01 2022-06-28 Pratt & Whitney Canada Corp. Variable guide vane assembly and vane arms therefor
US20230050726A1 (en) * 2017-09-25 2023-02-16 Johnson Controls Tyco IP Holdings LLP Compact variable geometry diffuser mechanism

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008000776B4 (de) 2008-01-21 2022-04-14 BMTS Technology GmbH & Co. KG Turbine mit varialber Turbinengeometrie, insbesondere für einen Abgasturbolader, sowie Abgasturbolader
EP2208863B1 (de) * 2009-01-15 2016-04-13 Bosch Mahle Turbo Systems GmbH & Co. KG Turbolader mit variabler Turbinengeometrie
US8485778B2 (en) * 2010-01-29 2013-07-16 United Technologies Corporation Rotatable vaned nozzle for a radial inflow turbine
DE112011100758B4 (de) 2010-03-03 2022-10-06 Borgwarner Inc. Kostenreduzierter Turbolader mit variabler Geometrie mit gestanzter Verstellringanordnung
US8616836B2 (en) * 2010-07-19 2013-12-31 Cameron International Corporation Diffuser using detachable vanes
DE102011003424A1 (de) * 2011-02-01 2012-08-02 Continental Automotive Gmbh Turbine eines Abgasturboladers und Abgasturbolader mit einer derartigen Turbine für ein Kraftfahrzeug
KR101265577B1 (ko) * 2011-03-22 2013-05-22 (주)계양정밀 터보차져
DE102012108975A1 (de) * 2012-09-24 2014-03-27 Firma IHI Charging Systems International GmbH Verstellbarer Leitapparat für einen Abgasturbolader und Abgasturbolader
US9631814B1 (en) 2014-01-23 2017-04-25 Honeywell International Inc. Engine assemblies and methods with diffuser vane count and fuel injection assembly count relationships
CN111441942A (zh) * 2015-03-16 2020-07-24 伊顿智能动力有限公司 增压器
US9932888B2 (en) * 2016-03-24 2018-04-03 Borgwarner Inc. Variable geometry turbocharger
DE102017207515A1 (de) * 2017-05-04 2018-11-08 BMTS Technology GmbH & Co. KG Verfahren zur Herstellung eines Abgasturboladers mit einer variablen Turbinengeometrie
WO2020208391A1 (ja) * 2019-04-12 2020-10-15 日産自動車株式会社 内燃機関の制御方法および制御装置
CN112377272B (zh) * 2020-11-30 2024-04-19 浙江博旭新能源科技有限公司 一种向心式透平轴向力调节装置
CN117018786A (zh) * 2023-06-29 2023-11-10 苏州绿仕环保科技有限公司 一种使用新型废气吸附剂的工业废气净化装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4324526A (en) * 1979-03-16 1982-04-13 Bbc Brown, Bovari & Company, Limited Apparatus for regulating a turbo-supercharger
US4679984A (en) * 1985-12-11 1987-07-14 The Garrett Corporation Actuation system for variable nozzle turbine
US4844690A (en) * 1985-01-24 1989-07-04 Carrier Corporation Diffuser vane seal for a centrifugal compressor
US4880351A (en) * 1986-05-30 1989-11-14 Honda Giken Kogyo Kabushiki Kaisha Variable capacity turbine
US20030021677A1 (en) * 2000-02-03 2003-01-30 Mitsubishi Heavy Industries, Ltd. Centrifugal compressor
US20030167767A1 (en) * 2002-03-05 2003-09-11 Arnold Steven Don Variable geometry turbocharger
US6810666B2 (en) * 2001-05-25 2004-11-02 Iveco Motorenforschung Ag Variable geometry turbine
US6932565B2 (en) * 2002-06-17 2005-08-23 Holset Engineering Company, Limited Turbine
US7073334B2 (en) * 2002-03-28 2006-07-11 Daimlerchrysler Ag Variable exhaust gas turbocharger
US20090155058A1 (en) * 2005-08-02 2009-06-18 Phillipe Noelle Variable Geometry Compressor Module

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB861630A (en) * 1957-04-13 1961-02-22 Josef Camek The mounting of rotatable blades for the diffusor of a centrifugal compressor
JPH0610403B2 (ja) * 1984-02-22 1994-02-09 日産自動車株式会社 ラジアルタ−ビンの可変ノズル
JPS62162348U (zh) * 1986-04-03 1987-10-15
JPS6314843U (zh) * 1986-07-14 1988-01-30
JPS6357328U (zh) * 1986-10-02 1988-04-16
JPS6361545U (zh) * 1986-10-09 1988-04-23
JPS6466419A (en) * 1987-09-08 1989-03-13 Hino Motors Ltd Compressor for exhaust turbo super charger
DE4309636C2 (de) * 1993-03-25 2001-11-08 Abb Turbo Systems Ag Baden Radialdurchströmte Abgasturboladerturbine
JPH11343805A (ja) * 1998-05-29 1999-12-14 Toshiba Corp 蒸気タービン
WO2004027218A1 (en) * 2002-09-18 2004-04-01 Honeywell International Inc. Turbocharger having variable nozzle device
EP1606495B1 (en) * 2003-03-21 2010-02-17 Honeywell International Inc. Swinging vane concept for vnt turbochargers

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4324526A (en) * 1979-03-16 1982-04-13 Bbc Brown, Bovari & Company, Limited Apparatus for regulating a turbo-supercharger
US4844690A (en) * 1985-01-24 1989-07-04 Carrier Corporation Diffuser vane seal for a centrifugal compressor
US4679984A (en) * 1985-12-11 1987-07-14 The Garrett Corporation Actuation system for variable nozzle turbine
US4880351A (en) * 1986-05-30 1989-11-14 Honda Giken Kogyo Kabushiki Kaisha Variable capacity turbine
US20030021677A1 (en) * 2000-02-03 2003-01-30 Mitsubishi Heavy Industries, Ltd. Centrifugal compressor
US6810666B2 (en) * 2001-05-25 2004-11-02 Iveco Motorenforschung Ag Variable geometry turbine
US20030167767A1 (en) * 2002-03-05 2003-09-11 Arnold Steven Don Variable geometry turbocharger
US7073334B2 (en) * 2002-03-28 2006-07-11 Daimlerchrysler Ag Variable exhaust gas turbocharger
US6932565B2 (en) * 2002-06-17 2005-08-23 Holset Engineering Company, Limited Turbine
US20090155058A1 (en) * 2005-08-02 2009-06-18 Phillipe Noelle Variable Geometry Compressor Module

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120023938A1 (en) * 2009-02-06 2012-02-02 Toyota Jidosha Kabushiki Kaisha Variable capacity supercharger for internal combustion engine
US20120034071A1 (en) * 2010-03-09 2012-02-09 Toyota Jidosha Kabushiki Kaisha Diffuser apparatus, centrifugal compressor, and turbo supercharger
US8403635B2 (en) * 2010-03-09 2013-03-26 Toyota Jidosha Kabushiki Kaisha Diffuser apparatus, centrifugal compressor, and turbo supercharger
US20120189433A1 (en) * 2010-09-20 2012-07-26 Baker Glenn L Variable geometry turbine
US8979485B2 (en) * 2010-09-20 2015-03-17 Cummins Ltd. Variable geometry turbine
US20140341761A1 (en) * 2011-06-15 2014-11-20 Emmanuel Severin Turbocharger Variable-Nozzle Assembly With Vane Sealing Ring
US8915704B2 (en) * 2011-06-15 2014-12-23 Honeywell International Inc. Turbocharger variable-nozzle assembly with vane sealing ring
WO2014035806A1 (en) * 2012-08-31 2014-03-06 Dresser, Inc. Diffuser assembly comprising diffuser vanes pivoting about the leading edge
US20140064933A1 (en) * 2012-08-31 2014-03-06 Dresser, Inc. Diffuser assembly comprising diffuser vanes pivoting about the leading edge
WO2014081577A1 (en) * 2012-11-20 2014-05-30 Borgwarner Inc. Exhaust-gas turbocharger
US9745861B2 (en) 2012-11-20 2017-08-29 Borgwarner Inc. Exhaust-gas turbocharger
US20140341718A1 (en) * 2013-05-16 2014-11-20 Toyota Jidosha Kabushiki Kaisha Variable nozzle turbochargers
US9739165B2 (en) * 2013-05-16 2017-08-22 Kabushiki Kaisha Toyota Jidoshokki Variable nozzle turbochargers
US10527059B2 (en) 2013-10-21 2020-01-07 Williams International Co., L.L.C. Turbomachine diffuser
US10030669B2 (en) 2014-06-26 2018-07-24 General Electric Company Apparatus for transferring energy between a rotating element and fluid
US10145263B2 (en) 2016-05-16 2018-12-04 General Electric Company Moveable nozzle assembly and method for a turbocharger
CN107829788A (zh) * 2016-09-15 2018-03-23 曼柴油机和涡轮机欧洲股份公司 涡轮增压器的径向涡轮机以及涡轮增压器
US11143053B2 (en) 2016-11-18 2021-10-12 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Low friction inlet nozzle for a turbo expander
US20230050726A1 (en) * 2017-09-25 2023-02-16 Johnson Controls Tyco IP Holdings LLP Compact variable geometry diffuser mechanism
US11971043B2 (en) * 2017-09-25 2024-04-30 Tyco Fire & Security Gmbh Compact variable geometry diffuser mechanism
US11092032B2 (en) * 2018-08-28 2021-08-17 Pratt & Whitney Canada Corp. Variable vane actuating system
US11092167B2 (en) * 2018-08-28 2021-08-17 Pratt & Whitney Canada Corp. Variable vane actuating system
US11371380B2 (en) 2020-12-01 2022-06-28 Pratt & Whitney Canada Corp. Variable guide vane assembly and vane arms therefor

Also Published As

Publication number Publication date
JP2010531957A (ja) 2010-09-30
CN101663466A (zh) 2010-03-03
EP2171219A4 (en) 2013-08-14
WO2009003144A3 (en) 2009-02-19
EP2171219A2 (en) 2010-04-07
WO2009003144A2 (en) 2008-12-31

Similar Documents

Publication Publication Date Title
US20100150701A1 (en) Variable geometry turbocharger
EP1584796B1 (en) Variable geometry turbine
US8500395B2 (en) Turbocharger vane
US8235655B1 (en) Variable inlet guide vane assembly
EP2581560B1 (en) Leaned High Pressure Compressor Inlet Guide Vane
CN103016070B (zh) 具有叶片密封装置的涡轮增压器可变喷嘴组件
US7137778B2 (en) Variable turbine geometry turbocharger
JP4991765B2 (ja) 調整可能なガイド装置
CN106121737B (zh) 带有一体式旁通机构的可变叶片涡轮机喷嘴的涡轮增压器
CN111148903A (zh) 用于内燃发动机的增压装置的具有虹膜式隔板机构的径流式压缩机、增压装置和虹膜式隔板机构的叶片
EP2035673B1 (en) Variable stator blade mechanism for turbochargers
EP3708780B1 (en) Turbocharger having variable-vane turbine nozzle including spacers that also serve as hard stops for the vanes
JP6768287B2 (ja) 一軸のセルフセンタリングピボット部を有する可変タービンジオメトリベーン
JP5364166B2 (ja) 特に、案内軌道接続部を備えるガスタービンエンジンの、特に案内軌道接続部を備える可変ジオメトリ装置を制御するシステム
JP6743028B2 (ja) タービンエンジンの可変ピッチベーンを制御するためのシステム
CN102782259B (zh) 可变几何涡轮机
EP3794220A1 (en) Vanes and shrouds for a turbo-machine
US10612410B2 (en) Low compressor having variable vanes
US20020146316A1 (en) Methods and apparatus for adjusting gas turbine engine variable vanes
CN219605401U (zh) 入口通道系统
WO2008139130A1 (en) Variable geometry turbine
US11506074B1 (en) Turbocharger having variable-vane turbine nozzle including arrangement for locking the vanes in fully open position
CN219317011U (zh) 调节环、可变截面涡轮、涡轮机和增压设备
CN115217799A (zh) 可变轮叶设备

Legal Events

Date Code Title Description
AS Assignment

Owner name: BORGWARNER INC.,MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SIMON, VOLKER;WEBER, MATHIAS;ANSCHEL, PAUL;SIGNING DATES FROM 20090825 TO 20091026;REEL/FRAME:023646/0449

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION