US20100139902A1 - Plastic heat exchanger - Google Patents

Plastic heat exchanger Download PDF

Info

Publication number
US20100139902A1
US20100139902A1 US12/329,225 US32922508A US2010139902A1 US 20100139902 A1 US20100139902 A1 US 20100139902A1 US 32922508 A US32922508 A US 32922508A US 2010139902 A1 US2010139902 A1 US 2010139902A1
Authority
US
United States
Prior art keywords
section
plastic
heat exchanger
exchanger according
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/329,225
Other languages
English (en)
Inventor
Bobbye K. Baylis
Paul D. Daly
Ian R. McLean
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Priority to US12/329,225 priority Critical patent/US20100139902A1/en
Assigned to MAHLE INTERNATIONAL GMBH reassignment MAHLE INTERNATIONAL GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAYLIS, BOBBYE K., DALY, PAUL D., MCLEAN, IAN R.
Priority to EP09177142A priority patent/EP2204628B1/de
Priority to AT09177142T priority patent/ATE545836T1/de
Publication of US20100139902A1 publication Critical patent/US20100139902A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/006Tubular elements; Assemblies of tubular elements with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators

Definitions

  • the present invention relates to a plastic heat exchanger, in particular for automotive applications.
  • a heat exchanger usually has an inlet tank that has an inlet for a first fluid and surrounds an inlet chamber. Furthermore, an outlet tank is also provided that has an outlet for the first fluid and surrounds an outlet chamber.
  • the plastic heat exchanger also has several plastic tubes which are tightly connected to the inlet tank and to the outlet tank. The plastic tubes connect the inlet chamber to the outlet chamber so they communicate, and a second fluid flows around them during operation of the plastic heat exchanger.
  • Plastic heat exchangers are characterized by a lightweight design and low manufacturing cost in comparison with traditional metal heat exchangers. However, the plastic tubes have a reduced coefficient of thermal conductivity in comparison with metal tubes. To be able to achieve a heat transfer comparable to that of a metal heat exchanger, a plastic heat exchanger must be designed with larger dimensions.
  • the present invention relates to the problem of providing an improved embodiment for a plastic heat exchanger, which is characterized in particular by the fact that it allows an improved heat exchange which can be utilized in particular to design the plastic heat exchanger to be smaller and/or more compact.
  • the invention is based on the general idea of furnishing at least some of the plastic tubes in at least one longitudinal section with ring-shaped areas having varying cross sections following one after the other in the longitudinal direction of the tube.
  • the ring-shaped areas create turbulence during operation of the heat exchanger due to the varying cross sections, this turbulence leading to crosscurrents and/or to a transverse mixing of the first fluid flowing in the plastic tubes.
  • the heat exchange between the respective plastic tube and the first fluid can be improved significantly in this way.
  • the ability to transfer heat between the first fluid and the second fluid can be increased throughout the entire heat exchanger, so that the heat exchanger can be designed to be more compact, i.e., smaller on the whole, while achieving the same performance.
  • the plastic tubes need not be provided with varying cross sections over their entire length but instead over only longitudinal sections or partial sections of the plastic tubes, which may turn out to be comparatively short in comparison with the total length of the respective plastic tubes.
  • the longitudinal sections in which the ring-shaped areas with varying cross sections follow one another may be designed, for example, in the manner of bellows or in the manner of a corrugated tube. In this way, a plurality of such ring-shaped areas with a varying cross section can be implemented in a comparatively small longitudinal section to produce the desired disturbance in interfacial flow.
  • the longitudinal sections having the varying ring areas can be manufactured by forming by upsetting so that this is performed during the manufacture of the plastic tubes in particular. Extrusion of plastic tubes may be extruded especially economically, for example. In a state in which they have not yet completely hardened, the plastic may then be formed by upsetting especially easily to form said longitudinal sections.
  • the plastic tubes may each have an inlet section connected to the inlet tank, an outlet section connected to the outlet tank and a central section connecting the inlet section to the outlet section.
  • the wall thickness of the plastic tubes in the central section is smaller than that in the inlet section and/or than that in the outlet section.
  • a minimum wall thickness is necessary.
  • the plastic tubes have this minimum wall thickness only in the inlet section and in the outlet section. In the central section in between, the wall thickness is reduced. In this way, the heat transfer through the plastic tubes and thus between the two fluids can be improved.
  • FIG. 1 shows a highly simplified basic diagram like a schematic for a plastic heat exchanger
  • FIGS. 2 through 6 each show a greatly simplified longitudinal section through a plastic tube in the area of a longitudinal section having varying cross sections in various embodiments
  • FIGS. 7 through 9 each show a highly simplified longitudinal section through a plastic tube in various embodiments
  • FIGS. 10 through 14 each show a simplified longitudinal section through a plastic tube, each having at least one longitudinal section having varying cross sections, shown in various embodiments.
  • a plastic heat exchanger 1 comprises an inlet tank 2 , an outlet tank 3 and multiple plastic tubes 4 .
  • the heat exchanger 1 is especially suitable for automotive applications. For example, it may be used as the main radiator in an engine coolant circuit to cool the coolant of the engine coolant circuit with an air flow. Likewise, the heat exchanger 1 may be assigned to an air conditioning system or to an oil circuit of the motor vehicle.
  • the heat exchanger 1 may be used as a charge air cooler on a turbo charge engine application.
  • the inlet tank 2 has an inlet 5 for a first fluid, which may be a gas or a liquid.
  • the inlet tank 2 surrounds an inlet chamber 6 .
  • the outlet tank 3 has an outlet 7 through which the first fluid can be escape.
  • the outlet tank 3 surrounds an outlet chamber 8 .
  • the plastic tubes 4 are tightly connected to the inlet tank 2 on the one hand and to the outlet tank 3 on the other hand.
  • the inlet tank 2 and the outlet tank 3 may also be made of plastic. Then the plastic tubes 4 are expediently tightly connected to the respective tank 2 , 3 by means of welded joints.
  • the plastic tubes 4 implement a communicating connection between the inlet chamber 6 and the outlet chamber 8 . This means that the first fluid can flow out of the inlet chamber 6 through the plastic tubes 4 into the outlet chamber 8 during operation of the heat exchanger 1 .
  • the plastic tubes 4 have a second fluid flowing around them during operation of the heat exchanger 1 , the second fluid optionally being a gas or a liquid.
  • At least some of the plastic tubes 4 preferably all the plastic tubes 4 , each have at least one longitudinal section 9 , which is characterized in that ring-shaped areas with a varying flow-through cross sections follow one another in the longitudinal direction of the tube.
  • the plastic tubes 4 preferably have a circular cross section and are each designed to be straight in the example in FIG. 1 . Essentially, however, other round cross sections and/or a curved design are also conceivable.
  • the longitudinal direction of the tube is either straight or curved.
  • the longitudinal sections 9 are positioned along the individual plastic tubes 4 in such a way that they are arranged offset from one another in the longitudinal direction of the tube with neighboring plastic tubes 4 .
  • the individual plastic tubes 4 can be packed and/or arranged more densely side by side so that the heat exchanger 1 can be designed to be more compact as a whole.
  • neighboring tubes 4 can therefore be arranged relatively close to one another with regard to their longitudinal middle axes 17 so that distance 18 can be minimized.
  • an offset 10 between the longitudinal sections 9 of neighboring plastic tubes 4 is designed to be slightly larger, e.g., 10-20% larger than length 11 of the longitudinal sections 9 .
  • all the longitudinal sections 9 are designed to be the same length. They are shorter than total length 12 of the individual plastic tubes 4 .
  • the length 11 of longitudinal sections 9 is in a range between and including 5 % and 10 % of the total length 12 of the respective plastic tube 4 .
  • each plastic tube 4 is also provided with only one single such longitudinal section 9 .
  • the respective longitudinal section 9 may preferably be designed in the manner of bellows or a corrugated tube.
  • the ring-shaped areas here are indicated by curly brackets and are labeled as 13 in FIGS. 2 through 6 .
  • These ring-shaped areas 13 in the longitudinal direction of the tube, indicated by an arrow 14 in FIGS. 2 through 6 discernibly have varying cross sections.
  • the sequence of varying cross sections ensures a disturbance in the interfacial layer and creates turbulence to improve the mixing effect in the first fluid.
  • the ring-shaped areas 13 may have a corrugated profile according to FIG. 2 or may have a saw-toothed profile according to FIG. 3 or may have a rectangular profile according to FIG. 4 .
  • FIG. 6 shows a special embodiment in which the ring-shaped areas 13 each have ring bulges 15 , one of which protrudes inward and the others protrude outward.
  • the different ring bulges 15 develop directly into one another, forming a sinusoidal profile. It is clear that essentially only outwardly protruding ring bulges 15 or only inwardly protruding ring bulges 15 may be provided.
  • the ring bulges 15 connect tube areas 16 in the longitudinal direction of the tube. These tube areas 16 may essentially have constant cross sections. The varying cross sections within the respective area 13 are then implemented by the bulges 15 .
  • FIG. 6 shows a special embodiment in which the ring-shaped areas 13 each have ring bulges 15 , one of which protrudes inward and the others protrude outward.
  • the different ring bulges 15 develop directly into one another, forming a sinusoidal profile. It is clear that essentially only outwardly protruding ring bulges 15 or only in
  • the successively following tube areas 16 are provided with stepped cross sections as in the embodiment shown in FIG. 5 .
  • increasing and decreasing cross sections follow one another, so that on the average there is a constant cross section, but FIGS. 5 and 6 show decreasing cross sections in the direction of flow.
  • the respective longitudinal section 9 therefore has a decreasing average cross section in its longitudinal direction and/or in the direction of flow of the first fluid.
  • the ring-shaped areas 13 having varying cross sections and/or the longitudinal sections 9 may be implemented by forming the plastic tube 4 by upsetting, for example. Such forming by upsetting may be implemented in a particularly favorable manner during the production of the plastic tubes 4 , e.g., during an extrusion operation.
  • the plastic tubes 4 may each have an inlet section 19 , an outlet section 20 and a central section 21 . Whereas the inlet section 19 is connected to the inlet tank 2 , the outlet section 20 is connected to the outlet tank 3 .
  • FIGS. 7 to 9 show the plastic tubes 4 without the tanks 2 , 3 and for a simplified diagram also without the longitudinal sections 9 .
  • the central section 21 connects the inlet section 19 to the outlet section 20 , and transitional sections 22 may also be provided which can be assigned to the central section 21 . It is likewise possible to assign the one transitional section to the inlet section 19 and the other transitional section 22 to the outlet section 20 .
  • FIGS. 1 and 7 to 9 show the plastic tubes 4 without the tanks 2 , 3 and for a simplified diagram also without the longitudinal sections 9 .
  • the central section 21 connects the inlet section 19 to the outlet section 20
  • transitional sections 22 may also be provided which can be assigned to the central section 21 . It is likewise possible to assign the one transitional section to the inlet
  • wall thickness 23 of the central section 21 is smaller than wall thickness 24 of the inlet section 19 and is smaller than wall thickness 25 of the outlet section 20 .
  • the wall thicknesses 24 , 25 of the inlet section 19 and of the outlet section 20 are the same size. They are as small as possible but must have a minimum wall thickness to be able to establish the connection to the respective tank 2 , 3 in a sufficiently stable manner that will be reliable during mass production.
  • the inlet section 19 and the outlet section 20 thus expediently have this minimum wall thickness 24 and/or 25 , which is required for the respective joining technique.
  • the central section 21 has a much smaller wall thickness 23 .
  • the smaller wall thickness 23 is in a range from 30% up to and including 40% of the wall thickness 24 of the inlet section 19 or the wall thickness 25 of the outlet section 20 .
  • the preferred embodiment shown here is the one in which the wall thickness 23 in the central section 21 is approximately half as large as the wall thicknesses 24 , 25 of the inlet section 19 and/or of the outlet section 20 .
  • the reduced wall thickness 23 of the central section 21 can be implemented by reducing only an outside cross section 26 on the respective plastic tube 4 .
  • the respective longitudinal section 9 may then be arranged in the inlet section 19 .
  • the respective longitudinal section 9 may be arranged in the outlet section 20 .
  • the respective longitudinal section 9 may be arranged in one of the transitional areas 22 , e.g., at the transition 22 between the inlet section 19 and the central section 21 or at the transition 22 between the central section 21 and the outlet section 20 .
  • a greater wall thickness being implemented here in the central section 21 , e.g., for simplified implementation of this longitudinal section 9 .
  • This greater wall thickness in the central section 21 is labeled as 23 ′ in the variant illustrated in FIG. 13 . It is larger in particular than either upstream or downstream from the longitudinal section 9 within the central section 21 . At its maximum it is as large as the wall thicknesses 24 , 25 of the inlet section 19 and/or of the outlet section 20 .
  • the inlet section 19 preferably amounts to max. 20% of the total length 12 or max. 10% of the total length 12 of the respective plastic tube 4 .
  • the outlet section 20 comprises max. 20% or max. 10% of the total length 12 of the respective plastic tube 4 .
  • FIG. 10 shows an embodiment in which, within the respective plastic tube 4 , there are two such longitudinal sections 9 . These two longitudinal sections 9 are arranged at a distance from one another in the longitudinal direction of the tube. Said distance 28 may be, for example, five times greater than outside diameter 29 or inside diameter 30 of the tube 4 .
  • the first longitudinal section 9 shown at the left may be a distance 32 away from the inlet 31 of the respective plastic tube 4 , said distance being from 50% up to and including 60% of the total length 12 of the tube 4 , for example.
  • the length 11 of the longitudinal sections 9 preferably amounts to 5% up to and including 10% of the total length 12 of the respective tube 4 .
  • An outside cross section and/or outside diameter 33 in the largest cross section of the respective longitudinal section 9 and/or the respective inside cross section or inside diameter 34 may be from 1.4 up to and including 2.0 times larger than the outside diameter 29 and/or the inside diameter 30 of the tube 4 .
  • FIG. 11 shows an embodiment in which the respective longitudinal section 9 is implemented inside the central section 21 .
  • the different wall thicknesses 23 , 24 , 25 are discernible.
  • the largest outside diameter 33 and the largest inside diameter 34 are 1.4 to 2.0 times greater than the outside diameter 29 and the inside diameter 30 of the plastic tube 4 , respectively, in the central section 21 or than in the inlet section 19 or in the outlet section 20 here.
  • FIG. 12 shows a variant in which the longitudinal section 9 is incorporated into the outlet section 20 , i.e., in an area of the plastic tube 4 which has a greater wall thickness 25 .
  • the central section 21 which has the smaller wall thickness 23 is shown here in a shortened form for the sake of a clearer illustration. In this embodiment, it comprises, for example, an area including 30% up to and including 40% of the total length 12 of the respective plastic tube 4 .
  • the inlet section 19 comprises an area of 10% up to and including 20% of the total length 12 .
  • the length 32 of the inlet section 19 and the length 28 of the central section 21 are not shown to scale in FIG. 12 .
  • the reduced wall thickness 23 in the central section 21 improves not only the heat transfer between the two fluids but at the same time it also leads to substantial weight savings for the heat exchanger 1 .
  • manufacturing costs can be reduced because substantially less plastic material is needed.
  • FIG. 13 now shows an embodiment in which a section 35 having a greater wall thickness 23 ′ is provided within the central section 21 , which is characterized by reduced wall thickness 23 .
  • This wall thickness may be between the wall thickness 23 of the other central section 21 and between the wall thicknesses 24 and 25 of the inlet section 19 or of the outlet section 20 , respectively.
  • Production of the respective longitudinal section 9 which is characterized by varying cross sections, can be simplified in this way.
  • said section 35 is provided at the end of the central section 21 so that the central section 21 develops into the transitional section 22 into the end section 20 via this longitudinal section 35 .
  • the central section 21 may also develop directly into the end section 20 via this section 35 .
  • the central section 21 extends from the inlet section 19 and/or from the transitional section 22 on the inlet end up to the beginning of the section 35 containing the longitudinal section 9 for a length 36 , which is shown in a shortened form here and may be, for example, in a range from 40% up to and including 60% of the total length 12 of the plastic tube 4 .
  • FIG. 13 also shows the inside diameter 30 of the plastic tube 4 in the inlet section 19 .
  • FIG. 14 shows an embodiment in which the longitudinal section 9 is arranged in the transitional section 22 on the outlet end.
  • the longitudinal section 9 has an increasing wall thickness according to the transitional section 22 from the central section 21 to the outlet section 20 .
  • the length 32 of the inlet section 19 is again in a range from 10% up to and including 20% of the total length 12 of the plastic tube 4 .
  • the length 11 of the longitudinal section 9 corresponds here to the length of the transitional section 22 on the outlet end and is, for example, in a range from 5% up to and including 10% of the total length 12 .
  • a length 37 of the outlet section 20 is expediently in a range from 10% up to and including 20% of the total length 12 .
  • the outside diameter 29 of the tube 4 in the inlet section 19 is also indicated in FIG. 14 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
US12/329,225 2008-12-05 2008-12-05 Plastic heat exchanger Abandoned US20100139902A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/329,225 US20100139902A1 (en) 2008-12-05 2008-12-05 Plastic heat exchanger
EP09177142A EP2204628B1 (de) 2008-12-05 2009-11-26 Kunststoff-Wärmeübertrager
AT09177142T ATE545836T1 (de) 2008-12-05 2009-11-26 Kunststoff-wärmeübertrager

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/329,225 US20100139902A1 (en) 2008-12-05 2008-12-05 Plastic heat exchanger

Publications (1)

Publication Number Publication Date
US20100139902A1 true US20100139902A1 (en) 2010-06-10

Family

ID=41818735

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/329,225 Abandoned US20100139902A1 (en) 2008-12-05 2008-12-05 Plastic heat exchanger

Country Status (3)

Country Link
US (1) US20100139902A1 (de)
EP (1) EP2204628B1 (de)
AT (1) ATE545836T1 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100192623A1 (en) * 2007-07-16 2010-08-05 Industrie Ilpea S.P.A. Refrigeration circuit
US20100294474A1 (en) * 2009-05-22 2010-11-25 Sumito Furuya Hirota Heat exchanger tube
CN102840770A (zh) * 2012-09-15 2012-12-26 马利萍 集热水器及应用该集热水器的空调
US20140054017A1 (en) * 2011-10-19 2014-02-27 Panasonic Corporation Heat exchange apparatus
US20150136367A1 (en) * 2010-01-12 2015-05-21 Lg Electronics Inc. Heat exchanger having a plurality of heat exchange tubes
WO2016005810A1 (de) * 2014-07-10 2016-01-14 Zehnder Group International Ag Rohrregister für einen heizkörper oder kühlkörper
DE102015204015A1 (de) * 2015-03-05 2016-09-08 Mahle International Gmbh Wärmetauscher, insbesondere für ein Kraftfahrzeug
WO2016142834A1 (de) * 2015-03-10 2016-09-15 Zehnder Group International Ag Rohrregister und verfahren zu seiner herstellung
CN106121803A (zh) * 2016-06-23 2016-11-16 北京航天发射技术研究所 散热器
US20180100700A1 (en) * 2016-10-12 2018-04-12 Baltimore Aircoil Company, Inc. Indirect heat exchanger
US10571197B2 (en) 2016-10-12 2020-02-25 Baltimore Aircoil Company, Inc. Indirect heat exchanger
US10655918B2 (en) 2016-10-12 2020-05-19 Baltimore Aircoil Company, Inc. Indirect heat exchanger having circuit tubes with varying dimensions
US10962295B2 (en) * 2019-02-22 2021-03-30 Mikutay Corporation Heat exchange apparatus having a plurality of modular flow path assemblies, encased in a core body with a plurality of corresponding flow path assembly seats, providing means for independent positioning and axial alignment for a desired effect

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1895947A (en) * 1931-11-11 1933-01-31 Gen Electric Heat radiator
US2562785A (en) * 1946-02-12 1951-07-31 Calumet And Hecla Cons Copper Integral finned tube
US3677338A (en) * 1971-02-17 1972-07-18 Gen Electric Surface condenser
US4132264A (en) * 1974-12-20 1979-01-02 Ecodyne Corporation Plastic heat exchange tube
US4722829A (en) * 1986-03-24 1988-02-02 Giter Gregory D Blood oxygenator
US4790372A (en) * 1985-12-16 1988-12-13 Akzo Nv Heat exchanger having fusion bonded plastic tubes/support plate
US4926933A (en) * 1987-11-12 1990-05-22 James Gray Method and apparatus relating to heat exchangers
US20060054314A1 (en) * 2002-12-19 2006-03-16 Mathias Mauvezin Process for manufacturing ethylene oxide
US20070289725A1 (en) * 2006-06-01 2007-12-20 Nobel Plastiques Heat exchanger having a coil and a corrugated tube, cooling circuit, fuel circuit and vehicle comprising such a heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9418641U1 (de) * 1994-11-22 1995-03-02 Armand, Gunter, Dipl.-Ing., 87439 Kempten Wärmeaustauschrohr
DE29708011U1 (de) * 1997-05-03 1998-08-27 Solvay Verwaltungs- und Vermittlungs GmbH, 30173 Hannover Abgasrückkühler
DE20313291U1 (de) * 2003-08-26 2003-12-04 Appel, Andreas Fluidführender Wellschlauch-Wärmetauscher aus schwarzem Kunststoff

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1895947A (en) * 1931-11-11 1933-01-31 Gen Electric Heat radiator
US2562785A (en) * 1946-02-12 1951-07-31 Calumet And Hecla Cons Copper Integral finned tube
US3677338A (en) * 1971-02-17 1972-07-18 Gen Electric Surface condenser
US4132264A (en) * 1974-12-20 1979-01-02 Ecodyne Corporation Plastic heat exchange tube
US4790372A (en) * 1985-12-16 1988-12-13 Akzo Nv Heat exchanger having fusion bonded plastic tubes/support plate
US4722829A (en) * 1986-03-24 1988-02-02 Giter Gregory D Blood oxygenator
US4926933A (en) * 1987-11-12 1990-05-22 James Gray Method and apparatus relating to heat exchangers
US20060054314A1 (en) * 2002-12-19 2006-03-16 Mathias Mauvezin Process for manufacturing ethylene oxide
US20070289725A1 (en) * 2006-06-01 2007-12-20 Nobel Plastiques Heat exchanger having a coil and a corrugated tube, cooling circuit, fuel circuit and vehicle comprising such a heat exchanger

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100192623A1 (en) * 2007-07-16 2010-08-05 Industrie Ilpea S.P.A. Refrigeration circuit
US20100294474A1 (en) * 2009-05-22 2010-11-25 Sumito Furuya Hirota Heat exchanger tube
US20150136367A1 (en) * 2010-01-12 2015-05-21 Lg Electronics Inc. Heat exchanger having a plurality of heat exchange tubes
US20140054017A1 (en) * 2011-10-19 2014-02-27 Panasonic Corporation Heat exchange apparatus
CN102840770A (zh) * 2012-09-15 2012-12-26 马利萍 集热水器及应用该集热水器的空调
WO2016005810A1 (de) * 2014-07-10 2016-01-14 Zehnder Group International Ag Rohrregister für einen heizkörper oder kühlkörper
DE102015204015A1 (de) * 2015-03-05 2016-09-08 Mahle International Gmbh Wärmetauscher, insbesondere für ein Kraftfahrzeug
EA035458B1 (ru) * 2015-03-10 2020-06-19 Зендер Груп Интернэшнл Аг Трубный регистр и способ его изготовления
WO2016142834A1 (de) * 2015-03-10 2016-09-15 Zehnder Group International Ag Rohrregister und verfahren zu seiner herstellung
CN106121803A (zh) * 2016-06-23 2016-11-16 北京航天发射技术研究所 散热器
US10571197B2 (en) 2016-10-12 2020-02-25 Baltimore Aircoil Company, Inc. Indirect heat exchanger
US10641554B2 (en) * 2016-10-12 2020-05-05 Baltimore Aircoil Company, Inc. Indirect heat exchanger
US10655918B2 (en) 2016-10-12 2020-05-19 Baltimore Aircoil Company, Inc. Indirect heat exchanger having circuit tubes with varying dimensions
US20180100700A1 (en) * 2016-10-12 2018-04-12 Baltimore Aircoil Company, Inc. Indirect heat exchanger
US11644245B2 (en) 2016-10-12 2023-05-09 Baltimore Aircoil Company, Inc. Indirect heat exchanger having circuit tubes with varying dimensions
US10962295B2 (en) * 2019-02-22 2021-03-30 Mikutay Corporation Heat exchange apparatus having a plurality of modular flow path assemblies, encased in a core body with a plurality of corresponding flow path assembly seats, providing means for independent positioning and axial alignment for a desired effect

Also Published As

Publication number Publication date
ATE545836T1 (de) 2012-03-15
EP2204628B1 (de) 2012-02-15
EP2204628A1 (de) 2010-07-07

Similar Documents

Publication Publication Date Title
US20100139902A1 (en) Plastic heat exchanger
CN106403653B (zh) 带有螺旋通路的逆流式换热器
US7788933B2 (en) Heat exchanger tube having integrated thermoelectric devices
RU2470245C2 (ru) Теплообменник с теплообменными камерами, в которых используются соответствующие элементы для направления среды
US7703505B2 (en) Multifluid two-dimensional heat exchanger
US20090260586A1 (en) Heat exchanger for an internal combustion engine
JP4311373B2 (ja) 電気温水器用の熱交換器
CN105917094A (zh) 中冷器
MX2014008510A (es) Intercambiador de calor que utiliza estructuras tubulares que tienen miembros de alteracion de flujo internos y ensambles de camara externos.
CN105473972A (zh) 用于车辆的热交换器
US20180340746A1 (en) Heat exchanger
JP2008069993A (ja) 熱交換器およびそれを用いたヒートポンプ給湯装置
JP4743203B2 (ja) 自動車用の熱伝達体
CN110595111B (zh) 换热器和多制冷系统空调机组
KR20150064076A (ko) 열풍 오븐
US20100146953A1 (en) Exhaust gas steam generation system
JP2013122367A (ja) 車両用熱交換器
JPH0510694A (ja) 熱交換器用伝熱チユーブ
ITTO20100759A1 (it) Scambiatore di calore particolarmente per un impianto di condizionamento aria di un veicolo
KR20080027552A (ko) 자동차용 열교환기 및 그의 제조방법
US20210348859A1 (en) Heat exchanger with aluminum alloy clad tube and method of manufacture
JP2002228387A (ja) 熱交換器
CN105026867A (zh) 热交换器
JPH04340094A (ja) 熱交換器
CN215261362U (zh) 用于换热器的铜管、换热器和空调器

Legal Events

Date Code Title Description
AS Assignment

Owner name: MAHLE INTERNATIONAL GMBH,GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAYLIS, BOBBYE K.;DALY, PAUL D.;MCLEAN, IAN R.;REEL/FRAME:022243/0554

Effective date: 20081204

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION