EP2204628A1 - Kunststoff-Wärmeübertrager - Google Patents

Kunststoff-Wärmeübertrager Download PDF

Info

Publication number
EP2204628A1
EP2204628A1 EP09177142A EP09177142A EP2204628A1 EP 2204628 A1 EP2204628 A1 EP 2204628A1 EP 09177142 A EP09177142 A EP 09177142A EP 09177142 A EP09177142 A EP 09177142A EP 2204628 A1 EP2204628 A1 EP 2204628A1
Authority
EP
European Patent Office
Prior art keywords
plastic
outlet
inlet
heat exchanger
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09177142A
Other languages
English (en)
French (fr)
Other versions
EP2204628B1 (de
Inventor
Bobbye K. Baylis
Paul D. Daly
Ian R. Mclean
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP2204628A1 publication Critical patent/EP2204628A1/de
Application granted granted Critical
Publication of EP2204628B1 publication Critical patent/EP2204628B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/006Tubular elements; Assemblies of tubular elements with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators

Definitions

  • the present invention relates to a plastic heat exchanger, in particular for vehicle applications.
  • a heat exchanger usually has an inlet container having an inlet for a first fluid and enclosing an inlet chamber. Furthermore, an outlet container is provided which has an outlet for the first fluid and encloses an outlet chamber.
  • the plastic heat exchanger also has a plurality of plastic pipes which are sealed to the inlet tank and to the outlet tank. The plastic tubes connect the inlet chamber communicating with the outlet chamber and are flowed around in the operation of the plastic heat exchanger by a second fluid.
  • Plastic heat exchangers are characterized by lightweight construction and low manufacturing costs compared to conventional metal heat exchangers. However, the plastic pipes have a reduced coefficient of thermal conductivity compared to metal pipes. In order to achieve a heat transfer that is comparable to that of a metal heat exchanger, a plastic heat exchanger must be sized larger.
  • the present invention addresses the problem of providing an improved embodiment of a plastic heat exchanger, which is characterized in particular by the fact that it enables improved heat transfer, which can be used in particular to make the plastic heat exchanger smaller or more compact.
  • the invention is based on the general idea of equipping at least some of the plastic pipes in at least one longitudinal section with annular regions which follow one another in the pipe longitudinal direction with varying cross sections.
  • the annular regions generate turbulences during the operation of the heat exchanger due to the varying cross sections, which leads to transverse flows or to a cross-mixing of the first fluid flowing in the plastic pipes.
  • the heat transfer between the respective plastic pipe and the first fluid can be significantly improved.
  • the ability to transfer heat between the first fluid and the second fluid can be increased throughout the heat exchanger, whereby the heat exchanger can be built smaller or more compact with the same performance.
  • the plastic pipes do not have to be provided over their entire length with the varying cross-sections, but only in longitudinal sections or sections of the plastic pipes, which may be relatively short compared to the total length of the respective plastic pipes.
  • the longitudinal sections in which the annular regions follow one another with varying cross-sections may, for example, be designed in the manner of a bellows or in the manner of a corrugated tube. As a result, even in a comparatively small longitudinal section, a large number of such annular regions with a varying cross section can be realized in order to produce the desired disturbance of the boundary layer flow.
  • the longitudinal sections which have the varying annular regions can be produced by compression, in particular during the production of the plastic pipes.
  • plastic pipes can be extruded particularly inexpensive. In a not yet completely cured state, the plastic can then be particularly easily compressed to form said longitudinal sections.
  • the plastic pipes can each have an inlet section connected to the inlet tank, an outlet section connected to the outlet tank and an intermediate section connecting the inlet section to the outlet section.
  • the wall thickness of the plastic pipes in the middle section is smaller than in the inlet section or as in the outlet section.
  • a minimum wall thickness is required.
  • the plastic pipes have only this minimum wall thickness in the inlet section and in the outlet section. In the intermediate section, the wall thickness is reduced. In this way, the heat transfer through the plastic pipes and thus between the two fluids can be improved.
  • a plastic heat exchanger 1 comprises an inlet tank 2, an outlet tank 3 and a plurality of plastic pipes 4.
  • a plastic heat exchanger 1 comprises an inlet tank 2, an outlet tank 3 and a plurality of plastic pipes 4.
  • inlet tank 2 an outlet tank 3
  • plastic pipes 4 a plurality of plastic pipes 4.
  • FIG Fig. 1 only four such plastic tubes 4 are shown. It is clear that significantly more such plastic tubes 4 or more groups of such plastic tubes 4 can be used.
  • the heat exchanger 1 is particularly suitable for automotive applications. For example, it may be used in an engine cooling circuit as a main radiator to cool the coolant of the engine cooling circuit with an air flow. Likewise, the heat exchanger 1 may be associated with an air conditioning or an oil circuit of the vehicle. In a preferred application, the heat exchanger 1 can be used as a charge air cooler in a supercharged internal combustion engine.
  • the inlet container 2 has an inlet 5 for a first fluid, which may be a gas or a liquid.
  • the inlet container 2 encloses an inlet chamber 6.
  • the outlet container 3 has an outlet 7, through which the first fluid can escape.
  • the outlet container 3 encloses an outlet chamber 8.
  • the plastic pipes 4 are tightly connected on the one hand to the inlet container 2 and on the other hand to the outlet container 3.
  • the inlet container 2 and the outlet container 3 may also be made of plastic.
  • the plastic tubes 4 are then tightly connected to the respective container 2, 3 by means of welded joints.
  • the plastic pipes 4 realize a communicating connection between the inlet chamber 6 and the outlet chamber 8.
  • the first fluid can flow from the inlet chamber 6 through the plastic pipes 4 into the outlet chamber 8 during operation of the heat exchanger 1.
  • the plastic pipes 4 are flowed around by a second fluid, which may be a gas or a liquid.
  • the plastic tubes 4 preferably have a circular cross section and are in the example of the Fig. 1 each designed in a straight line. In principle, however, other circular cross-sections and / or a curved design are conceivable. Accordingly, the tube longitudinal direction is either straight or curved.
  • the longitudinal sections 9 are positioned along the individual plastic pipes 4 so that they are offset from each other in adjacent plastic pipes 4 in the pipe longitudinal direction.
  • the individual plastic pipes 4 can be packed or arranged closer together, whereby the heat exchanger 1 can be constructed more compact overall.
  • adjacent tubes 4 can thereby be arranged relatively close to one another with respect to their longitudinal central axes 17, as a result of which a distance 18 can be minimized.
  • an offset 10 between the longitudinal sections 9 of adjacent plastic pipes 4 is slightly, z. Ex. 10-20% larger dimensioned as a length 11 of the longitudinal sections. 9
  • each plastic tube 4 is provided with only one such longitudinal section 9.
  • the respective longitudinal section 9 can preferably be designed in the manner of a bellows or corrugated tube.
  • the annular areas are in the Fig. 2 to 6 indicated by braces and denoted by 13.
  • these annular regions 13 generate in the tube longitudinal direction, which in the Fig. 2 to 6 indicated by an arrow 14, varying cross sections.
  • the sequence of varying cross-sections disturbs the boundary layer and creates turbulence to improve mixing in the first fluid.
  • the annular regions 13 can corresponding Fig. 2 have a wave profile or accordingly Fig. 3 a sawtooth profile or equivalent Fig. 4 a rectangular profile.
  • Fig. 5 a step profile conceivable.
  • annular portions 13 each have annular beads 15, one of which project inwardly and the other outwardly.
  • the different annular beads 15 go directly into each other, creating a sinusoidal profile. It is clear that basically only outwardly projecting annular beads 15 or only inwardly projecting annular beads 15 can be provided.
  • the annular beads 15 connect tube regions 16 in the tube longitudinal direction. These tube regions 16 can basically have constant cross sections. The varying cross sections within the respective region 13 are then realized by the beads 15.
  • the successive pipe portions 16 are provided with stepped cross-sections, similar to the in Fig. 5 shown embodiment. While in the embodiments of Fig.
  • the respective longitudinal section 9 thereby has a decreasing average cross section in its longitudinal direction or in the flow direction of the first fluid.
  • the annular regions 13 with varying cross sections or the longitudinal sections 9 can be realized, for example, by upsetting the plastic tube 4. Such compression can be realized particularly favorable during the production of the plastic pipes 4. For example, during an extrusion process.
  • the plastic pipes 4 may have an inlet portion 19, an outlet portion 20, and a middle portion 21, respectively exhibit. While the inlet portion 19 is connected to the inlet tank 2, the outlet portion 20 is connected to the outlet tank 3.
  • the Fig. 7 to 9 In this case, the plastic pipes 4 without the containers 2, 3 and for the sake of simplicity also without the longitudinal sections 9.
  • the middle section 21 connects the inlet section 19 with the outlet section 20, wherein transition sections 22 can be provided, which can be assigned to the central section 21. It is also possible to assign the one transition section to the inlet section 19 and to assign the other transition section 22 to the outlet section 20. Important for those in the Fig.
  • a wall thickness 23 of the central portion 21 is smaller than a wall thickness 24 of the inlet portion 19 and smaller than a wall thickness 25 of the outlet portion 20.
  • the wall thicknesses 24, 25 of the inlet portion 19 and the outlet portion 20 are equal. They are as small as possible, but must have a minimum wall thickness in order to be able to produce the connection with the respective container 2, 3 with sufficient reliability and with sufficient reliability in the context of mass production. Conveniently, the inlet portion 19 and the outlet portion 20 thus have this required for the respective connection technique minimum wall thickness 24 and 25.
  • the middle portion 21 has in contrast to a much smaller wall thickness 23.
  • the smaller wall thickness 23 is in a range between 30% inclusive 70% of the wall thickness 24 of the inlet portion 19 or the wall thickness 25 of the outlet portion 20.
  • Preferred is the embodiment shown here, in which the wall thickness 23 in the central portion 21 is about half as large as the wall thicknesses 24, 25 of the inlet portion 19 and the outlet portion 20th ,
  • Corresponding Fig. 7 can the reduced wall thickness 23 of the central portion 21 be realized in that the respective plastic pipe 4 exclusively one Outer cross-section 26 is reduced.
  • Corresponding Fig. 8 Alternatively, it is also possible to increase only an inner cross-section 27 of the plastic tube 4 in order to realize the reduced wall thickness 23 of the central portion 21.
  • It is also the same Fig. 9 it is possible to produce the reduced wall thickness 23 of the middle section 21 by reducing the outer cross section 26 on the one hand and by widening the inner cross section 27 on the other hand.
  • the respective longitudinal section 9 can now be arranged in the inlet section 19.
  • the respective longitudinal section 9 may be arranged in the outlet section 20. It is also possible to arrange the respective longitudinal section 9 in the middle section 21.
  • the respective longitudinal section 9 can be arranged in one of the transition regions 22. For example, at the transition 22 between the inlet portion 19 and central portion 21 or at the junction 22 between the middle portion 21 and outlet 20.
  • a greater wall thickness is, for example, for simplified realization of this longitudinal section 9.
  • This larger wall thickness in the central portion 21 is in the in Fig. 13 shown variant designated 23 '. It is in particular greater than upstream and downstream of the longitudinal section 9 within the central section 21. It is at most as large as the wall thicknesses 24, 25 of the inlet section 19 and the outlet section 20, respectively.
  • the inlet section 19 is preferably at most 20% of the total length 12 or at most 10% of the total length 12 of the respective plastic tube 4.
  • the outlet section 20 comprises a maximum of 20% or a maximum of 10% of the total length 12 of the respective plastic tube 4.
  • Fig. 10 shows an embodiment in which within the respective plastic pipe 4, two such longitudinal sections 9 are present. These two longitudinal sections 9 are arranged spaced apart in the tube longitudinal direction. Said distance 28 may be, for example, five times greater than an outer diameter 29 or as an inner diameter 30 of the tube 4.
  • the first longitudinal section 9, shown on the left can have a distance 32 from an inlet 31 of the respective plastic pipe 4, which, for example, may be between 50% and 60% inclusive of the total length 12 of the pipe 4.
  • the length 11 of the longitudinal sections 9 is preferably between 5% and 10% inclusive of the total length 12 of the respective tube 4.
  • An outer cross section or outer diameter 33 in the largest cross section of the respective longitudinal section 9 or the associated inner cross section or inner diameter 34 can be between 1, 4 to 2.0 times as large as the outer diameter 29 and the inner diameter 30 of the tube 4th
  • Fig. 11 shows an embodiment in which the respective longitudinal portion 9 is realized within the central portion 21. Visible here are again the different wall thicknesses 23, 24, 25. Again, within the longitudinal section 9 of the largest outer diameter 33 and the largest inner diameter 34 1.4 to 2.0 times larger than the outer diameter 29 and the inner diameter 30 of Plastic pipe 4 in the central portion 21 or as here in the inlet section 19 or in the outlet section 20th
  • Fig. 12 shows a variant in which the longitudinal section 9 is incorporated in the outlet section 20, that is, in a region of the plastic tube 4, which has a greater wall thickness 25.
  • the central portion 21, which has the smaller wall thickness 23, is reproduced here in abbreviated form for clarity. In this embodiment, it comprises, for example, a range of
  • the inlet portion 19 comprises, as before, a range of 10% to and including 20% of the total length 12.
  • the length 32 of the inlet portion 19 and the length 28 of the central portion 21 are in Fig. 12 not reproduced to scale.
  • the reduced wall thickness 23 in the middle section 21 not only improves the heat transfer between the two fluids. At the same time, it leads to a significant weight saving for the heat exchanger 1. In addition, manufacturing costs can be reduced, since significantly less plastic material is needed.
  • Fig. 13 shows an embodiment in which within the central portion 21, which is actually characterized by the reduced wall thickness 23, a portion 35 is provided which has a greater wall thickness 23 '. This can be between the wall thickness 23 of the remaining middle section 21 and between the wall thicknesses 24 and 25 of the inlet section 19 and the outlet section 20.
  • said portion 35 is arranged at the end of the central portion 21, so that the central portion 21 passes over this longitudinal portion 35 in the transition portion 22 in the end portion 20.
  • the central portion 21 could pass over this section 35 directly into the end portion 20.
  • the central portion 21 extends from the inlet portion 19 and the inlet-side transition portion 22 to the beginning of the longitudinal portion 9 containing portion 35 over a length 36, which is reproduced here shortened and the example. In a range of including 40% up to and including 60% of Total length 12 of the Plastic tube 4 may lie. In Fig. 13 In addition, the inner diameter 30 of the plastic pipe 4 in the inlet section 19 is indicated.
  • Fig. 14 now shows an embodiment in which the longitudinal section 9 is arranged in the outlet-side transition section 22.
  • the longitudinal portion 9 corresponding to the transition portion 22 from the central portion 21 to the outlet portion 20 has an increasing wall thickness.
  • the length 32 of the inlet portion 19 is again in a range of including 10% to 20% inclusive of the total length 12 of the plastic tube 4.
  • the length 11 of the longitudinal section 9 here corresponds to the length of the outlet-side transition section 22 and is, for example, in a range of inclusive
  • a length 37 of the outlet portion 20 is suitably within a range of 10% to and including 20% of the total length 12.
  • the outer diameter 29 of the tube 4 in the inlet section 19 is additionally indicated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die Erfindung betrifft einen Kunststoff-Wärmeübertrager (1), insbesondere für Kraftfahrzeuganwendungen, mit einem Einlassbehälter (2), der einen Einlass (5) für ein erstes Fluid aufweist und eine Einlasskammer (6) umschließt, mit einem Auslassbehälter (3), der einen Auslass (7) für das erste Fluid aufweist und eine Auslasskammer (8) umschließt, mit mehreren Kunststoffrohren (4), die mit dem Einlassbehälter (2) und mit dem Auslassbehälter (3) dicht verbunden sind, die die Einlasskammer (6) mit der Auslasskammer (8) miteinander kommunizierend verbinden und die im Betrieb von einem zweiten Fluid umströmt sind. Um die Wärmeübertragung zu verbessern, weisen zumindest einige der Kunststoffrohre (4) jeweils zumindest einen Längsabschnitt (9) auf, in dem ringförmige Bereiche (13) mit variierenden Querschnitten in Rohrlängsrichtung aufeinander folgen.

Description

  • Die vorliegende Erfindung betrifft einen Kunststoff-Wärmeübertrager, insbesondere für Fahrzeuganwendungen.
  • Ein Wärmeübertrager weist üblicherweise einen Einlassbehälter auf, der einen Einlass für ein erstes Fluid besitzt und eine Einlasskammer umschließt. Ferner ist ein Auslassbehälter vorgesehen, der einen Auslass für das erste Fluid aufweist und eine Auslasskammer umschließt. Der Kunststoff-Wärmeübertrager weist außerdem mehrere Kunststoffrohre auf, die mit dem Einlassbehälter und mit dem Auslassbehälter dicht verbunden sind. Die Kunststoffrohre verbinden die Einlasskammer mit der Auslasskammer kommunizierend und sind im Betrieb des Kunststoff-Wärmeübertragers von einem zweiten Fluid umströmt.
  • Kunststoff-Wärmeübertrager zeichnen sich durch Leichtbauweise und niedrige Herstellungskosten gegenüber herkömmlichen Metall-Wärmeübertragern aus. Allerdings besitzen die Kunststoffrohre im Vergleich zu Metallrohren einen reduzierten Wärmeleitkoeffizienten. Um eine Wärmeübertragung erzielen zu können, die mit der eines Metall-Wärmeübertragers vergleichbar ist, muss ein Kunststoff-Wärmeübertrager größer dimensioniert werden.
  • Die vorliegende Erfindung beschäftigt sich mit dem Problem, für einen Kunststoff-Wärmeübertrager eine verbesserte Ausführungsform anzugeben, die sich insbesondere dadurch auszeichnet, dass sie eine verbesserte Wärmeübertragung ermöglicht, die sich insbesondere dazu nutzen lässt, den Kunststoff-Wärmeübertrager kleiner bzw. kompakter zu bauen.
  • Erfindungsgemäß wird dieses Problem durch den Gegenstand des unabhängigen Anspruchs gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
  • Die Erfindung beruht auf dem allgemeinen Gedanken, zumindest einige der Kunststoffrohre in wenigstens einem Längsabschnitt mit ringförmigen Bereichen auszustatten, die in der Rohrlängsrichtung mit variierenden Querschnitten aufeinander folgen. In besagten Längsabschnitten erzeugen die ringförmigen Bereiche durch die variierenden Querschnitte im Betrieb des Wärmeübertragers Turbulenzen, die zu Querströmungen bzw. zu einer Querdurchmischung des in den Kunststoffrohren strömenden ersten Fluids führt. Hierdurch kann die Wärmeübertragung zwischen dem jeweiligen Kunststoffrohr und dem ersten Fluid signifikant verbessert werden. In der Folge kann im gesamten Wärmeübertrager die Fähigkeit, Wärme zwischen dem ersten Fluid und dem zweiten Fluid zu übertragen, gesteigert werden, wodurch der Wärmeübertrager bei gleicher Leistung insgesamt kleiner bzw. kompakter gebaut werden kann. Bemerkenswert ist dabei, dass die Kunststoffrohre nicht über ihre gesamte Länge mit den variierenden Querschnitten versehen werden müssen, sondern nur in Längsabschnitten oder Teilabschnitten der Kunststoffrohre, die im Vergleich zur Gesamtlänge der jeweiligen Kunststoffrohre vergleichsweise kurz ausfallen können.
  • Die Längsabschnitte, in denen die ringförmigen Bereiche mit variierenden Querschnitten aufeinander folgen, können bspw. nach Art eines Faltenbalgs oder nach Art eines Wellrohrs ausgebildet sein. Hierdurch kann bereits in einem vergleichsweise kleinen Längsabschnitt eine Vielzahl derartiger ringförmiger Bereich mit variierendem Querschnitt realisiert werden, um die gewünschte Störung der Grenzschichtströmung zu erzeugen.
  • Bei den Kunststoffrohren können die Längsabschnitte, welche die variierenden Ringbereiche aufweisen, durch Stauchung hergestellt werden, wobei dies insbesondere während der Herstellung der Kunststoffrohre durchgeführt wird. Beispielsweise können Kunststoffrohre besonders preiswert extrudiert werden. In einem noch nicht vollständig ausgehärteten Zustand kann der Kunststoff dann besonders leicht gestaucht werden, um besagte Längsabschnitte auszubilden.
  • Entsprechend einer besonders vorteilhaften Ausführungsform können die Kunststoffrohre jeweils einen mit dem Einlassbehälter verbundenen Einlassabschnitt, einen mit dem Auslassbehälter verbundenen Auslassabschnitt und einen den Einlassabschnitt mit dem Auslassabschnitt verbindenden Mittelabschnitt aufweisen. Dabei ist die Wandstärke der Kunststoffrohre im Mittelabschnitt kleiner als im Einlassabschnitt bzw. als im Auslassabschnitt. Um die Kunststoffrohre mit dem Einlassbehälter bzw. mit dem Auslassbehälter verbinden zu können, ist eine Mindestwandstärke erforderlich. Diese Mindestwandstärke weisen die Kunststoffrohre bei dieser Ausführungsform jedoch nur im Einlassabschnitt und im Auslassabschnitt auf. Im dazwischen liegenden Mittelabschnitt ist die Wandstärke reduziert. Auf diese Weise kann die Wärmeübertragung durch die Kunststoffrohre und somit zwischen den beiden Fluiden verbessert werden.
  • Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Bauteile beziehen.
  • Es zeigen, jeweils schematisch,
  • Fig. 1
    eine stark vereinfachte, schaltplanartige Prinzipdarstellung eines Kunststoff-Wärmeübertragers,
    Fig. 2 bis 6
    jeweils einen stark vereinfachten Längsschnitt eines Kunststoffrohrs im Bereich eines Längsabschnitts mit variierenden Querschnitten, bei verschiedenen Ausführungsformen,
    Fig. 7 bis 9
    jeweils einen stark vereinfachten Längsschnitt durch ein Kunststoffrohr bei verschiedenen Ausführungsformen,
    Fig. 10 bis 14
    jeweils einen vereinfachten Längsschnitt durch ein Kunststoffrohr mit jeweils wenigstens einem variierende Querschnitte aufweisenden Längsabschnitt, bei verschiedenen Ausführungsformen.
  • Entsprechend Fig. 1 umfasst ein Kunststoff-Wärmeübertrager 1 einen Einlassbehälter 2, einen Auslassbehälter 3 und mehrere Kunststoffrohre 4. In der vereinfachten Darstellung der Fig. 1 sind lediglich vier derartige Kunststoffrohre 4 dargestellt. Es ist klar, dass auch deutlich mehr derartige Kunststoffrohre 4 oder mehrere Gruppen solcher Kunststoffrohre 4 zur Anwendung kommen können.
  • Der Wärmeübertrager 1 eignet sich in besonderer Weise für Kraftfahrzeuganwendungen. Beispielsweise kann er in einem Motorkühlkreis als Hauptkühler zur Anwendung kommen, um das Kühlmittel des Motorkühlkreises mit einer Luftströmung zu kühlen. Ebenso kann der Wärmeübertrager 1 einer Klimaanlage oder einem Ölkreis des Fahrzeugs zugeordnet sein. In einer bevorzugten Anwendung kann der Wärmeübertrager 1 als Ladeluftkühler bei einer aufgeladenen Brennkraftmaschine verwendet werden.
  • Der Einlassbehälter 2 weist einen Einlass 5 für ein erstes Fluid auf, bei dem es sich um ein Gas oder um eine Flüssigkeit handeln kann. Der Einlassbehälter 2 umschließt eine Einlasskammer 6. Der Auslassbehälter 3 weist einen Auslass 7 auf, durch den das erste Fluid austreten kann. Der Auslassbehälter 3 umschließt eine Auslasskammer 8. Die Kunststoffrohre 4 sind einerseits mit dem Einlassbehälter 2 und andererseits mit dem Auslassbehälter 3 dicht verbunden. Beispielsweise können der Einlassbehälter 2 und der Auslassbehälter 3 ebenfalls aus Kunststoff hergestellt sein. Zweckmäßig sind dann die Kunststoffrohre 4 mit dem jeweiligen Behälter 2, 3 mittels Schweißverbindungen dicht verbunden. Die Kunststoffrohre 4 realisieren eine kommunizierende Verbindung zwischen der Einlasskammer 6 und der Auslasskammer 8. Das heißt, das erste Fluid kann im Betrieb des Wärmeübertragers 1 aus der Einlasskammer 6 durch die Kunststoffrohre 4 in die Auslasskammer 8 strömen. Im Betrieb des Wärmeübertragers 1 werden die Kunststoffrohre 4 von einem zweiten Fluid umströmt, bei dem es sich um ein Gas oder um eine Flüssigkeit handeln kann.
  • Zumindest einige der Kunststoffrohre 4, vorzugsweise alle Kunststoffrohre 4 weisen jeweils wenigstens einen Längsabschnitt 9 auf, der sich dadurch charakterisiert, dass darin ringförmige Bereiche mit variierenden durchströmbaren Querschnitten in der Rohrlängsrichtung aufeinander folgen. Die Kunststoffrohre 4 besitzen bevorzugt einen Kreisquerschnitt und sind im Beispiel der Fig. 1 jeweils geradlinig ausgestaltet. Grundsätzlich sind jedoch auch andere runde Querschnitte und/oder eine gekrümmte Bauform denkbar. Dementsprechend ist die Rohrlängsrichtung entweder geradlinig oder gekrümmt. Bei dem in Fig. 1 gezeigten Beispiel sind die Längsabschnitte 9 entlang der einzelnen Kunststoffrohre 4 so positioniert, dass sie bei benachbarten Kunststoffrohren 4 in der Rohrlängsrichtung zueinander versetzt angeordnet sind. Hierdurch können die einzelnen Kunststoffrohre 4 dichter nebeneinander gepackt bzw. angeordnet werden, wodurch der Wärmeübertrager 1 insgesamt kompakter gebaut werden kann. Insbesondere lassen sich dadurch benachbarte Rohre 4 hinsichtlich ihrer Längsmittelachsen 17 relativ nah aneinander anordnen, wodurch ein Abstand 18 minimiert werden kann. Beispielsweise ist ein Versatz 10 zwischen den Längsabschnitten 9 benachbarter Kunststoffrohre 4 geringfügig, z. Bsp. 10-20% größer dimensioniert als eine Länge 11 der Längsabschnitte 9.
  • Im Beispiel der Fig. 1 sind alle Längsabschnitte 9 gleich lang ausgestaltet. Sie sind dabei kürzer als eine Gesamtlänge 12 der einzelnen Kunststoffrohre 4. Beispielsweise liegt die Länge 11 der Längsabschnitte 9 jeweils in einem Bereich zwischen einschließlich 5% und einschließlich 10% der Gesamtlänge 12 des jeweiligen Kunststoffrohrs 4. Im Beispiel der Fig. 1 ist außerdem jedes Kunststoffrohr 4 nur mit einem einzigen solchen Längsabschnitt 9 versehen.
  • Entsprechend den Fig. 2 bis 6 kann der jeweilige Längsabschnitt 9 bevorzugt nach Art eines Faltenbalgs oder Wellrohrs ausgestaltet sein. Die ringförmigen Bereiche sind dabei in den Fig. 2 bis 6 durch geschweifte Klammern angedeutet und mit 13 bezeichnet. Erkennbar erzeugen diese ringförmigen Bereiche 13 in der Rohrlängsrichtung, die in den Fig. 2 bis 6 durch einen Pfeil 14 angedeutet ist, variierende Querschnitte. Die Abfolge variierender Querschnitte sorgt für eine Störung der Grenzschicht und erzeugt Turbulenzen zur Verbesserung der Durchmischung im ersten Fluid. Die ringförmigen Bereiche 13 können entsprechend Fig. 2 ein Wellenprofil aufweisen oder entsprechend Fig. 3 ein Sägezahnprofil oder entsprechend Fig. 4 ein Rechteckprofil. Ebenso ist entsprechend Fig. 5 ein Stufenprofil denkbar. Fig. 6 zeigt eine spezielle Ausführungsform, bei der die ringförmigen Bereiche 13 jeweils Ringwulste 15 aufweisen, von denen die einen nach innen und die anderen nach außen abstehen. Die unterschiedlichen Ringwulste 15 gehen dabei unmittelbar ineinander über, wodurch ein Sinus-Profil entsteht. Es ist klar, dass grundsätzlich auch nur nach außen abstehende Ringwulste 15 oder nur nach innen abstehende Ringwulste 15 vorgesehen sein können. Die Ringwulste 15 verbinden in Rohrlängsrichtung Rohrbereiche 16. Diese Rohrbereiche 16 können grundsätzlich konstante Querschnitte besitzen. Die variierenden Querschnitte innerhalb des jeweiligen Bereichs 13 werden dann durch die Wulste 15 realisiert. In Fig. 6 sind jedoch die aufeinander folgenden Rohrbereiche 16 mit gestuften Querschnitten versehen, ähnlich der in Fig. 5 gezeigten Ausführungsform. Während bei den Ausführungsformen der Fig. 2 bis 4 abnehmende und zunehmende Querschnitte aufeinander folgen, so dass im Mittel ein konstanter Querschnitt vorliegt, zeigen die Fig. 5 und 6 in der Strömungsrichtung abnehmende Querschnitte. Insbesondere besitzt der jeweilige Längsabschnitt 9 dadurch in seiner Längsrichtung bzw. in der Strömungsrichtung des ersten Fluids einen abnehmenden mittleren Querschnitt.
  • Die ringförmigen Bereiche 13 mit variierenden Querschnitten bzw. die Längsabschnitte 9 können bspw. durch Stauchungen des Kunststoffrohrs 4 realisiert werden. Derartige Stauchungen können besonders günstig während der Herstellung der Kunststoffrohre 4 realisiert werden. Beispielsweise während eines Strangpressvorgangs.
  • Entsprechend den Fig. 1 und 7 bis 9 können die Kunststoffrohre 4 jeweils einen Einlassabschnitt 19, einen Auslassabschnitt 20 und einen Mittelabschnitt 21 aufweisen. Während der Einlassabschnitt 19 mit dem Einlassbehälter 2 verbunden ist, ist der Auslassabschnitt 20 mit dem Auslassbehälter 3 verbunden. Die Fig. 7 bis 9 zeigen dabei die Kunststoffrohre 4 ohne die Behälter 2, 3 und zur vereinfachten Darstellung auch ohne die Längsabschnitte 9. Der Mittelabschnitt 21 verbindet den Einlassabschnitt 19 mit dem Auslassabschnitt 20, wobei Übergangsabschnitte 22 vorgesehen sein können, die dem Mittelabschnitt 21 zugeordnet werden können. Ebenso ist es möglich, den einen Übergangsabschnitt dem Einlassabschnitt 19 zuzuordnen und den anderen Übergangsabschnitt 22 dem Auslassabschnitt 20 zuzuordnen. Wichtig für die in den Fig. 7 bis 14 gezeigten Ausführungsformen ist, dass eine Wandstärke 23 des Mittelabschnitts 21 kleiner ist als eine Wandstärke 24 des Einlassabschnitts 19 und kleiner ist als eine Wandstärke 25 des Auslassabschnitts 20. Üblicherweise sind die Wandstärken 24, 25 des Einlassabschnitts 19 und des Auslassabschnitts 20 gleich groß. Sie sind möglichst klein, müssen jedoch eine Mindestwandstärke aufweisen, um die Verbindung mit dem jeweiligen Behälter 2, 3 hinreichend sicher und hinreichend betriebssicher im Rahmen einer Serienfertigung herstellen zu können. Zweckmäßig besitzen der Einlassabschnitt 19 und der Auslassabschnitt 20 somit diese für die jeweilige Verbindungstechnik erforderliche Mindestwandstärke 24 bzw. 25. Der Mittelabschnitt 21 besitzt im Unterschied dazu eine deutlich kleinere Wandstärke 23. Beispielsweise liegt die kleinere Wandstärke 23 in einem Bereich zwischen einschließlich 30% bis einschließlich 70% der Wandstärke 24 des Einlassabschnitts 19 oder der Wandstärke 25 des Auslassabschnitts 20. Bevorzugt ist die hier gezeigte Ausführungsform, bei welcher die Wandstärke 23 im Mittelabschnitt 21 etwa halb so groß ist wie die Wandstärken 24, 25 des Einlassabschnitts 19 bzw. des Auslassabschnitts 20.
  • Entsprechend Fig. 7 kann die reduzierte Wandstärke 23 des Mittelabschnitts 21 dadurch realisiert werden, dass am jeweiligen Kunststoffrohr 4 ausschließlich ein Außenquerschnitt 26 reduziert wird. Entsprechend Fig. 8 ist es alternativ ebenso möglich, ausschließlich einen Innenquerschnitt 27 des Kunststoffrohrs 4 zu vergrößern, um die reduzierte Wandstärke 23 des Mittelabschnitts 21 zu realisieren. Ebenso ist es entsprechend Fig. 9 möglich, die reduzierte Wandstärke 23 des Mittelabschnitts 21 dadurch herzustellen, dass einerseits der Außenquerschnitt 26 reduziert und andererseits der Innenquerschnitt 27 aufgeweitet wird.
  • Der jeweilige Längsabschnitt 9 kann nun im Einlassabschnitt 19 angeordnet sein. Alternativ kann der jeweilige Längsabschnitt 9 im Auslassabschnitt 20 angeordnet sein. Ebenso ist es möglich, den jeweiligen Längsabschnitt 9 im Mittelabschnitt 21 anzuordnen. Ferner kann der jeweilige Längsabschnitt 9 in einem der Übergangsbereiche 22 angeordnet sein. Beispielsweise am Übergang 22 zwischen Einlassabschnitt 19 und Mittelabschnitt 21 oder am Übergang 22 zwischen Mittelabschnitt 21 und Auslassabschnitt 20. Desweiteren ist grundsätzlich eine Ausführungsform denkbar, bei welcher der jeweilige Längsabschnitt 9 zwar im Mittelabschnitt 21 angeordnet ist, wobei im Mittelabschnitt 21 hierzu eine größere Wandstärke realisiert ist, z.B. zur vereinfachten Realisierung dieses Längsabschnitts 9. Diese größere Wandstärke im Mittelabschnitt 21 ist bei der in Fig. 13 gezeigten Variante mit 23' bezeichnet. Sie ist insbesondere größer als stromauf und stromab des Längsabschnitts 9 innerhalb des Mittelabschnitts 21. Sie ist maximal so groß wie die Wandstärken 24, 25 des Einlassabschnitts 19 bzw. des Auslassabschnitts 20.
  • Der Einlassabschnitt 19 beträgt vorzugsweise maximal 20% der Gesamtlänge 12 oder maximal 10% der Gesamtlänge 12 des jeweiligen Kunststoffrohrs 4. Der Auslassabschnitt 20 umfasst maximal 20% oder maximal 10% der Gesamtlänge 12 des jeweiligen Kunststoffrohrs 4.
  • Fig. 10 zeigt eine Ausführungsform, bei welcher innerhalb des jeweiligen Kunststoffrohrs 4 zwei derartige Längsabschnitte 9 vorhanden sind. Diese beiden Längsabschnitte 9 sind dabei in der Rohrlängsrichtung zueinander beabstandet angeordnet. Besagter Abstand 28 kann bspw. fünf Mal größer sein als ein Außendurchmesser 29 oder als ein Innendurchmesser 30 des Rohrs 4. Bei der in Fig. 10 gezeigten Ausführungsform kann der links gezeigte erste Längsabschnitt 9 von einem Einlass 31 des jeweiligen Kunststoffrohrs 4 einen Abstand 32 aufweisen, der bspw. zwischen einschließlich 50% bis einschließlich 60% der Gesamtlänge 12 des Rohrs 4 liegen kann. Die Länge 11 der Längsabschnitte 9 beträgt vorzugsweise zwischen einschließlich 5% bis einschließlich 10% der Gesamtlänge 12 des jeweiligen Rohrs 4. Ein Außenquerschnitt bzw. Außendurchmesser 33 im größten Querschnitt des jeweiligen Längsabschnitts 9 bzw. der zugehörige Innenquerschnitt oder Innendurchmesser 34 kann zwischen einschließlich 1,4 bis einschließlich 2,0 Mal so groß sein wie der Außendurchmesser 29 bzw. der Innendurchmesser 30 des Rohrs 4.
  • Fig. 11 zeigt eine Ausführungsform, bei welcher der jeweilige Längsabschnitt 9 innerhalb des Mittelabschnitts 21 realisiert ist. Erkennbar sind auch hier wieder die unterschiedlichen Wandstärken 23, 24, 25. Auch hier ist innerhalb des Längsabschnitts 9 der größte Außendurchmesser 33 bzw. der größte Innendurchmesser 34 1,4 bis 2,0 Mal größer als der Außendurchmesser 29 bzw. der Innendurchmesser 30 des Kunststoffrohrs 4 im Mittelabschnitt 21 oder wie hier im Einlassabschnitt 19 oder aber im Auslassabschnitt 20.
  • Fig. 12 zeigt eine Variante, bei welcher der Längsabschnitt 9 in den Auslassabschnitt 20 eingearbeitet ist, also in einem Bereich des Kunststoffrohrs 4, der eine größere Wandstärke 25 aufweist. Der Mittelabschnitt 21, der die kleinere Wandstärke 23 besitzt, ist hier zur verdeutlichten Darstellung verkürzt wiedergegeben. Er umfasst in dieser Ausführungsform bspw. einen Bereich von einschließlich 30% bis einschließlich 40% der Gesamtlänge 12 des jeweiligen Kunststoffrohrs 4. Der Einlassabschnitt 19 umfasst dagegen wie gehabt einen Bereich von einschließlich 10% bis einschließlich 20% der Gesamtlänge 12. Die Länge 32 des Einlassabschnitts 19 und die Länge 28 des Mittelabschnitts 21 sind in Fig. 12 nicht maßstäblich wiedergegeben.
  • Die reduzierte Wandstärke 23 im Mittelabschnitt 21 verbessert nicht nur die Wärmeübertragung zwischen den beiden Fluiden. Gleichzeitig führt sie zu einer erheblichen Gewichtseinsparung für den Wärmeübertrager 1. Darüber hinaus lassen sich Herstellungskosten reduzieren, da erheblich weniger Kunststoffmaterial benötigt wird.
  • Fig. 13 zeigt nun eine Ausführungsform, bei welcher innerhalb des Mittelabschnitts 21, der sich eigentlich durch die reduzierte Wandstärke 23 auszeichnet, ein Abschnitt 35 vorgesehen ist, der eine größere Wandstärke 23' aufweist. Diese kann zwischen der Wandstärke 23 des übrigen Mittelabschnitts 21 und zwischen den Wandstärken 24 und 25 des Einlassabschnitts 19 bzw. des Auslassabschnitts 20 liegen. Hierdurch kann die Herstellung des jeweiligen Längsabschnitts 9, der sich durch variierende Querschnitte auszeichnet, vereinfacht werden. Beispielsweise ist der genannte Abschnitt 35 am Ende des Mittelabschnitts 21 angeordnet, so dass der Mittelabschnitt 21 über diesen Längsabschnitt 35 in den Übergangsabschnitt 22 in den Endabschnitt 20 übergeht. Ebenso könnte der Mittelabschnitt 21 über diesen Abschnitt 35 direkt in den Endabschnitt 20 übergehen. Der Mittelabschnitt 21 erstreckt sich vom Einlassabschnitt 19 bzw. vom einlassseitigen Übergangsabschnitt 22 bis zum Beginn des den Längsabschnitt 9 enthaltenden Abschnitts 35 über eine Länge 36, die hier verkürzt wiedergegeben ist und die bspw. in einem Bereich von einschließlich 40% bis einschließlich 60% der Gesamtlänge 12 des Kunststoffrohrs 4 liegen kann. In Fig. 13 ist außerdem der Innendurchmesser 30 des Kunststoffrohrs 4 im Einlassabschnitt 19 angedeutet.
  • Fig. 14 zeigt nun eine Ausführungsform, bei welcher der Längsabschnitt 9 im auslassseitigen Übergangsabschnitt 22 angeordnet ist. Hierdurch besitzt der Längsabschnitt 9 entsprechend dem Übergangsabschnitt 22 vom Mittelabschnitt 21 bis zum Auslassabschnitt 20 eine zunehmende Wandstärke. Beispielsweise liegt die Länge 32 des Einlassabschnitts 19 wieder in einem Bereich von einschließlich 10% bis einschließlich 20% der Gesamtlänge 12 des Kunststoffrohrs 4. Die Länge 11 des Längsabschnitts 9 entspricht hier der Länge des auslassseitigen Übergangsabschnitts 22 und liegt bspw. in einem Bereich von einschließlich 5% bis einschließlich 10% der Gesamtlänge 12. Auch eine Länge 37 des Auslassabschnitts 20 liegt zweckmäßig in einem Bereich von einschließlich 10% bis einschließlich 20% der Gesamtlänge 12. In Fig. 14 ist zusätzlich noch der Außendurchmesser 29 des Rohrs 4 im Einlassabschnitt 19 angedeutet.

Claims (16)

  1. Kunststoff-Wärmeübertrager, insbesondere für Kraftfahrzeuganwendungen,
    - mit einem Einlassbehälter (2), der einen Einlass (5) für ein erstes Fluid aufweist und eine Einlasskammer (6) umschließt,
    - mit einem Auslassbehälter (3), der einen Auslass (7) für das erste Fluid aufweist und eine Auslasskammer (8) umschließt,
    - mit mehreren Kunststoffrohren (4), die mit dem Einlassbehälter (2) und mit dem Auslassbehälter (3) dicht verbunden sind, die die Einlasskammer (6) mit der Auslasskammer (8) miteinander kommunizierend verbinden und die im Betrieb von einem zweiten Fluid umströmt sind,
    - wobei zumindest einige der Kunststoffrohre (4) jeweils zumindest einen Längsabschnitt (9) aufweisen, in dem ringförmige Bereiche (13) mit variierenden Querschnitten in Rohrlängsrichtung aufeinander folgen.
  2. Kunststoff-Wärmeübertrager nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der jeweilige Längsabschnitt (9) nach Art eines Faltenbalgs oder nach Art eines Wellrohrs ausgestaltet ist.
  3. Kunststoff-Wärmeübertrager nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass der jeweilige Längsabschnitt (9) durch Stauchung des Kunststoffrohrs (4), insbesondere während der Herstellung des Kunststoffrohrs (4), ausgebildet ist.
  4. Kunststoff-Wärmeübertrager nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass die ringförmigen Bereiche (13) in Rohrlängsrichtung ein Wellenprofil oder ein Sägezahnprofil oder ein Rechteckprofil oder ein Stufenprofil oder eine Kombination daraus aufweisen.
  5. Kunststoff-Wärmeübertrager nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    - dass die ringförmigen Bereiche (13) Ringwulste (15) aufweisen, die alle nach innen abstehen oder die alle nach außen abstehen oder von denen die einen nach innen und von denen die anderen nach außen abstehen,
    - dass die Ringwulste (15) in Rohrlängsrichtung Rohrbereiche (16) miteinander verbinden, die konstante oder gestufte Querschnitte aufweisen.
  6. Kunststoff-Wärmeübertrager nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass die Kunststoffrohre (4) jeweils einen mit dem Einlassbehälter (2) verbundenen Einlassabschnitt (19), einen mit dem Auslassbehälter (3) verbundenen Auslassabschnitt (20) und einen den Einlassabschnitt (19) mit dem Auslassabschnitt (20) verbindenden Mittelabschnitt (21) aufweisen, dessen Wandstärke (23) kleiner ist als die Wandstärken (24, 25) des Einlassabschnitts (19) und des Auslassabschnitts (20).
  7. Kunststoff-Wärmeübertrager nach Anspruch 6,
    dadurch gekennzeichnet,
    dass die Wandstärke (23) des Mittelabschnitts (21) zwischen einschließlich 30% bis einschließlich 70% der Wandstärke (24) des Einlassabschnitts (19) oder der Wandstärke (25) des Auslassabschnitts (20) liegt, wobei die Wandstärke (23) des Mittelabschnitts (21) insbesondere etwa 50% der Wandstärke (24) des Einlassabschnitts (19) oder der Wandstärke (25) des Auslassabschnitts (20) beträgt.
  8. Kunststofif-Wärmeübertrager nach Anspruch 6 oder 7,
    dadurch gekennzeichnet,
    - dass die reduzierte Wandstärke (23) des Mittelabschnitts (21) ausschließlich durch Reduzieren des Außenquerschnitts (26) des Kunststofifrohrs (4) realisiert ist, oder
    - dass die reduzierte Wandstärke (23) des Mittelabschnitts (21) ausschließlich durch Aufweiten des Innenquerschnitts (27) des Auslassrohrs (4) realisiert ist, oder
    - dass die reduzierte Wandstärke (23) des Mittelabschnitts (21) durch Reduzieren des Außenquerschnitts (26) des Kunststoffrohrs (4) und durch Aufweiten des Innenquerschnitts (27) des Kunststoffrohrs (4) realisiert ist.
  9. Kunststoff-Wärmeübertrager nach einem der Ansprüche 6 bis 8,
    dadurch gekennzeichnet,
    - dass der jeweilige Längsabschnitt (9) im Einlassabschnitt (19) angeordnet ist, oder
    - dass der jeweilige Längsabschnitt (9) im Auslassabschnitt (20) angeordnet ist, oder
    - dass der jeweilige Längsabschnitt (9) im Mittelabschnitt (21) angeordnet ist, oder
    - dass der jeweilige Längsabschnitt (9) am Übergang (22) zwischen Einlassabschnitt (19) und Mittelabschnitt (21) angeordnet ist, oder
    - dass der jeweilige Längsabschnitt (9) am Übergang (22) zwischen Mittelabschnitt (21) und Auslassabschnitt (20) angeordnet ist.
  10. Kunststoff-Wärmeübertrager nach einem der Ansprüche 6 bis 9,
    dadurch gekennzeichnet,
    dass der jeweilige Längsabschnitt (9) im Mittelabschnitt (21) angeordnet ist, wobei der Mittelabschnitt (21) im Bereich des Längsabschnitts (9) eine größere Wandstärke (23') aufweist als stromauf und/oder stromab davon.
  11. Kunststoff-Wärmeübertrager nach einem der Ansprüche 6 bis 10,
    dadurch gekennzeichnet,
    - dass der Einlassabschnitt (19) maximal 20% oder maximal 10% der Gesamtlänge (12) des jeweiligen Kunststoffrohrs (4) umfasst, und/oder
    - dass der Auslassabschnitt (20) maximal 20% oder maximal 10% der Gesamtlänge (12) des jeweiligen Kunststoffrohrs (4) umfasst.
  12. Kunststoff-Wärmeübertrager nach einem der Ansprüche 1 bis 11,
    dadurch gekennzeichnet,
    dass im jeweiligen Kunststoffrohr (4) zumindest zwei solche Längsabschnitte (9) voneinander in Rohrlängsrichtung beabstandet angeordnet sind.
  13. Kunststoff-Wärmeübertrager nach Anspruch 12,
    dadurch gekennzeichnet,
    dass die Längsabschnitte (9) innerhalb des jeweiligen Kunststoffrohrs (4) voneinander einen Abstand (28) aufweisen, der mindestens fünf Mal größer ist als ein Innendurchmesser (30) des Kunststoffrohrs (4).
  14. Kunststoff-Wärmeübertrager nach einem der Ansprüche 1 bis 13,
    dadurch gekennzeichnet,
    dass sich der jeweilige Längsabschnitt (9) zwischen einschließlich 5% und einschließlich 10% der Gesamtlänge (12) des jeweiligen Kunststoffrohrs (4) erstreckt.
  15. Kunststoff-Wärmeübertrager nach einem der Ansprüche 1 bis 14,
    dadurch gekennzeichnet,
    dass die Längsabschnitte (9) bei benachbartem Kunststoffrohren (4) in der Rohrlängsrichtung zueinander versetzt angeordnet sind.
  16. Kunststoff-Wärmeübertrager nach einem der Ansprüche 1 bis 15,
    dadurch gekennzeichnet,
    - dass der Einlassbehälter (2) aus Kunststoff hergestellt ist und mit den Kunststoffrohren (4) verschweißt ist, und/oder
    - dass der Auslassbehälter (3) aus Kunststoff hergestellt ist und mit den Kunststoffrohren (4) verschweißt ist.
EP09177142A 2008-12-05 2009-11-26 Kunststoff-Wärmeübertrager Not-in-force EP2204628B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/329,225 US20100139902A1 (en) 2008-12-05 2008-12-05 Plastic heat exchanger

Publications (2)

Publication Number Publication Date
EP2204628A1 true EP2204628A1 (de) 2010-07-07
EP2204628B1 EP2204628B1 (de) 2012-02-15

Family

ID=41818735

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09177142A Not-in-force EP2204628B1 (de) 2008-12-05 2009-11-26 Kunststoff-Wärmeübertrager

Country Status (3)

Country Link
US (1) US20100139902A1 (de)
EP (1) EP2204628B1 (de)
AT (1) ATE545836T1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20071419A1 (it) * 2007-07-16 2009-01-17 Ilpea Ind Spa Circuito di raffreddamento
US20100294474A1 (en) * 2009-05-22 2010-11-25 Sumito Furuya Hirota Heat exchanger tube
KR20110082922A (ko) * 2010-01-12 2011-07-20 엘지전자 주식회사 열교환기
WO2013057953A1 (ja) * 2011-10-19 2013-04-25 パナソニック株式会社 熱交換器
CN102840770A (zh) * 2012-09-15 2012-12-26 马利萍 集热水器及应用该集热水器的空调
WO2016005810A1 (de) * 2014-07-10 2016-01-14 Zehnder Group International Ag Rohrregister für einen heizkörper oder kühlkörper
DE102015204015A1 (de) * 2015-03-05 2016-09-08 Mahle International Gmbh Wärmetauscher, insbesondere für ein Kraftfahrzeug
WO2016142834A1 (de) * 2015-03-10 2016-09-15 Zehnder Group International Ag Rohrregister und verfahren zu seiner herstellung
CN106121803A (zh) * 2016-06-23 2016-11-16 北京航天发射技术研究所 散热器
US10655918B2 (en) 2016-10-12 2020-05-19 Baltimore Aircoil Company, Inc. Indirect heat exchanger having circuit tubes with varying dimensions
US10641554B2 (en) * 2016-10-12 2020-05-05 Baltimore Aircoil Company, Inc. Indirect heat exchanger
US10571197B2 (en) 2016-10-12 2020-02-25 Baltimore Aircoil Company, Inc. Indirect heat exchanger
US10962295B2 (en) * 2019-02-22 2021-03-30 Mikutay Corporation Heat exchange apparatus having a plurality of modular flow path assemblies, encased in a core body with a plurality of corresponding flow path assembly seats, providing means for independent positioning and axial alignment for a desired effect

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2562785A (en) * 1946-02-12 1951-07-31 Calumet And Hecla Cons Copper Integral finned tube
US4722829A (en) * 1986-03-24 1988-02-02 Giter Gregory D Blood oxygenator
DE9418641U1 (de) * 1994-11-22 1995-03-02 Armand, Gunter, Dipl.-Ing., 87439 Kempten Wärmeaustauschrohr
DE29708011U1 (de) * 1997-05-03 1998-08-27 Solvay Verwaltungs- und Vermittlungs GmbH, 30173 Hannover Abgasrückkühler
DE20313291U1 (de) * 2003-08-26 2003-12-04 Appel, Andreas Fluidführender Wellschlauch-Wärmetauscher aus schwarzem Kunststoff
FR2849031A1 (fr) * 2002-12-19 2004-06-25 Bp Lavera Snc Procede de fabrication d'oxyde d'ethylene

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1895947A (en) * 1931-11-11 1933-01-31 Gen Electric Heat radiator
US3677338A (en) * 1971-02-17 1972-07-18 Gen Electric Surface condenser
AR205405A1 (es) * 1974-12-20 1976-04-30 Ecodyne Corp Un tubo intercambiador de calor realizado de un material plastico
EP0226825B1 (de) * 1985-12-16 1990-08-29 Akzo N.V. Verbinden von Hohlprofilkörpern mit einer Kunststoffplatte, insbesondere zum Herstellen von Wärmetauschern
GB2212256B (en) * 1987-11-12 1992-04-22 James Gray Improvements in and relating to heat exchangers
FR2901870B1 (fr) * 2006-06-01 2008-08-01 Nobel Plastiques Soc Par Actio Echangeur thermique ayant un serpentin en tube annele

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2562785A (en) * 1946-02-12 1951-07-31 Calumet And Hecla Cons Copper Integral finned tube
US4722829A (en) * 1986-03-24 1988-02-02 Giter Gregory D Blood oxygenator
DE9418641U1 (de) * 1994-11-22 1995-03-02 Armand, Gunter, Dipl.-Ing., 87439 Kempten Wärmeaustauschrohr
DE29708011U1 (de) * 1997-05-03 1998-08-27 Solvay Verwaltungs- und Vermittlungs GmbH, 30173 Hannover Abgasrückkühler
FR2849031A1 (fr) * 2002-12-19 2004-06-25 Bp Lavera Snc Procede de fabrication d'oxyde d'ethylene
DE20313291U1 (de) * 2003-08-26 2003-12-04 Appel, Andreas Fluidführender Wellschlauch-Wärmetauscher aus schwarzem Kunststoff

Also Published As

Publication number Publication date
ATE545836T1 (de) 2012-03-15
EP2204628B1 (de) 2012-02-15
US20100139902A1 (en) 2010-06-10

Similar Documents

Publication Publication Date Title
EP2204628B1 (de) Kunststoff-Wärmeübertrager
DE69219421T2 (de) Wärmetauscher
EP1608865B1 (de) Abgasw rmetauscher und dichteinrichtung für abgaswärmetauscher
EP3163242B1 (de) Indirekter ladeluftkühler
EP1895258B1 (de) Ladeluftkühler
WO2007062939A1 (de) Kühlvorrichtung für eine verbrennungskraftmaschine
DE60102104T2 (de) Wärmetauscher und Wärmetauscherrohr dafür
EP2708708A1 (de) Abgaswärmeübertrager
DE112007002824T5 (de) Zweidimensionaler Mehrfluid-Wärmetauscher
DE112009000888T5 (de) Kalibrierte Umgehungsstruktur für einen Wärmetauscher
EP2485007A2 (de) Rippenrohrwärmeübertrager
WO2004001203A2 (de) Abgaswärmeübertrager und verfahren zu seiner herstellung
DE102007043992A1 (de) Ladeluftmodul für eine Verbrennungskraftmaschine
DE102010008175B4 (de) Wärmeübertrager
DE102005058314A1 (de) Wärmetauscher
WO2005085737A1 (de) Vorrichtung zum austausch von wärme und verfahren zur herstellung einer solchen vorrichtung
DE102011008119A1 (de) Doppelrohr, sowie Doppelrohr-Wärmetauscher
DE102008056810B4 (de) Kühlvorrichtung für eine Verbrennungskraftmaschine
EP1625298B1 (de) Kraftfahrzeug und kraftstoffkühler mit lamellenartigen innenstrukturen zum anschluss an die klimaanlage
DE29613966U1 (de) Wärmetauscher, insbesondere Kondensator für die Klimaanlage eines Kraftfahrzeuges
DE3827828C2 (de) Wärmeaustauscher
EP1748271B1 (de) Rippen/Rohrblock für einen Wärmeübertrager
DE3100021C2 (de) Kraftstoffkühler für eine Brennkraftmaschine
EP1489373A2 (de) Gehäuseloser Plattenwärmetauscher mit Sammelkasten
DE102015001880A1 (de) Verfahren und Vorrichtung zur Herstellung einer Kunststoffmatte mit Verstärkung am Kapillarrohr

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20101227

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 21/06 20060101ALI20110926BHEP

Ipc: F28F 13/08 20060101ALI20110926BHEP

Ipc: F28F 1/00 20060101AFI20110926BHEP

Ipc: F28F 1/08 20060101ALI20110926BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 545836

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009002795

Country of ref document: DE

Effective date: 20120419

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120215

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120615

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120515

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120615

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009002795

Country of ref document: DE

Effective date: 20121116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120526

BERE Be: lapsed

Owner name: MAHLE INTERNATIONAL G.M.B.H.

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121126

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091126

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 545836

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181130

Year of fee payment: 10

Ref country code: FR

Payment date: 20181129

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190131

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009002795

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191126

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603