US20100139153A1 - Method of Improving Oil Compositions - Google Patents
Method of Improving Oil Compositions Download PDFInfo
- Publication number
- US20100139153A1 US20100139153A1 US12/629,906 US62990609A US2010139153A1 US 20100139153 A1 US20100139153 A1 US 20100139153A1 US 62990609 A US62990609 A US 62990609A US 2010139153 A1 US2010139153 A1 US 2010139153A1
- Authority
- US
- United States
- Prior art keywords
- oil
- fatty acid
- nitrogen atoms
- derived
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M177/00—Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/221—Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/143—Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/224—Amides; Imides carboxylic acid amides, imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/232—Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/14—Use of additives to fuels or fires for particular purposes for improving low temperature properties
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/14—Use of additives to fuels or fires for particular purposes for improving low temperature properties
- C10L10/16—Pour-point depressants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/02—Well-defined hydrocarbons
- C10M105/04—Well-defined hydrocarbons aliphatic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M149/00—Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
- C10M149/12—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M149/14—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds a condensation reaction being involved
- C10M149/22—Polyamines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/188—Carboxylic acids; metal salts thereof
- C10L1/1881—Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/18—Organic compounds containing oxygen
- C10L1/192—Macromolecular compounds
- C10L1/195—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C10L1/197—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
- C10L1/1973—Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2200/00—Components of fuel compositions
- C10L2200/02—Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
- C10L2200/0259—Nitrogen containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2230/00—Function and purpose of a components of a fuel or the composition as a whole
- C10L2230/14—Function and purpose of a components of a fuel or the composition as a whole for improving storage or transport of the fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L2270/00—Specifically adapted fuels
- C10L2270/02—Specifically adapted fuels for internal combustion engines
- C10L2270/026—Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/08—Resistance to extreme temperature
Definitions
- This invention relates to a method of improving the low-temperature properties of oils derived from plant or animal materials.
- Oils and fats derived from plant or animal materials are increasingly finding application as fuels and in particular, as partial or complete replacements for petroleum derived middle distillate fuels such as diesel.
- fuels are known as ‘biofuels’ or ‘biodiesel’.
- Biofuels may be derived from many sources. Amongst the most common are the alkyl, often methyl, esters of fatty acids extracted from plants such as rapeseed, sunflower etc. These types of fuel are often referred to as FAME (fatty acid methyl esters).
- Fuel oils derived from plant or animal materials contain components, e.g., methyl n-alkanoates, that at low temperature tend to precipitate as large, plate-like crystals or spherulites of wax in such a way as to form a gel structure which causes the fuel to lose its ability to flow.
- the lowest temperature at which the fuel will still flow is known as the pour point.
- the resulting needles are more likely to pass through a filter, or form a porous layer of crystals on the filter, than are platelets.
- the additives may also have the effect of retaining the wax crystals in suspension in the fuel, reducing settling and thus also assisting in prevention of blockages.
- the low temperature properties of the oils derived from plant or animal materials are largely determined by the saturated fatty acid content of the oil, and in particular by the proportion of C 16 -C 22 saturated fatty acids which may be present.
- the methyl and ethyl esters of these acids may be particularly problematic. Transportation and handling of such oils at or below the temperature at which these species crystallise from a mixture of fatty acid esters is difficult. Oils which contain very little saturated fatty acid esters can sometimes successfully be treated with conventional additives to improve their low-temperature properties. However, oils containing even relatively low amounts of, in particular, esters derived from palmitic and stearic acids, have been found to be unresponsive to conventional additives.
- oils derived from plant or animal materials containing C 16 -C 22 saturated fatty acids This is because they are obtained from comparatively inexpensive and plentiful sources.
- the present invention provides a solution to the low-temperature transportation and handling problems associated with these oils.
- a method of improving the low temperature properties of an oil comprising fatty acid alkyl esters derived from plant or animal materials, wherein at least 5% by weight of the fatty acid alkyl esters are derived from C 16 -C 22 saturated fatty acids, the method comprising reacting at least a portion of the oil with at least one compound having 3 or more nitrogen atoms, at least one of which nitrogen atoms is present in the form of a primary amine group; wherein the at least one compound having 3 or more nitrogen atoms comprises a polyalkylene polyamine or an imidazoline compound carrying both a poly-alkylene imine substituent and at least one primary amine group.
- an improvement in low temperature properties with regard to the oil may constitute an improvement in any one or more of the pour point, the cloud point, the cold filter plugging point (CFPP) or other operability test. Suitable tests will be known to those skilled in the art.
- an improvement in low temperature properties will constitute an improvement in pour point and/or an improvement in CFPP.
- the amidation of a mixture of the types of fatty acid esters which give rise to poor low temperature properties provides an ‘additive’ which is effective to improve the low temperature properties of an oil where these esters are present in significant amounts.
- the ‘additive’ is produced in situ by reacting the compound having 3 or more nitrogen atoms directly with the oil containing the problematic saturated fatty acid-derived esters. As is known in the art, the reaction of e.g. a methyl ester with an amine to form an amide is facile.
- the portion of the oil which is reacted with the compound having 3 or more nitrogen atoms is between 0.05-10% by weight of the oil, more preferably 0.05-2% by weight, for example 0.05-1% by weight.
- the oil once reacted with the compound having 3 or more nitrogen atoms, may be used on its own, e.g. as a pure bio-fuel, or be combined in any proportion with a petroleum-derived oil.
- At least one fatty acid is additionally employed.
- a mixture of fatty acids is employed for example, a mixture of fatty acids obtained from plant or animal materials.
- the at least one fatty acid is co-reacted with the oil and the at least one compound having 3 or more nitrogen atoms, or is added to the oil.
- the at least one fatty acid and the at least one compound having 3 or more nitrogen atoms may be added to the oil in any order.
- the low-temperature properties of an oil derived from plant or animal materials comprising at least 5% by weight of fatty acid alkyl esters derived from C 16 -C 22 saturated fatty acids can be further improved.
- one (or more if present) of the primary amine groups of the compound having 3 or more nitrogen atoms will react with the fatty acid alkyl esters to form an amide.
- this reaction is favourable and can be facilitated by gentle heat.
- Other nitrogen atoms of the compound may be for example, secondary or tertiary amines. Amide formation from such amine groups is much less favourable and thus it is expected that they will remain unreacted in the presence of the fatty acid alkyl esters. It is presently thought that the addition of a fatty acid may promote the formation of a salt with one or more of the other nitrogen atoms.
- At least 5% by weight of the mixture of fatty acid alkyl esters is derived from C 16 -C 22 saturated fatty acids.
- Preferably, at least 10%, more preferably at least 20%, even more preferably at least 30% of the mixture of fatty acid alkyl esters is derived from C 16 -C 22 saturated fatty acids.
- the fatty acid alkyl esters derived from C 16 -C 22 saturated fatty acids comprise methyl palmitate, methyl stearate or a mixture thereof.
- the amount of the mixture of fatty acid alkyl esters derived from C 16 -C 22 saturated fatty acids will not exceed 60% by weight.
- the majority of the remainder of the mixture of fatty acid esters preferably comprises those derived from unsaturated fatty acids.
- Non-limiting examples of suitable materials include palm oil methyl ester (PME), soy oil methyl ester (SME) and rape-seed oil methyl ester (RME). Also suitable are mixtures of materials obtained from different sources for example, a mixture of PME and rape-seed methyl ester (RME) or other similar mixtures.
- PME palm oil methyl ester
- SME soy oil methyl ester
- RME rape-seed oil methyl ester
- mixtures of materials obtained from different sources for example, a mixture of PME and rape-seed methyl ester (RME) or other similar mixtures.
- the compound to be reacted with the oil has at least 3 nitrogen atoms. At least one of these nitrogen atoms is in the form of a primary amine.
- the compound having 3 or more nitrogen atoms is (i) a polyalkylene polyamine.
- Suitable are those species comprising amino nitrogens linked by alkylene bridges, which amino nitrogens may be primary, secondary and/or tertiary in nature, provided that at least one amino nitrogen is a primary amine group.
- the polyamines may be straight chain, wherein all the amino groups will be primary or secondary groups, or may contain cyclic or branched regions or both, in which case tertiary amino groups may also be present, again provided that at least one amino nitrogen is a primary amine group.
- the alkylene groups may be identical or they may be different within a single molecule. Ethylene or propylene groups are preferred, with ethylene being most preferred.
- Non-limiting examples of suitable polyalkylene polyamines include di(ethylene) triamine (DETA), tri(ethylene)tetramine (TETA), tetra(ethylene)pentamine (TEPA), penta(ethylene) hexamine (PEHA) and similar homologs.
- DETA di(ethylene) triamine
- TETA tri(ethylene)tetramine
- TEPA tetra(ethylene)pentamine
- PEHA penta(ethylene) hexamine
- Polyalkylene polyamines having 5 or more nitrogen atoms are generally preferred over those with 4 or fewer nitrogen atoms.
- polyalkylene polyamines are also suitable. As is known in the art, these materials are readily available and comprise polyalkylene polyamines of various sizes. They are commonly referred to as PAM. They may be defined by the average number of nitrogen atoms per molecule of the component, which may preferably be in the range of 5 to 8.5, more preferably 6.8 to 8, for example 6.8 to 7.5 nitrogens per molecule. Heavier materials, so-called HPAM, are also suitable such as amine mixtures comprising polyamines having on average seven and eight, and optionally nine, nitrogen atoms per molecule.
- the compound having 3 or more nitrogen atoms is:
- an imidazoline compound carrying both a poly-alkylene imine substituent and at least one primary amine group may for example be made by reacting a fatty acid or the methyl ester of a fatty acid (e.g. stearic or palmitic) with a polyalkylene polyamine such a TETA, TEPA, PEHA, PAM and the like.
- a fatty acid or the methyl ester of a fatty acid e.g. stearic or palmitic
- a polyalkylene polyamine such as TETA, TEPA, PEHA, PAM and the like.
- Preferred fatty acids are unsaturated fatty acids having between 16 and 20 carbon atoms. Particularly preferred are C 18 unsaturated acids such as oleic acid, linoleic acid and linolenic acid. These may be used as pure components, but it preferable to use mixtures of fatty acids obtained from plant or animal materials. Examples are fatty acid mixture obtained from rapeseed oil, tall oil, coriander oil, soyabean oil, cottonseed oil, sunflower oil, castor oil, olive oil, peanut oil, maize oil, almond oil, palm kernel oil, coconut oil, mustard seed oil, jatropha oil, beef tallow and fish oils.
- co-additives may be used in the present invention.
- Suitable co-additives are those known in the art as effective to improve the low-temperature properties of fuel oils as well as additives to improve other properties of the oils such as lubricity additives, antioxidants, dispersants, detergents and similar.
- an ethylene polymer may be employed as a co-additive. Examples of these are given below.
- Each polymer may be a homopolymer or a copolymer of ethylene with another unsaturated monomer.
- Preferred co-monomers are unsaturated esters or ether monomers, with ester monomers being more preferred.
- Preferred ethylene unsaturated ester copolymers have, in addition to units derived from ethylene, units of the formula:
- R 3 represents hydrogen or methyl
- R 4 represents COOR 6
- R 6 represents an alkyl group having from 1-12, preferably 1-9 carbon atoms, which is straight chain, or, if it contains 3 or more carbon atoms, branched, or R 4 represents OOCR 7 , wherein R 7 represents R 6 or H, and R 5 represents H or COOR 6 .
- These may comprise a copolymer of ethylene with an ethylenically unsaturated ester, or derivatives thereof.
- An example is a copolymer of ethylene with an ester of a saturated alcohol and an unsaturated carboxylic acid, but preferably the ester is one of an unsaturated alcohol with a saturated carboxylic acid.
- An ethylene-vinyl ester copolymer is advantageous; an ethylene-vinyl acetate, ethylene-vinyl propionate, ethylene-vinyl hexanoate, ethylene-vinyl 2-ethylhexanoate, ethylene-vinyl octanoate or ethylene-vinyl versatate copolymer is preferred.
- the copolymer contains from 5 to 40 wt % of the vinyl ester, more preferably from 10 to 35 wt % vinyl ester.
- a mixture of two copolymers for example, as described in U.S. Pat. No. 3,961,916, may be used.
- the Mn of the copolymer is advantageously 1,000 to 10,000.
- the copolymer may contain units derived from additional comonomers, e.g. a terpolymer, tetrapolymer or a higher polymer, e.g. where the additional comonomer is isobutylene or diisobutylene or a further unsaturated ester.
- suitable co-monomers include hydrocarbon monomers such as propylene, n- and iso-butylenes, 1-hexene, 1-octene, methyl-1-pentene vinyl-cyclohexane and the various alpha-olefins known in the art, such as 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecane and 1-octadecene and mixtures thereof.
- hydrocarbon monomers such as propylene, n- and iso-butylenes, 1-hexene, 1-octene, methyl-1-pentene vinyl-cyclohexane and the various alpha-olefins known in the art, such as 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecane and 1-octadecene and mixtures thereof.
- Rape-seed oil methyl ester (RME) having a C 16 -C 22 saturate content of 6.2% by weight was reacted with tetraethylene pentamine (TEPA) in an amount of 0.125% by weight.
- TEPA tetraethylene pentamine
- the reaction was carried out at 140° C. for four hours under a blanket of nitrogen gas.
- the pour point of the untreated RME was ⁇ 12° C. After reaction with TEPA, the pour point was reduced to ⁇ 42° C.
- EVA ethylene vinyl acetate
- Triethylene tetramine (TETA) was reacted with stearic acid in the same proportions and under the same reaction conditions as described in Example 2.
- 1-(N-aminoethyl-aminoethyl)-2-heptadecyl-imidazoline was obtained as the product.
- Soya-oil methyl ester (SME) having a C 16 -C 22 saturate content of 14.6% by weight was reacted with the imidazoline in an amount of 0.5% by weight. The reaction was carried out at 150° C. for four hours under a blanket of nitrogen gas.
- EVA ethylene vinyl acetate
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Lubricants (AREA)
- Fats And Perfumes (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08105958.6 | 2008-12-09 | ||
EP08105958 | 2008-12-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100139153A1 true US20100139153A1 (en) | 2010-06-10 |
Family
ID=40291290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/629,906 Abandoned US20100139153A1 (en) | 2008-12-09 | 2009-12-03 | Method of Improving Oil Compositions |
Country Status (11)
Country | Link |
---|---|
US (1) | US20100139153A1 (pl) |
EP (1) | EP2196520B1 (pl) |
JP (1) | JP5566087B2 (pl) |
KR (1) | KR20100066401A (pl) |
CN (1) | CN101747996B (pl) |
AT (1) | ATE496108T1 (pl) |
CA (1) | CA2687711A1 (pl) |
DE (1) | DE602009000639D1 (pl) |
ES (1) | ES2356112T3 (pl) |
MY (1) | MY145416A (pl) |
PL (1) | PL2196520T3 (pl) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050183325A1 (en) * | 2004-02-24 | 2005-08-25 | Sutkowski Andrew C. | Conductivity improving additive for fuel oil compositions |
US20070051033A1 (en) * | 2005-09-06 | 2007-03-08 | Bj Services Company | Pour point reduction and paraffin deposition reduction by use of imidazolines |
US20070240361A1 (en) * | 2006-04-18 | 2007-10-18 | Clayton Christopher William | Formulating fuel compositions |
US20100000795A1 (en) * | 2008-07-02 | 2010-01-07 | Clearwater International, Llc | Enhanced oil-based foam drilling fluid compositions and method for making and using same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3961916A (en) | 1972-02-08 | 1976-06-08 | Exxon Research And Engineering Company | Middle distillate compositions with improved filterability and process therefor |
DE3049553A1 (de) * | 1980-12-31 | 1982-07-29 | Basf Ag, 6700 Ludwigshafen | Erdoeldestillate mit verbessertem kaelteverhalten |
JPS5953594A (ja) * | 1982-09-22 | 1984-03-28 | Dai Ichi Kogyo Seiyaku Co Ltd | 燃料油用流動性向上剤 |
JPS6220589A (ja) * | 1985-07-19 | 1987-01-29 | Karonaito Kagaku Kk | 残留燃料油 |
DE10058356B4 (de) * | 2000-11-24 | 2005-12-15 | Clariant Gmbh | Brennstofföle mit verbesserter Schmierwirkung, enthaltend Umsetzungsprodukte aus Fettsäuren mit kurzkettigen öllöslichen Aminen |
EP1526267A3 (de) * | 2003-10-21 | 2010-07-28 | Continental Automotive GmbH | Verfahren zur Driftkompensation eines Injektors für die direkte Kraftstoffeinspritzung in einen Zylinder einer Brennkraftmaschine sowie Vorrichtung |
DE10349851B4 (de) * | 2003-10-25 | 2008-06-19 | Clariant Produkte (Deutschland) Gmbh | Kaltfließverbesserer für Brennstofföle pflanzlichen oder tierischen Ursprungs |
RU2009119726A (ru) * | 2006-10-27 | 2010-12-10 | Басф Се (De) | Олиго- или полиамины в качестве стабилизаторов окисления биотопливных масел |
-
2009
- 2009-11-02 EP EP09174793A patent/EP2196520B1/en not_active Not-in-force
- 2009-11-02 DE DE602009000639T patent/DE602009000639D1/de active Active
- 2009-11-02 ES ES09174793T patent/ES2356112T3/es active Active
- 2009-11-02 AT AT09174793T patent/ATE496108T1/de not_active IP Right Cessation
- 2009-11-02 PL PL09174793T patent/PL2196520T3/pl unknown
- 2009-12-03 US US12/629,906 patent/US20100139153A1/en not_active Abandoned
- 2009-12-08 CA CA2687711A patent/CA2687711A1/en not_active Abandoned
- 2009-12-08 KR KR1020090121135A patent/KR20100066401A/ko active IP Right Grant
- 2009-12-08 MY MYPI20095229A patent/MY145416A/en unknown
- 2009-12-09 CN CN2009102580091A patent/CN101747996B/zh not_active Expired - Fee Related
- 2009-12-09 JP JP2009279622A patent/JP5566087B2/ja not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050183325A1 (en) * | 2004-02-24 | 2005-08-25 | Sutkowski Andrew C. | Conductivity improving additive for fuel oil compositions |
US20070051033A1 (en) * | 2005-09-06 | 2007-03-08 | Bj Services Company | Pour point reduction and paraffin deposition reduction by use of imidazolines |
US20070240361A1 (en) * | 2006-04-18 | 2007-10-18 | Clayton Christopher William | Formulating fuel compositions |
US20100000795A1 (en) * | 2008-07-02 | 2010-01-07 | Clearwater International, Llc | Enhanced oil-based foam drilling fluid compositions and method for making and using same |
Also Published As
Publication number | Publication date |
---|---|
EP2196520B1 (en) | 2011-01-19 |
EP2196520A1 (en) | 2010-06-16 |
DE602009000639D1 (de) | 2011-03-03 |
ES2356112T3 (es) | 2011-04-05 |
KR20100066401A (ko) | 2010-06-17 |
CN101747996B (zh) | 2013-06-05 |
JP2010138396A (ja) | 2010-06-24 |
CA2687711A1 (en) | 2010-06-09 |
ATE496108T1 (de) | 2011-02-15 |
PL2196520T3 (pl) | 2011-06-30 |
JP5566087B2 (ja) | 2014-08-06 |
CN101747996A (zh) | 2010-06-23 |
MY145416A (en) | 2012-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4753592B2 (ja) | 燃料油組成物用導電性改良添加剤 | |
CA2655877C (en) | Mixture from polar oil-soluble nitrogen compounds and acid amides as paraffin dispersant for fuels | |
CA2681312C (en) | A synergistic combination of a hindered phenol and nitrogen containing detergent for biodiesel fuel to improve oxidative stability | |
ES2579852T3 (es) | Compuestos de nitrógeno cuaternizados y su uso como aditivos en carburantes y lubricantes | |
JP2010523768A5 (pl) | ||
US6793696B2 (en) | Enhanced lubricity fuel oil compositions comprising salts of fatty acids with short chain oil-soluble amines | |
JP4828098B2 (ja) | 燃料オイル組成物 | |
US11987761B2 (en) | Fuels | |
WO2002102942A2 (en) | Fuel additive composition and fuel composition and method thereof | |
EP2196520B1 (en) | Method of improving oil compositions | |
JP6097813B2 (ja) | 留出燃料における表面電圧低減のための組成物 | |
AU2002324421A1 (en) | Fuel additive composition and fuel composition and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INFINEUM INTERNATIONAL LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TACK, ROBERT D.;RIANO-GORDO, DIANA;SIGNING DATES FROM 20100112 TO 20100121;REEL/FRAME:030040/0671 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |