EP2196520B1 - Method of improving oil compositions - Google Patents

Method of improving oil compositions Download PDF

Info

Publication number
EP2196520B1
EP2196520B1 EP09174793A EP09174793A EP2196520B1 EP 2196520 B1 EP2196520 B1 EP 2196520B1 EP 09174793 A EP09174793 A EP 09174793A EP 09174793 A EP09174793 A EP 09174793A EP 2196520 B1 EP2196520 B1 EP 2196520B1
Authority
EP
European Patent Office
Prior art keywords
oil
fatty acid
nitrogen atoms
derived
alkyl esters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09174793A
Other languages
German (de)
French (fr)
Other versions
EP2196520A1 (en
Inventor
Robert Tack
Diana Riano-Gordo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineum International Ltd
Original Assignee
Infineum International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineum International Ltd filed Critical Infineum International Ltd
Priority to EP09174793A priority Critical patent/EP2196520B1/en
Priority to PL09174793T priority patent/PL2196520T3/en
Publication of EP2196520A1 publication Critical patent/EP2196520A1/en
Application granted granted Critical
Publication of EP2196520B1 publication Critical patent/EP2196520B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/221Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • C10L10/16Pour-point depressants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/04Well-defined hydrocarbons aliphatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M149/00Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
    • C10M149/12Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M149/14Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds a condensation reaction being involved
    • C10M149/22Polyamines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1881Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/02Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
    • C10L2200/0259Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/14Function and purpose of a components of a fuel or the composition as a whole for improving storage or transport of the fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature

Abstract

A method of improving the low temperature properties of an oil comprising fatty acid alkyl esters derived from plant or animal materials, wherein at least 5% by weight of the fatty acid alkyl esters are derived from C 16 - C 22 saturated fatty acids. The method comprising reacting at least a portion of the oil with a polyalkylene polyamine or an imidazoline compound carrying both a poly-alkylene imine substituent and at least one primary amine group.

Description

  • This invention relates to a method of improving the low-temperature properties of oils derived from plant or animal materials.
  • Oils and fats derived from plant or animal materials are increasingly finding application as fuels and in particular, as partial or complete replacements for petroleum derived middle distillate fuels such as diesel. Commonly, such fuels are known as 'biofuels' or 'biodiesel'. Biofuels may be derived from many sources. Amongst the most common are the alkyl, often methyl, esters of fatty acids extracted from plants such as rapeseed, sunflower etc. These types of fuel are often referred to as FAME (fatty acid methyl esters).
  • There is an environmental drive to encourage the use of such fuels as they are obtained from a renewable source. There are also indications that biofuels produce less pollution on combustion than the equivalent petroleum-derived fuel.
  • Fuel oils derived from plant or animal materials contain components, e.g., methyl n-alkanoates, that at low temperature tend to precipitate as large, plate-like crystals or spherulites of wax in such a way as to form a gel structure which causes the fuel to lose its ability to flow. The lowest temperature at which the fuel will still flow is known as the pour point.
  • As the temperature of the fuel falls and approaches the pour point, difficulties arise in transporting the fuel through lines and pumps. Further, the wax crystals tend to plug fuel lines, screens, and filters at temperatures above the pour point. These problems are well- recognised in the art, and various additives have been proposed, many of which are in commercial use, for depressing the pour point of fuel oils; both those derived from petroleum sources and those derived from plant or animal materials. Similarly, other additives have been proposed and are in commercial use for reducing the size and changing the shape of the wax crystals that do form. Smaller size crystals are desirable since they are less likely to clog a filter. Certain additives inhibit the tendency of the waxes formed to crystallize as platelets instead causing them to adopt an acicular habit. The resulting needles are more likely to pass through a filter, or form a porous layer of crystals on the filter, than are platelets. The additives may also have the effect of retaining the wax crystals in suspension in the fuel, reducing settling and thus also assisting in prevention of blockages.
  • The low temperature properties of the oils derived from plant or animal materials are largely determined by the saturated fatty acid content of the oil, and in particular by the proportion of C16 - C22 saturated fatty acids which may be present. The methyl and ethyl esters of these acids may be particularly problematic. Transportation and handling of such oils at or below the temperature at which these species crystallise from a mixture of fatty acid esters is difficult. Oils which contain very little saturated fatty acid esters can sometimes successfully be treated with conventional additives to improve their low-temperature properties. However, oils containing even relatively low amounts of, in particular, esters derived from palmitic and stearic acids, have been found to be unresponsive to conventional additives.
  • Despite the problems highlighted above, there is a desire to utilise oils derived from plant or animal materials containing C16 - C22 saturated fatty acids. This is because they are obtained from comparatively inexpensive and plentiful sources. The present invention provides a solution to the low-temperature transportation and handling problems associated with these oils.
  • In accordance with the present invention there is provided a method of improving the low temperature properties of an oil comprising fatty acid alkyl esters derived from plant or animal materials, wherein at least 5% by weight of the fatty acid alkyl esters are derived from C16 - C22 saturated fatty acids, the method comprising reacting between 0.05 and 10% by weight of the oil with at least one compound having 3 or more nitrogen atoms, at least one of which nitrogen atoms is present in the form of a primary amine group; wherein the at least one compound having 3 or more nitrogen atoms comprises a polyalkylene polyamine or an imidazoline compound carrying both a poly-alkylene imine substituent and at least one primary amine group made by reacting a fatty acid or the methyl ester of a fatty acid with a polyalkylene polyamine.
  • In the context of the present invention, an improvement in low temperature properties with regard to the oil may constitute an improvement in any one or more of the pour point, the cloud point, the cold filter plugging point (CFPP) or other operability test. Suitable tests will be known to those skilled in the art. Preferably, an improvement in low temperature properties will constitute an improvement in pour point and/or an improvement in CFPP.
  • Without wishing to be bound by any theory, it is thought that the amidation of a mixture of the types of fatty acid esters which give rise to poor low temperature properties provides an 'additive' which is effective to improve the low temperature properties of an oil where these esters are present in significant amounts. The 'additive' is produced in situ by reacting the compound having 3 or more nitrogen atoms directly with the oil containing the problematic saturated fatty acid-derived esters. As is known in the art, the reaction of e.g. a methyl ester with an amine to form an amide is facile.
  • Preferably the portion of the oil which is reacted with the compound having 3 or more nitrogen atoms is between 0.05 - 2% by weight of the oil, more preferably 0.05 -1% by weight.
  • The oil, once reacted with the compound having 3 or more nitrogen atoms, may be used on its own, e.g. as a pure bio-fuel, or be combined in any proportion with a petroleum-derived oil.
  • In a preferred embodiment, at least one fatty acid is additionally employed. Preferably, a mixture of fatty acids is employed for example, a mixture of fatty acids obtained from plant or animal materials. The at least one fatty acid is co-reacted with the oil and the at least one compound having 3 or more nitrogen atoms, or is added to the oil. The at least one fatty acid and the at least one compound having 3 or more nitrogen atoms may be added to the oil in any order.
  • By employing at least one fatty acid, the low-temperature properties of an oil derived from plant or animal materials comprising at least 5% by weight of fatty acid alkyl esters derived from C16 - C22 saturated fatty acids can be further improved.
  • It is expected that one (or more if present) of the primary amine groups of the compound having 3 or more nitrogen atoms will react with the fatty acid alkyl esters to form an amide. As mentioned above, this reaction is favourable and can be facilitated by gentle heat. Other nitrogen atoms of the compound may be for example, secondary or tertiary amines. Amide formation from such amine groups is much less favourable and thus it is expected that they will remain unreacted in the presence of the fatty acid alkyl esters. It is presently thought that the addition of a fatty acid may promote the formation of a salt with one or more of the other nitrogen atoms.
  • The various features of the invention will now be described in more detail.
  • Mixture of fatty acid alkyl esters.
  • At least 5% by weight of the mixture of fatty acid alkyl esters is derived from C16 - C22 saturated fatty acids. Preferably, at least 10%, more preferably at least 20%, even more preferably at least 30% of the mixture of fatty acid alkyl esters is derived from C16 - C22 saturated fatty acids. Preferred are methyl or ethyl esters, especially methyl esters.
  • In a preferred embodiment the fatty acid alkyl esters derived from C16 - C22 saturated fatty acids comprise methyl palmitate, methyl stearate or a mixture thereof
  • Preferably, the amount of the mixture of fatty acid alkyl esters derived from C16 - C22 saturated fatty acids will not exceed 60% by weight. The majority of the remainder of the mixture of fatty acid esters preferably comprises those derived from unsaturated fatty acids.
  • Non-limiting examples of suitable materials include palm oil methyl ester (PME), soy oil methyl ester (SME) and rape-seed oil methyl ester (RME). Also suitable are mixtures of materials obtained from different sources for example, a mixture of PME and rape-seed methyl ester (RME) or other similar mixtures.
  • Compound having 3 or more nitrogen atoms
  • The compound to be reacted with the oil has at least 3 nitrogen atoms. At least one of these nitrogen atoms is in the form of a primary amine.
  • In one embodiment, the compound having 3 or more nitrogen atoms is (i) a polyalkylene polyamine.
  • Suitable are those species comprising amino nitrogens linked by alkylene bridges, which amino nitrogens may be primary, secondary and/or tertiary in nature, provided that at least one amino nitrogen is a primary amine group. The polyamines may be straight chain, wherein all the amino groups will be primary or secondary groups, or may contain cyclic or branched regions or both, in which case tertiary amino groups may also be present, again provided that at least one amino nitrogen is a primary amine group. The alkylene groups may be identical or they may be different within a single molecule. Ethylene or propylene groups are preferred, with ethylene being most preferred.
  • Non-limiting examples of suitable polyalkylene polyamines include di(ethylene) triamine (DETA), tri(ethylene)tetramine (TETA), tetra(ethylene)pentamine (TEPA), penta(ethylene) hexamine (PEHA) and similar homologs. Polyalkylene polyamines having 5 or more nitrogen atoms are generally preferred over those with 4 or fewer nitrogen atoms.
  • Mixtures of polyalkylene polyamines are also suitable. As is known in the art, these materials are readily available and comprise polyalkylene polyamines of various sizes. They are commonly referred to as PAM. They may be defined by the average number of nitrogen atoms per molecule of the component, which may preferably be in the range of 5 to 8.5, more preferably 6.8 to 8, for example 6.8 to 7.5 nitrogens per molecule. Heavier materials, so-called HPAM, are also suitable such as amine mixtures comprising polyamines having on average seven and eight, and optionally nine, nitrogen atoms per molecule.
  • In another embodiment, the compound having 3 or more nitrogen atoms is:
    • an imidazoline compound carrying both a poly-alkylene imine substituent and at least one primary amine group made by reacting a fatty acid or the methyl ester of a fatty acid (e.g. stearic or palmitic) with a polyalkylene polyamine such a TETA, TEPA, PEHA, PAM and the like.
    Fatty acid
  • Preferred fatty acids are unsaturated fatty acids having between 16 and 20 carbon atoms. Particularly preferred are C18 unsaturated acids such as oleic acid, linoleic acid and linolenic acid. These may be used as pure components, but it preferable to use mixtures of fatty acids obtained from plant or animal materials. Examples are fatty acid mixture obtained from rapeseed oil, tall oil, coriander oil, soyabean oil, cottonseed oil, sunflower oil, castor oil, olive oil, peanut oil, maize oil, almond oil, palm kernel oil, coconut oil, mustard seed oil, jatropha oil, beef tallow and fish oils. Further examples include oils derived from corn, jute, sesame, shea nut, ground nut and linseed oil and may be derived therefrom by methods known in the art. Oils having a high proportion of C18 unsaturated fatty acids, that is in excess of 50% by weight of C18 unsaturated fatty acids, preferably in excess of 70% or 85% by weight are suitable. Fatty acids obtained from tall oil and rapeseed oil are particularly suitable.
  • One or more co-additives may be used in the present invention. Suitable co-additives are those known in the art as effective to improve the low-temperature properties of fuel oils as well as additives to improve other properties of the oils such as lubricity additives, antioxidants, dispersants, detergents and similar.
  • In a preferred embodiment, an ethylene polymer may be employed as a co-additive. Examples of these are given below.
  • Ethylene Polymers
  • Each polymer may be a homopolymer or a copolymer of ethylene with another unsaturated monomer.
  • Preferred co-monomers are unsaturated esters or ether monomers, with ester monomers being more preferred. Preferred ethylene unsaturated ester copolymers have, in addition to units derived from ethylene, units of the formula:

            -CR3R4-CHR5-

    wherein R3 represents hydrogen or methyl, R4 represents COOR6, wherein R6 represents an alkyl group having from 1-12, preferably 1-9 carbon atoms, which is straight chain, or, if it contains 3 or more carbon atoms, branched, or R4 represents OOCR7, wherein R7 represents R6 or H, and R5 represents H or COOR6.
  • These may comprise a copolymer of ethylene with an ethylenically unsaturated ester, or derivatives thereof. An example is a copolymer of ethylene with an ester of a saturated alcohol and an unsaturated carboxylic acid, but preferably the ester is one of an unsaturated alcohol with a saturated carboxylic acid. An ethylene-vinyl ester copolymer is advantageous; an ethylene-vinyl acetate, ethylene-vinyl propionate, ethylene-vinyl hexanoate, ethylene-vinyl 2-ethylhexanoate, ethylene-vinyl octanoate or ethylene-vinyl versatate copolymer is preferred. Preferably, the copolymer contains from 5 to 40 wt% of the vinyl ester, more preferably from 10 to 35 wt% vinyl ester. A mixture of two copolymers, for example, as described in US Patent No. 3,961,916 , may be used. The Mn of the copolymer is advantageously 1,000 to 10,000. If desired, the copolymer may contain units derived from additional comonomers, e.g. a terpolymer, tetrapolymer or a higher polymer, e.g. where the additional comonomer is isobutylene or diisobutylene or a further unsaturated ester.
  • Other suitable co-monomers include hydrocarbon monomers such as propylene, n- and iso- butylenes, 1-hexene, 1-octene, methyl-1-pentene vinyl-cyclohexane and the various alphaolefins known in the art, such as 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecane and 1-octadecene and mixtures thereof.
  • The invention will now be described by way of example only.
  • Example 1
  • Rape-seed oil methyl ester (RME) having a C16 - C22 saturate content of 6.2% by weight was reacted with tetraethylene pentamine (TEPA) in an amount of 0.125% by weight. The reaction was carried out at 140°C for four hours under a blanket of nitrogen gas. The pour point of the untreated RME was -12°C. After reaction with TEPA, the pour point was reduced to -42°C.
  • Example 2
  • 1-2 moles of diethylene triamine (DETA) was reacted with 1 mole of stearic acid by refluxing in xylene at 160°C. After completion, excess amine was removed together with the solvent by vacuum distillation. 1-aminoethyl-2-heptadecyl-imidazoline was obtained as the product. Soya-oil methyl ester (SME) having a C16 - C22 saturate content of 14.6% by weight was reacted with the imidazoline in an amount of 0. 5% by weight. The reaction was carried out at 150°C for four hours under a blanket of nitrogen gas. An ethylene vinyl acetate (EVA) copolymer in an amount of 0.6% by weight was added to the SME and the pour point was measured to be - 42°C. By comparison, the pour point of the unreacted SME including the 0.6% of the EVA copolymer was measured at -6°C.
  • Example 3
  • Triethylene tetramine (TETA) was reacted with stearic acid in the same proportions and under the same reaction conditions as described in Example 2. 1-(N-aminoethyl-aminoethyl)-2-heptadecyl-imidazoline was obtained as the product. Soya-oil methyl ester (SME) having a C16-C22 saturate content of 14.6% by weight was reacted with the imidazoline in an amount of 0. 5% by weight. The reaction was carried out at 150°C for four hours under a blanket of nitrogen gas. An ethylene vinyl acetate (EVA) copolymer in an amount of 0.6% by weight was added to the SME and the pour point was measured to be -51°C. By comparison, the pour point of the unreacted SME including the 0.6% of the EVA copolymer was measured at -6°C.

Claims (7)

  1. A method of improving the low temperature properties of an oil comprising fatty acid alkyl esters derived from plant or animal materials, wherein at least 5% by weight of the fatty acid alkyl esters are derived from C16 - C22 saturated fatty acids, the method comprising reacting between 0.05 and 10% by weight of the oil with at least one compound having 3 or more nitrogen atoms, at least one of which nitrogen atoms is present in the form of a primary amine group; wherein the at least one compound having 3 or more nitrogen atoms comprises a polyalkylene polyamine or an imidazoline compound carrying both a poly-alkylene imine substituent and at least one primary amine group made by reacting a fatty acid or the methyl ester of a fatty acid with a polyalkylene polyamine.
  2. A method according to claim 1 wherein the polyalkylene polyamine has 5 or more nitrogen atoms.
  3. A method according to any preceding claim wherein the oil comprising fatty acid alkyl esters derived from plant or animal materials consists substantially of methyl or ethyl esters.
  4. A method according to any preceding claim wherein the at least 5% by weight of the fatty acid alkyl esters derived from C16 - C22 saturated fatty acids comprises methyl palmitate, methyl stearate or a mixture thereof
  5. A method according to any preceding claim wherein at least one fatty acid is co-reacted with the oil and the at least one compound having 3 or more nitrogen atoms, or is added to the oil.
  6. A method according to claim 5 wherein the at least one fatty acid comprises a mixture of fatty acids obtained from plant or animal material.
  7. A method according to any preceding claim further comprising adding an ethylene polymer to the oil.
EP09174793A 2008-12-09 2009-11-02 Method of improving oil compositions Not-in-force EP2196520B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09174793A EP2196520B1 (en) 2008-12-09 2009-11-02 Method of improving oil compositions
PL09174793T PL2196520T3 (en) 2008-12-09 2009-11-02 Method of improving oil compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08105958 2008-12-09
EP09174793A EP2196520B1 (en) 2008-12-09 2009-11-02 Method of improving oil compositions

Publications (2)

Publication Number Publication Date
EP2196520A1 EP2196520A1 (en) 2010-06-16
EP2196520B1 true EP2196520B1 (en) 2011-01-19

Family

ID=40291290

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09174793A Not-in-force EP2196520B1 (en) 2008-12-09 2009-11-02 Method of improving oil compositions

Country Status (11)

Country Link
US (1) US20100139153A1 (en)
EP (1) EP2196520B1 (en)
JP (1) JP5566087B2 (en)
KR (1) KR20100066401A (en)
CN (1) CN101747996B (en)
AT (1) ATE496108T1 (en)
CA (1) CA2687711A1 (en)
DE (1) DE602009000639D1 (en)
ES (1) ES2356112T3 (en)
MY (1) MY145416A (en)
PL (1) PL2196520T3 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961916A (en) 1972-02-08 1976-06-08 Exxon Research And Engineering Company Middle distillate compositions with improved filterability and process therefor
DE3049553A1 (en) * 1980-12-31 1982-07-29 Basf Ag, 6700 Ludwigshafen PETROLEUM DISTILLATES WITH IMPROVED COLD BEHAVIOR
JPS5953594A (en) * 1982-09-22 1984-03-28 Dai Ichi Kogyo Seiyaku Co Ltd Fuel oil fluidity enhancer
JPS6220589A (en) * 1985-07-19 1987-01-29 Karonaito Kagaku Kk Residual fuel oil
DE10058356B4 (en) * 2000-11-24 2005-12-15 Clariant Gmbh Fuel oils with improved lubricity, containing reaction products of fatty acids with short-chain oil-soluble amines
EP1526267A3 (en) * 2003-10-21 2010-07-28 Continental Automotive GmbH Method and device for compensating the drift of an injector for an internal combustion engine with direct injection
DE10349851B4 (en) * 2003-10-25 2008-06-19 Clariant Produkte (Deutschland) Gmbh Cold flow improver for fuel oils of vegetable or animal origin
US20050183325A1 (en) * 2004-02-24 2005-08-25 Sutkowski Andrew C. Conductivity improving additive for fuel oil compositions
US7857871B2 (en) * 2005-09-06 2010-12-28 Baker Hughes Incorporated Method of reducing paraffin deposition with imidazolines
WO2007118869A1 (en) * 2006-04-18 2007-10-25 Shell Internationale Research Maatschappij B.V. Fuel compositions
CN101528896A (en) * 2006-10-27 2009-09-09 巴斯夫欧洲公司 Oligo- or polyamines as oxidation stabilizers for biofuel oils
US8141661B2 (en) * 2008-07-02 2012-03-27 Clearwater International, Llc Enhanced oil-based foam drilling fluid compositions and method for making and using same

Also Published As

Publication number Publication date
JP2010138396A (en) 2010-06-24
MY145416A (en) 2012-02-15
ATE496108T1 (en) 2011-02-15
PL2196520T3 (en) 2011-06-30
CA2687711A1 (en) 2010-06-09
JP5566087B2 (en) 2014-08-06
EP2196520A1 (en) 2010-06-16
CN101747996B (en) 2013-06-05
ES2356112T3 (en) 2011-04-05
CN101747996A (en) 2010-06-23
DE602009000639D1 (en) 2011-03-03
KR20100066401A (en) 2010-06-17
US20100139153A1 (en) 2010-06-10

Similar Documents

Publication Publication Date Title
CA2655877C (en) Mixture from polar oil-soluble nitrogen compounds and acid amides as paraffin dispersant for fuels
JP4753592B2 (en) Conductivity improving additive for fuel oil composition
ES2579852T3 (en) Quaternized nitrogen compounds and their use as additives in fuels and lubricants
CA2681312C (en) A synergistic combination of a hindered phenol and nitrogen containing detergent for biodiesel fuel to improve oxidative stability
KR102265994B1 (en) Use of a hydrocarbyl-substituted dicarboxylic acid for improving or boosting the separation of water from fuel oils and gasoline fuels
JP4828098B2 (en) Fuel oil composition
US6793696B2 (en) Enhanced lubricity fuel oil compositions comprising salts of fatty acids with short chain oil-soluble amines
AU2010212136B2 (en) Improvements in fuels
WO2001038461A1 (en) Composition
EP1390455A2 (en) Fuel additive composition and fuel composition and method thereof
JP2005015798A (en) Oil composition
KR20150133265A (en) Use of a hydrocarbyl-substituted dicarboxylic acid for improving or boosting the separation of water from fuel oils which comprises detergent additive
EP2196520B1 (en) Method of improving oil compositions
KR101813337B1 (en) Composition for surface voltage reduction in distillate fuel
WO2013114107A2 (en) Improvements in or relating to fuels
US20230108384A1 (en) Fuels
AU2002324421A1 (en) Fuel additive composition and fuel composition and method thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C10L 10/14 20060101ALI20100921BHEP

Ipc: C10L 1/2383 20060101AFI20100921BHEP

Ipc: C10L 10/16 20060101ALI20100921BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602009000639

Country of ref document: DE

Date of ref document: 20110303

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009000639

Country of ref document: DE

Effective date: 20110303

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2356112

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110405

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110119

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110519

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110519

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110419

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

26N No opposition filed

Effective date: 20111020

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009000639

Country of ref document: DE

Effective date: 20111020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 496108

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110119

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20150924

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151027

Year of fee payment: 7

Ref country code: IT

Payment date: 20151112

Year of fee payment: 7

Ref country code: DE

Payment date: 20151130

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20151110

Year of fee payment: 7

Ref country code: ES

Payment date: 20151113

Year of fee payment: 7

Ref country code: FR

Payment date: 20151027

Year of fee payment: 7

Ref country code: NL

Payment date: 20151106

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009000639

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20161201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161102

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161103

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181116